WO2024082487A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2024082487A1
WO2024082487A1 PCT/CN2023/074790 CN2023074790W WO2024082487A1 WO 2024082487 A1 WO2024082487 A1 WO 2024082487A1 CN 2023074790 W CN2023074790 W CN 2023074790W WO 2024082487 A1 WO2024082487 A1 WO 2024082487A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
thin film
film transistor
display
emitting devices
Prior art date
Application number
PCT/CN2023/074790
Other languages
English (en)
French (fr)
Inventor
陈云妮
刘凡成
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Publication of WO2024082487A1 publication Critical patent/WO2024082487A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/54Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being generated by moving a 2D surface, e.g. by vibrating or rotating the 2D surface
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present application relates to the field of display, and in particular to a display device.
  • the “3D” fan screen uses LED lamp beads as light-emitting devices, and has problems of low resolution and uneven display.
  • Another type of scanning three-dimensional display device uses one side of various display screens as the axis to perform rotational scanning to form a cylindrical display space. This makes the display brightness of this type of display device higher near the rotating axis, and the overall brightness of the display panel is uneven, affecting the actual display effect.
  • the embodiment of the present application provides a display module device to solve the technical problem that the overall brightness of a display panel of a rotating display device is uneven, thereby affecting the actual display effect.
  • An embodiment of the present application provides a display device, including:
  • the display panel can rotate around a rotation axis for display, the display panel includes a plurality of first light emitting device groups arranged in a first direction, the first light emitting device group includes a plurality of first light emitting devices, the first direction is perpendicular to the rotation axis, and the first direction is from the rotation axis to a side of the display panel away from the rotation axis;
  • the distribution density of the first light-emitting devices in one of the first light-emitting device groups close to the rotation axis is smaller than the distribution density of the first light-emitting devices in another of the first light-emitting device groups far from the rotation axis.
  • a first light emitting device group includes at least one plurality of first subgroups arranged along a first direction, each of the first subgroups includes a plurality of first light emitting devices arranged along a second direction, The second direction is parallel to the rotation axis;
  • the distribution density of the first light-emitting devices in a plurality of the first subgroups in at least one of the first light-emitting device groups is the same.
  • a first light emitting device group includes at least two first subgroups arranged along the first direction, the first subgroup includes a plurality of first light emitting devices, and the plurality of first light emitting devices are evenly spaced along the second direction.
  • the first light-emitting devices in one of the first subgroups are staggered with the first light-emitting devices in another of the first subgroups along the second direction.
  • a first light-emitting device group includes at least two first subgroups arranged along the first direction, and in any two first light-emitting device groups, the spacing between the first subgroups in one of the first light-emitting device groups is equal to the spacing between the first subgroups in the other first light-emitting device group.
  • a change rate of a distribution density of the first light-emitting devices on the first display portion and a change rate of a distribution density of the second light-emitting devices on the second display portion are symmetrical with respect to the rotation axis.
  • a shape of the first display portion and a shape of the second display portion are symmetrical about the rotation axis.
  • the display panel includes a plurality of driving thin film transistors, and one of the driving thin film transistors is connected to one of the first light emitting devices;
  • a current in the driving transistor connected to the first light-emitting device close to the rotation axis is smaller than a current in the driving transistor connected to another first light-emitting device far from the rotation axis.
  • the width-to-length ratio of the channel portion of the driving thin film transistor connected to the first light-emitting device close to the rotation axis is smaller than the width-to-length ratio of the channel portion of the driving thin film transistor connected to another first light-emitting device far from the rotation axis.
  • the driving thin film transistor at least includes a gate, a source, a drain, and an active layer, and the active layer includes the channel portion distributed between the source and the drain.
  • the driving thin film transistor is a low temperature polysilicon thin film transistor, an oxide semiconductor Conductor thin film transistor or amorphous silicon thin film transistor.
  • the display panel comprises a control circuit, and the control circuit controls at least one of the first light-emitting devices to emit light for display;
  • the control circuit includes a first thin film transistor, a second thin film transistor, a third thin film transistor, and a storage capacitor.
  • the first thin film transistor is the thin film transistor, which drives and controls the brightness of the first light-emitting device.
  • the second thin film transistor is a switch thin film transistor
  • the third thin film transistor is a detection thin film transistor
  • the display panel includes a plurality of driving thin film transistor groups, one driving thin film transistor group includes at least two driving thin film transistors, and one driving thin film transistor group is arranged corresponding to one first light emitting device group;
  • the current of the driving thin film transistor in one of the driving thin film transistor groups close to the rotation axis is smaller than the current of the driving thin film transistor in another driving thin film transistor group far from the rotation axis.
  • the display panel includes a substrate, and a material of the substrate includes a transparent material.
  • the substrate is made of transparent glass or polyimide.
  • the first light emitting devices are arranged in m rows and n columns, and the display panel is refreshed once every rotation of ⁇ degrees, which satisfies:
  • the first light-emitting devices are evenly distributed on the column, and t is a positive integer greater than 1 and less than or equal to n.
  • the distance between each of the first light emitting device groups and the rotation axis is within a preset distance range, and one of the first light emitting device groups includes at least two of the first light emitting devices.
  • the present application sets the display panel to rotate around a rotation axis, and the display panel includes a plurality of first light-emitting device groups arranged in sequence and spaced apart along a first direction, wherein the first light-emitting device group includes a plurality of light-emitting devices, and in the first direction, the distribution density of the light-emitting devices in a light-emitting device group close to the rotation axis is less than The distribution density of light-emitting devices in another light-emitting device group far away from the rotation axis; by reducing the graduation density of the light-emitting devices close to the rotation axis, when the display device performs three-dimensional display, the brightness of the light-emitting devices close to the rotation axis within a preset range can be consistent with the brightness of the light-emitting devices outside the preset range, thereby solving the problem of uneven brightness of the display device as a whole due to different rotation linear speeds of light-emitting devices at different positions on the display panel in the three-
  • FIG1 is a schematic diagram of the structure of a display device provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of another display device provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of a display device in use state provided by an embodiment of the present application.
  • FIG4 is a schematic diagram of a display panel provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of another display panel provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of a display device in use state provided by an embodiment of the present application.
  • FIG7 is a schematic diagram of a configuration of a light-emitting device on a display device provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of another arrangement of light-emitting devices on a display device provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of a display panel provided in an embodiment of the present application.
  • FIG. 10 is a top view of the structure of a channel portion of a driving thin film transistor provided in an embodiment of the present application.
  • Figure annotations display panel-10, first direction-F1, second direction-F2, rotation axis-20, preset distance range-S, first subgroup-1011, first display part-10A1, first display part-10A2, first light-emitting device group-101a1, second light-emitting device group-101a2, first light-emitting device-102a1, second light-emitting device-102a2, driving thin film transistor-T1, light-emitting layer-M10, array substrate-M20, substrate-M201, driving device layer-M202, gate-T102, source-T104, drain T103, channel part-T101, width-W, length-L.
  • the "3D" fan screen which uses LED lamp beads as light-emitting devices, and has problems such as low resolution and uneven display.
  • the other is a scanning volume three-dimensional display device, which uses one side of various display screens as an axis to perform rotational scanning to form a cylindrical display space. This makes the display brightness of this type of display device higher near the rotating axis, the transparency of the display device is low, and the overall brightness of the display panel is uneven, affecting the actual display effect.
  • the present application provides a display device, as shown in FIGS. 1 to 3 , including:
  • At least one display panel 10 the display panel 10 can rotate around a rotation axis 20 for display, the display panel 10 includes a plurality of light-emitting devices arranged at intervals, the plurality of light-emitting devices include a plurality of first light-emitting devices 102a1, the plurality of first light-emitting devices 102a1 include a plurality of first light-emitting device groups 101a1 arranged in sequence along a first direction F1, the first direction F1 is perpendicular to the rotation axis 20, and the first direction F1 extends from the rotation axis 20 to a side of the display panel 10 away from the rotation axis 20;
  • a distribution density of the first light-emitting devices 102a1 in the first light-emitting device group 101a1 close to the rotation axis 20 is smaller than a distribution density of the first light-emitting devices 102a1 in another first light-emitting device group 101a1 far from the rotation axis 20.
  • the distance between each of the first light emitting device groups 101 a 1 and the rotation axis 20 is within a preset distance S, and one of the first light emitting device groups 101 a 1 includes at least two first light emitting devices 102 a 1 .
  • the display device is a three-dimensional stereoscopic display device, which realizes the display of three-dimensional images by setting the display panel 10 to rotate around a rotation axis 20, wherein the rotation axis 20 can be a virtual axis or a physical axis, and the rotation mode of the display panel 10 can be rotation or revolution.
  • the rotation axis 20 may be located on the display panel 10 (as shown in FIG. 2 and FIG. 3 , including being located on a side edge of the display panel 10, or being located on the display panel 10,
  • the display device may be located outside the display panel 10 as shown in FIG. 1 .
  • the display device shown in FIG. 2 is taken as an example for description.
  • the display panel 10 can be an organic electroluminescence display (OLED) panel 10, or a Mini/Micro-LED display panel.
  • OLED organic electroluminescence display
  • Mini/Micro-LED display panel The use of the above display panel 10 has a faster response speed, can achieve a higher refresh rate, and can further improve the color gamut, display brightness, etc. of the display device.
  • the display panel 10 may be a double-sided display panel or a single-sided display panel.
  • the specific adjustment may be made according to actual production conditions or needs.
  • the present application takes a single-sided display panel 10 as an example for explanation.
  • the display panel 10 includes a plurality of first light-emitting devices 102a1 disposed at intervals, the plurality of first light-emitting devices 102a1 include a plurality of first light-emitting device groups 101a1, the plurality of first light-emitting device groups 101a1 are sequentially arranged along a first direction F1, the first direction F1 is perpendicular to the rotation axis 20, and the first direction F1 extends from the rotation axis 20 to a side of the display panel 10 away from the rotation axis 20;
  • the preset distance S range is determined according to the actual production situation of the display panel 10, specifically, according to the PPI of the display panel 10, and the distribution density of the light-emitting units can be adjusted within the preset distance S range;
  • the distribution density of the light-emitting units is adjusted so that the brightness of different positions of the display panel 10 during the three-dimensional display process can be adjusted synchronously;
  • the distribution density of the first light emitting devices 102a1 in the first light emitting device group 101a1 reaches the maximum value of the pixel PPI design, and outside the preset distance S, the distribution density of the first light emitting devices 102a1 is equal everywhere.
  • the spacing between the plurality of first light emitting device groups 101a1 may be the same or different, and there is no specific limitation thereto. However, the different spacing between the plurality of first light emitting device groups 101a1 has little effect on the uniformity of light emission of the display device.
  • a first light emitting device group 101a1 includes at least two first light emitting devices 102a1, and the lengths of the plurality of first light emitting device groups 101a1 in the second direction F2 (parallel to the rotation axis 20) are constant.
  • the distribution density of the first light-emitting devices 102a1 in the first light-emitting device group 101a1 may also gradually increase in the first direction F1, or the multiple first light-emitting devices 102a1 in the first light-emitting device group 101a1 may be uniformly distributed.
  • the distribution density refers to the number of the first light-emitting devices 102a1 within the same unit area, where the length of the unit area can be the same as the length of one side of the display panel 10 parallel to the rotation axis 20, and the width of the unit panel is at least greater than the width of one first light-emitting device 102a1.
  • the first light emitting devices 102a1 are evenly distributed on the column, wherein t is a positive integer greater than 1 and less than or equal to n;
  • the above technical solution can make the first light emitting device 102a1 on the display panel 10 be used in a state of highest efficiency.
  • the display panel 10 includes a control circuit, and the control circuit controls at least one of the first light-emitting devices 102a1 to emit light for display (including switching of the first light-emitting device 102a1 and adjusting the brightness).
  • the control circuit controls one first light-emitting device 102a1 to emit light as an example, but the present application is not limited thereto.
  • a control circuit can synchronously control two or more first light-emitting devices 102a1 to emit light, which can be adjusted according to actual production conditions.
  • the control circuit may include a first thin film transistor, a second thin film transistor, a third thin film transistor, and a storage capacitor Cst, wherein the first thin film transistor is a driving thin film transistor T1, the second thin film transistor is a switching thin film transistor, and the third thin film transistor is a detection thin film transistor, and the first thin film transistor controls the brightness of the first light-emitting device 102a1.
  • the display panel 10 is arranged to rotate around a rotation axis 20, the display panel 10 includes a plurality of first light-emitting devices 102a1 arranged at intervals, the plurality of first light-emitting devices 102a1 include a plurality of first light-emitting device groups 101a1, the distance between each first light-emitting device group 101a1 and the rotation axis 20 is within a preset distance S range, a first light-emitting device group 101a1 includes at least two first light-emitting devices 102a1, and the plurality of first light-emitting device groups 101a1 are arranged in sequence along a first direction F1, In a direction F1, the distribution density of the first light-emitting devices 102a1 in a first light-emitting device group 101a1 close to the rotating axis 20 is less than the distribution density of the first light-emitting devices 102a1 in another first light-emitting device group 101a1 far from the rotating
  • the brightness of the first light-emitting devices 102a1 close to the rotating axis 20 within a preset range can be consistent with the brightness of the first light-emitting devices 102a1 outside the preset range, thereby solving the problem of uneven brightness of the display device as a whole due to different rotation linear speeds of the first light-emitting devices 102a1 at different positions on the display panel 10 in the three-dimensional display device, thereby further improving the display brightness uniformity of the three-dimensional display device.
  • a first light-emitting device group 101a1 includes at least one first subgroup 1011, and a first subgroup 1011 includes at least two first light-emitting devices 102a1. At least two first light-emitting devices 102a1 in the first subgroup 1011 are arranged in sequence along a second direction F2, and the second direction F2 is parallel to the rotation axis 20. The distribution density of the first light-emitting devices 102a1 in each of the first subgroups 1011 in at least one first light-emitting device group 101a1 is the same.
  • the plurality of first light emitting device groups 101a1 include a plurality of first subgroups 1011.
  • the plurality of first subgroups 1011 may be arranged in sequence along the first direction F1.
  • the first light emitting devices 102a1 in a first subgroup 1011 are arranged in sequence along the second direction F2.
  • the distribution density of the first light-emitting devices 102a1 in each of the first subgroups 1011 in a first light-emitting device group 101a1 is the same, but the distribution density of each of the first subgroups 1011 in all the first light-emitting device groups 101a1 is not limited to be the same (as shown in FIG. 4 ), so that the multiple light-emitting units of the multiple light-emitting unit groups show an increasing trend in distribution density as a whole.
  • the distribution densities of the first light-emitting devices 102a1 at some positions can be equal, and the brightness adjustment flexibility of the display panel 10 is higher without affecting the brightness uniformity of the display device.
  • multiple first light-emitting devices 102a1 can be evenly spaced or have multiple spacing distances, which can be adjusted according to the shape of the display panel 10 of the display device or the actual rotation of the rotating axis 20 to make the display brightness of the display device more uniform.
  • the brightness adjustment flexibility of the display panel 10 of the display device is higher without affecting the brightness uniformity of the display of the display device.
  • a first light emitting device group 101a1 includes at least two first subgroups 1011 arranged along the first direction F1, the first subgroup 1011 includes a plurality of first light emitting devices 102a1, and the plurality of first light emitting devices 102a1 are evenly spaced along the second direction F2.
  • the reason why the bright line is generated corresponding to the rotation of the display panel 10 is that the rotation linear speeds of different first light-emitting devices 102a1 in the first direction F1 are different, but in the second direction F2, the rotation linear speeds of each first light-emitting device 102a1 are the same.
  • arranging the first light emitting devices 102a1 in the first subgroup 1011 at uniform intervals in the second direction F2 can make the display brightness of the display panel 10 in the second direction F2 more uniform, thereby improving the display brightness uniformity of the display device.
  • the first light-emitting devices 102 a 1 in one of the first subgroups 1011 are staggered with the first light-emitting devices 102 a 1 in another of the first subgroups 1011 along the second direction F2 .
  • the staggered arrangement means that in the first direction F1, two adjacent first subgroups 1011 are respectively a first subgroup 1011 and a second first subgroup 1011, and the first light-emitting devices 102a1 in the first subgroup 1011 and the first light-emitting devices 102a1 in the second first subgroup 1011 are arranged in different rows.
  • the first light-emitting devices 102a1 in one of the first subgroups 1011 are staggered along the second direction F2 with the first light-emitting devices 102a1 in the other first subgroup 1011. This can effectively prevent the problem of horizontal bright lines being generated in some positions due to the concentration of the first light-emitting devices 102a1 during the display process of the display device, thereby further improving the display uniformity of the display device.
  • a first light-emitting device group 101a1 includes at least two first subgroups 1011 arranged along the first direction F1, and in any two first light-emitting device groups 101a1, the spacing between the first subgroups 1011 in one of the first light-emitting device groups 101a1 is equal to the spacing between the first subgroups 1011 in another of the first light-emitting device groups 101a1.
  • each of the first subgroups 1011 in the first light emitting device group 101a1 The spacing between the first subgroups 1011 is equal to the spacing between the first subgroups 1011 in another first light-emitting device group 101a1, which can be understood as that in the first direction F1, even in any first light-emitting device group 101a1, the arrangement of the first subgroups 1011 is uniform.
  • the rotating shaft 20 divides the display panel 10 into a first display portion 10A1 and a second display portion 10A2, a plurality of the first light-emitting devices 102a1 are located in the first display portion 10A1, and the second display portion 10A2 includes a plurality of second light-emitting device groups 101a2 arranged along a first direction F1, and the second light-emitting device group 101a2 includes a plurality of second light-emitting devices 102a2;
  • the display panel 10 may be a whole display panel 10 or a spliced display panel 10 . If it is a spliced display panel 10 , the splicing seam coincides with the rotation axis 20 .
  • the area sizes of the first display portion 10A1 and the second display portion 10A2 may be the same or different. This embodiment is described by taking the example that the area sizes of the first display portion 10A1 and the second display portion 10A2 are the same.
  • first display portion 10A1 and the second display portion 10A2 are symmetrically arranged (symmetrical in shape), However, the first light emitting device 102a1 on the first display portion 10A1 and the second light emitting device 102a2 on the second display portion 10A2 are not symmetrically arranged.
  • the change rate of the first light emitting devices 102a1 on the first display portion 10A1 (the change rate of the distribution density of the plurality of first light emitting devices 102a1 relative to the distance from the rotation axis 20) is the same as the change rate of the second light emitting devices 102a2 on the second display portion 10A2.
  • the first light emitting device group 101a1 and the second light emitting device group 101a2 have the same length from the rotation axis 20, and the first light emitting devices 102a1 in the first light emitting device group 101a1 and the second light emitting devices 102a2 in the second light emitting device group 101a2 are arranged in different rows.
  • the first display portion 10A1 at least partially overlaps with the second display portion 10A2 after rotating around the rotation axis 20, but the first light-emitting device 102a1 on the first display portion 10A1 and the second light-emitting device 102a2 on the second display portion 10A2 do not overlap.
  • the three display panels 10 rotate around the rotation axis 20 and the three display panels 10 are relatively symmetrical about the rotation axis 20 , after the three display panels 10 rotate and overlap around the rotation axis 20 , the light-emitting devices on the three display panels 10 do not overlap.
  • the display effect of the display device can be made more uniform, and the provision of multiple display panels 10 will not produce bright lines or bright spots when the display device performs three-dimensional display, thereby improving the display effect of the display device and extending the service life of the display device.
  • the distance from the side of the first display portion 10A1 away from the rotation axis 20 to the rotation axis 20 is equal to the distance from the side of the second display portion 10A2 away from the rotation axis 20 to the rotation axis 20 .
  • the area of the first display portion 10A1 is equal to the area of the second display portion 10A2
  • the shape of the first display portion 10A1 is equal to the shape of the second display portion 10A2
  • the change rate of the first light-emitting device 102a1 on the first display portion 10A1 is the same as the change rate of the second light-emitting device 102a2 on the second display portion 10A2
  • the difference in the first display portion 10A1 is that the arrangement position of the first light-emitting device 102a1 on the first display portion 10A1 is different from the arrangement position of the light-emitting device on the second display portion 10A2.
  • the display panel 10 includes a plurality of driving thin film transistors T1, and one of the driving thin film transistors T1 is connected to one of the first light emitting devices 102a1;
  • the current in the driving transistor T1 connected to the first light emitting device 102a1 close to the rotation axis is smaller than the current in the driving transistor T1 connected to the other first light emitting device 102a1 far from the rotation axis 20.
  • the display panel 10 includes a plurality of driving thin film transistors T1, the plurality of driving thin film transistors T1 include a plurality of driving thin film transistor groups, one driving thin film transistor group includes at least two driving thin film transistors T1, one driving thin film transistor group is arranged corresponding to one first light emitting device group 101a1, and one driving thin film transistor T1 is connected to one first light emitting device 102a1;
  • the driving thin film transistor T1 controls the first light-emitting device 102a1 to emit light, in the first direction F1, the current of the driving thin film transistor T1 in one of the driving thin film transistor groups close to the rotation axis 20 is smaller than the current of the driving thin film transistor T1 in another driving thin film transistor group far away from the rotation axis 20.
  • the display panel 10 includes a control circuit, which includes a driving thin film transistor T1.
  • the driving thin film transistor T1 controls the brightness of the first light-emitting device 102a1, and when the display panel 10 is displaying, the greater the current passing through the driving thin film transistor T1, the greater the brightness of the first light-emitting device 102a1, that is, the brightness of the first light-emitting device 102a1 is positively correlated with the current flowing through the driving thin film transistor T1.
  • the method for controlling the current flowing through the driving thin film transistor T1 includes but is not limited to pre-setting through the driving chip of the display panel 10, or controlling the current flowing through the driving thin film transistor T1 in different rows and columns by connecting resistors with different resistance values in series in the control circuit.
  • a driving thin film transistor T1 is connected to a first light emitting device 102a1, and when the driving thin film transistor T1 controls the first light emitting device 102a1 to emit light, in the first direction F1, the current of the driving thin film transistor T1 in one of the driving thin film transistor groups close to the rotation axis 20 is less than the current of the driving thin film transistor T1 in another driving thin film transistor group far from the rotation axis 20, which can alleviate the above embodiment, in order to set the first light emitting devices 102a1 with different distribution densities between the first light emitting devices 102a1 close to the rotation axis 20 The distance between the pixels is too large, resulting in uneven brightness distribution, which affects the PPI of the display device and the display effect.
  • the display panel 10 includes an array substrate M20 , the array substrate M20 includes an active layer, and the driving thin film transistor T1 includes a channel portion T101 located on the active layer;
  • the width-to-length ratio of the channel portion T101 of the driving thin film transistor T1 in one of the driving thin film transistor groups close to the rotation axis 20 is smaller than the width-to-length ratio of the channel portion T101 of the driving thin film transistor T1 in another driving thin film transistor group far from the rotation axis 20 .
  • the display panel 10 includes an array substrate M20 and a light emitting layer M10 disposed on the array substrate, the light emitting layer M10 includes a plurality of first light emitting devices 102a1 , and the driving thin film transistor T1 on the array substrate M20 is connected to its corresponding first light emitting device 102a1 .
  • the display panel 10 includes a control circuit, which may include a first thin film transistor, a second thin film transistor, a third thin film transistor, and a storage capacitor, wherein the first thin film transistor is a driving thin film transistor T1, the second thin film transistor is a switching thin film transistor, and the third thin film transistor is a detection thin film transistor, and the first thin film transistor controls the brightness of the first light-emitting device 102a1.
  • a control circuit which may include a first thin film transistor, a second thin film transistor, a third thin film transistor, and a storage capacitor, wherein the first thin film transistor is a driving thin film transistor T1, the second thin film transistor is a switching thin film transistor, and the third thin film transistor is a detection thin film transistor, and the first thin film transistor controls the brightness of the first light-emitting device 102a1.
  • the width of the channel portion T101 is shown as W in FIG. 10 , which is the relative length between the source T104 and the drain T103 ;
  • the length of the channel portion T101 is shown as L in FIG. 10 , which is the distance between the source T104 and the drain T103 ;
  • the voltages connected to the driving thin film transistors T1 are of the same magnitude.
  • the driving thin film transistor T1 at least includes a gate T102 , a source T104 , a drain T103 , and an active layer, wherein the active layer includes a channel portion T101 distributed between the source T104 and the drain T103 , and the width-to-length ratio of the channel portion T101 is reduced, and accordingly, the on-state current of the driving thin film transistor T1 will be reduced.
  • the driving thin film transistor T1 is a low-temperature polysilicon thin film transistor, an oxide semiconductor thin film transistor, or an amorphous silicon thin film transistor.
  • the gate of the second thin film transistor is electrically connected to the scan voltage signal line, the source is electrically connected to the data voltage signal line, and the drain is electrically connected to the gate T102 of the first thin film transistor and one end of the storage capacitor; the source T104 of the first thin film transistor is electrically connected to the positive voltage of the power supply, and the drain T103 is electrically connected to the positive voltage of the power supply.
  • the anode of the optical device the cathode of the first light-emitting device 102a1 is electrically connected to the negative voltage of the power supply, one end of the storage capacitor Cst is electrically connected to the drain of the second thin film transistor and the gate T102 of the first thin film transistor, and the other end of the storage capacitor Cst is electrically connected to the drain T103 of the first thin film transistor, the anode of the first light-emitting device 102a1 and the source of the third thin film transistor; the gate of the third thin film crystal is electrically connected to the data signal, the source is electrically connected to the drain T103 of the first thin film transistor, the drain of the third thin film crystal is connected to the detection voltage, and the drain of the third thin film transistor is connected to the detection voltage (VCM) as a constant voltage.
  • VCM detection voltage
  • the control circuit controls the reset period of the first light-emitting device 102a1, and the scan voltage and data of the control circuit are respectively applied to the gate and source T104 of the second thin film transistor in the control circuit; in the data writing period of each control circuit, the third switch thin film transistor in the control circuit is turned on to apply the data voltage to the drain T103 of the first thin film transistor; in the light-emitting period when the control circuit controls the first light-emitting device 102a1, the first thin film transistor is turned on, so that the first light-emitting device 102a1 connected to the drain T103 of the first thin film transistor emits light.
  • the array substrate M20 includes a substrate M201 and a driving device layer M202 disposed on the substrate M201 , and the material of the substrate M201 is a transparent material.
  • the material of the substrate M201 can be transparent glass, polyimide, etc.
  • the driving device layer M202 includes multiple driving thin film transistors T1, and the driving device layer M202 includes a plurality of insulating layers stacked together, an active layer, a gate layer, and a source-drain layer arranged between each of the insulating layers, wherein the active layer includes a channel portion T101, a source connecting portion and a drain connecting portion arranged on both sides of the channel portion T101, wherein the source connecting portion is connected to the source T104, and the drain connecting portion is connected to the drain T103, and the gate T102 on the gate layer is arranged above or below the channel portion T101 (below in Figure 10), and its projection in the direction perpendicular to the array substrate M20 covers the channel portion T101.
  • the display device has higher transparency, the picture displayed by the three-dimensional display device is more realistic, and the user experience is improved.
  • the display panel 10 includes a plurality of first light emitting devices 102a1 arranged at intervals, the distance between each first light emitting device group 101a1 and the rotation axis 20 is within a preset distance S range, and a first light emitting device group 101a1 includes at least two first The light-emitting device 102a1 and multiple first light-emitting device groups 101a1 are arranged in sequence along a first direction F1.
  • the distribution density of the first light-emitting devices 102a1 in a first light-emitting device group 101a1 close to the rotation axis 20 is less than the distribution density of the first light-emitting devices 102a1 in another first light-emitting device group 101a1 far from the rotation axis 20.
  • the brightness of the first light-emitting devices 102a1 close to the rotation axis 20 within a preset range can be consistent with the brightness of the first light-emitting devices 102a1 outside the preset range, thereby solving the problem of uneven brightness of the display device as a whole due to different rotation linear speeds of the first light-emitting devices 102a1 at different positions on the display panel 10 in the three-dimensional stereoscopic display device, thereby further improving the display brightness uniformity of the three-dimensional stereoscopic display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置,显示装置包括至少一显示面板(10),显示面板(10)可绕一旋转轴(20)转动显示,一显示面板(10)包括多个间隔设置的发光器件,多个发光器件包括多个第一发光器件(102a1),多个第一发光器件(102a1)包括多个沿第一方向(F1)排列的第一发光器件组(101a1),第一发光器件组(101a1)包括多个第一发光器件(102a1),第一方向(F1)由旋转轴(20)指向显示面板(10)远离旋转轴(20)的一侧,一靠近旋转轴(20)的第一发光器件组(101a1)内各第一发光器件(102a1)的分布密度小于另一远离旋转轴(20)的第一发光器件组(101a1)内各第一发光器件(102a1)的分布密度;能够有效改善三维显示装置中,显示面板(10)上不同位置的发光器件因转动线速度不同导致的显示装置整体上亮度不均的问题,进一步提升三维立体显示装置的显示亮度均一性。

Description

显示装置 技术领域
本申请涉及显示领域,尤其涉及一种显示装置。
背景技术
目前旋转显示装置种类较多,市场上最常见的为“3D”风扇屏,“3D”风扇屏采用LED灯珠为发光器件,存在分辨率较低且显示不均的问题;另一种扫描式体三维显示装置则是利用各类显示屏的一条边长为轴,进行旋转扫描,形成圆柱状显示空间,这使得这类显示装置在靠近转轴的位置显示的亮度较大,显示面板整体亮度显示不均,影响实际显示效果。
目前解决上述问题的主要方法为改变旋转装置的物理结构或通过算法对像素点亮过程进行调整,这些方法不具备普适性且极大的增加了显示方法的复杂性。
技术问题
本申请实施例提供一种显示模装置,以解决旋转显示装置的显示面板整体亮度显示不均,影响实际显示效果的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供了一种显示装置,包括:
至少一显示面板,所述显示面板可绕一旋转轴转动显示,所述显示面板包括多个第一方向排列的第一发光器件组,所述第一发光器件组包括多个第一发光器件,所述第一方向与所述旋转轴垂直,且所述第一方向由所述旋转轴指向所述显示面板远离所述旋转轴的一侧;
其中,一靠近所述旋转轴的所述第一发光器件组内各所述第一发光器件的分布密度小于另一远离所述旋转轴的所述第一发光器件组内各所述第一发光器件的分布密度。
在一实施例中,一所述第一发光器件组包括至少一沿第一方向排列的多个第一子组,每个所述第一子组包括沿第二方向排列的多个所述第一发光器件, 所述第二方向与所述旋转轴平行;
至少一所述第一发光器件组内的多个所述第一子组中所述第一发光器件的分布密度相同。
在一实施例中,一所述第一发光器件组包括至少两沿所述第一方向排列的所述第一子组,所述第一子组包括多个所述第一发光器件,且多个所述第一发光器件沿所述第二方向间隔均匀设置。
在一实施例中,任意相邻的两所述第一子组内,其中一所述第一子组中的所述第一发光器件与另一所述第一子组中的所述第一发光器件沿所述第二方向交错设置。
在一实施例中,一所述第一发光器件组包括至少两沿所述第一方向排列的所述第一子组,任意两所述第一发光器件组中,其中一所述第一发光器件组内的各所述第一子组之间的间距与另一所述第一发光器件组内的各所述第一子组之间的间距相等。
在一实施例中,所述第一显示部上的所述第一发光器件的分布密度的变化率,与所述第二显示部上的第二发光器件的分布密的变化率相对所述旋转轴对称。
在一实施例中,第一显示部的形状和第二显示部的形状关于所述旋转轴对称。
在一实施例中,所述显示面板包括多个驱动薄膜晶体管,一所述驱动薄膜晶体管连接一所述第一发光器件;
其中,所述第一发光器件发光时,一靠近所述旋转轴的所述第一发光器件连接的所述驱动晶体管内的电流,小于另一远离所述旋转轴的所述第一发光器件连接的所述驱动晶体管内的电流。
在一实施例中,在所述第一方向上,其中一靠近所述旋转轴的所述第一发光器件连接的所述驱动薄膜晶体管的沟道部的宽长比,小于另一远离所述旋转轴的所述第一发光器件连接的所述驱动薄膜晶体管的沟道部的宽长比。
在一实施例中,驱动薄膜晶体管至少包括栅极、源极、漏极,以及有源层,所述有源层包括分布在所述源极和所述漏极之间的所述沟道部。
在一实施例中,所述驱动薄膜晶体管为低温多晶硅薄膜晶体管、氧化物半 导体薄膜晶体管或非晶硅薄膜晶体管。
在一实施例中,所述显示面板包括控制电路,一所述控制电路控制至少一所述第一发光器件发光显示;
所述控制电路包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容,第一薄膜晶体管为所述薄膜晶体管,驱动控制所述第一发光器件的亮度大小。
在一实施例中,所述第二薄膜晶体管为开关薄膜晶体管,所述第三薄膜晶体管为检测薄膜晶体管。
在一实施例中,所述显示面板包括多个驱动薄膜晶体管组,一所述驱动薄膜晶体管组包括至少两所述驱动薄膜晶体管,一所述驱动薄膜晶体管组对应一所述第一发光器件组设置;
其中,所述驱动薄膜晶体管控制所述第一发光器件发光时,在所述第一方向上,其中一靠近所述旋转轴的所述驱动薄膜晶体管组内所述驱动薄膜晶体管的电流小于另一远离所述旋转轴的所述驱动薄膜晶体管组内所述驱动薄膜晶体管的电流。
在一实施例中,所述显示面板包括基板,所述基板的材料包括透明材料。
在一实施例中,所述基板的材质包括透明玻璃或聚酰亚胺。
在一实施例中,所述第一发光器件的排布设置为m行n列,每旋转α度显示面板刷新一次,则满足:
第t列的第一发光器件的数量
其中,所述第一发光器件在该列上均匀分布,t取大于1,且小于或等于n的正整数。
在一实施例中,各所述第一发光器件组与所述旋转轴之间的距离在一预设距离范围内,一所述第一发光器件组包括至少两所述第一发光器件。
有益效果
本申请通过设置所述显示面板绕一旋转轴转动,显示面板包括多个沿第一方向依次排列间隔设置的第一发光器件组,所述第一发光器件组包括多个发光器件,在第一方向上,一靠近旋转轴的发光器件组内发光器件的分布密度小于 另一远离旋转轴的发光器件组内发光器件的分布密度;通过降低靠近旋转轴的发光器件的分度密度,使得显示装置在进行三维显示时,在预设的范围内靠近旋转轴的发光器件的亮度能够与预设范围外的发光器件的亮度相一致,解决三维立体显示装置中,显示面板上不同位置的发光器件因转动线速度不同导致的显示装置整体上亮度不均的问题,进一步提升三维立体显示装置的显示亮度均一性。
附图说明
图1是本申请实施例提供的显示装置的结构示意图;
图2是本申请实施例提供的另一种显示装置的结构示意图;
图3是本申请实施例提供的一种显示装置使用状态下的结构示意图;
图4是本申请实施例提供的一种显示面板示意图;
图5是本申请实施例提供的另一种显示面板示意图;
图6是本申请实施例提供的一种显示装置使用状态下的结构示意图;
图7是本申请实施例提供的一种显示装置上发光器件的设置示意图;
图8是本申请实施例提供的另一种显示装置上发光器件的设置示意图;
图9是本申请实施例提供的一种显示面板的结构示意图;
图10是本申请实施例提供的一种驱动薄膜晶体管沟道部的结构俯视图。
附图标注:显示面板-10,第一方向-F1,第二方向-F2,旋转轴-20,预设距离范围-S,第一子组-1011,第一显示部-10A1,第一显示部-10A2,第一发光器件组-101a1,第二发光器件组-101a2,第一发光器件-102a1,第二发光器件-102a2,驱动薄膜晶体管-T1,发光层-M10,阵列基板-M20,基板-M201,驱动器件层-M202,栅极-T102,源极-T104,漏极T103,沟道部-T101,宽-W,长-L。
本发明的实施方式
本申请提供一种显示装置,为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
目前,旋转显示装置种类较多,一种为“3D”风扇屏,“3D”风扇屏采用LED灯珠为发光器件,存在分辨率较低且显示不均的问题,另一种为扫描式体三维显示装置,其利用各类显示屏的一条边长为轴,进行旋转扫描,形成圆柱状显示空间,这使得这类显示装置在靠近转轴的位置显示的亮度较大,显示装置透明度较低等问题,且显示面板整体亮度显示不均,影响实际显示效果。
目前解决上述问题的主要方法为改变旋转装置的物理结构或通过算法对像素点亮过程进行调整,这些方法不具备普适性且大大增加了显示方法的复杂性。
本申请为了解决上述技术问题,提供以下技术方案,具体参照下述实施例以及附图图1-图10。
本申请一种显示装置,如图1-图3所示,包括:
至少一显示面板10,所述显示面板10可绕一旋转轴20转动显示,一所述显示面板10包括多个间隔设置的发光器件,多个所述发光器件包括多个第一发光器件102a1,多个所述第一发光器件102a1包括多个沿第一方向F1依次排列的第一发光器件组101a1,所述第一方向F1与所述旋转轴20垂直,且所述第一方向F1由所述旋转轴20向所述显示面板10远离所述旋转轴20的一侧边延伸;
其中,在所述第一方向F1上,一靠近所述旋转轴20的所述第一发光器件组101a1内所述第一发光器件102a1的分布密度小于另一远离所述旋转轴20的所述第一发光器件组101a1内所述第一发光器件102a1的分布密度。
具体地,各所述第一发光器件组101a1与所述旋转轴20之间的距离在一预设距离S范围内,一所述第一发光器件组101a1包括至少两所述第一发光器件102a1。
具体地,所述显示装置为三维立体显示装置,其通过设置显示面板10绕一旋转轴20旋转,实现三维图像的显示,其中,所述旋转轴20可以为虚拟轴也可以为实体轴,所述显示面板10的转动方式可以为自转,也可以为公转。
进一步地,所述旋转轴20可以位于所述显示面板10上(如图2和图3所示,包括位于所述显示面板10的一侧边上,或位于所述显示面板10上,划 分所述显示面板10),也可以如图1所示位于所述显示面板10外,本实施例中,以图2所示的显示装置为例进行说明。
具体地,所述显示面板10可以为有机发光半导体(Organic Electroluminescence Display,OLED)显示面板10,也可以为Mini/Micro-LED显示面板,采用上述显示面板10具有更快的响应速度,能实现更高的刷新率,可以进一步提高显示装置的色域、显示亮度等。
具体地,如图3所示,当显示面板10有多块时,多块显示面板10绕同一旋转轴20旋转,所述显示面板10可以为双面显示的显示面板,也可以为单面显示的显示面板,具体可以根据实际生产情况或者需求进行调整,本申请以单面显示的显示面板10为例进行说明。
具体地,如图4所示,所述显示面板10包括多个间隔设置的第一发光器件102a1,多个所述第一发光器件102a1包括多个第一发光器件组101a1,多个所述第一发光器件组101a1沿第一方向F1依次排列,所述第一方向F1与所述旋转轴20垂直,且所述第一方向F1由所述旋转轴20向所述显示面板10远离所述旋转轴20的一侧边延伸;
其中,预设距离S范围根据显示面板10的实际生产情况确定,具体为根据显示面板10的PPI决定,可以在预设距离S范围内对发光单元的分布密度的调整;
在预设距离S范围内,调整发光单元的分布密度使得显示面板10三维显示过程中不同位置的亮度实现同步调整;
在预设距离S范围外,第一发光器件组101a1内的第一发光器件102a1的分布密度达到像素PPI设计的最大值,在预设距离S范围外第一发光器件102a1的分布密度各处均相等。
具体地,多个所述第一发光器件组101a1之间的间距可以相同,也可以不同,具体不作限制,但是多个第一发光器件组101a1之间的间距不同对显示装置发光的均一性影响不大;
具体地,一所述第一发光器件组101a1包括至少两所述第一发光器件102a1,多个第一发光器件组101a1在第二方向F2(与旋转轴20平行)上的长度不变。
具体地,当所述第一发光器件组101a1中包括多个间隔设置的第一发光器件102a1时,该第一发光器件组101a1内的第一发光器件102a1的分布密度也可以在所述第一方向F1上逐渐增加,或该第一发光器件组101a1内的多个第一发光器件102a1均匀分布。
具体地,所述分布密度是指相同的单位面积内,所述第一发光器件102a1的数量,其中单位面积的长度可以与显示面板10与旋转轴20平行的一侧边的长度相同,单位面板的宽度至少大于一个第一发光器件102a1的宽度。
具体地,在一实例中,假设初始第一发光器件102a1的排布设置为m行n列,每旋转α度显示面板10刷新一次,则满足:
第t列的第一发光器件102a1的数量
且第一发光器件102a1在该列上均匀分布,其中t取大于1,且小于或等于n的正整数;
采用上述技术方案能够使得显示面板10上第一发光器件102a1的使用处于最高效率的状态。
具体地,在本实施例中,显示面板10包括控制电路,一所述控制电路控制至少一所述第一发光器件102a1发光显示(包括第一发光器件102a1的开关和亮度大小调整),本申请的实施例中均按照一控制电路控制一第一发光器件102a1发光为例进行说明,但是本申请不限于此,一控制电路可以同步控制两个或多个第一发光器件102a1发光,具体可以根据实际生产情况进行调整;
所述控制电路可以包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容Cst,其中,第一薄膜晶体管为驱动薄膜晶体管T1,第二薄膜晶体管为开关薄膜晶体管,第三薄膜晶体管为检测薄膜晶体管,第一薄膜晶体管控制所述第一发光器件102a1的亮度大小。
可以理解的是,本实施例通过设置所述显示面板10绕一旋转轴20转动,显示面板10包括多个间隔设置的第一发光器件102a1,多个第一发光器件102a1包括多个第一发光器件组101a1,各第一发光器件组101a1与旋转轴20之间的距离在一预设距离S范围内,一第一发光器件组101a1包括至少两第一发光器件102a1,多个第一发光器件组101a1沿第一方向F1依次排列,在第 一方向F1上,一靠近旋转轴20的第一发光器件组101a1内第一发光器件102a1的分布密度小于另一远离旋转轴20的第一发光器件组101a1内第一发光器件102a1的分布密度,通过降低靠近旋转轴20的第一发光器件102a1的分度密度,使得显示装置在进行三维显示时,在预设的范围内靠近旋转轴20的第一发光器件102a1的亮度能够与预设范围外的第一发光器件102a1的亮度相一致,解决三维立体显示装置中,显示面板10上不同位置的第一发光器件102a1因转动线速度不同导致的显示装置整体上亮度不均的问题,进一步提升三维立体显示装置的显示亮度均一性。
在一实施例中,如图5所示,一所述第一发光器件组101a1包括至少一所述第一子组1011,一所述第一子组1011包括至少两所述第一发光器件102a1,所述第一子组1011内至少两所述第一发光器件102a1沿第二方向F2依次排列,所述第二方向F2与所述旋转轴20平行,至少一所述第一发光器件组101a1内的各所述第一子组1011中所述第一发光器件102a1的分布密度相同。
具体地,多个所述第一发光器件组101a1则包括多个第一子组1011,多个第一子组1011可以均沿所述第一方向F1依次排列,一第一子组1011内的第一发光器件102a1沿第二方向F2依次排列。
具体地,一所述第一发光器件组101a1内各所述第一子组1011内的第一发光器件102a1的分布密度相同,但是并不限制所有的第一发光器件组101a1内的各所述第一子组1011的分布密度相同(如图4所示),使得多个发光单元组的多个发光单元在整体上呈现分布密度递增的趋势,同时如图5所示,部分位置的第一发光器件102a1的分密度可以相等,显示面板10的亮度调整灵活性更高,不影响显示装置显示的亮度均一性。
具体地,同一第一子组1011内,多个第一发光器件102a1可以间隔均匀设置,也可以具有多个间隔距离,具体可以根据显示装置的显示面板10形状,或旋转轴20实际的旋转情况进行调整,以使显示装置的显示亮度均一性更高。
可以理解的是,通过设置至少一所述第一发光器件组101a1内的各所述第一子组1011中所述第一发光器件102a1的分布密度不同,使得显示装置的显示面板10的亮度调整灵活性更高,不影响显示装置显示的亮度均一性。
承上述实施例中,一所述第一发光器件组101a1包括至少两沿所述第一方向F1排列的所述第一子组1011,所述第一子组1011包括多个所述第一发光器件102a1,且多个所述第一发光器件102a1沿所述第二方向F2间隔均匀设置。
需要说明的是,由于显示面板10是绕旋转轴20旋转,显示面板10旋转对应产生亮线的原因是由于在第一方向F1上不同第一发光器件102a1的旋转线速度不同,但是在第二方向F2上,各第一发光器件102a1的旋转线速度是相同的。
可以理解的是,设置所述第一子组1011中的第一发光器件102a1在所述第二方向F2上间隔均匀设置,能够使得显示面板10在第二方向F2上的显示亮度更均匀,提升显示装置的显示亮度均一性。
在一实施例中,如图6所示,任意相邻的两所述第一子组1011内,其中一所述第一子组1011中的所述第一发光器件102a1与另一所述第一子组1011中的所述第一发光器件102a1沿所述第二方向F2交错设置。
具体地,在本实施例中,所述交错设置是指,在第一方向F1上,相邻的两所述第一子组1011分别为第一子组1011和第二第一子组1011,第一子组1011中的第一发光器件102a1与所述第二第一子组1011中的第一发光器件102a1不同行设置。
可以理解的是,设置任意相邻的两所述第一子组1011内,其中一所述第一子组1011中的所述第一发光器件102a1与另一所述第一子组1011中的所述第一发光器件102a1沿所述第二方向F2交错设置,能够有效防止显示装置显示过程中,部分位置因为第一发光器件102a1集中导致产生横向亮线的问题,进一步提升显示装置的显示均匀程度。
在一实施例中,一所述第一发光器件组101a1包括至少两沿所述第一方向F1排列的所述第一子组1011,任意两所述第一发光器件组101a1中,其中一所述第一发光器件组101a1内的各所述第一子组1011之间的间距与另一所述第一发光器件组101a1内的各所述第一子组1011之间的间距相等。
具体地,其中一所述第一发光器件组101a1内的各所述第一子组1011之 间的间距与另一所述第一发光器件组101a1内的各所述第一子组1011之间的间距相等可以理解为,在第一方向F1上,即使任一第一发光器件组101a1中,各第一子组1011的排布是均匀的。
可以理解的是,通过设置一所述第一发光器件组101a1内的各所述第一子组1011之间的间距与另一所述第一发光器件组101a1内的各所述第一子组1011之间的间距相等,能够使得显示面板10在第一方向F1上的亮度更均匀,同时方便显示面板10的生产。
在一实施例中,如图7和图8所示,所述旋转轴20将所述显示面板10划分为第一显示部10A1和第二显示部10A2,多个所述第一发光器件102a1位于所述第一显示部10A1,所述第二显示部10A2包括多个沿第一方向F1排列的第二发光器件组101a2,所述第二发光器件组101a2包括多个第二发光器件102a2;
其中,如图8所示,在距离所述旋转轴20的长度相同的所述第一发光器件组101a1和所述第二发光器件组101a2中,所述第一发光器件组101a1上的多个所述第一发光器件102a1和所述第二发光器件组101a2上的多个所述第二发光器件102a2的转动路径不重叠。
需要说明的是,当旋转轴20上有两块或以上的显示面板10(或两个及以上的显示部)绕旋转轴20旋转时,本实施例以两显示部为例进行说明,当个两显示部上的部分发光器件关于旋转轴20对称时,显示装置显示时,对应对称的部分使得对应位置亮度重合,产生亮点或亮线,影响三维显示的显示效果,为了避免上述技术问题,提供本实施例的技术方案。
具体地,在本实施例中,所述显示面板10可以为一整块显示面板10,也可以为拼接的显示面板10,若为拼接的显示面板10时,拼接缝与所述旋转轴20重合。
具体地,在本实施例中,所述第一显示部10A1和所述第二显示部10A2的面积大小可以相同,也可以不同,本实施例以所述第一显示部10A1和所述第二显示部10A2的面积大小相同为例进行说明。
具体地,由于第一显示部10A1和第二显示部10A2对称设置(形状对称), 但是第一显示部10A1上的第一发光器件102a1和所述第二显示部10A2上的第二发光器件102a2并不对称设置。
具体地,所述第一显示部10A1上的第一发光器件102a1的变化率(多个第一发光器件102a1的分布密度相对距离所述旋转轴20的距离的变化率)与所述第二显示部10A2上的第二发光器件102a2的变化率相同。
具体地,在第一方向F1上,距离所述旋转轴20长度相同的第一发光器件组101a1和第二发光器件组101a2,第一发光器件组101a1中的第一发光器件102a1与所述第二发光器件组101a2中的第二发光器件102a2不同行设置。
换而言之,即在本实施例中,第一显示部10A1绕所述旋转轴20旋转后与所述第二显示部10A2至少部分重叠,但是第一显示部10A1上的第一发光器件102a1与所述第二显示部10A2上的第二发光器件102a2不重叠。
具体地,当三块显示面板10绕所述旋转轴20旋转,且三块显示面板10相对关于所述旋转轴20轴对称时,三块显示面板10绕旋转轴20旋转重叠后,三块显示面板10上的发光器件各不重叠。
可以理解的是,通过采用上述技术方案,能够使得显示装置的显示效果更均匀,且设置多块显示面板10也不会在显示装置进行三维显示时产生亮线或者亮点,提升显示装置的显示效果,延长显示装置的使用寿命。
承上述实施例,所述第一显示部10A1远离所述旋转轴20的一侧边至所述旋转轴20的距离与所述第二显示部10A2远离所述旋转轴20的一侧边至所述旋转轴20的距离相等。
具体地,在本实施例中,即所述第一显示部10A1的面积和所述第二显示部10A2的面积相等,且所述第一显示部10A1的形状与所述第二显示部10A2的形状相等,所述第一显示部10A1上的第一发光器件102a1的变化率(多个第一发光器件102a1的分布密度相对距离所述旋转轴20的距离的变化率)与所述第二显示部10A2上的第二发光器件102a2的变化率相同,所述第一显示部10A1上不同之处在于所述第一显示部10A1上第一发光器件102a1的排布位置与所述第二显示部10A2上的发光器件的排布位置不同。
在一实施例中,所述显示面板10包括多个驱动薄膜晶体管T1,一所述驱动薄膜晶体管T1连接一所述第一发光器件102a1;
其中,所述第一发光器件102a1发光时,一靠近所述旋转轴的所述第一发光器件102a1连接的所述驱动晶体管T1内的电流,小于另一远离所述旋转轴20的所述第一发光器件102a1连接的所述驱动晶体管T1内的电流。
如图9所示,所述显示面板10包括多个驱动薄膜晶体管T1,多个驱动薄膜晶体管T1包括多个驱动薄膜晶体管组,一所述驱动薄膜晶体管组包括至少两所述驱动薄膜晶体管T1,一所述驱动薄膜晶体管组对应一所述第一发光器件组101a1设置,一所述驱动薄膜晶体管T1连接一所述第一发光器件102a1;
其中,所述驱动薄膜晶体管T1控制所述第一发光器件102a1发光时,在所述第一方向F1上,其中一靠近所述旋转轴20的所述驱动薄膜晶体管组内所述驱动薄膜晶体管T1的电流小于另一远离所述旋转轴20的所述驱动薄膜晶体管组内所述驱动薄膜晶体管T1的电流。
需要说明的是,当靠近旋转轴20的第一发光器件102a1之间的间距过大时,可能导致亮度分布不均,或者影响显示装置显示的PPI,影响显示效果,为了避免上述技术问题,提供了本实施例的技术方案。
具体地,所述显示面板10包括控制电路,所述控制电路包括驱动薄膜晶体管T1,所述驱动薄膜晶体管T1控制所述第一发光器件102a1的亮度大小,且在显示面板10显示时,经过所述驱动薄膜晶体管T1的电流越大,所述第一发光器件102a1的亮度越大,即所述第一发光器件102a1的亮度与流经所述驱动薄膜晶体管T1的电流的大小呈正相关。
具体地,流经所述驱动薄膜晶体管T1的电流大小的控制方法包括但不限于通过显示面板10的驱动芯片预先设置,或通过在控制电路上串联不同阻值的电阻实现控制不同行列上流经所述驱动薄膜晶体管T1的电流大小。
可以理解的是,通过设置一所述驱动薄膜晶体管组对应一所述第一发光器件组101a1设置,一所述驱动薄膜晶体管T1连接一所述第一发光器件102a1,所述驱动薄膜晶体管T1控制所述第一发光器件102a1发光时,在所述第一方向F1上,其中一靠近所述旋转轴20的所述驱动薄膜晶体管组内所述驱动薄膜晶体管T1的电流小于另一远离所述旋转轴20的所述驱动薄膜晶体管组内所述驱动薄膜晶体管T1的电流,能够缓解上述实施例中,为了设置第一发光器件102a1具有不同的分布密度导致的靠近旋转轴20的第一发光器件102a1之间 的间距过大,亮度分布不均,影响显示装置显示的PPI,影响显示效果。
在一实施例中,如图9和图10所示,所述显示面板10包括阵列基板M20,所述阵列基板M20包括有源层,所述驱动薄膜晶体管T1包括位于所述有源层上的沟道部T101;
在所述第一方向F1上,其中一靠近所述旋转轴20的所述驱动薄膜晶体管组内所述驱动薄膜晶体管T1的沟道部T101的宽长比小于另一远离所述旋转轴20的所述驱动薄膜晶体管组内所述驱动薄膜晶体管T1的沟道部T101的宽长比。
具体地,如图9所示,所述显示面板10包括阵列基板M20以及设置于所述阵列基板上的发光层M10,所述发光层M10包括多个第一发光器件102a1,所述阵列基板M20上的所述驱动薄膜晶体管T1与其对应的第一发光器件102a1连接。
具体地,所述显示面板10包括控制电路,控制电路可以包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容,其中,第一薄膜晶体管为驱动薄膜晶体管T1,第二薄膜晶体管为开关薄膜晶体管,第三薄膜晶体管为检测薄膜晶体管,第一薄膜晶体管控制所述第一发光器件102a1的亮度大小。
具体地,所述沟道部T101的宽如图10中的W所示,为源极T104与漏极T103之间相对的长度;所述沟道部T101的长如图10中L所示,即源极T104与漏极T103之间的间距;
具体地,各所述驱动薄膜晶体管T1上相连的电压大小相同。
具体地,如图9所示,驱动薄膜晶体管T1至少包括栅极T102、源极T104、漏极T103,以及有源层,有源层包括分布在源极T104和漏极T103之间的沟道部T101,沟道部T101宽长比减小,相应驱动薄膜晶体管T1的开态电流会降低。
具体地,驱动薄膜晶体管T1为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
第二薄膜晶体管的栅极电性连接扫描电压信号线上,源极电性连接数据电压信号线上,漏极与第一薄膜晶体管的栅极T102和存储电容的一端电性连接;第一薄膜晶体管的源极T104电性连接电源正电压上,漏极T103电性连接发 光器件的阳极;第一发光器件102a1的阴极电性连接于电源负电压,存储电容Cst的一端电性连接第二薄膜晶体管的漏极和第一薄膜晶体管的栅极T102,存储电容Cst的另一端电性连接第一薄膜晶体管的漏极T103、第一发光器件102a1的阳极和第三薄膜晶体管的源极;第三薄膜晶体栅极电性连接数据信号,源极电性连接第一薄膜晶体管的漏极T103,第三薄膜晶体漏极与检测电压相连,第三薄膜晶体管的漏极连接检测电压(VCM)为一恒定电压。
控制电路控制第一发光器件102a1重置时段,控制电路的扫描电压和数据分别施加到控制电路中的第二薄膜晶体管的栅极和源极T104;在各控制电路的数据写入时段,控制电路中的第三开关薄膜晶体管导通,以将数据电压施加到第一薄膜晶体管的漏极T103;在控制电路控制第一发光器件102a1的发光时段,第一薄膜晶体管导通,使得连接在第一薄膜晶体管的漏极T103上的第一发光器件102a1发光。
在一实施例中,所述阵列基板M20包括基板M201和设置于所述基板M201上的驱动器件层M202,所述基板M201的材料为透明材料。
具体地,所述基板M201的材质可以为透明玻璃,聚酰亚胺等。
具体地,所述驱动器件层M202包括多个驱动薄膜晶体管T1,所述驱动器件层M202包括层叠设置的多层绝缘层,设置于各所述绝缘层之间的有源层、栅极层、源漏极层,其中所述有源层包括沟道部T101,设置于所述沟道部T101两侧的源极连接部和漏极连接部,其中源极连接部与所述源极T104连接,所述漏极连接部与所述漏极T103连接,所述栅极层上的栅极T102设置于所述沟道部T101的上方或下方(图10为下方),且其在垂直所述阵列基板M20的方向上的投影覆盖所述沟道部T101。
可以理解的是,通过设置所述驱动器件层M202的基板M201的材料为透明材料,使得显示装置具有更高的透明度,使得三维显示装置显示的画面更逼真,提升用户的使用体验。
综上,通过设置所述显示面板10绕一旋转轴20转动,显示面板10包括多个间隔设置的第一发光器件102a1,各第一发光器件组101a1与旋转轴20之间的距离在一预设距离S范围内,一第一发光器件组101a1包括至少两第一 发光器件102a1,多个第一发光器件组101a1沿第一方向F1依次排列,在第一方向F1上,一靠近旋转轴20的第一发光器件组101a1内第一发光器件102a1的分布密度小于另一远离旋转轴20的第一发光器件组101a1内第一发光器件102a1的分布密度,通过降低靠近旋转轴20的第一发光器件102a1的分度密度,使得显示装置在进行三维显示时,在预设的范围内靠近旋转轴20的第一发光器件102a1的亮度能够与预设范围外的第一发光器件102a1的亮度相一致,解决三维立体显示装置中,显示面板10上不同位置的第一发光器件102a1因转动线速度不同导致的显示装置整体上亮度不均的问题,进一步提升三维立体显示装置的显示亮度均一性。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种显示装置,其中,包括:
    至少一显示面板,所述显示面板可绕一旋转轴转动显示,所述显示面板包括多个第一方向排列的第一发光器件组,所述第一发光器件组包括多个第一发光器件,所述第一方向与所述旋转轴垂直,且所述第一方向由所述旋转轴指向所述显示面板远离所述旋转轴的一侧;
    其中,一靠近所述旋转轴的所述第一发光器件组内各所述第一发光器件的分布密度小于另一远离所述旋转轴的所述第一发光器件组内各所述第一发光器件的分布密度。
  2. 如权利要求1所述的显示装置,其中,一所述第一发光器件组包括沿第一方向排列的多个第一子组,每个所述第一子组包括沿第二方向排列的多个所述第一发光器件,所述第二方向与所述旋转轴平行;
    至少一所述第一发光器件组内的多个所述第一子组中所述第一发光器件的分布密度相同。
  3. 如权利要求2所述的显示装置,其中,位于同一所述第一子组内的多个所述第一发光器件沿所述第二方向间隔均匀设置。
  4. 如权利要求2所述的显示装置,其中,任意相邻的两所述第一子组内,其中一所述第一子组中的所述第一发光器件与另一所述第一子组中的所述第一发光器件沿所述第二方向交错设置。
  5. 如权利要求2所述的显示装置,其中,一所述第一发光器件组包括至少两沿所述第一方向排列的所述第一子组,任意两所述第一发光器件组中,其中一所述第一发光器件组内的各所述第一子组之间的间距与另一所述第一发光器件组内的各所述第一子组之间的间距相等。
  6. 如权利要求1所述的显示装置,其中,所述显示面板包括分别位于所述旋转轴相对两侧的第一显示部和第二显示部,多个所述第一发光器件组位于所述第一显示部,所述第二显示部包括多个沿所述第一方向排列的第二发光器件组,所述第二发光器件组包括多个第二发光器件;
    其中,在距离所述旋转轴的长度相同的所述第一发光器件组和所述第二发光器件组中,所述第一发光器件组上的多个所述第一发光器件和所述第二发光 器件组上的多个所述第二发光器件的转动路径不重叠。
  7. 如权利要求6所述的显示装置,其中,所述第一显示部远离所述旋转轴的一侧边至所述旋转轴的距离与所述第二显示部远离所述旋转轴的一侧边至所述旋转轴的距离相等。
  8. 如权利要求7所述的显示装置,其中,所述第一显示部上的所述第一发光器件的分布密度的变化率,与所述第二显示部上的第二发光器件的分布密的变化率相对所述旋转轴对称。
  9. 如权利要求6所述的显示装置,其中,第一显示部的形状和第二显示部的形状关于所述旋转轴对称。
  10. 如权利要求1所述的显示装置,其中,所述显示面板包括多个驱动薄膜晶体管,一所述驱动薄膜晶体管连接一所述第一发光器件;
    其中,所述第一发光器件发光时,一靠近所述旋转轴的所述第一发光器件连接的所述驱动晶体管内的电流,小于另一远离所述旋转轴的所述第一发光器件连接的所述驱动晶体管内的电流。
  11. 如权利要求10所述的显示装置,其中,在所述第一方向上,其中一靠近所述旋转轴的所述第一发光器件连接的所述驱动薄膜晶体管的沟道部的宽长比,小于另一远离所述旋转轴的所述第一发光器件连接的所述驱动薄膜晶体管的沟道部的宽长比。
  12. 如权利要求10所述的显示装置,其中,所述驱动薄膜晶体管至少包括栅极、源极、漏极,以及有源层,所述有源层包括分布在所述源极和所述漏极之间的所述沟道部。
  13. 如权利要求10所述的显示装置,其中,所述驱动薄膜晶体管为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管或非晶硅薄膜晶体管。
  14. 如权利要求10所述的显示装置,其中,所述显示面板包括控制电路,一所述控制电路控制至少一所述第一发光器件发光显示;
    所述控制电路包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容,第一薄膜晶体管为所述薄膜晶体管,驱动控制所述第一发光器件的亮度大小。
  15. 如权利要求14所述的显示装置,其中,所述第二薄膜晶体管为开关薄 膜晶体管,所述第三薄膜晶体管为检测薄膜晶体管。
  16. 如权利要求10所述的显示装置,其中,所述显示面板包括多个驱动薄膜晶体管组,一所述驱动薄膜晶体管组包括至少两所述驱动薄膜晶体管,一所述驱动薄膜晶体管组对应一所述第一发光器件组设置;
    其中,所述驱动薄膜晶体管控制所述第一发光器件发光时,在所述第一方向上,其中一靠近所述旋转轴的所述驱动薄膜晶体管组内所述驱动薄膜晶体管的电流小于另一远离所述旋转轴的所述驱动薄膜晶体管组内所述驱动薄膜晶体管的电流。
  17. 如权利要求1所述的显示装置,其中,所述显示面板包括基板,所述基板的材料包括透明材料。
  18. 如权利要求17所述的显示装置,其中,所述基板的材质包括透明玻璃或聚酰亚胺。
  19. 如权利要求1所述的显示装置,其中,所述第一发光器件的排布设置为m行n列,每旋转α度显示面板刷新一次,则满足:
    第t列的第一发光器件的数量
    其中,所述第一发光器件在该列上均匀分布,t取大于1,且小于或等于n的正整数。
  20. 如权利要求1所述的显示装置,其中,各所述第一发光器件组与所述旋转轴之间的距离在一预设距离范围内,所述预设距离范围外,所述第一发光器件的分布密度各处均相等。
PCT/CN2023/074790 2022-10-18 2023-02-07 显示装置 WO2024082487A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211274651.0 2022-10-18
CN202211274651.0A CN115685586A (zh) 2022-10-18 2022-10-18 显示装置

Publications (1)

Publication Number Publication Date
WO2024082487A1 true WO2024082487A1 (zh) 2024-04-25

Family

ID=85067083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074790 WO2024082487A1 (zh) 2022-10-18 2023-02-07 显示装置

Country Status (2)

Country Link
CN (1) CN115685586A (zh)
WO (1) WO2024082487A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115685586A (zh) * 2022-10-18 2023-02-03 武汉华星光电技术有限公司 显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109493774A (zh) * 2018-12-17 2019-03-19 苏州佳世达电通有限公司 一种立体显示装置和立体显示系统
CN110579885A (zh) * 2019-09-27 2019-12-17 京东方科技集团股份有限公司 一种全息显示器、全息显示装置及其显示方法
CN110996093A (zh) * 2019-11-08 2020-04-10 京东方科技集团股份有限公司 基于二维屏幕旋转体三维显示的体素均匀化方法及装置
CN112213867A (zh) * 2020-10-29 2021-01-12 京东方科技集团股份有限公司 显示面板、显示装置及显示面板驱动方法
WO2021046757A1 (zh) * 2019-09-11 2021-03-18 京东方科技集团股份有限公司 显示装置及其驱动方法
CN112634799A (zh) * 2020-07-10 2021-04-09 友达光电股份有限公司 透明显示面板
CN115662338A (zh) * 2022-10-18 2023-01-31 武汉华星光电技术有限公司 显示装置
CN115685586A (zh) * 2022-10-18 2023-02-03 武汉华星光电技术有限公司 显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109493774A (zh) * 2018-12-17 2019-03-19 苏州佳世达电通有限公司 一种立体显示装置和立体显示系统
WO2021046757A1 (zh) * 2019-09-11 2021-03-18 京东方科技集团股份有限公司 显示装置及其驱动方法
CN110579885A (zh) * 2019-09-27 2019-12-17 京东方科技集团股份有限公司 一种全息显示器、全息显示装置及其显示方法
CN110996093A (zh) * 2019-11-08 2020-04-10 京东方科技集团股份有限公司 基于二维屏幕旋转体三维显示的体素均匀化方法及装置
CN112634799A (zh) * 2020-07-10 2021-04-09 友达光电股份有限公司 透明显示面板
CN112213867A (zh) * 2020-10-29 2021-01-12 京东方科技集团股份有限公司 显示面板、显示装置及显示面板驱动方法
CN115662338A (zh) * 2022-10-18 2023-01-31 武汉华星光电技术有限公司 显示装置
CN115685586A (zh) * 2022-10-18 2023-02-03 武汉华星光电技术有限公司 显示装置

Also Published As

Publication number Publication date
CN115685586A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2024082489A1 (zh) 显示装置
US10861924B2 (en) Display panel and display device with notch
JP7438972B2 (ja) ディスプレイパネルおよびディスプレイ装置
CN107644948B (zh) 一种发光器件、像素电路、其控制方法及相应装置
CN107633812A (zh) 一种显示面板及显示装置
TWI517122B (zh) 顯示面板、顯示裝置及電子系統
JP6253187B2 (ja) アレイ基板、液晶表示装置およびアレイ基板の駆動方法
CN106782416A (zh) 一种显示面板及显示装置
JP5314270B2 (ja) 表示装置
WO2018138590A1 (en) Display device and electronic device
WO2024082487A1 (zh) 显示装置
US10204575B2 (en) Display panel and display device
JP4242766B2 (ja) 液晶表示装置及びこの駆動方法
JP2023174626A (ja) 表示装置
WO2022083302A1 (zh) 一种显示基板及其驱动方法、显示装置
US11348549B2 (en) Display device and method of driving display device
CN112767852A (zh) 一种用于透明显示的迷你发光二极管显示面板及拼接屏
US11244627B2 (en) Display panel, display screen and control method thereof
CN108648695A (zh) 显示面板、触控显示面板和触控显示设备
WO2021258864A1 (zh) 显示屏和电子设备
JP2004126106A (ja) エレクトロルミネッセンス表示装置
WO2019119811A1 (zh) 显示面板的驱动方法、驱动装置及显示装置
US11982892B1 (en) Display panel and display device
JP4122949B2 (ja) 電気光学装置、アクティブマトリクス基板及び電子機器
RU2007140547A (ru) Отражательное дисплейное устройство с управляющим электрическим полем

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878493

Country of ref document: EP

Kind code of ref document: A1