WO2024000865A1 - Rfid标签元件、rfid标签组件和附着rfid标签组件的待识别物体 - Google Patents

Rfid标签元件、rfid标签组件和附着rfid标签组件的待识别物体 Download PDF

Info

Publication number
WO2024000865A1
WO2024000865A1 PCT/CN2022/121743 CN2022121743W WO2024000865A1 WO 2024000865 A1 WO2024000865 A1 WO 2024000865A1 CN 2022121743 W CN2022121743 W CN 2022121743W WO 2024000865 A1 WO2024000865 A1 WO 2024000865A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
frequency identification
identification tag
rfid tag
antenna
Prior art date
Application number
PCT/CN2022/121743
Other languages
English (en)
French (fr)
Inventor
金永斗
马晓蒙
Original Assignee
上海数佑信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海数佑信息科技有限公司 filed Critical 上海数佑信息科技有限公司
Priority to CN202280073620.0A priority Critical patent/CN118202630A/zh
Priority to PCT/CN2022/121743 priority patent/WO2024000865A1/zh
Publication of WO2024000865A1 publication Critical patent/WO2024000865A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present invention relates to the field of radio frequency identification, and more specifically to a radio frequency identification (RFID) tag component, a radio frequency identification tag component of an adaptation tool, and an object to be identified attached with the radio frequency identification tag component.
  • RFID radio frequency identification
  • RFID technology is widely used in a variety of industrial fields and not only meets user needs but also provides intelligent and computerized convenience.
  • the biggest technical feature of passive RFID tags in the UHF band is that the Automatic Identification Data Capture technology can be used to identify multiple RFID tags in batches at the same time in a non-contact manner in long-distance areas.
  • RFID technology is used in industries such as national defense, procurement, construction, transportation, medical care, etc., as well as logistics, distribution, manufacturing, clothing, security, etc., and with the development of RFID technology itself and its combination with other related technologies and deepening, RFID technology has been further developed.
  • the RFID system generally consists of RFID tags containing asset information transmitting or receiving data through a non-contact wireless RF channel, identifying product and asset information at the RFID reader, and using the Internet or LAN to enable the host computer or dedicated server to pass the middleware Use this product and asset information in your application.
  • the data collected by the RFID reader is processed into useful data through the middleware installed on the host computer or server, and can be used with RFID system applications or enterprise resource planning systems (ERP systems), warehouse management systems, manufacturing execution systems (MES), and inventory management. Systems and other businesses are connected with systems and used for important information.
  • ERP systems enterprise resource planning systems
  • MES manufacturing execution systems
  • This RFID technology provides efficiency and reduces costs to relevant entities involved in the supply chain (SCM).
  • RFID tags can be composed of various structures, sizes and materials.
  • metal materials are usually used.
  • most tools have soft curved surfaces or irregular curved shapes, making it difficult to obtain a flat space for attaching RFID tags. Due to the structural diversity of these tools, it is difficult to apply a unified structure of RFID tags to different tools. Therefore, it is necessary to develop the most suitable dedicated RFID tags for different tools.
  • Ultra-small RFID tags made of ceramics and PCB are attached to the surface of most tools to enhance the durability of the tag and improve its appearance.
  • the individually designed plastic shell protects the RFID tag from the external environment.
  • This type of ultra-small RFID tag is usually made of bulk PCB material and high-dielectric ceramic material.
  • the inductor and The capacitor is connected in series or parallel with the tag IC chip.
  • Figure 1a shows a schematic diagram of a tool whose surface is processed to attach ultra-small RFID tags
  • Figure 1b shows a schematic diagram of another tool whose surface is processed into a planar shape to attach ultra-small RFID tags.
  • one side of the surface of the screwdriver 100 formed of metal material including the plastic handle 130 is processed into a planar area 110 to attach the ultra-small RFID tag 150.
  • one side of the surface of the sleeve 120 is machined into a planar area 110' for attaching an ultra-small RFID tag 150'.
  • Ultra-small RFID tags 150 and 150’ tags typically use ceramic materials with high dielectric properties and PCBs containing capacitors or inductors.
  • the planar areas 110 and 110' are as small as possible. But this structure exhibits the disadvantages of reduced impedance bandwidth due to tag ultra-miniaturization and changes in tag performance as the tag is attached to one side of various metal tools.
  • the ultra-small form of the tag structure 150, 150' narrows the impedance bandwidth of the tag attached to the metal surface of the tool, and the narrowed impedance bandwidth sensitively reflects tag manufacturing and attachment position errors in tag performance, Therefore, label mass production and tool attachment are required to be very precise, which makes it difficult to manage label attachment position deviations and process errors that may occur during the manufacturing process.
  • UHF band RFID tags are affected by the structural design of the antenna, the size and relative position of the ground plane to which the tag is attached, the polarization consistent with the RFID reader when being recognized, multiple tools or other metals around it, and high dielectric constants. The impact of material's radio wave reflection, interference and absorption.
  • the metal tool When an ultra-small RFID tag is attached to one side of the tool, the metal tool will serve as the electrical ground for the RFID tag antenna, whereby the tag's maximum radiated gain is toward the front side to which the tag is attached and only a relatively small radiated gain in the opposite direction.
  • the radiation gain of the RFID tag antenna will vary with the rotation direction of the tool, and the radar cross-section (RCS) used to obtain the maximum readable identification distance will vary greatly with the rotation direction of the tool. This results in significant differences in the recognition rates of RFID tags at other incident angles based on the tool.
  • the present invention aims to overcome the above and/or other problems in the prior art.
  • General commercial tools require RFID tags with high durability and reliability considering the harsh conditions of the application environment.
  • tools have various structural shapes, it is difficult to develop universal RFID tags that can be widely used in various tools.
  • RFID tags due to their cylindrical structure, and due to their various lengths and radii, it is virtually impossible to use the same RFID tag form to deal with different tools.
  • the present invention takes into account the use environment and structural characteristics of the tool, provides an RFID tag assembly with a user-friendly appearance structure and can improve the directivity and electrical characteristics of the RFID tag antenna.
  • the RFID tag assembly proposed by the present invention enables the design variables that control the impedance of the IC chip and the design variables that control the radiation gain of the RFID tag antenna to be independently controlled, thereby enabling the RFID tag assembly to be widely used in various tool sizes, and Provides design flexibility.
  • a radio frequency identification tag element includes: an insulating ring; a thin film antenna, the thin film antenna is bonded to the inner peripheral surface of the insulating ring, and the The thin film antenna is formed by connecting an IC chip to a metal loop antenna.
  • the metal loop antenna is flexible so that after the thin film antenna is bonded to the inner peripheral surface, it adheres to the inner peripheral surface of the insulating ring along the circumferential direction.
  • the conductive dielectric layer fits the outer peripheral surface of the insulating ring along the circumferential direction and partially surrounds the insulating ring such that a gap exists between both ends of the conductive dielectric layer,
  • the conductive dielectric layer is inductively coupled to the metal loop antenna to radiate radio frequency signals from the IC chip outward through the gap.
  • the electric field excited by the film antenna is concentrated at the gap of the conductive medium layer.
  • This electric field can be used as a source to achieve radiative gain of the RFID tag element.
  • by concentrating the electric field scattering distribution of the conductive medium layer with the gap there is an advantage of expanding the impedance bandwidth of the RFID tag.
  • the structure with a gap between both ends of the conductive medium layer is equivalent to a long-distance radiation gap.
  • a slot is provided in at least one end region of the conductive medium layer, This allows it to be used as a design variable to increase the radiation gain and improve the impedance bandwidth of the conductive dielectric layer of the RFID tag element.
  • a radio frequency identification tag assembly for an adaptation tool, wherein the radio frequency identification tag assembly includes: the radio frequency identification tag element according to any one of the preceding items, and an annular Sheath, the annular sheath is formed of an insulating material, the sheath has an inner layer, an outer layer and an annular inner cavity between the inner layer and the outer layer, the annular inner cavity is used for common use Shapely accommodate the radio frequency identification tag element.
  • the RFID tag element can be protected from the harsh external environment and protected in the event of impact or drop, thereby improving the RFID tag element of durability.
  • an object to be identified is provided, a part of the object to be identified is surrounded by the radio frequency identification tag assembly as described above.
  • the special RFID tag proposed by the present invention is implemented to surround small assets of various sizes and shapes from the outside (such as sleeve tools), thereby improving the radiation characteristics of the RFID tag and being able to match the shape of existing tools. Better compatible.
  • the radio frequency identification tag assembly inserts the RFID tag element into the sheath structure surrounding the tool and seals it, thereby providing a method that can solve the waterproof/dustproof problem.
  • a double-layer structure and inductive coupling are adopted so that the radiation characteristics of the RFID tag will not change sensitively with the size of the tool and will be more sensitive to the size of the tool.
  • the interface provides the benchmark with uniform properties in all directions. The above characteristics enable RFID tags to provide better tag recognition performance even when they are densely and arbitrarily placed together with other tools in a limited space in the actual tool use environment, thereby building a stable RFID system.
  • Figure 1a shows a schematic diagram of a tool whose surface is machined to attach ultra-small RFID tags.
  • Figure 1b shows a schematic diagram of another tool whose surface is machined into a planar shape for attaching ultra-small RFID tags.
  • Figures 2a and 2b illustrate perspective views of a process of incorporating a radio frequency identification tag assembly to the exterior of a tool in accordance with an embodiment of the present invention.
  • Figure 3 shows an exploded view of a radio frequency identification tag assembly coupled to the exterior of a tool in accordance with an embodiment of the present invention.
  • Figure 4 shows a perspective perspective view of a radio frequency identification tag element according to an embodiment of the invention.
  • Figure 5 shows an exploded view of a radio frequency identification tag element according to an embodiment of the invention.
  • FIG. 6a and 6b illustrate schematic diagrams in which an IC chip is positioned at different positions of a thin film antenna and the thin film antenna has different circumferential spans according to an alternative embodiment of the present invention.
  • Figure 7a shows a graph of the real component of the input impedance as a function of the circumferential span of a thin film antenna according to an embodiment of the invention.
  • Figure 7b shows a graph of the imaginary component of the input impedance as a function of the circumferential span of the membrane antenna according to an embodiment of the invention.
  • Figure 8a shows a schematic diagram of a conductive medium layer according to an embodiment of the invention.
  • Figures 8b-8d show schematic diagrams of slots in at least one of two end regions of a conductive medium layer according to alternative embodiments of the present invention.
  • Figure 9a shows a diagram of the radiation pattern in the radial direction of a radio frequency identification tag assembly according to an embodiment of the invention.
  • Figure 9b shows a diagram of the radiation pattern in the axial direction of a radio frequency identification tag assembly according to an embodiment of the invention.
  • Figure 10 illustrates the readable distance of a radio frequency identification tag assembly in the radial direction of the tool according to an embodiment of the present invention.
  • the present invention provides passive RFID tags used in efficient management of assets in application sites and computerized and stable system construction for tool loss management by installing RFID tags on small tools.
  • RFID tags can operate in the UHF frequency band.
  • the present invention solves the problem of cumbersome label attachment and improves the appearance shape by utilizing an insulating double-layer sheath that surrounds the tool from the outside.
  • the tool or portion of the tool enclosed by the sheath may be a socket, screwdriver, wrench, or the like.
  • the tool may be made of metal.
  • an electrically coupled film antenna is disposed within the insulating sheath, thereby improving the omni-directional tag recognition performance and making the sheath widely applicable to various sizes/radii. tool.
  • Figures 2a-2b illustrate perspective views of a process of incorporating an RFID tag assembly 200 to the exterior of a tool 220 in accordance with an embodiment of the present invention.
  • Tool 220 may have a curved outer surface and may have an RFID tag element within RFID tag assembly 200 .
  • the inner diameter of the RFID tag assembly 200 may be variable to be adjusted to best match the outer diameter of the tool 220 so that the RFID tag assembly 200 can be tightly wrapped around the outside of the tool 220 .
  • the portion of tool 220 on which RFID tag assembly 200 is to be placed may be cylindrical.
  • the part of the tool 220 to which the RFID tag assembly 200 is to be disposed may also have other shapes, for example, its radial cross-section may be an ellipse, a polygon (such as a quadrilateral, a hexagon, an octagon) , axially symmetrical shapes, centrally symmetrical shapes or irregular shapes, etc.
  • FIG. 3 shows an exploded view of RFID tag assembly 200 coupled to the exterior of tool 220, in accordance with an embodiment of the present invention.
  • Figure 4 shows a perspective perspective view of an RFID tag element 400 according to an embodiment of the invention.
  • Figure 5 shows an exploded view of an RFID tag element 400 according to an embodiment of the invention.
  • the RFID tag assembly 200 can be attached to the tool 200 in a manner that surrounds the tool 200 from the outside without performing any processing on the surface of the tool 220 .
  • the RFID tag assembly 200 containing the RFID tag element 400 (shown in FIG. 4 ) can be evenly and stably mounted to the tool 200 by mechanical force using a jig and a mounting device so that the RFID tag assembly 200 is tightly combined with the tool 220 .
  • the RFID tag assembly 200 can be divided into an annular sheath 370 and an RFID tag element 400 .
  • Annular sheath 370 may be formed from an insulating material, such as plastic.
  • annular sheath 370 may be formed with an inner layer and an outer layer with an annular lumen between the inner and outer layers. The annular lumen may be used to conformally receive the RFID tag element 400.
  • the RFID tag assembly 200 is depicted in the drawings as being in the shape of a donut, those skilled in the art will understand that the term "ring" as used herein is not limited to a donut shape, but may encompass a variety of shapes that may surround the ring.
  • the radial cross section thereof may be an ellipse, a polygon (such as a quadrilateral, a hexagon, an octagon), an axially symmetrical shape, a centrally symmetrical shape or an irregular shape, etc.
  • RFID tag element 400 may include an insulating ring 330, a conductive dielectric layer 350, and a thin film antenna 300.
  • the film antenna 300 may be formed by connecting an IC chip 320 and a metal loop antenna 310 .
  • IC chip 320 can operate in the UHF band.
  • conductive medium layer 350 may be made of metal.
  • the metal ring antenna 310 may be flexible, so that the film antenna 300 can be attached to the inner peripheral surface of the insulating ring 330 along the circumferential direction, and the conductive dielectric layer 350 may be flexible, such that the conductive dielectric layer 350 can be attached along the circumferential direction. It is attached to the outer peripheral surface of the insulating ring 330 in the direction of the insulating ring 330 .
  • epoxy resin may be used for molding and protection, so that the IC chip portion of the film antenna 300 has a certain thickness.
  • a groove or a cavity may be provided on the inner peripheral surface side of the insulating ring 330 or within the annular sheath 370. A portion that houses the molded IC chip 320 .
  • the conductive material layer 350 may be made of a thin metal sheet (such as aluminum or copper foil).
  • the conductive dielectric layer 350 may partially surround the insulating ring 330 such that a gap 360 exists between two ends of the conductive dielectric layer 350, as shown in FIG. 3 .
  • the insulating ring 330 may have a certain thickness so that the film antenna 300 and the conductive dielectric layer 350 can be inductively coupled through the insulating ring 330 .
  • the metal loop antenna 310 may be formed to extend a certain distance along the circumferential direction and the axial direction of the insulation loop 330 respectively, and be connected with the IC chip 320 to form the film antenna 300 .
  • a polyimide (PI) material (indicated by 380 in Figures 6a and 6b) can be used as the base material of the film antenna 300, and the film antenna 300 can be attached inside the insulating ring 330 in various ways. peripheral surface.
  • the gap between the central area of the film antenna 300 and both ends of the conductive dielectric layer 350 can be 360 is inductively coupled at a distance (ie, spaced apart from the insulating ring 330 ) in the radial direction, that is, the gap 360 on the outer peripheral surface of the insulating ring 330 may be positioned to cover the inner periphery of the insulating ring 330 in the radial direction.
  • the gap 360 between the two ends of the conductive dielectric layer 350 can essentially be used as a long-distance radiation slot for the RFID tag element 300 .
  • the IC chip 320 of the thin film antenna 300 may be positioned at the center of a portion of the metal loop antenna 310 extending in the circumferential direction.
  • the IC chip 320 may be connected to the metal loop antenna 310 at the midpoint position of the long side of the rectangle.
  • the circumferential width d1 of the gap 360 is d1 .
  • the circumferential width d1 of the gap 360 may vary according to the outer diameter of the insulating ring 330 .
  • the circumferential width d1 of the slot 360 does not exceed half of the circumferential span of the film antenna 300 extending in the circumferential direction.
  • the circumferential width d1 of the gap 360 is in the range of 1 mm to 2 mm.
  • the slit 360 is shown as a straight line extending along the axial direction (Z-axis direction in FIG. 3) in FIGS. 3, 4 and 5, the slit 360 may alternatively have other shapes.
  • the gap 360 may be formed to extend on the outer peripheral surface of the insulating ring 330 in a direction that is inclined relative to the axial direction, or both axial short sides of the conductive dielectric layer 350 constituting the gap 360 may be curved, Or a curve or a straight line.
  • the conductive dielectric layer 350 is made of a substantially rectangular thin metal sheet and covers substantially the entire outer peripheral surface of the insulating ring 330 .
  • the conductive medium layer 350 may be an irregular rectangle, and its outer contour is adjusted according to the shape of the tool, for example, recesses are provided on its long or short sides, or all/part of it is transformed from a straight line into a curve.
  • the figure shows that the axial long side of the conductive dielectric layer 350 is separated from the end edge of the insulating ring 330 by a certain distance, it can also be arranged not to be separated by a distance, but to cover the entire axis of the insulating ring 330 To the length, only the gap 360 is left.
  • the area of the conductive dielectric layer 350 covering the insulating ring 330 can also be reduced, as long as it can radiate wireless signals with desired power.
  • the impedance of the film antenna 300 can be changed by adjusting the circumferential span of the portion of the metal loop antenna 310 extending in the circumferential direction and/or the axial span of the portion extending in the axial direction, so that the impedance of the film antenna 300 is consistent with the IC chip 320 impedance matching.
  • the electric field excited at a specific center frequency may form a maximum value at the conductive dielectric layer 350 having the slit 360 on the peripheral surface, and the slit 360 may serve as a radiation slot for the RFID tag element 400 .
  • the inductively coupled RFID tag element 400 in this double-layer structure makes its electrical characteristics less sensitive to structural changes of the tool 220 and provides design flexibility to separately control the impedance and radiation gain of the RFID tag element 400.
  • Figures 6a and 6b show schematic diagrams in which an IC chip is positioned at different positions of a metal loop antenna and the metal loop antenna has different circumferential spans according to an alternative embodiment of the present invention.
  • the metal loop antenna 310 is shown as a rectangular shape as an example, however those skilled in the art will understand that the metal loop antenna 310 may be formed into other shapes.
  • the IC chip 320 is positioned at the center of a portion extending in the circumferential direction of the rectangular metal loop antenna 310 , and the length of the metal loop antenna 310 extending in the circumferential direction is Tl1 .
  • Tl1 the length of the metal loop antenna 310 extending in the circumferential direction
  • the IC chip 320 is positioned at the center of a portion extending in the axial direction in the rectangular thin film antenna 300 , and the length of the thin film antenna 300 extending in the circumferential direction is Tl2 .
  • the IC chip 320 is shown at the center of the circumferential part and the center of the axial part of the film antenna 300 in FIGS. 6a and 6b respectively, FIGS. 6a and 6b only show preferred embodiments, and this invention Those skilled in the art can imagine that the IC chip 320 can also be bonded to the metal loop antenna 310 at other locations to form the thin film antenna 300 .
  • the circumferential length of the metal loop antenna 310 (eg, Tl1 and Tl2) can control the impedance of the RFID tag element 400 to match the impedance of a specific IC chip, and is therefore one of the important design variables of the RFID tag element 400 .
  • the length of the metal loop antenna 310 in the axial direction is constant, as its length in the circumferential direction (eg, Tl1 and Tl2) increases, the real component of the impedance of the RFID tag element 400 increases. Therefore, by controlling the length of the metal loop antenna 310 in the circumferential direction, the impedance of the RFID tag element 400 can be effectively controlled to match the impedance of various IC chips 320 .
  • the area of the IC chip 320 in the thin film antenna 300 will be subject to mechanical stress as the thin film antenna 300 adheres to the inner surface of the insulating ring 330. Therefore, by positioning the IC chip 320 in the portion extending in the axial direction in the film antenna 300, the stress exerted on the IC chip 320 due to adhesion to the curved surface can be reduced.
  • the gap 360 formed by the IC chip 320 and the conductive dielectric layer 350 attached to the outer peripheral surface of the insulating ring 330 is deviated in the radial direction, or the center of the film antenna 300 and the gap 360 are in the radial direction, If the direction is deviated, the function of the RFID tag element of the present invention can also be realized. Furthermore, by positioning the IC chip 320 in an area outside the center of the circumferentially extending portion in the film antenna 300, a gap formed between the IC chip 320 and the conductive dielectric layer 350 attached to the outer peripheral surface of the insulating ring 330 can be 360 is offset in the radial direction, thus providing a more flexible impedance matching method.
  • Methods are provided to be able to change the position of the IC chip 320 according to the size or diameter of the tool to reduce the risk of bending of the IC chip 320 and to be able to change the electrical variables of the RFID tag element 400.
  • Figures 7a and 7b illustrate respectively plots of the real and imaginary components of the input impedance according to the circumferential span of the metal loop antenna 310 (Tl1 in Figure 6a and Tl2 in Figure 6b) according to an embodiment of the invention.
  • picture. 7a and 7b respectively show the input impedance in the process as the circumferential span of the metal loop antenna 310 gradually changes from 20mm to 28mm at 2mm intervals when the axial length of the metal loop antenna 310 is fixed at a specific length.
  • the real and imaginary components of As the circumferential span of the metal loop antenna 310 increases, the resonant frequency of the RFID tag element 400 can change from 1.2 GHz to 1.1 GHz.
  • This property can be used to adjust the imaginary component of the input impedance of the RFID tag element 400 in the frequency band of the RFID tag element 400 in the UHF frequency band to achieve complex impedance matching of the RFID tag element 400 .
  • the decrease in the resonant frequency of the RFID tag element and the increase in the imaginary component of the input impedance as the circumferential span of the metal loop antenna 310 increases may be regular and linear, and thus may be advantageously used to control the RFID tag element 400 electrical performance.
  • Figure 8a shows a schematic diagram of a conductive medium layer according to an alternative embodiment of the invention.
  • Figures 8b-8d show schematic diagrams of slots in at least one of two end regions of a conductive medium layer according to alternative embodiments of the present invention.
  • directional and spatially relative terms such as “upper,” “lower,” “left,” “right,” etc.
  • directional and spatially relative terms are used herein to describe the relationship of one component or feature illustrated in the figures to another component or feature. characteristics relationship.
  • Directional and spatially relative terms are intended to cover different orientations of the device in use or operation in addition to the orientation depicted in the figures.
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the directional and spatially relative descriptors used herein interpreted accordingly.
  • the circumferential span of the conductive dielectric layer 350 may be Ml and the axial span may be Mw.
  • the conductive dielectric layer 350 shown in FIG. 8a can fit the outer peripheral surface of the insulating ring 330 and partially surround the insulating ring 330, and the left and right ends of the conductive dielectric layer 350 in FIG. 8a are close to each other without contacting and formed therebetween.
  • Gap 360, such conductive dielectric layer 350 together with insulating ring 330 and thin film antenna 300 form a radio frequency identification tag element 400 as shown in Figures 3, 4 and 5.
  • FIG. 8 b shows a schematic diagram in which a slot 390 is formed at one end of the conductive medium layer 350 .
  • the slot 390 extends in the circumferential direction by a length of L1 from the left end of the conductive medium 350 toward the center of the conductive medium layer 350 and is formed in a rectangular shape such that the inner side of the slot 390 (the right side in FIG. 8 b ) end exceeds the end of the metal loop antenna 310.
  • Figure 8c shows a schematic diagram in which slots 390'a and slots 390'b are respectively formed at both ends of the conductive dielectric layer 350. As shown in FIG.
  • the slot 390 ′ a is formed as a rectangle extending a length of L1 in the circumferential direction from the left end of the conductive medium 350 toward the center of the conductive medium layer 350 such that the inner side of the slot 390 ′ a ( FIG. 8 c ) end beyond the end of the metal loop antenna 310
  • the slot 390 ′ b is formed to extend in the circumferential direction from the right end of the conductive medium 350 toward the center of the conductive medium layer 350 by a length of L2 shorter than L1 rectangular shape such that the inner (left side in FIG. 8 c ) end of the slot 390 ′ b does not exceed the end of the metal loop antenna 310 .
  • FIG. 8 c the slot 390 ′ a is formed as a rectangle extending a length of L1 in the circumferential direction from the left end of the conductive medium 350 toward the center of the conductive medium layer 350 such that the inner side of the slot 390 ′ a ( FIG. 8 c ) end beyond the end
  • FIG. 8d shows a schematic diagram in which a slot 390′′ is formed at one end of the conductive dielectric layer 350.
  • the slot 390′′ extends from the upper end of the conductive dielectric layer 350 by a length of L3 in the axial direction.
  • the slot 390 ′′ is formed by extending in the circumferential direction toward the center of the conductive dielectric layer 350 such that the edge of the slot 390 ′′ closest to the center of the conductive dielectric layer 350 is spaced apart from the left end of the conductive dielectric layer 350 by L1 in the circumferential direction. It is "L" shaped.
  • the thin film antenna 300 on the inner peripheral surface of the insulating ring 330 is partially illustrated with a dotted line to schematically illustrate the conductive dielectric layer 350 and the slots therein (slot 390 in FIG. 8 b , slot 390'a and slot 390'b in Figure 8c, slot 390" in Figure 8d) relative to the film antenna 300.
  • the slots shown in Figures 8b-8d have regular shapes, Figures 8b-8d are only exemplary embodiments, and those skilled in the art can conceive of other shapes of the slots as needed.
  • the outer contour of the slots may not necessarily be formed by straight lines, but by curves.
  • the area of the slot and the area enclosed by the film antenna 300 may at least partially overlap in the radial direction. Although in the embodiment of Figures 8b-8d, the area of the slot and the area enclosed by the film antenna 300 are shown The enclosed area at least partially overlaps in the radial direction, but those skilled in the art can understand that the technical effects of the present invention can be achieved even if the area of the slot does not overlap with the area enclosed by the film antenna 300 .
  • the conductive dielectric layer 350 may be inductively coupled to the film antenna 300 with a gap 360 between two ends.
  • This structure of the conductive dielectric layer 350 with the gap 360 between the two ends allows the gap 360 to be electrically used as a radiation slot for the RFID tag element 400, by forming a slot in the conductive dielectric layer 350 (such as, FIG. 8b-Fig. Variations in the slots 360 implemented by the slots 390, 390'a, 390'b, 390" in the alternative embodiment shown in 8d can be used to improve the radiating antenna of the RFID tag element 400 (made of the conductive dielectric layer 350 Acting as the impedance bandwidth and radiation gain of).
  • the electric field distribution and surface current distribution on the conductive medium layer 350 can be changed.
  • the structure of this conductive medium layer 350 The modification can achieve changing the radiation performance of the conductive dielectric layer 350 and controlling the center frequency of the RFID tag element 400 without changing the structure of the existing annular sheath 370 or the circumferential span of the thin film antenna 300 .
  • Figures 9a and 9b respectively show diagrams of radiation patterns in the radial direction and the axial direction of a radio frequency identification tag assembly according to embodiments of the present invention.
  • the maximum radiation gain direction of the RFID tag assembly (the embodiment of FIGS. 1a and 1b ) using the metal tool itself as the ground terminal of the RFID tag assembly is the outward direction perpendicular to the attachment surface.
  • Tag assembly 200 may create a uniform radiation pattern within the radial plane of tool 220 (X-Y plane).
  • X-Y plane the long-distance radiation pattern of the RFID tag assembly in the axial plane (X-Z plane) of the tool 220
  • the recognition rate of the RFID tag assembly 200 in any rotation direction can be significantly improved compared with the RFID tag assembly attached to the bottom end of the metal tool.
  • the characteristic that the recognition rate of the RFID tag assembly 200 according to the embodiment of the present invention does not change much as the tool 220 rotates effectively improves the RFID tag assembly 200 of the tool when multiple tools are arbitrarily placed in a limited space. recognition rate.
  • Figure 10 shows the readable distance of the RFID tag assembly in the radial direction of the tool according to an embodiment of the present invention.
  • the readable identification distance can be measured in any direction of rotation of the tool using Voyantic's Tagperformance system in a microwave anechoic chamber at standard power 36dBm. Measurement can be performed by setting the direction of the plane reference angle 0° to the direction in which the IC chip 320 of the film antenna 300 in the annular sheath 370 is located. In the central frequency band of 920 MHz, the identification distance measured in any rotation direction of the tool 220 is approximately 2 m, so the isotropy of the RFID tag assembly 200 in any rotation direction of the tool 220 can be demonstrated.
  • the thin film antenna 300 of the RFID tag assembly 200 is electromagnetically coupled with the conductive dielectric layer 350, so that an omnidirectional-like identification pattern is exhibited in a long-distance radiation pattern. Such characteristics enable the user of the identification tool to identify the RFID tag assembly regardless of its orientation in the context of use and identification of the appliance.
  • the present invention comprehensively considers the structure and material characteristics of the tool, and provides users with an easily implemented method of placing the RFID tag assembly outside the tool.
  • the RFID tag assembly according to the embodiment of the present invention can use a special adhesive and an ultrasonic welding process so that the RFID tag element can be completely sealed within the annular sheath.
  • the RFID tag component is not directly attached to the surface of the tool, but is sealed in an annular sheath, which can solve the basic waterproof/dustproof problem and prevent the RFID tag component from being exposed to various cleaning environments and chemicals of the tool This provides improved durability in the environment.
  • the thin film antenna formed by the electrical connection between the IC chip and the metal loop antenna can use PI material as the base material, and the conductive dielectric layer used as the long-distance radiator can optionally use thin Al material. , conductive silver foil materials, etc.
  • the thin film antenna and conductive dielectric layer used to adjust the electrical performance of the RFID tag assembly are inserted into the annular sheath and sealed within it, thereby protecting the RFID tag element from external impacts and drops that occur in the tool use environment.
  • the RFID tag assembly according to the embodiment of the present invention can provide uniform recognition performance in all directions in the radial plane of the tool, whereby the reader recognition angle can be selected more freely in a practical application environment. Therefore, the characteristics of the RFID tag assembly according to embodiments of the present invention do not change sensitively to changes in the size of the tool. In particular, RFID tag assemblies according to embodiments of the present invention are not sensitive to changes in tag design variables or manufacturing process errors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Details Of Aerials (AREA)

Abstract

公开了RFID标签元件、RFID标签组件和附着RFID标签组件的待识别物体。提供了一种射频识别标签元件,其中所述射频识别标签元件包括:绝缘环;薄膜天线,所述薄膜天线接合至所述绝缘环的内周表面上,所述薄膜天线由IC芯片与金属环天线连接形成,所述金属环天线是柔性的,使得所述薄膜天线接合至所述内周表面之后沿着周向方向贴合所述绝缘环的所述内周表面;以及导电介质层,所述导电介质层沿着所述周向方向贴合所述绝缘环的外周表面并且部分地环绕所述绝缘环以使得所述导电介质层的两端之间存在缝隙,其中所述导电介质层与所述金属环天线感应耦合以通过所述缝隙向外辐射来自所述IC芯片的射频信号。

Description

RFID标签元件、RFID标签组件和附着RFID标签组件的待识别物体 技术领域
本发明涉及射频识别领域,更具体地涉及一种射频识别(RFID)标签元件、适配工具的射频识别标签组件以及附着有射频识别标签组件的待识别物体。
背景技术
迄今为止,无源RFID技术广泛地用于各种各样的产业领域中并且既满足用户的需求又提供智能化和计算机化的便利性。通常UHF频段的无源RFID标签最大的技术特点在于自动识别数据追踪(Automatic Identification Data Capture)技术能够在远距离区域以非接触方式同时用于批量识别多个RFID标签。基于这种特征,RFID技术在诸如国防、采购、建筑、交通、医疗等,以及物流、配送、制造、服装、安防等产业中应用,且随着RFID技术本身的发展以及与其他相关技术的结合和深化,RFID技术得到进一步的发展。
RFID系统一般由包含资产信息的RFID标签通过非接触式无线方式的RF频道传送或接收数据,在RFID读取器处识别产品和资产信息,并利用互联网或者局域网使主机计算机或专用服务器通过中间件在应用程序中使用该产品和资产信息。通过RFID读取器收集的数据通过主机计算机或者服务器搭载的中间件加工成有用的数据,与RFID系统应用或者企业资源规划系统(ERP系统)、仓库管理系统、制造执行系统(MES)、库存管理系统等企业用系统相连接并且用作重要信息。这种RFID技术为包含在供应链(SCM)中的相关主体提供了效率并且减少了成本。对于产品生产者来说,可以实现阶段性生产产品和销售产品实时自动监控,并且对于产品分销商能够通过实现实时产品历史记录管理,通过适当的库存管理来改进现有的分销管理业务,并且对于最终用户来说,通过对于产品的丢失和库存管理的计算机化的方式带来减少经济成本的效果。
为了满足各种行业领域中实现特殊的需求,RFID标签可以由各种结构、尺寸和 材料组成。而为了提高耐久性以及满足工具本身的机械强度要求,通常选用金属材料。另外,由于工具本身的机械特性和用户的人体工学特性,大部分工具具有柔和的曲面形态或者不规则的曲线形态,因此难以获得用于附着RFID标签的平面空间。由于这些工具本身结构多样性,使得难以将统一结构的RFID标签形式适用于不同的工具上,因此有必要对于不同工具分别开发最适合的专用RFID标签。
将陶瓷和PCB材质的超小型RFID标签形式附着在大多数工具表面,加强了标签耐久性和改善外观,单独设计的塑料壳体保护RFID标签不受外部环境影响。这种超小型RFID标签形式通常使用块状(bulk)形态的PCB材质和高介电率的陶瓷材料构成,并且为了使RFID标签的形状系数(form-factor)维持为超小型,将电感器和电容器与标签IC芯片串联或并联。
附图1a示出了其表面被加工以附着超小型RFID标签的一种工具的示意图,附图1b示出了其表面被加工为平面型以附着超小型RFID标签的另一种工具的示意图。在图1a中,包含塑料把手130的由金属材料形成的螺丝刀100的表面的一侧被加工为平面区域110以附着超小型RFID标签150。在图1b中,套筒120的表面一侧被加工为平面区域110’以附着超小型RFID标签150’。通过使RFID标签150和150’本身具有的标签接地面与金属工具的平面区域110和110’直接接触并附着于其上,使得各种形状的金属工具100、120本身充当RFID标签150和150’的接地端。超小型RFID标签150和150’的标签通常使用具有高介电率的陶瓷材料以及包含电容器或电感器的PCB。
为了使对工具的机械强度的影响最小并且为了降低加工费用,通常平面区域110和110’越小越好。但是这种结构表现出了由于标签超小型化而导致的阻抗带宽减小以及标签性能随着标签在各种金属工具的一侧上的附着位置变化而变化的缺点。特别地,超小型形式的标签结构150、150’使得附着在工具的金属表面上的标签的阻抗带宽变窄,并且变窄的阻抗带宽将标签制造和附着位置误差敏感地反映在标签性能上,因此要求标签量产和工具附着非常精密,这会导致难以管理标签附着位置偏差和可能在制造过程中发生的工艺误差。
此外,在工具上附着块状RFID标签的情况下,由于工具自身的有限的空间和曲面结构,如在工具表面上附着标签,需要将工具的一侧表面加工为用于RFID标签 附着的平面空间结构或者使工具内部具有用于埋设超小型标签的空腔结构。但是由于工具本身难以提供用于埋设RFID标签的空间,并且将工具的一侧表面加工为用于附着RFID标签的平面结构需要额外的生产工序,这种额外的生产工序增加了导入RFID系统的成本。而且在应用工具的环境中,可能需要对工具施加相对较强的扭矩力,因此现有的商用工具进行加工变形(诸如,在工具的一侧改变其结构或者将其加工为平面结构)的情况会对工具本身的机械强度和耐久性产生严重影响,并且随着工具不同,还存在根本不可以进行任意加工的情况。
因此,考虑到现有工具的结构特点,在工具表面加装附着RFID标签护套也是一种可以考虑的方案。但在工具表面加工后,再用塑料护套包围工具的结构,可能会存在标签本身的防水问题。此外,在这种的结构下,护套内部除了标签之外还将存在另外的残留的空间,在长时间地使用工具后,特殊的化学物质、油、灰尘等会进入残留的空间中,这不仅会减少标签的寿命还会劣化标签的性能。
此外,通常UHF频段的RFID标签受到天线的结构设计、标签附着接地面的大小和相对位置、被识别时与RFID读取器的极化一致、周围的多个工具或其他金属和高介电率材质的电波的反射和干扰以及吸收的影响。当工具的一侧附着超小型RFID标签时,金属工具将用作RFID标签天线的电气接地,由此标签的最大辐射增益朝向附着有标签的正面方向而在相反方向只有相对较小的辐射增益。RFID标签天线的辐射增益将随着工具的旋转方向改变而不同,并且用于获得最大可读识别距离的雷达散射横截面(RCS)随着工具的旋转方向不同而出现很大的差异。因此导致在以工具为基准的其他入射角度处对于RFID标签的识别率具有显著的差异。
因此,对于克服上述限制并且在改进电气性能的同时能够兼容于包围在工具表面的护套内,由此在技术限制和结构以及性能方面为用户提供便利性的RFID标签的需求日益增加。需要考虑工具的结构特征,改善附着的RFID标签的电气性能,减轻对于标签识别方向敏感的识别率变化,并且根本地解决标签的防水/防尘问题从而提高RFID标签的耐久性。
发明内容
本发明就旨在克服现有技术中的上述和/或其它问题。一般的商用工具考虑到 应用环境的恶劣条件,要求RFID标签具有高耐久性和可靠性,但是由于工具具有各种各样的结构形状,难以开发能够广泛地用于各种工具的通用RFID标签。特别地,对于诸如套筒的工具,由于其圆柱形的结构而难以附着RFID标签,并且由于其具有各种长度和半径,事实上无法用相同的RFID标签形式应对不同的工具。
本发明考虑到工具的使用环境和结构特征,提供了具有用户友好的外观结构并且能够改善RFID标签天线的方向性和电气特性的RFID标签组件。本发明提出的RFID标签组件使得控制IC芯片的阻抗的设计变量和控制RFID标签天线的辐射增益的设计变量能够被独立地控制,由此使得RFID标签组件能够广泛地用于各种工具大小,并且提供设计灵活性。
根据本发明的第一方面,提供了一种射频识别标签元件,其中所述射频识别标签元件包括:绝缘环;薄膜天线,所述薄膜天线接合至所述绝缘环的内周表面上,所述薄膜天线由IC芯片与金属环天线连接形成,所述金属环天线是柔性的使得所述薄膜天线接合至所述内周表面之后沿着周向方向贴合所述绝缘环的所述内周表面;以及导电介质层,所述导电介质层沿着所述周向方向贴合所述绝缘环的外周表面并且部分地环绕所述绝缘环以使得所述导电介质层的两端之间存在缝隙,其中所述导电介质层与所述金属环天线感应耦合以通过所述缝隙向外辐射来自所述IC芯片的射频信号。
在如上所述的导电介质层的两端之间存在缝隙的结构中,由薄膜天线激励的电场集中在导电介质层的缝隙处。该电场可以用作实现RFID标签元件的辐射增益的源。此外,通过使集中具有缝隙的导电介质层的电场散射分布,具有扩大RFID标签的阻抗带宽的优势。将在导电介质层的两端之间存在缝隙的结构等价为远距离辐射缝隙,为了增加在物理受限的空间中的辐射缝隙,在导电介质层的至少一个端部区域中设置狭槽,由此使其可以用作增加辐射增益并且改善RFID标签元件的导电介质层的阻抗带宽的设计变量。
根据本发明的第二方面,提供了一种用于适配工具的射频识别标签组件,其中所述射频识别标签组件包括:前述各项中的任一项所述的射频识别标签元件,以及环形护套,所述环形护套由绝缘材料形成,所述护套具有内层、外层以及介于所述内层与所述外层之间的环形内腔,所述环形内腔用于共形地容纳所述射频 识别标签元件。
通过使用这样的护套以及共形地容纳在其中的RFID标签元件,可以保护RFID标签元件免受恶劣的外部环境影响,并且在冲击或跌落的情况下保护RFID标签元件,由此提高RFID标签元件的耐久性。
根据本发明的第三方面,提供了一种待识别物体,所述待识别物体的一部分外包围有如前所述的射频识别标签组件。
本发明提出的特殊的射频识别标签被实现为从外部包围各种大小和各种形状的小型资产(诸如套筒工具),由此改善了RFID标签的辐射特性并且能够与现有的工具的形状较好地兼容。
本发明所提供的射频识别标签组件将RFID标签元件插入包围工具的护套结构内部并密封,由此提供了能够解决防水/防尘问题的方法。此外,为了解决现有的用于工具的RFID标签对方向性敏感的缺陷,采用双层结构和感应耦合的方式,使得RFID标签的辐射特性不会随着工具的大小而敏感地变化并且以工具的界面为基准提供全方向上均匀的特性。上述特征使得RFID标签在实际工具使用环境中与其他工具一起密集地任意放置在有限的空间中的情况下也能提供较好的标签识别性能,从而构建稳定的RFID系统。
通过下面的详细描述、附图以及权利要求,其他特征和方面会变得清楚。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1a示出了其表面被加工以附着超小型RFID标签的一种工具的示意图。
图1b示出了其表面被加工为平面型以附着超小型RFID标签的另一种工具的示意图。
图2a和图2b示出了根据本发明的实施例的将射频识别标签组件结合到工具外部的过程的立体图。
图3示出了根据本发明的实施例的结合到工具外部的射频识别标签组件的分解视图。
图4示出了根据本发明的实施例的射频识别标签元件的立体透视图。
图5示出了根据本发明的实施例的射频识别标签元件的分解视图。
图6a和图6b示出了根据本发明的可选实施例的IC芯片被定位在薄膜天线的不同位置处并且薄膜天线具有不同的周向跨度的示意图。
图7a示出了根据本发明的实施例的根据薄膜天线的周向跨度的输入阻抗的实部分量的曲线图。
图7b示出了根据本发明的实施例的根据薄膜天线的周向跨度的输入阻抗的虚部分量的曲线图。
图8a示出了根据本发明的实施例的导电介质层的示意图。
图8b-图8d示出了根据本发明的可选实施例的在导电介质层的两个端部区域中的至少一个端部区域中的狭槽的示意图。
图9a示出了根据本发明的实施例的射频识别标签组件的径向方向上的辐射模式的图。
图9b示出了根据本发明的实施例的射频识别标签组件的轴向方向上的辐射模式的图。
图10示出了根据本发明的实施例的射频识别标签组件在工具的径向方向上的可读取距离。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示 例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
以下将描述本发明的具体实施方式,需要指出的是,在这些实施方式的具体描述过程中,为了进行简明扼要的描述,本说明书不可能对实际的实施方式的所有特征均作详尽的描述。应当可以理解的是,在任意一种实施方式的实际实施过程中,正如在任意一个工程项目或者设计项目的过程中,为了实现开发者的具体目标,为了满足系统相关的或者商业相关的限制,常常会做出各种各样的具体决策,而这也会从一种实施方式到另一种实施方式之间发生改变。此外,还可以理解的是,虽然这种开发过程中所作出的努力可能是复杂并且冗长的,然而对于与本发明公开的内容相关的本领域的普通技术人员而言,在本公开揭露的技术内容的基础上进行的一些设计,制造或者生产等变更只是常规的技术手段,不应当理解为本公开的内容不充分。
除非另作定义,权利要求书和说明书中使用的技术术语或者科学术语应当为本发明所属技术领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“一个”或者“一”等类似词语并不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同元件,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,也不限于是直接的还是间接的连接。
在本申请中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方式可以相互组合形成新的技术方案。在本申请中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本发明通过将RFID标签安装在小型工具上,提供了在应用现场中资产的高效管理以及对于工具丢失管理的计算机化和稳定的系统构建中使用的无源RFID标签。RFID标签可以在UHF频段中工作。为了实现该目的,本发明通过利用从外部包围工具的绝缘双层护套,解决了附着标签繁琐的问题并且改善外观形状。在一个实施例中,工具或被护套包围的工具的部分可以是套筒、螺丝刀、扳手等等。在一个实施例中,工具可以由金属制成。为了实现本发明的RFID标签,在绝缘护套内设置电耦合的薄膜天线由此改善全向性(omni-directional)的标签识别性能,并且使得护套可以广泛地适用于各种大小/半径的工具。
图2a-图2b示出了根据本发明的实施例的将RFID标签组件200结合到工具220外部的过程的立体图。工具220可以具有曲面型外表面,并且在RFID标签组件200中可以具有RFID标签元件。RFID标签组件200的内径可以是可变的,以被调整为与工具220的外径最佳匹配,使得RFID标签组件200能够紧密地包围在工具220外部。在一个实施例中,待设置RFID标签组件200的工具220的部分可以是圆柱形。然而,本领域技术人员应理解,待设置RFID标签组件200的工具220的部分也可以具有其他形状,例如,其径向截面可以是椭圆形、多边形(诸如四边形、六边形、八边形)、轴对称形状、中心对称形状或不规则形状等等。
图3示出了根据本发明的实施例的结合到工具220外部的RFID标签组件200的分解视图。图4示出了根据本发明的实施例的RFID标签元件400的立体透视图。图5示出了根据本发明的实施例的RFID标签元件400的分解视图。如图3所示,在本发明的实施例中,可以在不对工具220的表面进行任何加工的情况下,将RFID标签组件200以从外部包围工具200的方式附着到工具200上。可以利用夹具(jig)和安装装置通过机械力将其中包含RFID标签元件400(图4中示出)的RFID标签组件200均匀且稳定地安装到工具200使得RFID标签组件200与工具220紧密地结合。
如图3和图4所示,根据本发明的实施例的RFID标签组件200可以分为环形护套370和RFID标签元件400。环形护套370可以由绝缘材料(诸如,塑料)形成。如图3中所示,环形护套370可以被形成为具有内层和外层,并且在内层和外层之间具有环形内腔。环形内腔可以用于共形地容纳RFID标签元件400。尽管在附图中将 RFID标签组件200描绘为圆环形形状,然而本领域技术人员应理解,本文中所述的术语“环形”并不局限于圆环形,而是可以涵盖可以环绕各种形状的工具的各种形状,例如,其径向截面可以是椭圆形、多边形(诸如四边形、六边形、八边形)、轴对称形状、中心对称形状或不规则形状等等。
RFID标签元件400可以包括绝缘环330、导电介质层350和薄膜天线300。薄膜天线300可以由IC芯片320与金属环天线310连接形成。在一个实施例中,IC芯片320可以在UHF频段工作。在一个实施例中,导电介质层350可以由金属制成。金属环天线310可以是柔性的,使得薄膜天线300可以沿着周向方向贴合到绝缘环330的内周表面上,并且导电介质层350可以是柔性的,使得导电介质层350可以沿着周向方向贴合到绝缘环330的外周表面上。可选地,为了保护IC芯片320,在将金属环天线310与IC芯片320相连接之后,可以采用环氧树脂成型保护,使得薄膜天线300的IC芯片部位具有一定的厚度。可选地,为了将相对较厚的经成型保护的IC芯片320部分安装在环形护套370内,可以在绝缘环330的内周表面侧或者在环形护套370内设置凹槽或空腔以容纳经模制的IC芯片320部分。
在一个实施例中,导电材质层350可以由薄型金属片(诸如,铝、铜箔)制成。当导电介质层350贴合到绝缘环330的外周表面上时,导电介质层350可以部分地环绕绝缘环330使得导电介质层350的两端之间存在缝隙360,如图3中所示。绝缘环330可以具有一定厚度,使得薄膜天线300与导电介质层350能够隔着绝缘环330感应耦合。为了与导电介质层350感应耦合,金属环天线310可以被形成为沿着绝缘环330的周向方向和轴向方向分别延伸一定距离,并且与IC芯片320连接形成薄膜天线300。可选地,可以利用聚酰亚胺(PI)材料(图6a和图6b中的380所指示)作为薄膜天线300的基材,将薄膜天线300通过各种方式贴合在绝缘环330的内周表面。
在一个实施例中,为了使最大电场集中在绝缘环330的外周表面上的具有缝隙360的导电介质层350处,可以使薄膜天线300的中心区域与导电介质层350的两端之间的缝隙360在径向方向上间隔一距离(即,间隔绝缘环330)感应耦合,也就是说,绝缘环330的外周表面上的缝隙360可以被定位为在径向方向上覆盖绝缘环330的内周表面上的薄膜天线300的中心。由此,导电介质层350的两端之间的缝隙360实质上可以用作RFID标签元件300的远距离辐射槽。薄膜天线300的IC芯片320 可以被定位在金属环天线310沿周向方向延伸的部分的中心处。作为示例,当薄膜天线300形成为大致长方形的形状时,IC芯片320可以在长方形的长边的中点位置处连接到金属环天线310。在图5所示的示例中,缝隙360的周向宽度为d1,然而缝隙360的周向宽度d1可以根据绝缘环330的外径大小而变化。缝隙360的周向宽度d1不超过薄膜天线300沿周向方向延伸的周向跨度的一半。优选地,在一个实施例中,缝隙360的周向宽度d1在1mm至2mm的范围内。尽管在图3、图4和图5中缝隙360被示出为沿着轴向方向(图3中的Z轴方向)延伸的直线型,但是可选地,缝隙360也可以具有其它形状。例如,缝隙360可以被形成为在绝缘环330的外周表面上沿着相对于轴向方向为倾斜的方向延伸,或者构成缝隙360的导电介质层350的两条轴向短边可以都是曲线,或者一条曲线一条直线。
如图5所示,导电介质层350由大致呈矩形的薄型金属片制成,并且覆盖了绝缘环330的大致整个外周面。然而,本领域普通技术人员应当能够理解的是,只要导电介质层350能够起到本发明的向外辐射无线信号的功能,其外形也可以有其他选择。例如,导电介质层350可以是非规则矩形,其外轮廓根据工具的外形做出调整,例如在其长边或者短边设置凹陷,或者从直线全部/部分地变换成曲线。另外,虽然图中示出了导电介质层350的轴向长边与绝缘环330的端缘隔开了一定距离,但也可以被设置成不隔开距离,而是覆盖绝缘环330的整个轴向长度,仅保留缝隙360。当然,也可以缩小导电介质层350覆盖绝缘环330的面积,只要其能够以希望的功率向外辐射无线信号。
可以通过调整金属环天线310沿周向方向延伸的部分的周向跨度和/或延轴向方向延伸的部分的轴向跨度来改变薄膜天线300的阻抗,使薄膜天线300的阻抗与IC芯片320的阻抗匹配。在特定中心频率处激励的电场可以在外周表面上具有缝隙360的导电介质层350处形成最大值,并且缝隙360可以用作RFID标签元件400的辐射槽。以这种双层结构感应耦合的RFID标签元件400使得其电气特性能够对工具220的结构变化较不敏感,并且提供了能分别控制RFID标签元件400的阻抗和辐射增益的设计灵活性。
图6a和图6b示出了根据本发明的可选实施例的IC芯片被定位在金属环天线的不同位置处并且金属环天线具有不同的周向跨度的示意图。在图6a和图6b 所示的实施例中,作为示例,将金属环天线310示出为长方形形状,然而本领域技术人员应理解,金属环天线310可以被形成为其他形状。在图6a所示的实施例中,IC芯片320在长方形的金属环天线310中被定位于沿周向方向延伸的部分的中心处,并且金属环天线310沿周向方向延伸的长度为Tl1。在图6b所示的实施例中,IC芯片320在长方形的薄膜天线300中被定位于沿轴向方向延伸的部分的中心处,并且薄膜天线300沿周向方向延伸的长度为Tl2。尽管在图6a和图6b中分别示出了IC芯片320在薄膜天线300的周向部分的中心处和轴向部分的中心处,但是图6a和图6b仅示出了优选的实施例,本领域技术人员能够构想到,IC芯片320也可以在其他位置处与金属环天线310接合来形成薄膜天线300。
金属环天线310的周向方向上的长度(例如,Tl1和Tl2)可以控制RFID标签元件400的阻抗使其与特定IC芯片的阻抗匹配,,因此是RFID标签元件400的重要的设计变量之一。在金属环天线310的轴向方向上的长度不变的情况下,随着其周向方向上的长度(例如,Tl1和Tl2)增加,RFID标签元件400的阻抗的实部分量增加。因此,通过控制金属环天线310的周向方向上的长度,可以有效地控制RFID标签元件400的阻抗使其与各种IC芯片320的阻抗匹配。
由于绝缘环330的曲面特征,薄膜天线300中的IC芯片320的区域会随着薄膜天线300贴合绝缘环330的内表面而受到机械应力。因此,通过使IC芯片320在薄膜天线300中定位于延轴向方向延伸的部分中,可以减少由于附着在曲面上而施加在IC芯片320上的应力。
此外,本领域技术人员应理解,即使IC芯片320与贴合在绝缘环330外周表面上的导电介质层350形成的缝隙360在径向方向上偏离,或者薄膜天线300中心与缝隙360在径向方向上偏离,也能实现本发明的RFID标签元件的功能。而且,通过使IC芯片320在薄膜天线300中定位于周向延伸的部分的中心之外的区域处,可以使IC芯片320与贴合在绝缘环330外周表面上的导电介质层350形成的缝隙360在径向方向上偏离,由此可以提供更灵活的阻抗匹配方式。
因此,通过如图6a-图6b所示的可选实施例中示例性地示出的IC芯片320的不同的位置以及薄膜天线300与绝缘环330外周表面上的缝隙360的不同的相对位置,提供了能够根据工具的大小或直径改变IC芯片320的位置来减少IC芯片320弯曲的 风险以及能够改变RFID标签元件400的电气变量的方法。
图7a和7b分别示出了根据本发明的实施例的根据金属环天线310的周向跨度(图6a中的Tl1和图6b中的Tl2)的输入阻抗的实部分量和虚部分量的曲线图。图7a和图7b分别示出了当金属环天线310的轴向长度固定在特定长度时,随着金属环天线310的周向跨度从20mm以2mm的间隔逐渐变为28mm的过程中的输入阻抗的实部分量和虚部分量。随着金属环天线310的周向跨度增加,RFID标签元件400的谐振频率可以从1.2GHz变为1.1GHz。该性质可以用于在UHF频段的RFID标签元件400的频段中调节RFID标签元件400的输入阻抗的虚部分量以实现RFID标签元件400的复数阻抗匹配。此外,随着金属环天线310的周向跨度的增加的RFID标签元件的谐振频率的减小和输入阻抗虚部分量的增加可以是规律且线性的,因此可以有利地用于控制RFID标签元件400的电气性能。
图8a示出了根据本发明的可选实施例的导电介质层的示意图。图8b-图8d示出了根据本发明的可选实施例的在导电介质层的两个端部区域中的至少一个端部区域中的狭槽的示意图。为了便于描述,本文使用方向和空间相对性术语(诸如“上”、“下”、“左”、“右”等等)来描述附图中所示出的一个组件或特征与另一组件或特征的关系。除了附图中所描绘的定向外,方向和空间相对性术语旨在涵盖使用或操作中装置的不同定向。设备可以其他方式定向(旋转90度或处于其他定向)并且可同样相应地解读本文所使用的方向和空间相对性描述词。
在图8a-图8d的实施例中,导电介质层350的周向跨度可以是Ml并且轴向跨度可以是Mw。其中,图8a示出的导电介质层350可以贴合绝缘环330的外周表面并部分地环绕绝缘环330,并且图8a中的导电介质层350的左端和右端相互靠近而不接触并在其间形成间隙360,这样的导电介质层350与绝缘环330和薄膜天线300一起形成的射频识别标签元件400如图3、图4和图5所示。可选地,图8b示出了在导电介质层350的一端形成有狭槽390的示意图。如图8b所示,狭槽390从导电介质350的左端朝向导电介质层350的中心以周向方向延伸L1的长度并且被形成为矩形,使得该狭槽390的内侧(图8b中的右侧)端部超出金属环天线310的端部。可选地,图8c示出了在导电介质层350的两端分别形成 有狭槽390’a和狭槽390’b的示意图。如图8c所示,狭槽390’a被形成为从导电介质350的左端朝向导电介质层350的中心以周向方向延伸L1的长度的矩形,使得该狭槽390’a的内侧(图8c中的右侧)端部超出金属环天线310的端部,并且狭槽390’b被形成为从导电介质350的右端朝向导电介质层350的中心以周向方向延伸短于L1的L2的长度的矩形,使得该狭槽390’b的内侧(图8c中的左侧)端部不超出金属环天线310的端部。可选地,图8d示出了在导电介质层350的一端形成有狭槽390”的示意图。如图8d所示,狭槽390”从导电介质层350的上端以轴向方向延伸L3的长度后朝向导电介质层350的中心以周向方向延伸,使得狭槽390”最靠近导电介质层350的中心的边缘与导电介质层350的左端在周向方向上相距L1,狭槽390”被形成为“L”形形状。在图8a-图8d中,以虚线部分绘示了绝缘环330的内周表面上的薄膜天线300,以示意性地示出导电介质层350以及其中的狭槽(图8b中的狭槽390、图8c中的狭槽390’a和狭槽390’b、图8d中的狭槽390”)与薄膜天线300的相对位置。尽管图8b-图8d示出的狭槽具有规则的形状,图8b-图8d仅为示例性实施例,本领域技术人员能够根据需要构想到狭槽的其他形状。例如,狭槽的外轮廓可以不一定由直线,而是由曲线来形成。如图8b-图8d所示,狭槽的区域与薄膜天线300包围的区域可以在径向方向上至少部分重叠。虽然在图8b-图8d的实施例中,示出了狭槽的区域与薄膜天线300包围的区域在径向方向上至少部分重叠,但是本领域普通技术人员能理解,即使狭槽的区域与薄膜天线300包围的区域不重叠,也能实现本发明的技术效果。
根据本发明的实施例,导电介质层350可以以两端之间具有缝隙360的方式与薄膜天线300感应耦合。这种两端之间具有缝隙360的导电介质层350的结构使得缝隙360电气上可以用作RFID标签元件400的辐射槽,而通过在导电介质层350中形成狭槽(诸如,图8b-图8d中示出的可选实施例中的狭槽390、390’a、390’b、390”)来实现缝隙360的变型,可以用于改善RFID标签元件400的辐射天线(由导电介质层350充当)的阻抗带宽和辐射增益。随着在导电介质层350中形成不同的狭槽,可以改变在导电介质层350上的电场分布和表面电流分布。特别地,这种导电介质层350的结构的变型可以实现在不改变现有环形护套370的结构或薄膜天线300的周向跨度的情况下改变导电介质层350的辐射性能并且控制RFID标签元件400的中心频 率。
图9a和图9b分别示出了根据本发明的实施例的射频识别标签组件的径向方向和轴向方向上的辐射模式的图。图9a示出了theta=270°的UHF频段中心频率为920MHz的工具的径向平面(X-Y平面)内RFID标签组件200的辐射模式,并且图9b示出了phi=270°的UHF频段中心频率为920MHz的工具的轴向平面(X-Z平面)内RFID标签组件200的辐射模式。将金属工具本身用作RFID标签组件的接地端的RFID标签组件(图1a和图1b的实施例)的最大辐射增益方向为与垂直于附着表面向外的方向,然而根据本发明的实施例的RFID标签组件200可以在工具220的径向平面(X-Y平面)内形成均匀的辐射模式。在工具220的轴向平面(X-Z平面)中的RFID标签组件的远距离辐射模式中,phi=0°方向和phi=90°方向上的辐射增益的变化也不大,因此可以确认在工具220的任意旋转方向上的RFID标签组件200的识别率与附着在金属工具接底端上的RFID标签组件相比可以有显著的提高。
因此,根据本发明的实施例的RFID标签组件200的识别率随着工具220的旋转而变化不大的特性有效地改善了在有限的空间内任意放置有多个工具时工具的RFID标签组件200的识别率。
图10示出了根据本发明的实施例的RFID标签组件在工具的径向方向上的可读取距离。可以通过使用Voyantic公司的Tagperformance系统在微波暗室中用标准功率36dBm测量在工具的任意旋转方向上的可读识别距离。可以将平面基准角度0°方向设置为环形护套370内的薄膜天线300的IC芯片320所在的方向来进行测量。在中心频率920MHz频段中,在工具220的任意旋转方向上测得的识别距离为大约2m,因此可以表现出RFID标签组件200在工具220的任意旋转方向上的各向同性。根据本发明的实施例的RFID标签组件200的薄膜天线300与导电介质层350电磁耦合,使得在远距离辐射模式中表现出类似全向性的识别模式。这样的特性使得在用具的使用环境和识别环境中识别工具的用户能够无论RFID标签组件的方向如何都能识别RFID标签组件。
至此,描述了一种RFID标签组件。本发明综合地考虑了工具的结构和材料特征,为用户提供了一种容易实现的将RFID标签组件套在工具外的方法。并且,根据本发明的实施例的RFID标签组件可以通过特殊粘合剂和超声波熔接过程使得RFID 标签元件可以完全密封在环形护套内。RFID标签组件并没有直接附着在工具表面,而是密封在环形护套内,由此可以解决基本的防水/防尘问题,并且可以使得RFID标签元件避免暴露于工具的各种洗涤环境和化学剂环境中由此提供改善的耐久性。为了使RFID标签组件耐一定的高温,IC芯片与金属环天线电连接形成的薄膜天线可以使用PI材料作为基材,并且用作远距离辐射体的导电介质层还可以可选地使用薄型Al材料、导电银箔材料等。用于调节RFID标签组件的电气性能的薄膜天线和导电介质层被插入环形护套内并密闭于其中,由此可以保护RFID标签元件免受工具使用环境中发生的外部冲击、跌落的影响。
此外,在实际工具使用环境中,在多个工具被任意放置在狭窄的空间内时,难以批量地识别多个工具。根据本发明的实施例的RFID标签组件能够在工具的径向平面中在各个方向上提供均匀的可识别性能,由此在实际应用环境中,可以较自由地选择读取器识别角度。因此,根据本发明的实施例的RFID标签组件的特性不会工具的大小变化而敏感地变化。特别地,根据本发明的实施例的RFID标签组件对于标签设计变量或制造过程误差的变化不敏感。
上面已经描述了一些示例性实施例。然而,应该理解的是,在不脱离本发明精神和范围的情况下,还可以对上述示例性实施例做出各种修改。例如,如果所描述的技术以不同的顺序执行和/或如果所描述的系统、架构、设备或电路中的组件以不同方式被组合和/或被另外的组件或其等同物替代或补充,也可以实现合适的结果,那么相应地,这些修改后的其它实施方式也落入权利要求书的保护范围内。

Claims (17)

  1. 一种射频识别标签元件,其特征在于,所述射频识别标签元件包括:
    绝缘环;
    薄膜天线,所述薄膜天线接合至所述绝缘环的内周表面上,所述薄膜天线由IC芯片与金属环天线连接形成,所述金属环天线是柔性的使得所述薄膜天线接合至所述内周表面之后沿着周向方向贴合所述绝缘环的所述内周表面;以及
    导电介质层,所述导电介质层沿着所述周向方向贴合所述绝缘环的外周表面并且部分地环绕所述绝缘环以使得所述导电介质层的两端之间存在缝隙,其中所述导电介质层与所述金属环天线感应耦合以通过所述缝隙向外辐射来自所述IC芯片的射频信号。
  2. 如权利要求1所述的射频识别标签元件,其特征在于,所述导电介质层由金属材料形成。
  3. 如权利要求1所述的射频识别标签元件,其特征在于,所述IC芯片在所述薄膜天线上被定位在所述金属环天线沿周向方向延伸的部分的中心处。
  4. 如权利要求1所述的射频识别标签元件,其特征在于,所述IC芯片在所述薄膜天线上被定位在所述金属环天线沿轴向延伸的部分的中心处。
  5. 如权利要求1所述的射频识别标签元件,其特征在于,能够通过调整所述金属环天线沿周向方向延伸的部分的周向跨度和/或所述金属环天线沿轴向方向延伸的部分的轴向跨度来改变所述薄膜天线的阻抗。
  6. 如权利要求1所述的射频识别标签元件,其特征在于,能够通过调整所述薄膜天线的中心在周向方向上相对于所述缝隙的相对位置来调整所述薄膜天线与所述导电介质层之间的阻抗匹配。
  7. 如权利要求1所述的射频识别标签元件,其特征在于,所述外周表面上的所述缝隙在径向方向上覆盖所述内周表面上的薄膜天线的中心。
  8. 如权利要求1所述的射频识别标签元件,其特征在于,所述缝隙的周向宽度不超过所述薄膜天线的周向跨度的一半。
  9. 如权利要求8所述的射频识别标签元件,其特征在于,所述缝隙的周向宽度在0.5mm至3mm的范围内。
  10. 如权利要求1所述的射频识别标签元件,其特征在于,所述导电介质层在所述外周表面上在其周向方向上的两个端部区域中的至少一个端部区域中具有狭槽,所述外周表面上的所述狭槽的区域与所述内周表面上由所述薄膜天线包围的区域在径向方向上至少部分重叠。
  11. 如权利要求10所述的射频识别标签元件,其特征在于,所述狭槽从所述导电介质层的端部朝向所述导电介质层的中心以周向方向延伸一长度。
  12. 如权利要求10所述的射频识别标签元件,其特征在于,所述狭槽在所述导电介质层上以轴向方向延伸一高度并且以周向方向延伸一长度。
  13. 如权利要求1所述的射频识别标签元件,其特征在于,所述IC芯片工作在UHF频段。
  14. 一种用于适配工具的射频识别标签组件,其特征在于,所述射频识别标签组件包括:
    如权利要求1至权利要求2中任一项所述的射频识别标签元件,以及
    环形护套,所述环形护套由绝缘材料形成,所述护套具有内层、外层以及介 于所述内层与所述外层之间的环形内腔,所述环形内腔用于共形地容纳所述射频识别标签元件。
  15. 如权利要求14所述的射频识别标签组件,其特征在于,所述环形护套被构造成能够将待识别物体的一部分包围在所述环形护套的所述内层内来将所述射频识别标签组件安装到所述待识别物体。
  16. 一种待识别物体,所述待识别物体的一部分外包围有如权利要求14所述的射频识别标签组件。
  17. 如权利要求16所述的待识别物体,其特征在于,所述待识别物体包括工具,所述工具具有对称的截面形状。
PCT/CN2022/121743 2022-09-27 2022-09-27 Rfid标签元件、rfid标签组件和附着rfid标签组件的待识别物体 WO2024000865A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280073620.0A CN118202630A (zh) 2022-09-27 2022-09-27 Rfid标签元件、rfid标签组件和附着rfid标签组件的待识别物体
PCT/CN2022/121743 WO2024000865A1 (zh) 2022-09-27 2022-09-27 Rfid标签元件、rfid标签组件和附着rfid标签组件的待识别物体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121743 WO2024000865A1 (zh) 2022-09-27 2022-09-27 Rfid标签元件、rfid标签组件和附着rfid标签组件的待识别物体

Publications (1)

Publication Number Publication Date
WO2024000865A1 true WO2024000865A1 (zh) 2024-01-04

Family

ID=89383753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121743 WO2024000865A1 (zh) 2022-09-27 2022-09-27 Rfid标签元件、rfid标签组件和附着rfid标签组件的待识别物体

Country Status (2)

Country Link
CN (1) CN118202630A (zh)
WO (1) WO2024000865A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1420477A1 (en) * 2002-11-13 2004-05-19 Mitsubishi Materials Corporation Wrist watch containing an RFID tag
CN102236815A (zh) * 2010-04-26 2011-11-09 永奕科技股份有限公司 射频识别标签模组、容置体与堆叠容置体结构
CN102306871A (zh) * 2011-06-28 2012-01-04 电子科技大学 一种小型全向电子标签天线
WO2016078496A1 (zh) * 2014-11-17 2016-05-26 江苏声立传感技术有限公司 天线,传感器以及无线检测系统
CN107808186A (zh) * 2016-09-09 2018-03-16 创新联合科技股份有限公司 长距离无线射频抗金属识别标签

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1420477A1 (en) * 2002-11-13 2004-05-19 Mitsubishi Materials Corporation Wrist watch containing an RFID tag
CN102236815A (zh) * 2010-04-26 2011-11-09 永奕科技股份有限公司 射频识别标签模组、容置体与堆叠容置体结构
CN102306871A (zh) * 2011-06-28 2012-01-04 电子科技大学 一种小型全向电子标签天线
WO2016078496A1 (zh) * 2014-11-17 2016-05-26 江苏声立传感技术有限公司 天线,传感器以及无线检测系统
CN107808186A (zh) * 2016-09-09 2018-03-16 创新联合科技股份有限公司 长距离无线射频抗金属识别标签

Also Published As

Publication number Publication date
CN118202630A (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
JP4518211B2 (ja) 複合アンテナ
US8678295B2 (en) Miniaturized radio-frequency identification tag and microstrip patch antenna thereof
JP4795346B2 (ja) セキュリティ・タグに使用するチューナブル・スパイラル・アンテナ
US7518558B2 (en) Wireless IC device
US8232923B2 (en) Antenna structure of a radio frequency identification system transponder
EP1898488A1 (en) Radio frequency identification tag
WO2020203598A1 (ja) ブーストアンテナ付きrfidタグ、ブーストアンテナ付きrfidタグを備えた導体、およびブーストアンテナ付きrfidタグを含むrfidシステム
WO2024000865A1 (zh) Rfid标签元件、rfid标签组件和附着rfid标签组件的待识别物体
JP3902192B2 (ja) 電波偏波変換共振反射器、電波偏波変換共振反射装置、無線通信システム、金属対応無線icタグ装置、物品及びrfidシステム
US10977545B2 (en) Radio frequency screw antenna and radio frequency screw tag
TWM617719U (zh) 被動式感應裝置
JP4235663B2 (ja) 金属対応無線icタグ装置
TWM553833U (zh) 長距離360度廣角無線射頻識別器
WO2024082446A1 (zh) Rfid标签组件和具有rfid标签组件的待识别物体
JP2008282301A (ja) 非接触icタグの製造方法と非接触タグ用インターポーザ
TWI812943B (zh) 被動式感應裝置
JP7045087B2 (ja) Rfタグ用の固定治具
WO2023115895A1 (zh) 射频识别标签组件和附着射频识别标签组件的可识别物体
TWI646469B (zh) 長距離360度廣角無線射頻識別器
CN215642771U (zh) 高一致性适用于eas的rfid标签
WO2023097969A1 (zh) 一种无源射频标签
JP6831572B2 (ja) Rfタグ用の固定治具
JP7063546B2 (ja) 非接触型データ受送信体
CN112364969A (zh) 一种不受被贴物环境影响的rfid标签
WO2019031536A1 (ja) Rfタグ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948954

Country of ref document: EP

Kind code of ref document: A1