WO2024082446A1 - Rfid标签组件和具有rfid标签组件的待识别物体 - Google Patents

Rfid标签组件和具有rfid标签组件的待识别物体 Download PDF

Info

Publication number
WO2024082446A1
WO2024082446A1 PCT/CN2022/143290 CN2022143290W WO2024082446A1 WO 2024082446 A1 WO2024082446 A1 WO 2024082446A1 CN 2022143290 W CN2022143290 W CN 2022143290W WO 2024082446 A1 WO2024082446 A1 WO 2024082446A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag assembly
rfid tag
pcb
radiation medium
film antenna
Prior art date
Application number
PCT/CN2022/143290
Other languages
English (en)
French (fr)
Inventor
金永斗
Original Assignee
上海数佑信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海数佑信息科技有限公司 filed Critical 上海数佑信息科技有限公司
Priority to PCT/CN2022/143290 priority Critical patent/WO2024082446A1/zh
Publication of WO2024082446A1 publication Critical patent/WO2024082446A1/zh

Links

Images

Definitions

  • the present invention relates to the field of radio frequency identification (RFID), and more particularly to a radio frequency identification tag component and an object to be identified having the radio frequency identification tag component.
  • RFID radio frequency identification
  • RFID technology can be closely integrated with the Internet of Things (IoT) together with sensors, beacons, etc. and can be further used in combination with BLE (Bluetooth Low Energy) technology.
  • RFID technology can be used in an advanced way for intelligent management of the production, circulation, storage, transportation, etc. of equipment used in construction sites. It can batch identify multiple UHF band RFID passive tags in a non-contact manner, which is more efficient than repeatedly identifying a single tag. Construction equipment is usually rented for use on construction sites, and during the rental process, it needs to be kept, installed, managed, etc. In order to improve the repeated management process, reduce management costs, prevent the loss of construction equipment and errors in storage/retrieval, and manage the service life of construction equipment to ensure the safety of workers, automated and more intelligent management methods are needed.
  • Passive RFID technology has the advantages of cost saving and convenience of use.
  • the object to be identified is a curved three-dimensional structure of construction equipment
  • a thin RFID tag that does not protrude significantly from the surface of the equipment is more advantageous.
  • the cylindrical metal support rod that supports the lower structure during the maintenance process after forming the exterior wall of the building and pouring concrete is a typical example of the above-mentioned construction equipment, and its frequency of use is high, requiring frequent and continuous management.
  • the label attached to the construction equipment must be able to withstand the external impact and drop suffered by the construction equipment during use and transportation.
  • the label structure protruding from the curved surface with a certain thickness is susceptible to physical damage during the installation, storage, and transportation of the equipment.
  • FIG. 1 shows an RFID tag assembly attached to the surface of a cylindrical metal device, in which a bracket 110 is used to attach an RFID tag assembly 120 to the surface of the metal device 100 in the form of a strip protrusion.
  • the metal device of this structure is not only used as a construction device, but also as a pipeline for transporting oil and gas, a pipeline laid in buildings and facilities, a power line, an underground pipeline for burying and protecting communication cables, etc. Due to the cylindrical structural characteristics and uneven surface of the metal device, when the RFID tag assembly is attached to one side of the cylindrical metal device, the grounding surface under the tag contacts the metal material, making it difficult to maintain electrical stability. Even for the same tag assembly, the performance of the RFID tag assembly will deviate with different attachment environments and usage conditions.
  • the radius of the cylindrical metal device changes and the angle of the tag recognition If the equipment is installed and used, it is almost impossible to adjust the angle of the label arbitrarily by considering the label reading direction after the equipment has been installed and used. This requires that the direction of the label on the equipment be aligned with the reader when using the equipment, which increases management and labor costs and reduces the efficiency of RFID tag use. Therefore, the electrical properties of the RFID tag should be configured so that the recognition distance of the RFID tag does not change sensitively with the change of the attachment direction of the RFID tag. Therefore, in different recognition directions ( The recognition rate on the change) is an important design factor.
  • the present invention aims to overcome the above and/or other problems in the prior art.
  • the RFID tag assembly proposed by the present invention is attached to the cylindrical metal object in a manner of surrounding the surface of the cylindrical metal object, thereby improving the omnidirectional readable identification distance performance of the tag.
  • a radio frequency identification tag assembly comprising: a conductive radiation medium, the conductive radiation medium having a first part and a second part, with a gap between the first part and the second part; a film antenna, the film antenna comprising a PCB and metal wires extending from both sides of the PCB in different directions; and an insulating attachment, the insulating attachment separating the conductive radiation medium and the film antenna.
  • an object to be identified wherein the outer side of the object to be identified has the above-mentioned radio frequency identification tag assembly.
  • the present invention attaches the RFID tag assembly encapsulated with special materials to the curved three-dimensional structure metal equipment in a conformal wrapping manner, so that when the curved three-dimensional structure metal equipment is used in a building or construction site, the problems that may be caused by the protruding RFID tag assembly can be avoided, and the existing processing in the environment of storage, movement, installation, etc. of the equipment is not hindered.
  • the equipment may frequently be subjected to external impact, falling, collision, etc. during the use of the equipment in the movement, setting, storage, loading, etc. of the equipment.
  • the RFID tag assembly of the present invention provides the advantages of improving the durability of the RFID tag assembly attached to the curved three-dimensional structure metal equipment and extending its service life.
  • the RFID tag assembly of the present invention improves the omnidirectional identifiable performance, so that it can be conveniently identified not only in all directions but also at a relatively far position.
  • the durability of the RFID tag assembly is improved by using a special packaging process.
  • FIG. 1 is a schematic diagram showing an RFID tag assembly attached to the surface of a cylindrical metal device.
  • FIG. 2a shows a perspective view and a cross-sectional view of an RFID tag assembly wrapped around a surface of a cylindrical metal fixture according to an embodiment of the present invention.
  • FIG. 2b illustrates a front view of an RFID tag assembly wrapped around a surface of a cylindrical metal fixture in accordance with an embodiment of the present invention.
  • FIG. 2c illustrates a rear view of an RFID tag assembly wrapped around a surface of a cylindrical metal fixture in accordance with an embodiment of the present invention.
  • FIG. 2d shows a rear view of an RFID tag assembly wrapped around a surface of a cylindrical metal equipment according to another embodiment of the present invention.
  • FIG. 3 a shows a top view of an unfolded RFID tag assembly according to an embodiment of the present invention.
  • 3b shows an exploded side view of an RFID tag assembly according to an embodiment of the present invention.
  • Figures 4a-4b show enlarged views of the PCB 310 portion of the film antenna 300 according to an embodiment of the present invention.
  • FIG. 5 a shows a graph of real and imaginary components of input impedance versus frequency in a case where the ends of the conductive radiative medium 400 are disconnected according to an embodiment of the present invention.
  • FIG. 5 b shows a graph of real and imaginary components of input impedance versus frequency when the ends of the conductive radiative medium 400 are short-circuited according to an embodiment of the present invention.
  • Figure 6a shows a graph of the recognizable distance versus frequency of the RFID tag assembly 200 when the RFID reader is rotated 0°, 90°, and 180° relative to the PCB 310 when the end of the conductive radiation medium 400 is disconnected according to an embodiment of the present invention.
  • Figure 6b shows a graph of the recognizable distance versus frequency of the RFID tag assembly 200 when the RFID reader is rotated 0°, 90°, and 180° relative to the PCB 310 when the ends of the conductive radiation medium 400 are short-circuited according to an embodiment of the present invention.
  • FIG. 7 shows a radiation pattern of an RFID tag assembly according to an embodiment of the present invention within a plane in the axial direction of a cylindrical metal fixture.
  • the term "and/or" is only a description of the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • the present invention divides the conductive radiation medium into a first part and a second part by a gap, electrically couples the conductive radiation medium with the film antenna at a gap, and surrounds the conductive radiation medium and the film antenna with a thickness of the cylindrical metal equipment around the cylindrical metal equipment, thereby providing good identifiable performance of the RFID tag assembly in all directions.
  • the present invention provides a gap-avoiding groove in the PCB of the film antenna to accommodate the IC chip and makes the welding structure within the peripheral range of the PCB, and covers the PCB with a packaging structure, and uses an insulating layer to cover the film antenna, thereby protecting the RFID tag assembly from the influence of the external environment, thereby improving the durability and service life of the RFID tag assembly.
  • the present invention makes the metal wire of the film antenna tilted relative to the gap of the conductive radiation medium, and makes the two ends of the conductive radiation medium short-circuited or disconnected, thereby making the RFID tag assembly adaptable to different structures and shapes of cylindrical metal equipment, and can provide different impedances to achieve impedance matching between the conductive radiation medium and the film antenna.
  • Figure 2a shows a stereoscopic view and a cross-sectional view of an RFID tag assembly enclosed on the surface of a cylindrical metal equipment according to an embodiment of the present invention.
  • Figure 2b shows a front view of an RFID tag assembly enclosed on the surface of a cylindrical metal equipment according to an embodiment of the present invention.
  • Figure 2c shows a rear view of an RFID tag assembly enclosed on the surface of a cylindrical metal equipment according to an embodiment of the present invention.
  • Figure 2d shows a rear view of an RFID tag assembly enclosed on the surface of a cylindrical metal equipment according to another embodiment of the present invention.
  • the side on which the printed circuit board (PCB) is mounted is referred to as the front side (as shown in Figure 2b) and the direction aligned with the PCB (i.e., the direction perpendicular to the tangent plane of the PCB in the circumferential direction when the RFID tag assembly encloses the cylindrical metal equipment) is defined as
  • the side opposite to the PCB after the RFID tag assembly surrounds the cylindrical metal equipment is called the back side/rear side and the rear side (surrounding the periphery of the cylindrical metal equipment and direction) is defined as
  • the expressions such as “front”, “back”, “rear side”, “front view”, “rear view” are only used to refer to the relative position in a certain state, and are not intended to limit the specific direction thereof.
  • the present invention shows a cylindrical metal device, but those skilled in the art can conceive that the present invention can be widely applied to devices with various curved three-dimensional structures.
  • FIG. 3a shows a top view of an unfolded RFID tag assembly according to an embodiment of the present invention
  • FIG. 3b shows a side exploded view of the RFID tag assembly according to an embodiment of the present invention.
  • the RFID tag assembly 200 includes a film antenna 300, a conductive radiation medium 400, and an insulating attachment 350.
  • the conductive radiation medium 400 has an area of L ⁇ W and is divided into a first part 410 and a second part 420 by a gap 430 with a width of d.
  • the gap 430 can be a straight line, and the first part 410 and the second part 420 have the same shape, but it should be understood that the gap can also be formed into other shapes, and the shapes of the first part 410 and the second part 420 can also be different.
  • the RFID tag assembly 200 can be formed by polyester (PET), polyimide (PI) and materials such as aluminum foil by means such as hot pressing, wherein PET can be used as the bottom surface of the product, and PI can be used to protect the chip.
  • the film antenna 300 includes a PCB 310 and metal wires extending from both sides of the PCB 310 in different directions.
  • the PCB 310 contains an IC chip, and the IC chip is connected to the metal wires on both sides of the PCB 310.
  • the metal wires on both sides have the same length in FIG. 3a and FIG. 3b, the metal wires on both sides of the PCB 310 may have different lengths.
  • the projection of the PCB 310 on the plane of the conductive radiation medium 400 is aligned with the gap 430, and the metal wires extend over the first portion 410 and the second portion 420 of the conductive radiation medium 400, respectively.
  • the length of the film antenna 300 is TL , and the length TL of the film antenna 300 is determined based on the resonant frequency of the RFID tag assembly 200.
  • the film antenna 300 is oriented in a direction in a plane parallel to the conductive radiation medium 400. For example, in the embodiment shown in FIG. 3a, the film antenna 300 is tilted by an angle STang relative to the direction in which the gap 430 of the conductive radiation medium 400 extends in the plane parallel to the conductive radiation medium 400.
  • the tilt angle STang may vary, for example, it may become 90 degrees.
  • the rotation angle STang design variable can provide a method of changing the length of the film antenna 300 to TL without increasing the size of the RFID tag assembly 300, so as to provide a more uniform radiation pattern and obtain omnidirectional identifiable performance.
  • the adjustment of the rotation angle STang can also adjust the impedance more finely without changing other variables of the RFID tag assembly, so that the film antenna 300 and the conductive radiation medium 400 are impedance matched.
  • the film antenna 300 and the conductive radiation medium 400 are electrically coupled to each other with a thickness T2. As shown in FIG.
  • the spacing thickness T2 is provided by an insulating adhesive 350 having a thickness T2 under the film antenna 300.
  • the insulating adhesive 350 can be formed in the form of an insulating adhesive strip.
  • the shape of the insulating adhesive 350 can be larger than the shape of the film antenna 300, for example, the edge of the insulating adhesive 350 can surround the edge of the film antenna 300, so that the insulating adhesive 350 can support the film antenna 300 so that it does not directly contact the conductive radiation medium 400.
  • the center of the film antenna 300 connected to the PCB and the center of the conductive radiation medium 400 divided into the first part and the second part have the maximum electric field concentrated, and are essentially used as the long-distance radiation slot of the RFID tag assembly, regardless of the cylindrical metal equipment 100 therein.
  • the size of the conductive radiation medium 400, the length TL of the film antenna 300, and the tilt angle STang of the film antenna 300 are combined to be the key design variables for achieving maximum radiation gain and impedance matching of the RFID tag assembly 200 of the present invention.
  • the conductive radiation medium 400 can be combined with the metal equipment by packaging so that the conductive radiation medium 400 is separated from the curved surface of the metal equipment by a thickness T1.
  • the thickness T1 can be provided by the bottom insulating layer 600, which is generally formed by an insulating strip or a foam resin material.
  • the spacing thickness T1 between the RFID tag assembly 200 and the curved surface of the cylindrical metal equipment 100 is an important design variable that determines the recognition distance performance of the RFID tag assembly 200 of the present invention. The larger the spacing thickness T1, the larger the recognition distance of the RFID tag assembly 200.
  • the recognition distance of the RFID tag assembly 200 increases with the thickness T1 of the bottom insulating layer 600
  • the larger the thickness T1 of the bottom insulating layer 600 will also make it more difficult for the RFID tag assembly 200 to surround the cylindrical metal equipment 100 and attach thereto, and will also reduce the softness of the packaging material (e.g., the bottom insulating layer 600). Therefore, it is necessary to select an appropriate thickness of the bottom insulating layer T1 to improve the tag recognition performance of the RFID tag assembly 200 and make the RFID tag assembly 200 easy to attach.
  • a top insulating layer 500 may be covered on top of the RFID tag assembly 200.
  • Such an upper top insulating layer 500 may be integrally formed with a bottom insulating layer 600 for separating the RFID tag assembly 200 from the curved surface of the cylindrical metal equipment 100 through a packaging process.
  • the top insulating layer 500 is not explicitly depicted in FIG. 2a-FIG. 2d and FIG. 3a , but those skilled in the art should understand that the top insulating layer 500 may be formed outside the RFID tag assembly 200 of FIG. 2a-FIG. 2d according to the structure shown in FIG. 3b .
  • the top insulating layer 500 may protect the RFID tag assembly 200 from external environmental erosion, and bury the film antenna 300 therein, thereby improving the protection of the RFID tag assembly 200.
  • burying the RFID tag assembly 200 in a special packaging material may improve the durability of the RFID tag assembly in events such as falling and impact that may occur in the storage, movement, and installation environment of the cylindrical metal equipment.
  • the structure of coupling the film antenna 300 and the conductive radiation medium 400 at a certain distance in the special packaging material can prevent the performance of the RFID tag component from being sensitively changed by errors that may occur during the packaging process or the manufacturing process.
  • the structure of the RFID tag component spaced a certain thickness T1 from the surface of the cylindrical metal equipment 100 can improve the disadvantage that the recognition performance changes sensitively with the radius of the cylindrical metal equipment 100.
  • FIGs 2a-2d show that the RFID tag assembly 200 described above with reference to Figures 3a-3b is enclosed outside the curved surface of the cylindrical metal equipment along the direction in which the gap 430 extends, that is, when the RFID tag assembly 200 is enclosed outside the cylindrical metal equipment, the gap 430 surrounds the circumferential direction of the cylinder.
  • the thin conductive radiation medium 400 is separated from the surface of the cylindrical metal equipment 100 by a thickness and attached in a curved form.
  • This thickness can be composed of a bottom insulating layer 600, which is realized by a special resin material and can be formed by a process of integral molding with the top insulating layer 500.
  • a thin conductive radiation medium 400 may be attached to the bottom insulating layer 600.
  • the conductive radiation medium 400 is divided into a first portion 410 and a second portion 420, and a gap 430 between the first portion 410 and the second portion 420 has a width d.
  • the resin material encapsulation process requires a processing temperature of about 70°C to 75°C, so the conductive material forming the conductive radiation medium 400 may be selected from aluminum foil, PET material, and high-temperature PI material that can withstand such a processing temperature.
  • the end of the conductive radiation medium 400 is formed to be disconnected at the back side, while in the embodiment shown in FIG. 2d, the end of the conductive radiation medium 400 is formed to be disconnected at the back side.
  • the structure of the short-circuit or disconnection of the conductive radiation medium 400 depends on the radius of the cylindrical metal fixture 100.
  • whether the end of the conductive radiation medium 400 is short-circuited or disconnected can be selected based on the size (cross-sectional size, radius) of the cylindrical metal fixture 100 and corresponding design variables.
  • FIG. 4a-FIG. 4b show enlarged views of the PCB 310 portion of the film antenna 300 according to an embodiment of the present invention.
  • the metal wire is welded to the PCB 310 on the outside of the PCB 310, while in the embodiment of FIG. 4b, the welded portion 320 of the metal wire and the PCB 310 is not exposed to the outside of the periphery (especially the upper surface) of the PCB 310.
  • This metal wire connected to both sides of the PCB 310 can still maintain the structure of the RFID tag assembly in the event of external impact or falling, and can withstand high temperature and high pressure environments in special packaging or assembly processes.
  • This metal wire is surface-treated to make it easy to weld, and metals of various radii (e.g., copper) can be selected as the metal wire.
  • a small PCB block 310 can be selected.
  • the PCB 310 may be constructed to have a clearance groove 380 to accommodate the PCB 310 and allow electrical bonding operations to be performed therein. And thereafter, the IC chip 360 is protected from being exposed to the external environment by epoxy resin molding.
  • the length of the metal wire is selected according to the center frequency of the RFID tag assembly 200, and the metal wire is connected to the PCB 310 by welding the metal wire on the left and right sides above the PCB 310, and the IC chip 360 disposed in the air-avoiding groove 380 is connected to the external welding portion 320 through the through hole 340 in the PCB 310.
  • the welding portion 320 for electrically connecting the IC chip 360 to the metal wire protrudes from the surface of the PCB 310, and has some disadvantages in the use environment where the insulating strip is used for packaging or a thin PCB is required. Therefore, in the embodiment shown in FIG.
  • the situation where the welding portion protrudes outside the periphery of the PCB can be improved.
  • the pressure originally concentrated on the protruding portion 320 such as the final packaging process or the process in which high pressure will be applied, can be dispersed to reduce the risk of damage.
  • FIG. 5a shows the change of the real and imaginary components of the input impedance with the frequency change when the end of the conductive radiation medium 400 according to the embodiment of the present invention is disconnected (i.e., corresponding to the structure of FIG. 2c )
  • FIG. 5b shows the change of the real and imaginary components of the input impedance with the frequency change when the end of the conductive radiation medium 400 according to the embodiment of the present invention is short-circuited (i.e., corresponding to the structure of FIG. 2d ).
  • the change of the input impedance with the frequency change does not change greatly with the disconnection or short-circuit structure of the end of the conductive radiation medium 400, that is, the disconnection or short-circuit of the end of the conductive radiation medium 400 has little effect on the change trend of the impedance with the frequency.
  • the input impedance at the center frequency of 0.92 GHz is 22-j162 ⁇
  • the input impedance at the center frequency of 0.92 GHz is 17-j154 ⁇ , which does not show a great difference.
  • the disconnected and short-circuited structure of the end of the conductive radiation medium 400 does not cause sensitive changes in the input impedance or radiation gain of the RFID tag assembly 200, and is therefore widely applicable to structures of cylindrical metal equipment with various cross-sectional radii.
  • FIG6a shows the change of the recognizable distance of the RFID tag assembly 200 when the RFID reader rotates 0°, 90°, and 180° relative to the PCB 310 when the end of the conductive radiation medium 400 according to the embodiment of the present invention is disconnected (i.e., corresponding to the structure of FIG2c)
  • FIG6b shows the change of the recognizable distance of the RFID tag assembly 200 when the RFID reader rotates 0°, 90°, and 180° relative to the PCB 310 when the end of the conductive radiation medium 400 according to the embodiment of the present invention is short-circuited (i.e., corresponding to the structure of FIG2d).
  • the reading distance of the RFID tag assembly 200 from the front side of the PCB 310 is defined as Reading the RFID tag assembly 200 from a direction rotated 90° relative to the front side of the PCB 310 is defined as And the RFID tag assembly 200 will be read from the back side of the PCB 310 (i.e., the direction shown in FIG. 2c or FIG. 2d) as defined Regardless of whether the end of the conductive radiation medium 400 is disconnected or short-circuited, when the RFID tag assembly 200 is read from the front of the PCB 310, the tag can be identified at a distance of more than about 7m under the standard power of the reader, showing excellent readability. and When , the tag recognition distance is reduced to 5m and 3m respectively.
  • the structures of the conductive radiation medium 400 and the film antenna 300 used in the embodiment of the present invention are electrically coupled at a certain interval T2, and the strongest electric field is formed at the gap 430 that divides the conductive radiation medium 400 into the first part 410 and the second part 420.
  • the tag recognition distance performance is optimal.
  • the recognition distance of the RFID tag assembly changes with the change of the rotation angle in the graphs shown in Figures 6a and 6b, on the back RFID tag components can also be identified everywhere. In actual application environments, the tag recognition performance does not change sensitively with the rotation angle of the cylindrical metal equipment.
  • FIG7 shows the radiation pattern of the RFID tag assembly according to an embodiment of the present invention in the plane of the axial direction of the cylindrical metal equipment.
  • the radiation pattern of the RFID tag assembly with the end disconnected and the radiation pattern of the RFID tag assembly with the end short-circuited are shown together in the same coordinate axis.
  • the conventional UHF band RFID tag assembly causes the radiation gain to be concentrated in a specific direction according to the shape of the ground plane and the attachment position, and therefore the antenna directivity and recognition performance deviation of the RFID tag assembly occur according to the rotation angle during identification.
  • the present invention by reducing the deviation of the recognition performance with the rotation angle in the horizontal plane (i.e., the circumferential direction) of the cylindrical metal equipment, it is easy to identify in an actual application environment without the need to accurately manage the attachment direction or angle of the tag assembly.
  • the radiation pattern in the axial direction of the cylindrical metal equipment does not change significantly regardless of whether the end of the conductive radiation medium 400 is disconnected or short-circuited, and shows almost similar performance in both cases.
  • the recognition performance in the axial direction of the cylindrical metal equipment is slightly better when the end of the conductive radiation medium 400 is disconnected than when the end of the conductive radiation medium 400 is short-circuited.
  • the conductive radiation medium 400 is divided into a first part 410 and a second part 420 by a gap 430.
  • the RFID tag assembly 200 of the present invention in which the conductive radiation medium 400 is electrically coupled to the film antenna 300 at a certain interval T2 shows that its identifiable performance does not change sensitively with the identification angle when surrounding a cylindrical metal device.
  • An object of the present invention is to provide improved durability of an RFID tag assembly and mitigate changes in tag recognition performance caused by different recognition directions of the RFID tag assembly. Since the rental, use, and return of cylindrical metal equipment requires multiple installations, moves, settings, and identifications, it is difficult to achieve or require too much management cost to align the direction of the RFID tag assembly with the polarization direction of the reader antenna to read the tag in the optimal direction at the construction site, resulting in reduced management efficiency and convenience. Therefore, the omnidirectional recognition performance of the RFID tag assembly of the present invention, in which the recognition performance of the RFID tag assembly does not change sensitively with the direction relative to the cylindrical metal equipment, improves the convenience and flexibility of use.
  • the conductive radiation medium of the RFID tag assembly of the present invention is surrounded by a cylindrical metal device at a spacing distance.
  • the conductive radiation medium of the RFID tag assembly is divided into a first part and a second part by a gap, and the end of the conductive radiation medium can be disconnected when surrounding the cylindrical metal device.
  • the metal wire of the film antenna is arranged above the first part and the second part of the conductive radiation medium, and the film antenna is electrically coupled to the conductive radiation medium at a spacing. This metal wire itself can improve the durability of the structure against external impact, drop, vibration, waterproofing, etc.
  • the spaced electrical coupling of the film antenna and the conductive radiation medium is encapsulated by the resin material and finally surrounded by the cylindrical metal device.
  • Hard materials such as plastic are not suitable for use as encapsulation materials because they may crack or break when impacted or dropped.
  • the conductive radiation medium and the film antenna of the present invention are arranged inside the resin material and sealed, so that the waterproof/shockproof problem can be solved and the durability of the RFID tag assembly in a harsh construction environment can be relatively improved.
  • the present invention can control and adjust the impedance of the conductive radiation medium and the film antenna of the RFID tag component to achieve impedance matching and control various design variables of the resonant frequency, so it can be applied to equipment of various materials and its identifiable performance will not change sensitively with the change of the attachment position.
  • This coupling structure makes the identifiable performance of the RFID tag component not change sensitively with specific design variables or installation or manufacturing errors, so it can improve the product yield in the mass production process.

Abstract

公开了RFID标签组件和具有RFID标签组件的待识别物体。提供了一种射频识别标签组件,其中所述射频识别标签组件包括:导电辐射介质,所述导电辐射介质具有第一部分和第二部分,所述第一部分和所述第二部分之间具有间隙;薄膜天线,所述薄膜天线包括PCB和从所述PCB的两侧朝向不同方向延伸的金属导线;以及绝缘附着件,所述绝缘附着件将所述导电辐射介质和所述薄膜天线间隔开。

Description

RFID标签组件和具有RFID标签组件的待识别物体 技术领域
本发明涉及射频识别(RFID)领域,更具体地涉及一种射频识别标签组件以及具有射频识别标签组件的待识别物体。
背景技术
近年来,在不同领域中,无源RFID技术可以与传感器、信标等一起与物联网(IoT)紧密结合并且可以进一步结合BLE(低功耗蓝牙)技术使用。特别地,RFID技术能够以先进的方式运用于施工现场中使用的器材的生产、流通、保管、运输等的智能管理,用非接触方式能批量识别多个UHF频段RFID无源标签,比对单个标签进行反复识别更高效。通常租赁建筑器材以在施工现场使用,而在租赁过程中需要保管、安装、管理等。为了改善反复的管理过程,降低管理费用,防止建筑器材丢失和存/取中产生错误,并且管理建筑器材的使用年限以确保工作人员的安全,需要自动化和更加智能的管理方式。
无源RFID技术具有节省成本和使用便利的优势。在待识别的对象是曲面立体结构的建筑器材的情况下,需要将RFID标签附着到器材的表面以通过识别RFID标签管理器材,但是其曲面表面导致RFID标签难以贴合。在施工现场的环境中使用的情况下,不从器材表面显著突出的薄型RFID标签是更有利的。在施工现场,在形成建筑物外墙并且浇筑混凝土之后的养护过程中支撑下部结构的圆柱形金属支撑杆是上述建筑器材的一种典型示例,并且其使用频率较高,需要频繁且持续的管理。在施工现场,由于环境恶劣,在建筑器材的使用和运输中,附着在建设器材上的标签必须能够经受该建筑器材在使用和运输过程中遭受的外部冲击和掉落。另外,在对器材的曲面表面进行加工来附着标签组件的情况下,从曲面表面突出一定 厚度的标签结构在器材的安装、保管、运输过程中容易受到物理损伤。考虑到曲面立体金属器材的多样性和难以加工的特性,以及可能会遭受冲击、掉落、水和化学侵蚀等的恶劣的使用环境,需要具有抗金属/抗冲击/耐化学性能的专用RFID标签。
在图1中呈现的是附着在圆柱形金属器材表面上的RFID标签组件,其用托架110将RFID标签组件120以条状突起形式附着在金属器材100的表面上。该结构的金属器材不仅用作建设器材,还用作用于运送油和气体的输送管道、设置在建筑物和设施中的铺设管道、通电线路、用于埋设和保护通信电缆的地下埋设管道等等。由于金属器材的圆柱形的结构特征和不平坦的表面,在圆柱形金属器材的一侧附着RFID标签组件的情况下,标签下方的接地面与金属材质接触,导致难以保持电稳定性。即使是相同的标签组件,随着附着环境以及使用条件不同,RFID标签组件的性能也会发生偏差。为了能够在曲面形态的圆柱形金属材质表面附着标签组件,需要使用考虑曲面半径的特殊托架或者将塑料壳体的结构,而修改为适合曲面附着,然而这样做会提高使用成本。
当圆柱形金属器材一侧附着小型RFID标签组件时,随着圆柱形金属器材的半径变化以及标签识别的角度
Figure PCTCN2022143290-appb-000001
变化,RFID标签组件识别性能、识别距离和识别率也会敏感的变化。圆柱形器材的半径较大或者在从附着有标签的方向偏离甚至相反的方向来识别标签组件的情况下,可识别性会显著降低,严重影响标签组件的实用性和可用性。在实际施工现场中使用时,几乎不可能在已经安装并使用了器材后再考虑标签读取方向而任意调整标签角度的。这就要求在使用器材时将器材上的标签的方向与读取器对准,增加管理和人工成本,降低RFID标签的使用效率。因此,RFID标签的电性能应该被配置使得RFID标签的识别距离不会随着RFID标签的附着方向变化而敏感地变化。故而在相对于圆柱形金属器材不同的识别方向(
Figure PCTCN2022143290-appb-000002
变化)上的识别率是重要的设计因素。
综上所述,需要考虑应用环境中的上述因素,提高附着的RFID标签组件的保护、耐久性和可识别性。
发明内容
本发明就旨在克服现有技术中的上述和/或其它问题。本发明提出的RFID标签组件以包围圆柱形金属物体的表面的方式附着到圆柱形金属物体,由此改善标签的全方向可读识别距离性能。
根据本发明的第一方面,提供了一种射频识别标签组件,其中所述射频识别标签组件包括:导电辐射介质,所述导电辐射介质具有第一部分和第二部分,所述第一部分和所述第二部分之间具有间隙;薄膜天线,所述薄膜天线包括PCB和从所述PCB的两侧朝向不同方向延伸的金属导线;以及绝缘附着件,所述绝缘附着件将所述导电辐射介质和所述薄膜天线间隔开。
根据本发明的第二方面,提供了一种待识别物体,所述待识别物体外侧具有如前所述的射频识别标签组件。
本发明将用特殊的材料封装的RFID标签组件以共形地包裹的方式附着在曲面立体结构金属器材上,使得在该曲面立体结构金属器材在建筑、建设现场中使用时,可以避免突出的RFID标签组件原本可能会导致的问题,并且不妨碍器材的保管、移动、安装等环境中的现有处理。特别是,在施工现场这样的特殊环境中器材的移动、设置、保管、装载等使用过程中可能会频繁发生器材的外部冲击、掉落、碰撞等现象,因此本发明的RFID标签组件提供了提高附着在曲面立体结构金属器材上的RFID标签组件的耐久性并且延长其使用寿命的优点。此外,在施工现场中,难以实现标签读取器的天线方向与RFID标签组件的辐射偏振面始终一致,因此,本发明的RFID标签组件提高了在全方向上的可识别性能,使得不仅可以在全方向上,还可以在相对较远的位置处方便地识别。此外,考虑到恶劣的应用环境,通过使用特殊的封装处理,改善RFID标签组件的耐久性。
通过下面的详细描述、附图以及权利要求,其他特征和方面会变得清楚。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1示出了附着在圆柱形金属器材表面上的RFID标签组件的示意图。
图2a示出了示出了根据本发明的实施例的包围在圆柱形金属器材表面上的RFID标签组件的立体视图和截面图。
图2b示出了根据本发明的实施例的包围在圆柱形金属器材表面上的RFID标签组件的正视图。
图2c示出了根据本发明的实施例的包围在圆柱形金属器材表面上的RFID标签组件的后视图。
图2d示出了根据本发明的另一实施例的包围在圆柱形金属器材表面上的RFID标签组件的后视图。
图3a示出了根据本发明的实施例的展开的RFID标签组件的俯视图。
图3b示出了根据本发明的实施例的RFID标签组件的侧面分解视图。
图4a-图4b示出了根据本发明的实施例的薄膜天线300的PCB 310部分的放大视图。
图5a示出了根据本发明的实施例的导电辐射介质400的端部断开的情况下输入阻抗的实数分量和虚数分量对频率的曲线图。
图5b示出了根据本发明的实施例的导电辐射介质400的端部短路的情况下输入阻抗的实数分量和虚数分量对频率的曲线图。
图6a示出了根据本发明的实施例的导电辐射介质400的端部断开的情况下RFID读取器相对于PCB 310的旋转0°、90°、180°时的RFID标签组件200可识别距离对频率的曲线图。
图6b示出了根据本发明的实施例的导电辐射介质400的端部短路的情况下RFID读取器相对于PCB 310的旋转0°、90°、180°时的RFID标签组件200可识别距离对频率的曲线图。
图7示出了根据本发明的实施例的RFID标签组件在圆柱形金属器材的轴向方向的平面内的辐射模式。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本 发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
以下将描述本发明的具体实施方式,需要指出的是,在这些实施方式的具体描述过程中,为了进行简明扼要的描述,本说明书不可能对实际的实施方式的所有特征均作详尽的描述。应当可以理解的是,在任意一种实施方式的实际实施过程中,正如在任意一个工程项目或者设计项目的过程中,为了实现开发者的具体目标,为了满足系统相关的或者商业相关的限制,常常会做出各种各样的具体决策,而这也会从一种实施方式到另一种实施方式之间发生改变。此外,还可以理解的是,虽然这种开发过程中所作出的努力可能是复杂并且冗长的,然而对于与本发明公开的内容相关的本领域的普通技术人员而言,在本公开揭露的技术内容的基础上进行的一些设计,制造或者生产等变更只是常规的技术手段,不应当理解为本公开的内容不充分。
除非另作定义,权利要求书和说明书中使用的技术术语或者科学术语应当为本发明所属技术领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“一个”或者“一”等类似词语并不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同元件,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,也不限于是直接的还是间接的连接。
在本申请中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施 方式可以相互组合形成新的技术方案。在本申请中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本发明通过用间隙将导电辐射介质分为第一部分和第二部分,将导电辐射介质与薄膜天线以一间隔电耦合,并且将该导电辐射介质和薄膜天线与圆柱形金属器材相隔一厚度地围绕在该圆柱形金属器材上,由此提供了RFID标签组件在全方向上的良好的可识别性能。此外,本发明通过在薄膜天线的PCB中设置避空槽以容纳IC芯片并且使焊接结构再PCB的周边范围之内,另外通过封装结构覆盖PCB,并且使用绝缘层覆盖在薄膜天线上,由此保护RFID标签组件免受外界环境的影响,提高了RFID标签组件的耐久性和使用寿命。另外,本发明通过使得薄膜天线的金属导线相对于导电辐射介质的间隙倾斜,并使得导电辐射介质的两端可以短路或断开,由此使得RFID标签组件可以适应不同的圆柱形金属器材的结构和形状,并且可以提供不同的阻抗以实现导电辐射介质与薄膜天线之间的阻抗匹配。
图2a示出了根据本发明的实施例的包围在圆柱形金属器材表面上的RFID标签组件的立体视图和截面图。图2b示出了根据本发明的实施例的包围在圆柱形金属器材表面上的RFID标签组件的正视图。图2c示出了根据本发明的实施例的包围在圆柱形金属器材表面上的RFID标签组件的后视图。图2d示出了根据本发明的另一实施例的包围在圆柱形金属器材表面上的RFID标签组件的后视图。在以上的表述中,将安装有印刷电路板(PCB)的一侧称为正面(如图2b所示)并将与PCB对准的方向(即,当RFID标签组件包围圆柱形金属器材时,与周向方向上PCB的切平面垂直的方向)定义为
Figure PCTCN2022143290-appb-000003
并且将RFID标签组件包围圆柱形金属器材后与PCB相对的一侧称为背面/后侧并且将该后侧(围绕圆柱形金属器材的周边与
Figure PCTCN2022143290-appb-000004
的方向相向)定义为
Figure PCTCN2022143290-appb-000005
然而,本领域技术人员将理解,“正面”、“背面”、“后侧”、“正视图”、“后视图”等表述仅仅为了指代在某一状态下的相对位置,并不旨在限 定其特定的方向。应理解,作为示例性实施例,本发明示出了圆柱形金属器材,然而本领域技术人员能够构想到,本发明可以广泛应用于具有各种曲面立体结构的器材。
图3a示出了根据本发明的实施例的展开的RFID标签组件的俯视图,并且图3b示出了根据本发明的实施例的RFID标签组件的侧面分解视图。
在图2a-图3b的实施例中,RFID标签组件200包括薄膜天线300、导电辐射介质400以及绝缘附着件350。其中,导电辐射介质400具有面积L×W,并且由宽度为d的间隙430分为第一部分410和第二部分420。优选地,间隙430可以为直线型,并且第一部分410和第二部分420的形状相同,然而应理解,间隙也可以形成为其他形状,并且第一部分410和第二部分420的形状也可以不同。考虑到最终的封装和组装过程中的高温,RFID标签组件200可以由聚酯(PET)、聚酰亚胺(PI)和诸如铝箔的材料通过诸如热压的方式形成,其中PET可以用作产品的底面,并且PI可以用来保护芯片。薄膜天线300包括PCB 310和从PCB 310的两侧朝向不同方向延伸的金属导线。PCB 310内包含IC芯片,并且IC芯片与PCB 310两侧的金属导线相连。尽管在图3a和图3b中两侧的金属导线具有相同的长度,但是可选地,PCB 310两侧的金属导线可以具有不同长度。可选地,如图3a和图3b中所示,PCB 310在导电辐射介质400的平面上的投影与间隙430对准,并且金属导线分别在导电辐射介质400的第一部分410和第二部分420上方延伸。薄膜天线300的长度为T L,基于RFID标签组件200的谐振频率来确定薄膜天线300的长度T L。薄膜天线300在与导电辐射介质400平行的平面内沿一方向定向,例如在图3a所示的实施例中,薄膜天线300在与导电辐射介质400平行的平面内相对于导电辐射介质400的间隙430延伸的方向倾斜一角度STang。可选地,如图3a中的虚线所示,倾斜角度STang可以变化,例如,可以变为90度。该旋转角度STang设计变量可以提供了一种能够在不扩大RFID标签组件300的大小的情况下改变薄膜天线300的长度为T L,以提供更均匀的辐射模式并且能够获得全方向上的可识别性能。此外,构想到旋转角度STang的调整也可以在不改变RFID标签组件的其他的变量的情况下能够更细微地调节阻抗,使得薄膜天线300与导电辐射介质400阻抗匹配。薄膜天线300与导电辐射介质400间隔一厚度T2彼此电耦合。如图3b所示,该间隔厚度T2在薄膜天线300下方由具有厚度T2的绝缘附着件350提供。该绝缘附着件350可以形成为绝缘附着条带的形式。绝缘附 着件350的形状可以大于薄膜天线300的形状,例如,绝缘附着件350的边缘可以包围薄膜天线300的边缘,使得绝缘附着件350能够支撑薄膜天线300使其不会直接接触导电辐射介质400。
在本发明的RFID标签组件200中,连接有PCB的薄膜天线300的中心和分为第一部分和第二部分的导电辐射介质400的中心处集中有最大电场,并且实质上用作RFID标签组件的远距离辐射槽,而与其中的圆柱形金属器材100无关。在实际应用中,导电辐射介质400的大小、薄膜天线300的长度T L以及薄膜天线300的倾斜角度STang相结合是本发明的RFID标签组件200实现最大辐射增益以及阻抗匹配的关键的设计变量。
在图3b的实施例中,可以通过封装处理使得导电辐射介质400与金属器材的曲面表面相隔厚度T1而与金属器材结合,该厚度T1可以由底部绝缘层600提供,该底部绝缘层600通常由绝缘条带或者泡沫树脂类材料形成。RFID标签组件200与圆柱形金属器材100的曲面之间的间隔厚度T1是决定本发明的RFID标签组件200的识别距离性能的重要设计变量,间隔厚度T1越大,RFID标签组件200的识别距离越大。虽然随着底部绝缘层600的厚度T1越大RFID标签组件200的识别距离越大,但是底部绝缘层600的厚度T1越大也会导致越难以使RFID标签组件200包围圆柱形金属器材100附着于其上,并且也会降低封装材料(例如,底部绝缘层600)的柔软性。因此,需要选择适当的底部绝缘层T1的厚度来改善RFID标签组件200的标签识别性能并使RFID标签组件200易于附着。
可选地,如图3b所示,可以将顶部绝缘层500覆盖在RFID标签组件200上方。这样的上方的顶部绝缘层500可以与用于将RFID标签组件200与圆柱形金属器材100的曲面间隔开的底部绝缘层600通过封装过程一体成型。应注意,为了清楚地示出RFID标签组件的结构,在图2a-图2d以及图3a中没有明确绘示出顶部绝缘层500,然而本领域技术人员应理解,可以根据图3b中示出的结构将顶部绝缘层500可以形成于图2a-图2d的RFID标签组件200外部。顶部绝缘层500可以保护RFID标签组件200免受外部环境侵蚀,并且将薄膜天线300埋设在其内部,由此可以提高对于RFID标签组件200的保护。在本发明的实施例中,将RFID标签组件200埋设在特殊封装材料内可以提高在圆柱形金属器材的保管、移动、安装环境中可能发生的掉落、 冲击等事件中的RFID标签组件的耐久性。
在特殊封装材料内将薄膜天线300和导电辐射介质400间隔一定距离耦合的结构可以使得RFID标签组件的性能不会随着在对封装过程或者制造过程中可能发生的误差而敏感地变化。此外,与圆柱形金属器材100表面间隔一定厚度T1的RFID标签组件的结构可以改善识别性能随着圆柱形金属器材100的半径变化而敏感地变化的缺点。
现在转到图2a-图2d,图2a-图2d示出了将上文参考图3a-图3b描述的RFID标签组件200沿着间隙430延伸的方向包围在圆柱形金属器材的曲面表面外部,即在RFID标签组件200包围在圆柱形金属器材外部时,间隙430围绕在圆柱形的周向方向上。薄型的导电辐射介质400与圆柱形金属器材100的表面相隔一厚度并且以曲面形态附着。这一厚度可以由底部绝缘层600构成,由特殊的树脂材料实现并且可以通过与顶部绝缘层500一体成型的过程形成。特别是在使用特殊的树脂材料一体成型封装(顶部绝缘层500和底部绝缘层600)的情况下,可以使用通过对于特定波长的光产生反应具有类似于塑料的凝固的性质的UV树脂或者泡沫树脂类材料实现。在底部绝缘层600上可以附着有薄型导电辐射介质400,在图2a-图2d和图3a-图3b的实施例中,导电辐射介质400分为第一部分410和第二部分420,并且第一部分410和第二部分420之间的间隔430宽度为d。通常,树脂材料封装处理需要约70℃~75℃的处理温度,因此形成导电辐射介质400的导电材料可以选用能够承受这样的处理温度的铝箔、PET材料、高温PI材料。在图2c所示的实施例中,在背面处,导电辐射介质400的端部形成为断开,而在图2d所示的实施例中,在背面
Figure PCTCN2022143290-appb-000006
处,导电辐射介质400的端部形成为短路。这种导电辐射介质400的短路或断开的结构取决于圆柱形金属器材100的半径。考虑到RFID标签组件200的辐射槽的扩张或RFID标签组件200的导电辐射介质400与薄膜天线300之间的阻抗匹配,可以基于圆柱形金属器材100的大小(横截面大小、半径)和相应的设计变量来选择导电辐射介质400的端部是短路还是断开。
图4a-图4b示出了根据本发明的实施例的薄膜天线300的PCB 310部分的放大视图。其中,在图4a的实施例中,金属导线在PCB 310外侧与PCB 310焊接在一起,而在图4b的实施例中,金属导线与PCB 310的焊接部分320不暴露于PCB 310的周 边(特别是上表面)外部。由于本发明的RFID标签组件的恶劣的使用环境,为了尽可能提高RFID标签组件的耐久性和使用寿命,并非使用作为通常的RFID标签的包含PCB的陶瓷形式,而是将导线形式与导电辐射介质电耦合用作RFID标签组件。这种连接在PCB 310两侧的金属导线能够在外部冲击、掉落的情况下仍保持RFID标签组件的结构,并且能承受特殊封装或组装过程中的高温、高压环境。这种金属导线被表面处理使得易于焊接,并且可以选择各种半径的金属(例如,铜)作为该金属导线。作为用于将金属导线与IC芯片360电连接的介质,可以选择小型PCB块310。为了从外部环境进一步保护IC芯片360,可以将PCB 310构造为使其具有避空槽380来容纳PCB 310并允许在其内部进行电接合操作。并且此后,通过环氧树脂成型来保护IC芯片360不暴露于外部环境。
在图4a所示的实施例中,根据RFID标签组件200的中心频率选择金属导线的长度,并且通过将金属导线分别焊接在PCB 310上方的左右两侧来与PCB 310连接,并且设置在避空槽380内的IC芯片360通过PCB 310内的通孔340与外部焊接部分320连接。为了将IC芯片360与金属导线电连接的焊接部分320从PCB 310的表面突出,并且在使用绝缘条带进行封装或者要求薄型的PCB的使用环境下具有一些缺点。因此,在图4b所示的实施例中,通过将原本突起的焊接部分320容纳在PCB 310的周边内,可以改善焊接部分突出到PCB周边外部的情况。在一些特定使用场景中,通过将焊接部分320容纳在PCB 310的周边内,可以将原本集中于突出部分320的例如最终封装过程或者将会施加高压的过程中施加的压力分散开,来降低损坏的风险。
图5a示出了根据本发明的实施例的导电辐射介质400的端部断开的情况下(即,对应于图2c的结构)随着频率变化的输入阻抗的实数分量和虚数分量的变化,并且图5b示出了根据本发明的实施例的导电辐射介质400的端部短路的情况下(即,对应于图2d的结构)的随着频率变化的输入阻抗的实数分量和虚数分量的变化。由图5a和图5b可见,随着频率变化的输入阻抗的变化并不会随着导电辐射介质400的端部的断开或短路结构而发生很大的变化,即导电辐射介质400的端部断开或短路对于阻抗随频率的变化趋势影响不大。在图5a所示的导电辐射介质400的端部断开的结构中,在0.92GHz的中心频率处的输入阻抗是22-j162Ω,而在图5b所示的导电辐射介质400的端部短路的结构中,在0.92GHz的中心频率处的输入阻抗是17-j154Ω, 并没有展示出很大的差异。因此,在其他设计变量相同时,导电辐射介质400的端部的断开和短路的结构并不会导致RFID标签组件200的输入阻抗或辐射增益敏感地变化,因此可以广泛适用于各种横截面半径的圆柱形金属器材的结构。
图6a示出了根据本发明的实施例的导电辐射介质400的端部断开的情况下(即,对应于图2c的结构)随着RFID读取器相对于PCB 310的旋转0°、90°、180°时的RFID标签组件200可识别距离的变化,并且图6b示出了根据本发明的实施例的导电辐射介质400的端部短路的情况下(即,对应于图2d的结构)随着RFID读取器相对于PCB 310的旋转0°、90°、180°时的RFID标签组件200可识别距离的变化。其中,将从PCB 310正面读取RFID标签组件200定义为
Figure PCTCN2022143290-appb-000007
将从相对于PCB 310的正面旋转90°的方向读取RFID标签组件200定义为
Figure PCTCN2022143290-appb-000008
并且将从PCB 310背面(即,图2c或图2d中所示的方向)读取RFID标签组件200定义为
Figure PCTCN2022143290-appb-000009
无论导电辐射介质400的端部断开还是短路,当从PCB 310的正面读取RFID标签组件200时,在读取器标准功率下,标签可识别距离为大约7m以上,表现出了优秀的可读取性能,并且当
Figure PCTCN2022143290-appb-000010
Figure PCTCN2022143290-appb-000011
时,标签可识别距离分别降低到5m和3m。
在本发明的实施例中使用的导电辐射介质400和薄膜天线300的结构之间以一定间隔T2电耦合,并且在将导电辐射介质400分为第一部分410和第二部分420的间隙430处形成最强的电场。在这样的构造下标签识别距离性能是最佳的。尽管在图6a和图6b中所示的图表中随着旋转角度的变化会发生RFID标签组件的识别距离变化,但是在背面
Figure PCTCN2022143290-appb-000012
处也能识别到RFID标签组件,在实际应用环境中,标签识别性能并不会随着圆柱形金属器材的旋转角度而敏感地变化。
此外,当薄膜天线300中的金属导线长度、导电辐射介质400的设计变量、以及膜天线300和导电辐射介质400之间的间隔距离T2不变的情况下,导电辐射介质的端部断开和短路时的标签可读性能几乎不变。这种特性使得即使圆柱形金属器材的半径变化,导电辐射介质的端部的断开或短路也不会对标签可读性能产生很大的影响,因此使得相同的RFID标签组件结构可以广泛地用于各种半径的圆柱形金属器材。
图7示出了根据本发明的实施例的RFID标签组件在圆柱形金属器材的轴向方向的平面内的辐射模式。为了在UHF频段中心频率920MHz处对导电辐射介质的端部断开或短路的RFID标签组件200的性能进行比较,在统一坐标轴内一起示出了端 部断开的RFID标签组件的辐射模式和端部短路的RFID标签组件的辐射模式。通常的UHF频段的RFID标签组件根据接地面的形状和附着位置而导致辐射增益集中于特定方向上,并且因此根据识别时的旋转角度,发生RFID标签组件的天线指向性以及识别性能偏差。在本发明中,通过降低在圆柱形金属器材的水平面内(即,周向方向)随着旋转角度的识别性能的偏差,使得在实际应用环境中,不需要对标签组件附着方向或角度进行精确地管理就可以容易地识别。特别地,圆柱形金属器材的轴向方向上的辐射模式不会因为导电辐射介质400的端部是断开或短路而显著变化,在两种情况下表现出几乎类似的性能,在圆柱形金属器材的轴向方向上的识别性能在导电辐射介质400的端部断开的情况下略优于导电辐射介质400的端部短路的情况。
由此可见,导电辐射介质400由间隙430分为第一部分410和第二部分420,导电辐射介质400与薄膜天线300以一定间隔T2电耦合的本发明的RFID标签组件200在包围圆柱形金属器材时体现出其可识别性能不会随着识别角度而敏感地变化的特性。
本发明的目的在于提供RFID标签组件的改善的耐久性,缓和随着RFID标签组件的识别方向不同而导致的标签识别性能变化。由于在圆柱形金属器材的租赁、使用以及返还过程中需要多次安装、移动、设置和识别,而使RFID标签组件的方向和读取器天线偏振方向一致来以最佳的方向进行标签读取在建设现场中难以实现或需要投入过多管理成本,导致降低管理效率和便利性。因此,RFID标签组件的识别性能不会随着相对于圆柱形金属器材的方向而敏感地改变的本发明的RFID标签组件的全方向上的可识别性能提高了使用便利性和灵活性。
为此,本发明的RFID标签组件的导电辐射介质以一间隔距离包围在圆柱形金属器材上。另外,RFID标签组件的导电辐射介质由间隙分为第一部分和第二部分,当包围圆柱形金属器材时导电辐射介质的端部可以断开。薄膜天线的金属导线设置在导电辐射介质的第一部分和第二部分上方,并且薄膜天线以一间隔与导电辐射介质电耦合。这种金属导线本身能够提高结构对于外部冲击、掉落、震动、防水等的耐久性。
此外,薄膜天线和导电辐射介质的间隔开的电耦合由树脂材料封装最终包围在圆柱形金属器材上。诸如塑料的坚硬的材质由于可能在冲击或掉落时产生裂痕或断裂而不适于用作封装材料。本发明中奖导电辐射介质和薄膜天线设置在树脂材料内部并 且密封,因此能够解决防水/防震问题并且能够相对提高RFID标签组件在恶劣的建设环境中的耐久性。
另外,本发明中能够分别控制调整RFID标签组件的导电辐射介质和薄膜天线的阻抗实现阻抗匹配并且控制谐振频率的各个设计变量,因此可以适用于各种材质的器材并且其可识别性能也不会随着附着位置的变化而敏感地变化。这种耦合方式的构造使得RFID标签组件的可识别性能不会随着特定设计变量或安装或制造误差而敏感地变化,因此能够改善量产过程中的产品良率。
上面已经描述了一些示例性实施例。然而,应该理解的是,在不脱离本发明精神和范围的情况下,还可以对上述示例性实施例做出各种修改。例如,如果所描述的技术以不同的顺序执行和/或如果所描述的系统、架构、设备或电路中的组件以不同方式被组合和/或被另外的组件或其等同物替代或补充,也可以实现合适的结果,那么相应地,这些修改后的其它实施方式也落入权利要求书的保护范围内。

Claims (16)

  1. 一种射频识别标签组件,其特征在于,所述射频识别标签组件包括:
    导电辐射介质,所述导电辐射介质具有第一部分和第二部分,所述第一部分和所述第二部分之间具有间隙;
    薄膜天线,所述薄膜天线包括PCB和从所述PCB的两侧朝向不同方向延伸的金属导线;以及
    绝缘附着件,所述绝缘附着件将所述导电辐射介质和所述薄膜天线间隔开。
  2. 如权利要求1所述的射频识别标签组件,其特征在于,所述薄膜天线被定位为使得所述PCB与所述间隙对准。
  3. 如权利要求1所述的射频识别标签组件,其特征在于,所述金属导线分别在所述导电辐射介质的第一部分和第二部分上方延伸。
  4. 如权利要求1所述的射频识别标签组件,其特征在于,通过调节所述印刷电路板两侧的金属导线的长度来实现所述薄膜天线与所述导电辐射介质之间的阻抗匹配。
  5. 如权利要求1所述的射频识别标签组件,其特征在于,所述薄膜天线在与所述导电辐射介质平行的平面内相对于所述间隙延伸的方向成角度。
  6. 如权利要求1所述的射频识别标签组件,其特征在于,所述薄膜天线附着到所述绝缘附着件,并且所述绝缘附着件附着到所述导电辐射介质。
  7. 如权利要求6所述的射频识别标签组件,其特征在于,所述绝缘附着件的形状大于所述薄膜天线的形状。
  8. 如权利要求1所述的射频识别标签组件,其特征在于,所述PCB内具有避空槽以放置IC芯片。
  9. 如权利要求8所述的射频识别标签组件,其特征在于,所述IC芯片与所述金属导线的焊接部分在所述PCB的顶表面上方。
  10. 如权利要求8所述的射频识别标签组件,其特征在于,所述PCB进一步包含凹槽以容纳所述IC芯片与所述金属导线的焊接部分。
  11. 如权利要求1所述的射频识别标签组件,其特征在于,所述射频识别标 签组件进一步包括底部绝缘层和顶部绝缘层,所述导电辐射介质、所述薄膜天线以及所述绝缘附着件被封装在所述底部绝缘层和所述顶部绝缘层之间。
  12. 如权利要求11所述的射频识别标签组件,其特征在于,所述底部绝缘层和所述顶部绝缘层的材料与所述绝缘附着件的材料相同。
  13. 如权利要求11所述的射频识别标签组件,其特征在于,所述底部绝缘层和所述顶部绝缘层被一体成形。
  14. 一种待识别物体,所述待识别物体外侧具有如权利要求1至权利要求14中的任一项所述的射频识别标签组件。
  15. 如权利要求13所述的待识别物体,其特征在于,所述待识别物体具有曲面立体结构,所述射频识别标签组件包围在所述曲面立体结构上。
  16. 如权利要求15所述的待识别物体,其特征在于,在所述射频识别标签组件沿间隙延伸的方向包围所述待识别物体时,所述第一部分和/或所述第二部分沿周向方向包围所述待识别物体的圆柱形部分的至少一部分。
PCT/CN2022/143290 2022-12-29 2022-12-29 Rfid标签组件和具有rfid标签组件的待识别物体 WO2024082446A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/143290 WO2024082446A1 (zh) 2022-12-29 2022-12-29 Rfid标签组件和具有rfid标签组件的待识别物体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/143290 WO2024082446A1 (zh) 2022-12-29 2022-12-29 Rfid标签组件和具有rfid标签组件的待识别物体

Publications (1)

Publication Number Publication Date
WO2024082446A1 true WO2024082446A1 (zh) 2024-04-25

Family

ID=90736714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143290 WO2024082446A1 (zh) 2022-12-29 2022-12-29 Rfid标签组件和具有rfid标签组件的待识别物体

Country Status (1)

Country Link
WO (1) WO2024082446A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122369A (zh) * 2010-01-08 2011-07-13 Ls产电株式会社 射频识别标签
CN102855521A (zh) * 2012-08-22 2013-01-02 中科院杭州射频识别技术研发中心 一种双层结构抗金属射频识别电子标签
CN102880898A (zh) * 2011-07-13 2013-01-16 上海铁勋智能识别系统有限公司 一种覆盖uhf全频段、自由空间和金属表面共用的超高频电子标签
CN206271011U (zh) * 2016-10-28 2017-06-20 浙江大学 具有人工磁导体反射板的抗金属rfid标签天线
CN112262396A (zh) * 2018-06-11 2021-01-22 爱知制钢株式会社 磁性标识器的施工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122369A (zh) * 2010-01-08 2011-07-13 Ls产电株式会社 射频识别标签
CN102880898A (zh) * 2011-07-13 2013-01-16 上海铁勋智能识别系统有限公司 一种覆盖uhf全频段、自由空间和金属表面共用的超高频电子标签
CN102855521A (zh) * 2012-08-22 2013-01-02 中科院杭州射频识别技术研发中心 一种双层结构抗金属射频识别电子标签
CN206271011U (zh) * 2016-10-28 2017-06-20 浙江大学 具有人工磁导体反射板的抗金属rfid标签天线
CN112262396A (zh) * 2018-06-11 2021-01-22 爱知制钢株式会社 磁性标识器的施工方法

Similar Documents

Publication Publication Date Title
US8672230B2 (en) RFID tag
KR100807176B1 (ko) 무선 ic태그 및 무선 ic태그의 제조방법
CN102201073B (zh) 具备rfid用宽频带保护金属件的rfid标签
CN104051440B (zh) 具有天线的半导体结构
EP2071495A1 (en) Wireless ic device
US20060151619A1 (en) Information processing apparatus with contactless reader/writer, and coil antenna for magnetic coupling
JP2009231870A (ja) Rfidタグ及びその製造方法
CN110783711B (zh) 一种接地板加载开口环谐振器缝隙的多频微带缝隙天线
WO2024082446A1 (zh) Rfid标签组件和具有rfid标签组件的待识别物体
US20110074647A1 (en) Antenna module
JP5712539B2 (ja) Rfidタグの取り付け方法
WO2024000865A1 (zh) Rfid标签元件、rfid标签组件和附着rfid标签组件的待识别物体
CN205302352U (zh) 一种混合天线的电子标签
TWI803957B (zh) 無線射頻晶片模組及其rfid接收器
CN112103635B (zh) Rfid标签天线电路板及rfid标签天线
WO2023115895A1 (zh) 射频识别标签组件和附着射频识别标签组件的可识别物体
KR101025771B1 (ko) Rfid 태그 및 이의 제조 방법
JP4438844B2 (ja) Rfidタグ
CN210272667U (zh) 一种电子标签用小体积天线
CN215729826U (zh) 电子标签及应答装置
CN218498362U (zh) 一种金属天线及其通信模块
CN209343382U (zh) 一种电子标签
TWI646469B (zh) 長距離360度廣角無線射頻識別器
CN213276715U (zh) 防拆rfid标签天线
CN117378090A (zh) 一种无源射频标签