WO2023115895A1 - 射频识别标签组件和附着射频识别标签组件的可识别物体 - Google Patents

射频识别标签组件和附着射频识别标签组件的可识别物体 Download PDF

Info

Publication number
WO2023115895A1
WO2023115895A1 PCT/CN2022/102805 CN2022102805W WO2023115895A1 WO 2023115895 A1 WO2023115895 A1 WO 2023115895A1 CN 2022102805 W CN2022102805 W CN 2022102805W WO 2023115895 A1 WO2023115895 A1 WO 2023115895A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
tag
radio frequency
metal plate
frequency identification
Prior art date
Application number
PCT/CN2022/102805
Other languages
English (en)
French (fr)
Inventor
金永斗
马晓蒙
Original Assignee
上海数佑信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海数佑信息科技有限公司 filed Critical 上海数佑信息科技有限公司
Priority to PCT/CN2022/102805 priority Critical patent/WO2023115895A1/zh
Priority to CN202280012347.0A priority patent/CN116830463A/zh
Publication of WO2023115895A1 publication Critical patent/WO2023115895A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters

Definitions

  • the present invention relates to the field of radio frequency identification, more particularly to a tag assembly for radio frequency identification and an identifiable object attached with the radio frequency identification (RFID) tag assembly.
  • RFID radio frequency identification
  • RFID tags In recent years, in various technical fields, dedicated RFID tags with various forms and special packages are widely used for the movement, installation, management, maintenance, etc. of indoor and outdoor assets and equipment. According to the application environment and RFID tag attachment conditions, it is divided into various RFID tag sizes, attachment methods, special material selection, and required identification performance. In particular, RFID tags in the UHF band have the characteristics of using backscattering. Not only the reflection, attenuation, absorption, and diffraction of the surrounding radio wave environment, but also the material and position of the attached object and the tagging conditions will greatly affect the tag. performance.
  • the sharp drop in recognition rate is the main factor that determines the completeness of the RFID system.
  • the maximum radiation gain and readable recognition distance of a typical RFID tag are formed in a direction at right angles/perpendicular to the surface of the object to which it is attached. Due to the characteristics of the RFID application environment, when the tag attachment position is inconsistent with the height of the reader antenna or the tag is identified in a direction that is offset from the tag attachment position, the radar cross section (Radar cross section, RCS) cross-sectional area decreases , resulting in a sharp decrease in the tag recognition distance.
  • RCS radar cross section
  • the present invention seeks to overcome the above and/or other problems of the prior art.
  • the radio frequency identification tag assembly provided by the present invention, even when it is recognized by the user's RFID reader at a position higher or lower or left/right skewed compared to the position of the RFID tag antenna, it can be recognized by changing the same tag It is easy to identify the attachment direction of the label, which is beneficial to solve the problem of label performance deviation or low label performance due to the height of the label setting position.
  • a radio frequency identification tag assembly wherein the radio frequency identification tag assembly includes: a metal plate having an upper surface and a lower surface; a radiation element, the radiation element including a tag housing, the tag The housing is arranged along one side of the upper surface of the metal plate, and the label housing includes an IC chip, an antenna, and a circuit board electrically connecting the IC chip and the antenna, wherein the antenna is made of metal Made, the antenna has a first section and a second section parallel to the upper surface of the metal plate, there is a first distance between the first section and the upper surface of the metal plate, and the first There is a second distance between the segment and the second segment, and the upper surface of the metal plate is at an angle to the plane in which the antenna is located.
  • the IC chip works in the UHF frequency band.
  • one end of the first section of the antenna is connected to one end of the second section via a conductor.
  • the conductor is a bent portion between the first segment and the second segment of the antenna, and the first segment, the second segment and the bent portion are integrally formed the antenna.
  • the conductor is a wire arranged in the housing separate from the antenna.
  • the plane where the antenna is located is perpendicular to the upper surface of the metal plate.
  • the metal plate serves as a grounding plate for the radio frequency identification tag assembly.
  • the radio frequency identification tag assembly is provided by attaching the lower surface of the metal plate to the object to be identified.
  • the housing for embedding the antenna and the circuit board.
  • the installation groove includes: a plurality of grooves for embedding the antenna, wherein the plurality of grooves include a plurality of horizontal grooves and a plurality of vertical grooves, and the plurality of horizontal grooves include a first horizontal groove and a second horizontal slot, the first horizontal slot is configured to embed the first section of the antenna, the second horizontal slot is configured to embed the second section of the antenna, and the vertical a straight groove configured to embed the conductor; and a plurality of receiving spaces each for receiving the circuit board.
  • each of the plurality of horizontal grooves intersects at least one of the plurality of accommodation spaces
  • the plurality of horizontal grooves are parallel to the upper surface of the metal plate
  • the plurality of horizontal grooves intersect with the upper surface of the metal plate.
  • the upper surfaces of the metal plates are separated by different distances, and the plurality of accommodating spaces are separated by a plurality of distances from the vertical groove.
  • the first segment of the antenna extends to a third horizontal slot of the plurality of horizontal slots, and/or the second segment of the antenna extends to a third of the plurality of horizontal slots. Fourth horizontal slot.
  • the first horizontal slot is configured to be able to embed different lengths of the first section of the antenna
  • the second horizontal slot is configured to be able to embed a different length of the second section of the antenna.
  • the label housing is fixed to the metal plate by a positioning mechanism, so that the lower surface of the label housing remains horizontal relative to the upper surface of the metal plate.
  • the positioning mechanism includes screw members for fixing the tag housing to the metal plate and lattice-shaped fixing members on the upper surface of the metal plate.
  • said metal sheet is embossed, stamped, laser processed or printed with a visual identifier.
  • the direction of the maximum radiation gain of the radio frequency identification tag assembly is inclined from the direction perpendicular to the metal plate.
  • the RFID tag assembly of the present invention is designed to use a thin metal wire as an antenna. Due to the softness and thinness of the material itself, the tag radiation platform (platform) in the form of a wire has the following advantages: It makes it easier to use the 3D tag shape for the electrical impedance matching of the RFID tag antenna, and it can be used in a limited space area. Efficient label design within. In addition, the following advantages are also provided: Due to the characteristics of the soft wire material, in the process of center frequency control and electrical matching optimization of the RFID tag, the RFID tag can be easily changed by simply changing the length of the wire platform and controlling the mutual spacing of the metal wires. Label electrical design.
  • the RFID tag radiator such 3D wires are placed inside a high-temperature-resistant plastic component and formed by ultrasonic welding or injection molding processes.
  • a small PCB block is constructed and the IC chip is bonded therein, and metal wire radiators are constructed by bonding metal wires on both sides of the small PCB block.
  • the three-dimensional tag radiator structure constructed as described above is combined with another metal plate having a certain area below; the tag radiator is fixed and combined along the sides of the metal plate. Therefore, the relative position of the combination of the tag radiator and the metal plate can be used as an important design parameter to determine the radiation gain direction of the tag antenna.
  • the metal plate as described above is constructed separately from the tag radiator, so embossing and punching can be performed on the surface of the metal plate.
  • This metal sheet surface embossing/stamping operation can semi-permanently allow users to carry out intuitive and visual identification and differentiation, while maintaining compatibility with industries that traditionally require this type of processing, it can also introduce RFID tags. The advantages.
  • an identifiable object is provided, the identifiable object is attached with the radio frequency identification tag assembly described in any one of the preceding items.
  • said identifiable objects include facility assets and shelves.
  • FIG. 1 shows a schematic diagram of radiation areas according to height differences of tag attachment positions when conventional RFID tags 110, 120 are recognized by using a portable reader.
  • FIG. 2 schematically presents radiation areas for identifying RFID tags 210 , 220 according to an embodiment of the present invention according to height differences of tag attachment positions by using an RFID reader.
  • Fig. 3 shows a perspective view of an RFID tag assembly with a function of variable directivity of main radiation according to an embodiment of the present invention.
  • Figure 4 shows a schematic exploded view of an RFID tag assembly according to an embodiment of the present invention.
  • Fig. 5 shows an exploded perspective view of a radiating element according to an embodiment of the invention.
  • Figures 6a and 6b show front views of a wire installed inside a tag housing as a tag antenna according to an embodiment of the present invention.
  • FIG. 7 shows the simulation experiment results of the impedance of the radiating element according to an embodiment of the present invention according to the variation of the distance between the PCB disposed in the first section and the side connected to the conductor in a Smith chart.
  • Fig. 8 schematically presents the installation orientation of the RFID tag assembly on the attachment object at different relative positions.
  • Figures 9a-9d show front views of changing the structure of the first section and the second section by using a tag antenna according to an alternative embodiment of the present invention.
  • FIG. 10 is a diagram showing a radiation pattern of a maximum radiation gain according to an azimuth angle of a tag antenna having a function of variable directivity of main radiation according to an embodiment of the present invention.
  • Fig. 11 shows the result of measuring the long-distance recognition distance of the RFID tag antenna with the variable main radiation directivity function using the tag antenna according to an embodiment of the present invention in the UHF RFID frequency band.
  • the RFID tag proposed in the present invention can be attached to a specific object or asset, and the far-field radiation direction of the tag will be selectively biased towards the antenna direction of the fixed/handheld reader to maximize the line-of-sight identifiable distance of the RFID tag.
  • the RFID tag of the present invention is used in UHF frequency band.
  • passive RFID tags provide the feature of batch identification of multiple tags in a non-contact radio frequency (RF) manner in a long-distance area.
  • RF radio frequency
  • the best long-range identification of such RFID tags requires a stable field environment without reflection, diffraction, attenuation/absorption of radio waves between the RFID tag and the reader antenna, and the polarization of the reader antenna and the tag antenna This can only be achieved when the directions are consistent and the label recognition direction is maintained in the line-of-sight direction.
  • the phenomenon of reflection or diffraction of RF radio waves in the RFID application environment according to the conductive medium will cause multiple paths to be formed between the RFID tag antenna and the reader antenna.
  • the radio wave incident on the tag antenna is composed of superposition of radio waves with different phases.
  • the destructive interference phenomenon between the tag antenna and the reader antenna according to the phase difference is the root cause of the sharp reduction of the recognition distance of the RFID tag and the decrease of the stability of the RFID system.
  • proximity to high-loss materials such as high-dielectric materials in long-range tag identification environments can degrade the RF wave signal strength and alter the tag's RF center frequency, hindering the construction of an optimal tagging environment.
  • the reader antenna when the field application environment and the marking situation of the RFID tag are inconsistent with the optimal polarization direction of the reader antenna, the reader antenna usually uses circular polarization (CP) to alleviate the problem of polarization inconsistency . That is to say, most of the special RFID tags that are usually commercially available generally exhibit linear polarization (linear polarization, LP) characteristics, but the problem of inconsistent marking in the vertical/horizontal direction is improved by using the circular polarization of the reader antenna. However, due to the inconsistency in the antenna polarization between the linearly polarized RFID tag and the circularly polarized reader, there will be a 3dB power loss, which will lead to a decline in the long-distance identification performance of the tag.
  • CP circular polarization
  • a height offset causes the reader antenna to recognize the tag at an oblique angle relative to the tag.
  • the radiation pattern 115 of a tag 110 attached to an object at a higher altitude and the radiation pattern 125 of a tag 120 attached to an object at a lower altitude differ from the radiation pattern 105 of the antenna of the reader 100.
  • There is a height offset between them so that the reader 100 recognizes tags at an oblique angle relative to the tags 110,120.
  • the radar cross section (Radar Cross Section, RCS) tag cross-section decreases proportionally to the inclination angle, resulting in a sharp reduction in the long-distance tag identification distance.
  • the long-distance radiation gain characteristics of a general tag are distributed at a certain angle, and the radiation gain distribution of the tag forms a maximum value based on the vertical direction of the front of the tag. The radiation gain distribution of such a tag exhibits a sharp decrease in radiation gain characteristics at oblique angles.
  • the half-power radiation gain angle (3dB radiation angle) of a typical metal tag antenna is formed at about 30° to 60°. That is, when a general metal tag antenna is attached to a tall load on a shelf or to a facility asset with a high altitude, when a user on the ground recognizes the antenna through the portable reader 100, a considerable amount of radiation will be lost. Power, this trend leads to a decrease in tag recognition performance with greater height differences.
  • FIG. 1 shows a schematic diagram of radiation areas according to height differences of tag attachment positions when conventional RFID tags 110, 120 are recognized by using a portable reader 100.
  • the maximum radiation gain area is formed in the direction perpendicular to the object 140 to which the conventional RFID tag 110, 120 is attached, and the maximum recognition distance of the reader antenna is achieved in the same direction in a non-interfering surrounding environment.
  • the radiation directions of the RFID tags 110, 120 and the radiation direction 105 of the reader antenna 100 are limited, in the case of identifying the tags in a direction oblique to the front of the attached tag, it will result in considerable power loss.
  • the angle of inclination of the reader antenna can greatly reduce the RCS cross-sectional area of the tag and can drastically lose the signal strength received by the reader antenna.
  • the reduction of the tag recognition distance and the tag recognition ratio when the tag installation height position of the external facility asset is high or the tag attachment position height of the indoor loading shelf 130 is greatly deviated relative to the parallel height position of the RFID reader antenna 100 Low is an important element to maintain the stability of the RFID system.
  • the present invention relates to relatively stable identification of special tags attached to high facility assets and high cargo racks by controlling the long-distance readable identification directionality of RFID tags, thereby maximizing the electrical reliability of tags utilizing RFID systems Modernized passive (Passive) PFID tags.
  • the present invention is proposed to achieve the following purpose: to overcome the degradation and peeling phenomenon of the conductive medium of the existing RFID tag by using the thin metal wire of the three-dimensional structure (3D) and to provide the RFID radiation by having another self-metal plate. Structures are widely used for metal/non-metal objects.
  • RFID tag antennas in the UHF frequency band affect the maximum long-distance radiation direction in various ways according to the design and structure of the electric tag, the attached ground plane and the relative tag position, and the tag topology change according to the planar or three-dimensional structure.
  • RFID tags generally used in RFID systems can be obtained in the tag-attached frontal direction by making the radiation gain maximum of the tag antenna into the vertical frontal direction of the object as the attachment object so that the reader antenna and polarization coincide Maximum readable recognition distance.
  • Typical RFID tags as described above have the following characteristics: when the attachment height position of the RFID tag is higher or lower than that of the reader user's reader antenna, it will cause the reader antenna to detach from the maximum possible distance of the tag antenna.
  • FIG. 2 schematically presents the advantageous advantages of the irradiation area according to the height difference of the tag attachment position when using the RFID reader to identify the RFID tag 210 according to the embodiment of the present invention.
  • the consistent radiation direction of the RFID tag and the reader antenna and the consistent polarization of the RFID reader are the factors that determine the performance of the RFID recognition distance.
  • the directional radiation angle of an RFID tag 210 positioned at a high height relative to the RFID reader user e.g., positioned on an object 240 on a shelf 230
  • the recognition distance performance of the RFID tag can be greatly improved.
  • a tag having such a function that the directivity of the main radiation of the RFID tag is variable provides the following advantages: Even at a position that is higher or lower or left/right skewed compared to the position of the RFID tag antenna, it is detected by the user's RFID tag. When the reader recognizes, it can also be easily recognized by changing the attachment direction of the same tag, thereby fundamentally solving the problem of tag performance deviation or low tag performance depending on the height difference of the tag setting position.
  • the existing label (label) or PCB material the material of ceramic form will limit the durability of the RFID label due to degradation and peeling phenomena in a high temperature environment for a long time, as a fundamental
  • the above solution is designed to use thin metal wires. Due to the softness and thinness of the material itself, the tag radiation platform (platform) in the form of a wire has the following advantages: it makes it easier to provide a 3D tag shape for electrical impedance matching of the RFID tag antenna, and it can be used in a limited space area Efficient label design within.
  • the RFID tag Due to the characteristics of the soft wire material, in the process of center frequency control and electrical matching optimization of the RFID tag, the RFID tag can be easily changed by simply changing the length of the wire platform and controlling the mutual spacing of the metal wires.
  • Label electrical design To realize the RFID tag radiator, such 3D wires are placed inside a high-temperature-resistant plastic component and formed by ultrasonic welding or injection molding processes.
  • a small PCB block is constructed and the IC chip is bonded therein, and metal wire radiators are constructed by bonding metal wires on both sides of the small PCB block.
  • the three-dimensional tag radiator structure constructed as described above is combined with another metal plate having a certain area below; the tag radiator is fixed and combined along the sides of the metal plate. Therefore, the relative position of the combination of the tag radiator and the metal plate can be used as an important design parameter to determine the radiation gain direction of the tag antenna.
  • the metal plate as described above is constructed separately from the tag radiator, so embossing and punching can be performed on the surface of the metal plate.
  • This metal sheet surface embossing/stamping operation can semi-permanently allow users to carry out intuitive and visual identification and differentiation, while maintaining compatibility with industries that traditionally require this type of processing, it can also introduce RFID tags.
  • the advantages In particular, performing such an embossing/stamping operation on the label itself in the form of an existing nameplate directly or indirectly destroys the label and is therefore impossible.
  • the usual UHF band special RFID tag is designed to be used for both metal-attached materials and non-metal-attached materials by making the RFID tag itself have a limited metal ground plane, and making the long-distance radiation pattern form in a direction perpendicular to the attached object Direction of maximum radiation gain.
  • the radiation gain of the long-distance tag and the directivity of the radiation pattern of the tag will be affected depending on the change of the metal plate of the tag structure itself and the attachment position relative to the metal material as the attached object.
  • the electrical constant ceramic material uses conductive metal wires to construct the tag's radiating element.
  • FIG. 3 shows a perspective view of an RFID tag assembly 300 with a function of variable main radiation directivity according to an embodiment of the present invention
  • Fig. 4 shows a schematic exploded view of an RFID tag assembly 300 according to an embodiment of the present invention
  • FIG. 5 shows an exploded perspective view of a radiating element 320 according to an embodiment of the present invention
  • FIGS. The front view of the metal line of 510, wherein Fig. 6 a shows the configuration that the PCB 530 is arranged in the first section 520 at a distance d1 from the side connected to the conductor 550, and Fig.
  • FIGS. 3-6b shows that in order to change the impedance of the radiating element 320 And the positions 610a, 610b, 610c, 610d of the PCB 530 can be changed. The following explanation is made by referring to FIGS. 3-6b.
  • Fig. 3 shows a perspective view of an RFID tag assembly 300 with the function of changing the directivity of the main radiation according to an embodiment of the present invention.
  • the RFID tag assembly 300 may include a radiating element 320 and a metal plate 330 .
  • the radiation element 320 may be arranged along a side of the upper surface of the metal plate 330 .
  • Metal plate 330 may serve as a ground plate for RFID tag assembly 300 .
  • Mounting mechanism 310 may enable the lower surface of metal plate 330 to be attached to an object to be identified (eg, an item on a shelf or an asset).
  • the mounting mechanism 310 may be a screw and may be located on both sides of the metal plate 330, but any other mounting mechanism, mounting location or attachment method, such as adhesive, may be conceived by those skilled in the art.
  • embossing/stamping 340 By performing embossing/stamping 340 on the metal plate 330 which can be intuitively recognized by the user and used semi-permanently, an advantage of further expanding the application range of the RFID tag can be provided.
  • various identifiers have been processed on the surface of aluminum or copper plates by mechanical embossing/stamping for a long time.
  • the radiating element 320 and the metal plate 330 capable of embossing/stamping 340 may be constructed separately and then combined.
  • such metal plates 330 may be constructed of different materials (eg, aluminum, stainless steel) in different sizes and thicknesses.
  • FIG. 4 shows a schematic exploded view of an RFID tag assembly according to an embodiment of the present invention.
  • Metal sheet 330 may be of any size and thickness and may be stamped/embossed 340 .
  • the material, thickness and size of the metal plate 330 can be selected in consideration of the configuration of the equipment for the stamping/embossing process, and the electrical characteristics of the tag antenna of the RFID tag assembly can be selected regardless of the material, thickness and size of the metal plate 330 .
  • stamping/embossing operations, laser processing, and printing operations in the form of paint can be selectively performed on the surface of the metal plate 330 .
  • the radiation element 320 may be mounted to the upper surface of the metal plate 330 through various fixing mechanisms.
  • Figure 4 shows a fixing mechanism for installing the radiating element 320 on the upper surface of the metal plate 330, which may include a screw 410 and a grid-shaped fixing 420, and the screw hole part for receiving the screw 410 may be configured as It protrudes from the upper surface of the metal plate 330 to keep the lower surface of the metal plate 330 flatly mounted to the attachment object, and the lattice-shaped fixing part 420 may protrude from the metal plate 330 for strengthening connection strength with the radiation element 320 .
  • the radiation element 320 and the metal plate 330 are mechanically connected by such as the screw 410, the connection strength can be increased, and the constant distance between the lower surface of the radiation element 320 and the upper surface of the metal plate 330 can be maintained by the grid-shaped fixing piece 420, which can Keep the attachment surface flat and stable when attaching the RFID tag assembly 300 to the facility asset.
  • Radiating element 320 may be mounted such that the plane in which tag antenna 510 (shown in FIG. 5 ) contained therein is at an angle to the upper surface of metal plate 330 .
  • the angle may be between 30° and 150°.
  • the plane where the tag antenna 510 is located may be perpendicular to the upper surface of the metal plate 330 .
  • the maximum radiation gain of the RFID tag assembly 300 may not be in a direction perpendicular to the surface of the metal plate 330 (and thus the surface attached to the identifiable object).
  • Fig. 5 shows an exploded perspective view of a radiating element 320 according to an embodiment of the invention.
  • the radiation element 320 may include a thin metal wire in a three-dimensional shape serving as the tag antenna 510, and the tag antenna 510 may be installed inside the tag housings 500a and 500b.
  • the metal used for the tag antenna 510 can be various metals that can be made into wires such as copper, iron, aluminum, gold or alloys.
  • the label housings 500a and 500b may be formed of high-temperature-resistant plastics and tightly bonded by ultrasonic welding after being constructed separately.
  • the high temperature resistant plastic can be epoxy resin.
  • An IC chip may also be included in the tag case 320 .
  • the PCB 530 may be used as a connection medium.
  • the PCB 530 may be configured to bond an IC chip therein and have electrodes for bonding the tag antenna 510 on both sides.
  • the tag antenna 510 may be bonded to the PCB 530 by soldering, and other bonding methods will be contemplated by those skilled in the art.
  • the tag antenna 510 may include a first segment 520 and a second segment 540, and the PCB 530 may be positioned on the first segment 520 of the tag antenna 510.
  • the first section 520 of the tag antenna 510 may be connected to the second section 540 by a conductor 550 on this side, and the other side of the first section 520 (ie, the side opposite to the conductor 550 ) may be connected to the second section 540.
  • Disconnect whereby the first section 520 and the second section 540 can be coupled to each other on one side.
  • the conductor 550 may be a bent part forming the tag antenna 510 integrally with the first segment 520 and the second segment 540 .
  • conductor 550 may be a separate wire secured inside tag housing 500b and connected to first segment 520 and second segment 540 after installation.
  • the inside of the tag housing 500a, 500b may have a mounting groove to embed the tag antenna 510 and the PCB 530 so that the tag antenna 510 can be stably fixed inside the tag housing 500a, 500b and maintain an effective conjugate impedance matching state.
  • the installation groove may include a plurality of grooves for accommodating the tag antenna 510 and a plurality of accommodating spaces for accommodating the PCB 530 to provide a variety of different paths, so as to improve the effective resonance length of the tag antenna 510 within a limited area.
  • Such a variety of paths can provide the following advantages: in the process of controlling the center frequency of the radiating element 320 or in the process of manufacturing the label assembly 300, the performance deviation can be easily improved to achieve the required radiation without excessively changing the existing material or design. The performance of element 320.
  • the plurality of grooves may include a plurality of horizontal grooves and a plurality of vertical grooves, including a first horizontal groove 560 a for receiving the first section 520 of the tag antenna 510 , a first horizontal groove for receiving the second section 540 The second horizontal slot 560b, and the vertical slot 560c for receiving the conductor 550.
  • Figures 6a and 6b show a front view of a metal wire installed inside a tag housing 500a, 500b as a tag antenna 510 according to an embodiment of the present invention, wherein Figure 6a shows a PCB 530 in a first section 520 Set at a distance d1 away from the side connected to the conductor 550, Figure 6b shows the positions 610a, 610b, 610c, 610d of the PCB 530 that can be changed in order to change the impedance of the radiating element 320, these positions are only exemplary As shown, those skilled in the art can conceive the location of PCB 530 as needed.
  • the RFID tag assembly 300 that includes the tag antenna 510 proposed in the present invention can include the following important design parameters: in a three-dimensional structure, the distance d1 between the side where the PCB 530 bonded with the IC chip is connected to the antenna 510 and the conductor 550 converges, the tag antenna The distance h1 between the first section 520 of the tag antenna 510 and the upper surface of the metal plate 330, the distance h2 between the first section 520 of the tag antenna 510 and the second section 540 of the tag antenna 510, and the effective resonance length of the tag antenna 510 can be controlled. The length of the antenna 510 (including the first segment 520, the second segment 540 and the conductor 550).
  • the electrical matching can be easily changed in the same structure.
  • the relative position change of the PCB 530 bonded with the RFID IC chip can be used as a design parameter that most affects the impedance change of a specific IC chip, providing the ability to deal with various commonly used ICs without changing the structure of the existing tag housing. chip design compatibility. By adjusting the distance between the PCB 530 and the conductor 550 (ie, d1 in FIG. 6a ), the impedance matching and the center resonant frequency of the tag antenna can be controlled.
  • Fig. 7 shows with Smith chart (Smith chart) according to the embodiment of the present invention according to the PCB 530 that is arranged in the first segment 520 and the distance (that is, d1 in Fig.
  • Experimental results of simulations of varying impedance of the radiating element is realized by folding the metal wire into a vertical direction on one side to form the conductor 550, so that the first segment 520 and the second segment 540 are short-circuited via the conductor 550, and disconnected on the opposite side.
  • the first segment 520 and the second segment 540 can be short-circuited through the conductor 550 in the mounting slot 560c on the side, and in order to achieve effective impedance control and proper tag radiation gain, the tag On the left side of the antenna 510 , there may be a distance h2 between the first segment 520 and the second segment 540 and a distance h1 between the first segment 520 and the upper surface of the metal plate 330 .
  • the imaginary part of the impedance of the IC chip is shown in the Smith chart when d1 gradually changes from 13 mm to 3 mm at intervals of 2.5 mm.
  • the imaginary part of complex impedance is +282Ohm; when d1 is 10.5mm, the imaginary part of complex impedance is +227Ohm; when d1 is 8.0mm, the imaginary part of complex impedance is +194Ohm; when d1 When d1 is 5.5mm, the imaginary part of the complex impedance is +174Ohm; when d1 is 3.0mm, the imaginary part of the complex impedance is +158Ohm.
  • the impedance of the commonly used UHF frequency band IC chip is within the above range, and the general impedance matching of the commonly used UHF frequency band IC chip can be realized by using the variable position of the PCB 530 .
  • an interval h1 may be formed between the first segment 520 of the tag antenna 510 and the upper surface of the metal plate 330 . Such coupling can have an impact on tag matching and long-range radiation pattern directivity.
  • the first section 520 of the tag antenna 510 can be coupled with the metal plate 330 in an asymmetric structure, and the plane where the tag antenna 510 is located can be at an angle (preferably, vertical) with respect to the upper surface of the metal plate 330, thereby making the tag assembly
  • the 300° pointing angle of distant radiation is deflected in a specific direction.
  • Figure 8 schematically presents the installation orientation of the RFID tag assembly on the attached object at different relative positions.
  • the radiating element 320 including the tag antenna 510 can be mounted to the metal plate 330 by a fixing mechanism, and the overall appearance of the tag assembly 300 thus formed can be formed symmetrically in the left-right direction and asymmetrical in the vertical direction.
  • the maximum radiation gain of the radiating element 320 may be exhibited as being biased from a direction perpendicular to the surface of the metal plate 330 to a direction toward the radiating element 320 .
  • Such a feature allows the direction of maximum radiation gain of the tag assembly 300 to be inclined downward when the radiating element 320 is positioned along the lower edge of the metal plate 330 in the facility asset 810 at a higher height, and conversely, when at a lower height In the case of facility asset 820 the maximum radiation gain of tag assembly 300 may be tilted upwards when radiating element 320 is positioned along the upper edge of metal plate 330 such that the readable identification distance of the tag assembly is increased.
  • the maximum radiation gain of the tag assembly 300 may be tilted to the right when the radiating element 320 is positioned along the right edge of the metal plate 330 in the case of the facility asset 830 on the relatively left side, while the facility asset 840 on the relatively right side In the case where the radiation element 320 is positioned along the left edge of the metal plate 330, the maximum radiation gain of the tag assembly 300 can be tilted to the left, so that the readable identification distance of the tag assembly increases.
  • Figures 9a-9d show front views of changing the structure of the first segment 520 and the second segment 540 using the tag antenna 510 according to an alternative embodiment of the present invention.
  • the PCB 530 may be located in the first section 520 of the tag antenna 510, and may be shorted on one side of the tag antenna 510 and disconnected on the opposite side.
  • FIG. 9a The basic structure where the PCB 530 may be located near one side in the first segment 520 of the tag antenna 510 is shown in FIG. 9a. In FIG.
  • FIG. 9b compared with FIG. 9a , the first segment 520 and the second segment 540 of the tag antenna 510 are shown in a deformed structure in which both the disconnected side can be extended in the horizontal direction.
  • Such an increase in length in the horizontal direction can be used as the most important design parameter for downward adjustment of the center frequency of the tag assembly, and according to the adjustment of the relative lengths of the first segment 520 and the second segment 540 of the tag antenna 510, can be used as A design parameter that controls radiation gain.
  • Figure 9c shows a deformed structure in which the second section 540 of the antenna 510 can be bent downwards on the disconnected side
  • Figure 9d shows a deformation in which the first section 520 of the antenna 510 can be bent upwards on the disconnected side structure.
  • the mounting slots in the tag housings 500a, 500b may include more horizontal slots (eg, 560d in FIG. 5 ) and/or vertical slots (eg, 560e in FIG. 5 ), Therefore, the effective resonance length of the tag antenna 510 can be increased without changing the size of the radiating element 320 .
  • the upward bending of the first section 520 of the antenna 510 and the downward bending of the second section 540 of the antenna 510 and corresponding more horizontal slots are optional, and those skilled in the art can choose different openings according to needs. Groove way, the present invention is not intended to be limited thereto.
  • the size of the metal plate capable of surface punching can be set to a size of 85 ⁇ 58mm, and the metal plate can cause the radiation gain to change with the size and relative position of the metal attachment object Variety.
  • the directivity of the maximum value of the radiation gain of the usual tag antenna 510 is formed in a direction perpendicular to the surface of the metal attachment object, but the radiation element 320 of the present invention having a function of changing the directivity of the main radiation may be located on the metal plate 330 , and its main radiation can be formed to be inclined 43° from the vertical. As shown in the figure, it exhibits a maximum radiation gain of 4.15dBi in the long-distance radiation mode, and has left-right asymmetric characteristics on the Y-Z plane.
  • the structure of the radiating element 320 in which the maximum radiation gain is biased at a specific pointing angle can effectively improve the problem of low long-distance identification performance caused by the height difference between the RFID reader antenna and the tag antenna. According to the height of the tag attachment object and the left-right recognition angle deviation, simply change the up-down, left-right attachment direction of the tag, and effectively improve the communication sensitivity of the RFID reader in the case of azimuth differences (height difference and left-right difference).
  • the tag radiation gain directivity can be biased downward by attaching the tag housing 320 to the lower side of the metal plate 330 and fixing it;
  • the tag radiation gain directivity can be biased upward by attaching the tag housing 320 to the upper side of the metal plate 330 and fixing it.
  • Fig. 11 shows the result of measuring the long-distance recognition distance of the RFID tag antenna with the variable main radiation directivity function using the tag antenna according to an embodiment of the present invention in the UHF RFID frequency band.
  • the tag assembly 300 for measurement can be positioned in the middle of a square metal plate with a side length of 15 cm used as an attachment object, and can be measured with a standard power of 36 dBm in an anechoic chamber by using the Tagformance system of Voyantic Company.
  • the recognition distance of tag components attached to metal attachment objects can be measured from the vertical/frontal direction.
  • the center frequency of the UHF frequency band is 920MHz, which can have a maximum recognition distance of 14m.
  • the flexible metal wire As a three-dimensional shape for the RFID tag radiating element in the UHF band and installing the radiating element on the metal plate in an asymmetrical manner, the maximum radiation gain direction of the RFID tag assembly can be tilted at a specific angle.
  • the readability of the existing RFID tag The recognition distance performance drops drastically.
  • the RFID tag proposed by the present invention deflects the maximum radiation gain directivity of the tag up and down and left and right by changing the tag attachment mode, thereby effectively ensuring the readable identification distance performance of the tag and improving the performance of the RFID system.
  • the metal wire is used for the radiation element of the label, which provides durability of the label in high-temperature application environment and thermal shock environment, and greatly improves the degradation characteristics of the label.
  • the tag radiating element of the metal wire arranged and encapsulated within the plastic structure and the otherwise bonded metal plate are physically constituted separately and bonded with a mounting mechanism, whereby an embossing operation or a punching operation protruding from the surface of the metal plate can be realized, And this imprinting operation can provide the advantage of not affecting the appearance or electrical performance of the label.
  • the separately formed metal plates can be of various sizes and combined with the separately formed metal wires embedded in the plastic structure.
  • the application can be extended to realize the function of electrical RFID tags.
  • Existing RFID tags do not have a product with a metal plate on the tag surface, or even if they exist, physical stamping/embossing on the tag surface will physically damage the tag itself, causing problems of waterproofing and reduced durability of the tag.
  • the invention improves the durability of the tag and the flexibility of design by independently separating the electrical connection of the tag antenna from the basic design parameters that determine the radiation gain of the tag. That is, the electrical RFID tag design is separated from the metal plate, and then the two are combined by the mounting device, so that the mechanical stamping/embossing operation does not affect the electrical/physical properties of the tag.

Abstract

提供一种射频识别标签组件和附着射频识别标签组件的可识别物体。射频识别标签组件包括:金属板,具有上表面和下表面;辐射元件,所述辐射元件包括标签壳体,所述标签壳体沿着所述金属板的上表面的一侧边布置,所述标签壳体内包括IC芯片、天线以及将所述IC芯片与所述天线电连接的电路板,其中,所述天线由金属制成,所述天线具有与所述金属板的上表面平行的第一段和第二段,所述第一段与所述金属板的上表面之间具有第一间距,并且所述第一段与所述第二段之间具有第二间距,所述金属板的上表面与所述天线所在的平面成角度。

Description

射频识别标签组件和附着射频识别标签组件的可识别物体 技术领域
本发明涉及射频识别领域,更具体地涉及一种用于射频识别的标签组件以及附着有射频识别(RFID)标签组件的可识别物体。
背景技术
近年来,在各种技术领域中,为了室内外资产和设备的移动、安装、管理、维护等,广泛地使用具有各种形式和特殊封装的专用RFID标签。根据应用环境和RFID标签附着条件,分为各种RFID标签的大小、附着方式、特殊材质选择、所需识别性能等而使用。特别地,UHF频段的RFID标签具有利用反向散射方式的特性,不仅是周围电波环境的反射、衰减、吸收、绕射,而且附着对象的材质和位置以及识别(tagging)条件都会大大地影响标签的性能。
通常由于分为圆极化和线极化的极化不一致问题以及读取器天线和标签安装高度的高度差导致的识别率急剧下降是决定RFID系统的完成度的主要因素。通常的RFID标签的最大辐射增益和可读取识别距离形成为在与所附着的物体表面成直角/垂直的方向上。由于RFID应用环境的特性,当标签附着的位置和读取器天线的高度不一致或者以从标签附着位置左右偏移的方向识别标签时,由于雷达截面(Radar cross section,RCS)横截面积减小,导致标签识别距离急剧减小。在实际多层货架物品和资产管理、标签附着高度相对较高的外部设施资产管理以及自动化仓库中的物品识别环境中,这种标签识别距离减小的问题被认为是降低RFID系统的可靠性并且影响集成系统的稳定性的危险因素。因此随着在各个产业领域中利用RFID技术的应用范围扩大,需要防止标签性能随着标签附着位置高度不同而下降并且能够考虑现场的作业过程的专业化RFID标签技术。
发明内容
本发明就旨在克服现有技术中的上述和/或其它问题。通过本发明所提供的射频识别标签组件,即使在与RFID标签天线的位置相比较高或较低或左/右偏斜的位置处由用户的RFID读取器识别时,也可以通过改变相同标签的附着方向而容易地识别,从而有利于解决标签性能随着标签设置位置的高度不同而出现偏差或者标签性能较低的问题。
根据本发明的第一方面,提供一种射频识别标签组件,其中所述射频识别标签组件包括:金属板,具有上表面和下表面;辐射元件,所述辐射元件包括标签壳体,所述标签壳体沿着所述金属板的上表面的一侧边布置,所述标签壳体内包括IC芯片、天线以及将所述IC芯片与所述天线电连接的电路板,其中,所述天线由金属制成,所述天线具有与所述金属板的上表面平行的第一段和第二段,所述第一段与所述金属板的上表面之间具有第一间距,并且所述第一段与所述第二段之间具有第二间距,所述金属板的上表面与所述天线所在的平面成角度。
较佳地,所述IC芯片工作在UHF频段。
较佳地,所述天线的所述第一段的一端经由导体连接至所述第二段的一端。
较佳地,所述导体是所述天线的所述第一段和所述第二段之间的弯折部,所述第一段、所述第二段和所述弯折部一体地构成所述天线。
较佳地,所述导体是布置在所述壳体内的与所述天线分开的导线。
较佳地,所述天线所在的平面与所述金属板的上表面垂直。
较佳地,所述金属板是作为所述射频识别标签组件的接地板。
较佳地,通过将所述金属板的下表面附着到待识别的对象来设置所述射频识别标签组件。
较佳地,所述壳体内部具有安装槽以嵌入所述天线和所述电路板。
较佳地,所述安装槽包括:多个凹槽,用于嵌入天线,其中所述多个凹槽包括多个水平槽和多个竖直槽,所述多个水平槽包括第一水平槽和第二水平槽,所述第一水平槽被构造为嵌入所述天线的所述第一段,所述第二水平槽被构造为嵌入所述天线的所述第二段,并且所述竖直槽被构造为 嵌入所述导体;以及多个容纳空间,所述多个容纳空间中的每一个用于容纳所述电路板。
较佳地,所述多个水平槽中的每一个与所述多个容纳空间中的至少一个相交,所述多个水平槽和所述金属板的上表面平行,所述多个水平槽与所述金属板的上表面相距距离不等,并且所述多个容纳空间与所述竖直槽相距的多个距离。
较佳地,所述天线的所述第一段延伸至所述多个水平槽中的第三水平槽,和/或所述天线的所述第二段延伸至所述多个水平槽中的第四水平槽。
较佳地,所述第一水平槽被构造为能够嵌入不同长度的所述天线的第一段,并且所述第二水平槽被构造为能够嵌入不同长度的所述天线的第二段。
较佳地,所述标签壳体通过定位机构固定至所述金属板,以使得所述标签壳体的下表面相对于所述金属板的上表面保持水平。
较佳地,所述定位机构包括将所述标签壳体固定至所述金属板的螺纹件和位于所述金属板的所述上表面上的格子形固定件。
较佳地,所述金属板被压花、冲压、激光加工或印刷有视觉标识符。
较佳地,所述射频识别标签组件的最大辐射增益的方向从垂直于所述金属板的方向倾斜。
此外,本发明的RFID标签组件被设计为使用薄型金属线作为天线。这种导线形态的标签辐射平台(platform)由于材质本身的柔软和薄型特性,具备以下优点:使将3D标签形状用于RFID标签天线的电阻抗匹配变得更容易,并且可以在有限的空间面积内实现高效的标签设计。此外,还提供了以下优点:由于柔软的导线材质的特性,在RFID标签的中心频率控制和电气匹配优化的过程中,通过简单的导线平台长度变化和金属线相互间距控制,可以容易地改变RFID标签的电气设计。为了实现RFID标签辐射体,这样的3D金属线被放置在耐高温的塑料构件内部,并且通过超声波熔接或注塑成型过程而形成。为了将作为传导性辐射介质的金属线和IC芯片电气连接,构造小型PCB块并在其中接合IC芯片,在小型PCB块两侧接合金 属线而构造金属线辐射体。如上所述地构造的立体形状的标签辐射体结构与下方具有一定面积的另外的金属板结合;标签辐射体被沿着金属板的侧边固定而结合。由此,标签辐射体和金属板结合的相对位置可以用作决定标签天线的辐射增益方向的重要设计参数。
另外,如上所述的金属板与标签辐射体分别地构造,因此可以在金属板表面进行压花和冲压。这种金属板表面压花/冲压作业可以半永久地使用户可以进行直观的、视觉的标识和区分,在传统地需要这种方式的处理的产业领域保持兼容性的同时,提供还可以引入RFID标签的优点。
根据本发明的第二方面,提供一种可识别物体,所述可识别物体附着有前述任一项所述的射频识别标签组件。
较佳地,所述可识别物体包括设施资产和货架。
通过下面的详细描述、附图以及权利要求,其他特征和方面会变得清楚。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1示出了通过使用便携式读取器识别常规的RFID标签110、120时,根据标签附着位置高度差异的辐射区域的示意图。
图2示意性呈现利用RFID读取器识别根据本发明的实施例的RFID标签210、220根据标签附着位置高度差异的辐射区域。
图3示出了根据本发明的实施例的具有主辐射指向性可变的功能的RFID标签组件的立体图。
图4示出了根据本发明的实施例的RFID标签组件的示意性分解图。
图5示出了根据本发明的实施例的辐射元件的分解透视图。
图6a和图6b示出了根据本发明的实施例的安装在标签壳体内部用作标签天线的金属线的正面视图。
图7以史密斯图(Smith chart)示出了根据本发明的实施例的根据设置在第一段中的PCB与和导体相连侧相距的距离变化而变化的辐射元件的阻抗的模拟实验结果。
图8示意性地呈现在不同相对位置处的附着对象上的RFID标签组件的安装方向。
图9a-图9d示出了根据本发明的可选实施例的利用标签天线改变第一段和第二段的结构的正面视图。
图10示出了根据本发明的实施例的根据具有主辐射指向性可变的功能的标签天线的方位角的最大辐射增益的辐射模式的图。
图11示出了在UHF RFID频段测量根据本发明的实施例的利用标签天线的具有主辐射指向性可变功能的RFID标签天线的远距离识别距离的结果。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
以下将描述本发明的具体实施方式,需要指出的是,在这些实施方式的具体描述过程中,为了进行简明扼要的描述,本说明书不可能对实际的 实施方式的所有特征均作详尽的描述。应当可以理解的是,在任意一种实施方式的实际实施过程中,正如在任意一个工程项目或者设计项目的过程中,为了实现开发者的具体目标,为了满足系统相关的或者商业相关的限制,常常会做出各种各样的具体决策,而这也会从一种实施方式到另一种实施方式之间发生改变。此外,还可以理解的是,虽然这种开发过程中所作出的努力可能是复杂并且冗长的,然而对于与本发明公开的内容相关的本领域的普通技术人员而言,在本公开揭露的技术内容的基础上进行的一些设计,制造或者生产等变更只是常规的技术手段,不应当理解为本公开的内容不充分。
除非另作定义,权利要求书和说明书中使用的技术术语或者科学术语应当为本发明所属技术领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“一个”或者“一”等类似词语并不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同元件,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,也不限于是直接的还是间接的连接。
在本申请中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方式可以相互组合形成新的技术方案。在本申请中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本发明中提出的RFID标签可附着在特定物体或者资产上,标签远场辐射方向会选择性地偏向于固定式/手持式读写器的天线方向,最大化RFID标签的视距可识别距离。优选地,本发明的RFID标签用于UHF频段。
与AIDC(自动识别数据追踪)领域相比,无源RFID标签提供了能够在远距离区域以非接触式的射频(Radio frequency,RF)方式批量识别多个标签的特征。然而,这种RFID标签的最佳远距离识别需要RFID标签和读取器天线之间不存在电波的反射、绕射、衰减/吸收的稳定的现场环境以及读取器天线与标签天线的极化方向一致并且标签识别方向维持在视距方向时才能实现。
由于电波辐射的特性和RFID基本反向散射的特性,RFID应用环境中根据传导介质的RF无线电波的反射或衍射的现象导致RFID标签天线和读取器天线之间会形成多路径,由这些多路径入射到标签天线的电波由不同相位的电波叠加构成。特别地,根据相位差异的标签天线和读取器天线之间的相消干涉现象是造成RFID标签的识别距离急剧减小、RFID系统稳定性降低的根本原因。此外,远距离标签识别环境中在与诸如高介电材料的高损耗材料相邻的环境中会使RF波信号强度降低并且会改变标签的RF中心频率,对构造最佳标记环境造成阻碍。
此外,在现场应用环境和RFID标签的标记情况与读取器天线的最佳极化方向不一致的情况下,通常读取器天线使用圆极化(circular polarization,CP)来缓解极化不一致的问题。也就是说,通常市售的大多数特殊RFID标签普遍体现线极化(linear polarization,LP)特征,不过通过使用读取器天线的圆极化来改善垂直/水平方向上不一致的标记问题。但是,由于被设计为线极化的RFID标签和使用圆极化的读取器天线极化不一致,会产生3dB功率损失从而导致标签远距离识别性能下降。
此外,由于最近在各种产业领域中利用RFID技术的应用范围扩大,与仓库内的货架附着在一起的标签较高或者要求以相对于水平面倾斜的方向标记的应用事例增加。通常,对于RFID标签,由于附着对象的材质特性和附着位置、由于应用环境的电波的干涉影响、标签和读取器天线的极化特性、由于高温环境的长时间暴露的标签劣化特性等,标签本身的电气性能会受到很大的影响。特别地,附着在装载在较高高度的货架230等上的物体上的RFID标签或者附着在外部设施资产的较高高度的标签110与用户 的固定/便携式读取器100的天线具有高度偏差,这样的高度偏差使得读取器天线以相对于标签倾斜的角度识别标签。例如,在图1中,附着在较高高度的物体上的标签110的辐射模式115和附着在较低高度的物体上的标签120的辐射模式125与读取器100的天线的辐射模式105之间具有高度偏差,使得读取器100以相对于标签110、120倾斜的角度识别标签。以倾斜的角度识别RFID标签的情况下,雷达截面(Radar Cross Section,RCS)标签横截面与倾斜角度成比例地减小,导致远距离标签识别距离急剧减小。此外,一般的标签的远距离辐射增益特性以一定的角度分布,并且由于标签的辐射增益分布以标签正面竖直方向为基准形成最大值。这样的标签的辐射增益分布在倾斜的角度处展现出辐射增益特性急剧减小的特性。尽管因标签天线的体积、金属附着对象的大小和RFID标签天线的设计而不同,但是通常的金属标签天线的半功率辐射增益角度(3dB radiation angle)形成在30°~60°左右处。即,一般的金属标签天线在附着在货架的较高的装载物上或者附着在高度较高的设施资产上时,地面的用户通过便携式读取器100识别天线的情况下会损失相当程度的辐射功率,这种趋势导致高度差异越大标签识别性能越降低。
图1示出了通过使用便携式读取器100识别常规的RFID标签110、120时,根据标签附着位置高度差异的辐射区域的示意图。
通常,以与常规RFID标签110、120所附着的物体140垂直的方向形成最大辐射增益区域,并且在没有干扰的周围环境中,在相同的方向上实现读取器天线的最大识别距离。在这种情况下,因为RFID标签110、120的辐射方向和读取器天线100的辐射方向105是有限的,在相对于所附着的标签正前方倾斜的方向上识别标签的情况下,会导致相当的功率损失。在这样的应用环境中,读取器天线的倾斜的角度会大大减小标签的RCS截面面积并且会急剧丢失由读取器天线接收的信号强度。特别地,外部设施资产的标签设置高度位置较高或者室内装载货架130的标签附着位置高度相对于RFID读取器天线100的平行高度位置偏差较大时导致的标签识别距离减小和标签识别比率较低是保持RFID系统的稳定性的重要要素。
为了克服上述应用环境中的缺点,提出了一种在所附着的对象插入另外的机构来机械地调整使得RFID标签的最大辐射增益方向朝向读取器天线的方向的方法。但是这样的使附着在高的设施资产上的标签的设置方向朝向地面的以机械方式调整辐射指向角的方法会产生相当昂贵的导入RFID标签所需的额外费用并且也难以定量地根据标签高度调整设置方向。此外,在这样的存在高度差异的应用环境中,通过在以预定的路径移动的自动驾驶机器人上增加天线高度或者利用设置在作为空间形式飞行体的无人机装置上的移动型RFID装置来识别RFID标签。
本发明涉及通过控制RFID标签的远距离可读识别方向性来较稳定地识别附着在高的设施资产和高的载物货架上的特殊标签,由此使运用RFID系统的标签的电气可靠性最大化的被动(Passive)PFID标签。为了实现上述目的而提出本发明以实现以下目的:通过利用立体结构(3D)的薄型金属线克服现有RFID标签导电介质的劣化和剥离现象并且通过具备另外的自体金属板来提供可以将RFID辐射结构广泛用于金属/非金属材质的物体。
通常UHF频段的RFID标签天线根据电标签设计构造、附着接地面和相对的标签位置、根据平面型或立体构造的标签拓扑变化,以多种方式使最大远距离幅射方向受到影响。通常用于RFID系统的RFID标签在通过使标签天线的辐射增益最大值形成为作为附着对象的物体的竖直正面方向因此读取器天线和极化一致的情况下,可以在标签附着正面方向获得最大可读识别距离。如上所述的通常的RFID标签具有如下特征:RFID标签的附着高度位置与读取器用户的读取器天线相比高度更高或者更低时,会导致读取器天线脱离标签天线的最大可读识别距离,导致标签识别距离急剧减小。特别地,由于交通、电力产业的外部资产设施或者大型仓库内货架上装载的物品等的高度位置相对于地面上的读取器用户设置在较高的高度,因此无法获得直线距离(line of sight)上的最大标签截面(RCS雷达截面)。在这种情况下,为了机械性地使标签辐射增益方向朝向地面,可以使用辅助工具或者在附着标签时利用以倾斜角倾斜地设置的方法,但是难以根据高度偏差而调整精确的倾斜度,并且会有增加的设置费用。
图2示意性呈现了利用RFID读取器识别根据本发明的实施例的RFID标签210时根据标签附着位置高度差异的辐射区域的有利优点。通常,RFID标签和读取器天线的指向辐射方向一致与RFID读取器的极化一致问题是决定RFID识别距离性能的因素。特别地,设置于相对于RFID读取器用户较高的高度的RFID标签210(例如,设置于货架230上的物体240上)的指向辐射角度与用户的读取器天线200的辐射模式205角度一致时,可以大大提高RFID标签的识别距离性能。具有这样的RFID标签的主辐射指向性可变的功能的标签提供了以下优点:即使在相较于RFID标签天线的位置相比较高或较低或左/右偏斜的位置处由用户的RFID读取器识别时,也可以通过改变相同标签的附着方向而容易地识别,从而根本地解决取决于标签设置位置的高度差异的标签性能偏差或者标签性能较低的问题。
对于在本发明中使用的标签辐射元件,现有标牌(label)或PCB材质、陶瓷形态的材质由于长时间地在高温环境中会有劣化和剥离现象等而限制RFID标签的耐久性,作为根本上的解决方案,设计成使用薄型金属线。这种导线形态的标签辐射平台(platform)由于材质本身的柔软和薄型特性,具备以下优点:使提供3D标签形状用于RFID标签天线的电阻抗匹配变得更容易,并且可以在有限的空间面积内实现高效的标签设计。此外,还提供了以下优点:由于柔软的导线材质的特性,在RFID标签的中心频率控制和电气匹配优化的过程中,通过简单的导线平台长度变化和金属线相互间距控制,可以容易地改变RFID标签的电气设计。为了实现RFID标签辐射体,这样的3D金属线被放置在耐高温的塑料构件内部,并且通过超声波熔接或注塑成型过程而形成。为了将作为传导性辐射介质的金属线和IC芯片电气连接,构造小型PCB块并在其中接合IC芯片,在小型PCB块两侧接合金属线而构造金属线辐射体。如上所述地构造的立体形状的标签辐射体结构与下方具有一定面积的另外的金属板结合;标签辐射体被沿着金属板的侧边固定而结合。由此,标签辐射体和金属板结合的相对位置可以用作决定标签天线的辐射增益方向的重要设计参数。
此外,如上所述的金属板与标签辐射体分别地构造,因此可以在金属 板表面进行压花和冲压。这种金属板表面压花/冲压作业可以半永久地使用户可以进行直观的、视觉的标识和区分,在传统地需要这种方式的处理的产业领域保持兼容性的同时,提供还可以引入RFID标签的优点。特别地,在现有铭牌(Nameplate)形式的标签本身上进行这种压花/冲压作业直接或间接破坏了标签,因此不可能实现。
通常的UHF频段特殊RFID标签为了用于金属附着材质和非金属附着材质两者而通过使RFID标签被设计为本身具有有限的金属接地面,并且使远距离辐射模式以与附着对象垂直的方向形成最大辐射增益方向。标签附着对象是金属材质的情况下,取决于标签结构本身具有的金属板的变化以及相对于作为附着对象的金属材质的附着位置,远距离标签辐射增益和标签的辐射模式指向性会受到影响。
在本发明中,为了能够容易地实现三维标签立体形状并且增强标签在高温和低温循环环境和超高温环境中的耐久性和可靠性,代替现有的PCB材质或者整体(bulk)形态的高介电常数陶瓷材质,使用导电金属线构造标签辐射元件。
图3示出了根据本发明的实施例的具有主辐射指向性可变的功能的RFID标签组件300的立体图,图4示出了根据本发明的实施例的RFID标签组件300的示意性分解图,图5示出了根据本发明的实施例的辐射元件320的分解透视图,并且图6a和图6b示出了根据本发明的实施例的安装在标签壳体500a、500b内部用作标签天线510的金属线的正面视图,其中图6a示出了PCB 530在第一段520中设置在与和导体550相连侧相距的距离为d1的构造,图6b示出了为了改变辐射元件320的阻抗而可以改变的PCB530的位置610a、610b、610c、610d。通过参考图3-图6b做出如下说明。
图3示出了根据本发明的实施例的具有主辐射指向性可变的功能的RFID标签组件300的立体图。RFID标签组件300可以包括辐射元件320和金属板330。辐射元件320可以沿着金属板330的上表面的侧边布置。金属板330可以用作RFID标签组件300的接地板。安装机构310可以使金属板330的下表面能够附着到待识别的对象上(例如,货架上的物品或资产 设施上)。在一个实施例中,安装机构310可以是螺纹件,并且可以位于金属板330的两侧,但是本领域技术人员可以构想任何其他安装机构、安装位置或附着方式,例如,粘合。通过在金属板330上进行用户能够直观地认知和半永久地使用的压花/冲压340,可以提供进一步扩大RFID标签的应用范围的优点。一般在汽车产业领域或机械产业领域中,为了识别设备和资产,长期以来在铝或铜板表面通过机械压花/冲压来加工多种标识符使用。但是,在RFID标签的情况下,很难找到在表面可以冲压/压花的商用标签,部分RFID标签提供的这种物理冲压/压花操作时对标签的功能造成损伤。本发明中提出的标签组件300中,可以分别构造辐射元件320和能够实现压花/冲压340的金属板330,然后将两者结合。此外,这样的金属板330可以由不同材料(诸如铝、不锈钢)构造成不同大小和厚度。
图4示出了根据本发明的实施例的RFID标签组件的示意性分解图。金属板330可以是任意大小和厚度并且可以被冲压/压花340。可以考虑实现冲压/压花工艺的设备的配置选择金属板330的材质、厚度和大小,并且可以与金属板330的材质、厚度和大小无关地选择RFID标签组件的标签天线的电特性。根据用户的环境和需要,可以在金属板330表面选择性地执行冲压/压花操作、激光加工、油漆形态的印刷操作。
辐射元件320可以通过各种固定机构安装到金属板330的上表面。图4中示出了一种将辐射元件320安装到金属板330的上表面的固定机构,可以包括螺纹件410和格子形固定件420,用于容纳螺纹件410的螺孔部分可以被构造为从金属板330的上表面凸起以保持金属板330下表面平坦地安装到附着对象,并且格子形固定件420可以从金属板330凸起以用于加强与辐射元件320的连接强度。通过诸如螺纹件410将辐射元件320和金属板330机械连接,可以增加连接强度,并且通过格子形固定件420来保持辐射元件320的下表面与金属板330的上表面之间的恒定间距,可以在将RFID标签组件300附着到设施资产上时保持附着表面平坦和稳定。本领域技术人员可以构想到,可以选择其中一者或两者来安装,或者可以使用任何其他安装结构。辐射元件320可以被安装以使得其中包含的标签天线510 (如图5所示)所在的平面与金属板330的上表面成一角度。优选地,该角度可以在30°与150°之间。更优选地,标签天线510所在的平面可以垂直于金属板330的上表面。以此方式,RFID标签组件300的最大辐射增益可以不在垂直于金属板330的表面(以及因此附着至可识别物体的表面)的方向上。
图5示出了根据本发明的实施例的辐射元件320的分解透视图。辐射元件320可以包括用作标签天线510的立体形状的薄型金属线,标签天线510可以被安装在标签壳体500a和500b内部。为了提高标签天线510的高温可靠性和耐久性,用于标签天线510的金属可以是铜、铁、铝、金或合金等各种可以制成线的金属。标签壳体500a和500b可以由耐高温的塑料形成并且在分别构造后通过超声波熔接的方式紧密结合。耐高温的塑料可以是环氧树脂。本领域技术人员也可以构想能够将标签壳体500a和500b紧密结合的其他方式。标签壳体320内还可以包括IC芯片。为了将标签天线510与IC芯片连接,可以将PCB 530用作连接媒介。PCB 530可以被构造为在其中接合IC芯片,并且在两侧具有用于接合标签天线510的电极。可以通过焊接来将标签天线510接合到PCB 530,并且本领域技术人员可以构想其他接合方式。
根据本发明的一个实施例,标签天线510可以包括第一段520和第二段540,PCB 530可以定位于标签天线510的第一段520上。标签天线510的第一段520可以在该侧由导体550与第二段540相连接,并且在第一段520的另一侧(即,与导体550相对的一侧)可以与第二段540断连,由此,第一段520与第二段540可以在一侧相互耦合。
导体550可以是与第一段520和第二段540一体构成标签天线510的弯折部。替代地,导体550可以是固定于标签壳体500b内部并且在安装后与第一段520和第二段540相连的分开的导线。第一段520与金属板330的上表面之间可以具有第一间距h1,并且第一段520与第二段540之间可以具有第二间距h2(如图6a所示)。
此外,标签壳体500a、500b内部可以具有安装槽以嵌入标签天线510 和PCB 530以使标签天线510可以稳定地固定在标签壳体500a、500b内部并且维持在有效的共轭阻抗匹配状态。安装槽可以包括用于容纳标签天线510的多个凹槽和用于容纳PCB 530的多个容纳空间以提供多种不同的路径,以便提高在有限的面积内的标签天线510的有效谐振长度。这样的多种路径能够提供以下优点:在控制辐射元件320的中心频率或者在制造标签组件300的过程中,无需过多改变已有的材质或设计就可以容易地改善性能偏差实现所需的辐射元件320的性能。
在一个实施例中,多个凹槽可以包括多个水平槽和多个竖直槽,包括用于容纳标签天线510的第一段520的第一水平槽560a、用于容纳第二段540的第二水平槽560b、和用于容纳导体550的竖直槽560c。
图6a和图6b示出了根据本发明的实施例的安装在标签壳体500a、500b内部用作标签天线510的金属线的正面视图,其中图6a示出了PCB 530在第一段520中设置在与和导体550相连侧相距的距离为d1的构造,图6b示出了为了改变辐射元件320的阻抗而可以改变的PCB 530的位置610a、610b、610c、610d,这些位置仅作为示例性示出,本领域技术人员可以根据需要构想PCB 530的位置。
本发明中提出的包含标签天线510的RFID标签组件300可以包括以下重要的设计参数:在三维立体结构中,接合有IC芯片的PCB 530与天线510和导体550相连侧相聚的距离d1、标签天线510的第一段520与金属板330的上表面相距的距离h1、标签天线510的第一段520与标签天线510的第二段540相距的距离h2、能够控制标签天线510的有效谐振长度的天线510(包括第一段520、第二段540和导体550)的长度。这些重要的设计参数可以提供以下优点:为了对各种各样的UHF频段的IC芯片的阻抗进行复数阻抗匹配,通过使RFID标签组件300的一个或者多个设计参数最适当而在不改变已有标签的材质和外观的情况下可以在相同的结构中容易地使电气匹配可变。特别地,接合了RFID IC芯片的PCB 530的相对位置变化可以作为最大地影响特定IC芯片的阻抗变化的设计参数,提供在不改变已有标签壳体的结构的情况下能够应对各种常用IC芯片的设计兼容性。 通过调整PCB 530与导体550相距的距离(即,图6a中的d1),能够控制标签天线的阻抗匹配和中心谐振频率。
图7以史密斯图(Smith chart)示出了根据本发明的实施例的根据设置在第一段520中的PCB 530与和导体550相连侧相距的距离(即,图6a中的d1)变化而变化的辐射元件的阻抗的模拟实验结果。作为示例,该模拟实验结果采取了在一侧通过将金属线折叠成竖直方向来形成导体550,使得第一段520和第二段540经由导体550短路连接,并且在相对侧断开来实现通常的IC芯片的复数阻抗的有效阻抗匹配的结构。即,在标签天线510的右侧,第一段520和第二段540可以通过侧面的安装槽560c中的导体550而短路连接,并且为了实现有效的阻抗控制和适当的标签辐射增益,在标签天线510的左侧,第一段520和第二段540之间可以相距距离h2并且第一段520和金属板330上表面之间可以相距距离h1。上述所有设计参数是为了能够有效控制标签组件300的中心频率和阻抗匹配,并且这样的在一侧短路的结构和设置在容纳空间中的PCB 530可以用作控制标签组件300的阻抗匹配的重要的设计参数。
如图7所示,在史密斯图中示出了当d1以2.5mm的间隔由13mm逐渐变为3mm的过程中IC芯片的阻抗的虚部。当d1为13.0mm时,复数阻抗的虚部为+282Ohm;当d1为10.5mm时,复数阻抗的虚部为+227Ohm;当d1为8.0mm时,复数阻抗的虚部为+194Ohm;当d1为5.5mm时,复数阻抗的虚部为+174Ohm;当d1为3.0mm时,复数阻抗的虚部为+158Ohm。通常常用的UHF频段的IC芯片的阻抗在上述范围内,并且通过利用PCB530的可变位置能够实现常用UHF频段的IC芯片的一般的阻抗匹配。
此外,标签天线510的第一段520与金属板330的上表面之间可以形成间距h1。这样的耦合可以对标签匹配和远距离辐射模式指向性产生影响。
标签天线510的第一段520可以以非对称的结构与金属板330耦合,并且标签天线510所在的平面可以相对于金属板330的上表面成一角度(优选地,垂直),由此使标签组件300的远距离辐射指向角以特定方向偏向。
图8示意性呈现了在不同相对位置处的附着对象上的RFID标签组件 的安装方向。
可以通过固定机构将包含标签天线510的辐射元件320安装到金属板330,由此形成的标签组件300的整体外观可以在左右方向上形成为对称结构而在上下方向上形成为非对称结构。在这样的非对称结构中,辐射元件320的最大辐射增益可以被呈现为从垂直于金属板330表面的方向偏向为朝向辐射元件320的方向。这样的特征使得当在高度较高的设施资产810中辐射元件320被定位为沿着金属板330的下边缘时标签组件300的最大辐射增益方向可以向下倾斜,相反,当在高度较低的设施资产820的情况下辐射元件320被定位为沿着金属板330的上边缘时标签组件300的最大辐射增益可以向上方倾斜,使得标签组件的可读识别距离增大。当在相对左侧的设施资产830的情况下辐射元件320被定位为沿着金属板330的右边缘时标签组件300的最大辐射增益可以向右侧倾斜,当在相对右侧的设施资产840的情况下辐射元件320被定位为沿着金属板330的左边缘时标签组件300的最大辐射增益可以向左侧倾斜,使得标签组件的可读识别距离增大。
图9a-图9d示出了根据本发明的可选实施例的利用标签天线510,改变第一段520和第二段540的结构的正面视图。根据本发明的一个实施例,PCB 530可以位于标签天线510的第一段520中,并且可以在标签天线510的一侧短路连接而在相对侧断连。本领域技术人员可以构想到,通过将标签天线510的上述结构变为任何形状,可以将其作为为了实现辐射元件320的中心频率调节和符合个别IC芯片的最适阻抗匹配的变量。在图9a中示出了PCB 530可以位于标签天线510的第一段520中的一侧附近的基本结构。在图9b中示出了标签天线510的第一段520和第二段540与图9a相比在断连侧都可以以水平方向延长的变形结构。这样的水平方向上的长度增加可以用作向下调节标签组件的中心频率的最重要的设计参数,并且根据标签天线510的第一段520和第二段540的相对长度的调节,可以用作控制辐射增益的设计参数。图9c中示出了天线510的第二段540可以在断连侧向下弯折的变形结构,并且图9d中示出了天线510的第一段520可以 在断连侧向上弯折的变形结构。为了实现这样的弯折结构,标签壳体500a、500b内的安装槽可以包括更多的水平槽(例如,图5中的560d)和/或竖直槽(例如,图5中的560e),由此可以在不改变辐射元件320的外形大小的情况下增加标签天线510的有效谐振长度。然而,天线510的第一段520的向上弯折和天线510的第二段540的向下弯折以及相应的更多的水平槽是可选的,本领域技术人员可以根据需要选择不同的开槽方式,本发明不旨在对此进行限制。
图10示出了根据本发明的实施例的根据具有主辐射指向性可变的功能的标签天线的方位角的最大辐射增益的辐射模式的图,示出了UHF频段中心频率为920MHz的Y-Z平面(phi=90°)的辐射方向图。考虑附着在金属附着对象上的情况,可以将能够进行表面冲压的金属板的大小设置为85×58mm的大小,并且金属板能够随着金属附着对象的大小和相对位置的变化而引起辐射增益的变化。
通常的标签天线510的辐射增益的最大值的指向性形成为在与金属附着对象的表面垂直的方向上,然而本发明的具有主辐射指向性可变的功能的辐射元件320可以位于金属板330的一侧,并且其主辐射可以形成为从垂直方向倾斜43°。如图所示,展现出4.15dBi的远距离辐射模式的最大辐射增益,并且在Y-Z平面上左右不对称的特性。
这样的最大辐射增益以特定的指向角度偏向的辐射元件320的结构可以有效地改善RFID读取器天线和标签天线的高度差异导致的远距离识别性能较低的问题。根据标签附着对象的高度和左右识别角度偏差,简单地变化标签的上下、左右附着方向,有效改善在存在方位差异(高度差异和左右差异)的情况下RFID读取器的通信灵敏度。即,与RFID读取器相比标签附着高度较高的情况下,可以通过使标签壳体320附着在金属板330的下侧固定而使标签辐射增益指向性变为偏向下方;相反,与RFID读取器相比标签附着高度较低的情况下,可以通过使标签壳体320附着在金属板330的上侧固定而使标签辐射增益指向性变为偏向上方。通过将相同的标签壳体320根据附着高度差异或左右识别角度偏差以不同方向附着,可以使 标签最大辐射增益方向偏向,实现在不使用另外的机械支架就可以控制标签主辐射指向性。
图11示出了在UHF RFID频段测量根据本发明的实施例的利用标签天线的具有主辐射指向性可变功能的RFID标签天线的远距离识别距离的结果。用于测量的标签组件300可以被定位在用作附着对象的边长为15cm的正方形金属板中间,可以通过使用Voyantic公司的Tagformance系统在微波暗室(Anechoic chamber)中用标准功率36dBm测量。可以从垂直/正面方向上测量附着在金属附着对象上的标签组件的识别距离。如图10所示,在UHF频段中心频率920MHz处可以具有14m的最大识别距离。
至此,描述了一种RFID标签组件。通过将柔性金属线构造为立体形状用于UHF频段的RFID标签辐射元件并且将该辐射元件以非对称的方式安装到金属板上,能够使RFID标签组件的最大辐射增益方向以特定角度倾斜。在各种RFID应用环境中,在不容易获得RFID标签组件的高度位置和用于识别的读取器天线的直线距离(Line-of-sight,LOS)的情况下,现有RFID标签的可读识别距离性能急剧降低。特别地,在从水平方向倾斜的方向识别RFID标签或者附着在设施资产上的标签的高度位置较高或较低的情况下以读取器天线为基准的标签RCS截面面积急剧减小,反射散射效率降低,导致RFID标签识别性能降低。本发明提出的RFID标签在这种特殊情况下通过改变标签附着方式来使标签的最大辐射增益指向性上下和左右偏向,由此有效地保证标签可读识别距离性能并且提高RFID系统的性能。本发明中将金属线用于标签辐射元件,提供在高温应用环境和热冲击环境中的标签耐久性,极大地改善标签劣化特性。
特别地,设置并封装在塑料结构内的金属线的标签辐射元件和另外结合的金属板物理地分别构成并且用安装机构结合,由此可以实现从金属板表面突出的压花操作或冲压操作,并且这种刻印操作可以提供不影响标签的外观或电气性能的优点。此外,分别构成的金属板可以具有各种大小,与嵌入塑料结构内的金属线独立构成后结合在一起。
如上所述,可以提供特定应用领域要求的通过在金属板表面机械压花/ 冲压实现半永久和直观的可识别的刻印,同时可以扩展应用为另外实现电气RFID标签功能。现有的RFID标签不存在在标签表面具有金属板的产品,或者即使存在,由于在标签表面进行物理冲压/压花会物理损伤标签本身,会引起防水问题和标签耐久性降低的问题。本发明通过将标签天线的电接合和决定标签的辐射增益的基本设计参数独立分离出来,提高了标签耐久性和设计的灵活性。也就是说,将电气RFID标签设计和金属板分离,然后通过安装装置将两者结合,由此使机械冲压/压花操作不影响标签的电气/物理性能。
上面已经描述了一些示例性实施例。然而,应该理解的是,在不脱离本发明精神和范围的情况下,还可以对上述示例性实施例做出各种修改。例如,如果所描述的技术以不同的顺序执行和/或如果所描述的系统、架构、设备或电路中的组件以不同方式被组合和/或被另外的组件或其等同物替代或补充,也可以实现合适的结果,那么相应地,这些修改后的其它实施方式也落入权利要求书的保护范围内。

Claims (19)

  1. 一种射频识别标签组件,其特征在于,所述射频识别标签组件包括:
    金属板,具有上表面和下表面;
    辐射元件,所述辐射元件包括标签壳体,所述标签壳体沿着所述金属板的上表面的一侧边布置,所述标签壳体内包括IC芯片、天线以及将所述IC芯片与所述天线电连接的电路板,其中,
    所述天线由金属制成,
    所述天线具有与所述金属板的上表面平行的第一段和第二段,所述第一段与所述金属板的上表面之间具有第一间距,并且所述第一段与所述第二段之间具有第二间距,所述金属板的上表面与所述天线所在的平面成角度。
  2. 如权利要求1所述的射频识别标签组件,其特征在于,所述IC芯片工作在UHF频段。
  3. 如权利要求1所述的射频识别标签组件,其特征在于,所述天线的所述第一段的一端经由导体连接至所述第二段的一端。
  4. 如权利要求3所述的射频识别标签组件,其特征在于,所述导体是所述天线的所述第一段和所述第二段之间的弯折部,所述第一段、所述第二段和所述弯折部一体地构成所述天线。
  5. 如权利要求3所述的射频识别标签组件,其特征在于,所述导体是布置在所述壳体内的与所述天线分开的导线。
  6. 如权利要求1所述的射频识别标签组件,其特征在于,所述天线所在的平面与所述金属板的上表面垂直。
  7. 如权利要求1所述的射频识别标签组件,其特征在于,所述金属板是作为所述射频识别标签组件的接地板。
  8. 如权利要求1所述的射频识别标签组件,其特征在于,通过将所述金属板的下表面附着到待识别的对象来设置所述射频识别标签组件。
  9. 如权利要求3所述的射频识别标签组件,其特征在于,所述壳体内部具有安装槽以嵌入所述天线和所述电路板。
  10. 如权利要求9所述的射频识别标签组件,其特征在于,所述安装槽包括:
    多个凹槽,用于嵌入天线,其中所述多个凹槽包括多个水平槽和多个竖直槽,所述多个水平槽包括第一水平槽和第二水平槽,所述第一水平槽被构造为嵌入所述天线的所述第一段,所述第二水平槽被构造为嵌入所述天线的所述第二段,并且所述竖直槽被构造为嵌入所述导体;以及
    多个容纳空间,所述多个容纳空间中的每一个用于容纳所述电路板。
  11. 如权利要求10所述的射频识别标签组件,其特征在于,所述多个水平槽中的每一个与所述多个容纳空间中的至少一个相交,
    所述多个水平槽和所述金属板的上表面平行,所述多个水平槽与所述金属板的上表面相距的距离不等,并且
    所述多个容纳空间与所述竖直槽相距多个距离。
  12. 如权利要求10所述的射频识别标签组件,其特征在于,所述天线的所述第一段延伸至所述多个水平槽中的第三水平槽,和/或所述天线的所述第二段延伸至所述多个水平槽中的第四水平槽。
  13. 如权利要求12所述的射频识别标签组件,其特征在于,所述第一水平槽被构造为能够嵌入不同长度的所述天线的第一段,并且所述第二水平槽被构造为能够嵌入不同长度的所述天线的第二段。
  14. 如权利要求1所述的射频识别标签组件,其特征在于,所述标签壳体通过定位机构固定至所述金属板,以使得所述标签壳体的下表面相对于所述金属板的上表面保持水平。
  15. 如权利要求14所述的射频识别标签组件,其特征在于,所述定位机构包括将所述标签壳体固定至所述金属板的螺纹件和位于所述金属板的所述上表面上的格子形固定件。
  16. 如权利要求1所述的射频识别标签组件,其特征在于,所述金属板被压花、冲压、激光加工或印刷有视觉标识符。
  17. 如权利要求1-16中任一项所述的射频识别标签组件,其特征在于,所述射频识别标签组件的最大辐射增益的方向从垂直于所述金属板的方向倾斜。
  18. 一种可识别物体,所述可识别物体附着有如权利要求1-16中任一项所述的射频识别标签组件。
  19. 如权利要求18所述的可识别物体,其特征在于,所述可识别物体包括设施资产和货架。
PCT/CN2022/102805 2022-06-30 2022-06-30 射频识别标签组件和附着射频识别标签组件的可识别物体 WO2023115895A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/102805 WO2023115895A1 (zh) 2022-06-30 2022-06-30 射频识别标签组件和附着射频识别标签组件的可识别物体
CN202280012347.0A CN116830463A (zh) 2022-06-30 2022-06-30 射频识别标签组件和附着射频识别标签组件的可识别物体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102805 WO2023115895A1 (zh) 2022-06-30 2022-06-30 射频识别标签组件和附着射频识别标签组件的可识别物体

Publications (1)

Publication Number Publication Date
WO2023115895A1 true WO2023115895A1 (zh) 2023-06-29

Family

ID=86901154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102805 WO2023115895A1 (zh) 2022-06-30 2022-06-30 射频识别标签组件和附着射频识别标签组件的可识别物体

Country Status (2)

Country Link
CN (1) CN116830463A (zh)
WO (1) WO2023115895A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936544A1 (en) * 2006-12-21 2008-06-25 China Steel Corporation Radio frequency identification tag device having a metal substrate
CN101416203A (zh) * 2006-04-03 2009-04-22 阿鲁策株式会社 无线ic标签
EP2101288A1 (en) * 2008-03-12 2009-09-16 China Steel Corporation RFID tag using monopole antenna
CN102521645A (zh) * 2011-12-29 2012-06-27 上海大学 宽频带抗金属射频识别标签及其金属表面专用安装结构
US20170293832A1 (en) * 2017-06-27 2017-10-12 Daniel Pai License plate radio electronic identifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101416203A (zh) * 2006-04-03 2009-04-22 阿鲁策株式会社 无线ic标签
EP1936544A1 (en) * 2006-12-21 2008-06-25 China Steel Corporation Radio frequency identification tag device having a metal substrate
EP2101288A1 (en) * 2008-03-12 2009-09-16 China Steel Corporation RFID tag using monopole antenna
CN102521645A (zh) * 2011-12-29 2012-06-27 上海大学 宽频带抗金属射频识别标签及其金属表面专用安装结构
US20170293832A1 (en) * 2017-06-27 2017-10-12 Daniel Pai License plate radio electronic identifier

Also Published As

Publication number Publication date
CN116830463A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
CN102130373B (zh) 小型化射频识别标签及其中的微带贴片天线
US7938334B2 (en) Radio frequency identification functionality coupled to electrically conductive signage
US8672230B2 (en) RFID tag
CN103548038B (zh) 无线识别标签、具有该标签的电子产品pcb、以及电子产品管理系统
JP6396554B2 (ja) 長距離無線周波数抗金属識別タグ
JP2013062828A (ja) 共平面の基準接地および浮動接地を有するrfidパッチアンテナ
WO2023115895A1 (zh) 射频识别标签组件和附着射频识别标签组件的可识别物体
EP1950831A1 (en) Dipole array directional antenna
CN101527391A (zh) 板状馈电空气介质贴片天线
US20070069020A1 (en) Transponder Unit
KR100973608B1 (ko) Uhf 대역 rfid 리더기용 원형 편파 안테나 구조
KR100724491B1 (ko) 등방성 복사패턴을 갖는 광대역 안테나
JPWO2007017967A1 (ja) 無線icタグ
WO2023097969A1 (zh) 一种无源射频标签
CN104319472B (zh) 一种可工作于自由空间和金属表面的有源rfid天线
CN102263324A (zh) 射频识别标签天线
TWI803957B (zh) 無線射頻晶片模組及其rfid接收器
WO2024000865A1 (zh) Rfid标签元件、rfid标签组件和附着rfid标签组件的待识别物体
CN211604172U (zh) 一种小型rfid抗金属标签
KR100769295B1 (ko) 무선 주파수 인식 3차원 태그
CN219418172U (zh) 抗金属电子标签
WO2024082446A1 (zh) Rfid标签组件和具有rfid标签组件的待识别物体
KR100716459B1 (ko) 무선 주파수 인식 3차원 태그
CN111325304A (zh) 一种小型rfid抗金属标签
JP2012060196A (ja) アンテナ、物品管理システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280012347.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909226

Country of ref document: EP

Kind code of ref document: A1