WO2024082372A1 - 基于应力调控的锡基钙钛矿薄膜及其制备方法、光电器件 - Google Patents

基于应力调控的锡基钙钛矿薄膜及其制备方法、光电器件 Download PDF

Info

Publication number
WO2024082372A1
WO2024082372A1 PCT/CN2022/133587 CN2022133587W WO2024082372A1 WO 2024082372 A1 WO2024082372 A1 WO 2024082372A1 CN 2022133587 W CN2022133587 W CN 2022133587W WO 2024082372 A1 WO2024082372 A1 WO 2024082372A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
film
based perovskite
ligand
chamber
Prior art date
Application number
PCT/CN2022/133587
Other languages
English (en)
French (fr)
Inventor
王鸣魁
于海譞
李雄杰
张治国
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US18/554,540 priority Critical patent/US20240237503A9/en
Publication of WO2024082372A1 publication Critical patent/WO2024082372A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention belongs to the field of optoelectronic technology, and more specifically, relates to a tin-based perovskite film based on stress regulation, a preparation method thereof, and an optoelectronic device.
  • tin-based perovskites Compared with traditional lead-based perovskites, tin-based perovskites have excellent optoelectronic properties such as narrow optical band gap and good light and thermal stability. They are the most promising perovskite materials to achieve high efficiency, stability and low toxicity. Obtaining uniform, dense and high-quality perovskite films is the key to preparing high-performance perovskite optoelectronic devices. However, due to the low Young's modulus of perovskite, it is more susceptible to lattice distortion caused by external light and heat, and the preparation process of perovskite films involves annealing. The annealing process will cause lattice tensile strain and lattice distortion.
  • the distorted area will become a defect center, enhancing the non-radiative recombination of carriers, resulting in a decrease in the performance of tin-based perovskite optoelectronic devices. Therefore, it is necessary to find a process method to reduce the defects of tin-based perovskites, which is of great significance to improving the optoelectronic performance of devices.
  • the present invention provides a tin-based perovskite film based on stress regulation and a preparation method thereof, and an optoelectronic device, which aims to solve the technical problem that tin-based perovskite has many defects.
  • a method for preparing a tin-based perovskite film based on stress regulation which comprises:
  • the tin-based perovskite liquid film and the ligand solution are placed in the same chamber and the vacuum of the chamber is reduced to less than 1000 Pa by pumping, and then the pumping is stopped, wherein the ligand solution is a solution containing an amine or thiol functional group;
  • the chamber is kept sealed, so that part of the solvent in the tin-based perovskite liquid film evaporates, the tin-based perovskite and the solvent are complexed to form an intermediate phase solid film with the ability to resist thermal stress shock, and the ligand solution continues to evaporate to fill the chamber to form a ligand atmosphere, and the volatilized ligand combines with the uncoordinated tin in the intermediate solid phase film to reduce surface defects;
  • the intermediate solid phase film is taken out and annealed at a temperature of 45°C to 110°C.
  • the volume of the ligand solution is 10 ⁇ L to 50 ⁇ L
  • the vacuum degree is 100 Pa to 1000 Pa
  • the time for maintaining the sealed state of the chamber is 60 s to 180 s.
  • the evacuation time for reducing the vacuum degree of the chamber to below 1000 Pa by evacuation does not exceed 10 seconds.
  • the low-temperature annealing time is 3 minutes to 5 minutes, and the high-temperature annealing time is 5 minutes to 15 minutes.
  • low temperature annealing at 45°C to 50°C is first performed, and then high temperature annealing at 90°C to 110°C is performed.
  • the ligand solution is any one of methylamine, dimethylamine, ethylamine, diethylamine, ethylenediamine, dipropylamine, 2-phenylethanethiol, ethanethiol, and ethane-1,2-dithiolphenol, or a mixture of several of them.
  • the solvent in the tin-based perovskite solution is a mixture of any one or more of dimethylformamide, dimethyl sulfoxide, N,N-dimethylacetamide, ⁇ -butyrolactone, and N-methylpyrrolidone.
  • the solute in the tin-based perovskite solution is one or more of methylamine tin iodide, formamidinium tin iodide, methylamine tin iodide bromide, formamidinium tin iodide bromide, cesium tin iodide, cesium tin iodide bromide, phenylethylamine tin iodide, n-butylamine tin iodide, isobutylamine tin iodide or benzyldimethylamine tin iodide.
  • a tin-based perovskite film which is prepared by any of the above-mentioned methods for preparing a tin-based perovskite film based on stress regulation.
  • a photoelectric device comprising the above-mentioned tin-based perovskite film.
  • the present invention is processed in two stages.
  • the first stage is a vacuum drying process during which a ligand atmosphere is formed, and the second stage is an annealing process.
  • the present invention adopts vacuum drying to obtain an intermediate phase solid film formed by complexation of tin-based perovskite and solvent, reduces the influence of thermal stress on the crystal structure of the film during subsequent annealing, and regulates the uniformity of strain distribution in the perovskite film through vacuum-assisted preparation technology, thereby reducing ion migration in the film, which is conducive to the manufacture of efficient and stable tin-based perovskite solar cells; at the same time, by reducing the ambient air pressure, the solvent evaporation is accelerated at room temperature, and the solution quickly has a high supersaturation, so that a large amount of solute can quickly nucleate on the substrate and improve the subsequent annealing to obtain growth, so as to prepare a dense and high-quality perovskite film, which can effectively suppress the leakage current caused by pinholes on the surface of the perovskite film and improve the photoelectric conversion efficiency of the device.
  • the present invention forms a ligand atmosphere during vacuum drying treatment, weakens defects through ligands, and then gradually anneals to obtain a high-quality tin-based perovskite film.
  • the solvent is preliminarily evaporated under vacuum first, and the perovskite in the perovskite liquid film is complexed with the solvent to form an intermediate phase solid film. At this time, there will be uncoordinated tin on the surface of the intermediate phase solid film, and suspended bonds and defects will appear.
  • the present invention forms a ligand atmosphere, and the volatilized ligand combines with the uncoordinated tin in the intermediate solid phase film to weaken the dangling bonds and defects on the surface of the perovskite, thereby inhibiting the recombination of charge carriers.
  • the intermediate solid phase film is then annealed. Since the intermediate solid phase film itself has been defect-weakened before annealing, the lattice distortion caused during annealing is reduced, and the final perovskite film is of high quality.
  • FIG1 is a flow chart of the steps of a method for preparing a tin-based perovskite film based on stress regulation according to an embodiment
  • FIG2 is a SEM morphology of a tin-based perovskite film provided in Comparative Example 1;
  • FIG3 is a SEM morphology of a tin-based perovskite film provided in Example 1;
  • FIG4 is a comparison chart of the performance test of perovskite solar cells formed by perovskite thin films without ligand treatment and with ligand treatment;
  • FIG5 is a performance test comparison diagram of a perovskite solar cell formed by a perovskite film after direct annealing followed by ligand treatment and a perovskite film after ligand treatment during vacuum;
  • FIG6 is a performance test comparison diagram of a perovskite solar cell formed by direct high-temperature annealing and pre-annealing followed by high-temperature annealing of a perovskite film according to an embodiment.
  • FIG. 1 is a flow chart of a method for preparing a tin-based perovskite film based on stress regulation in an embodiment, which mainly includes the following steps:
  • Step S100 coating a tin-based perovskite solution on the surface of a substrate to form a tin-based perovskite liquid film.
  • the solute material in the tin-based perovskite solution can be one or more of methylamine tin iodine, formamidine tin iodine, methylamine tin iodine bromine, formamidine tin iodine bromine, cesium tin iodine, cesium tin iodine bromine, phenylethylamine tin iodine, n-butylamine tin iodine, isobutylamine tin iodine or benzyl dimethylamine tin iodine.
  • the solvent can be selected from any one or more of dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, ⁇ -butyrolactone, and N-methylpyrrolidone.
  • the solute and solvent are mixed in a certain ratio to obtain the desired tin-based perovskite solution.
  • the tin-based perovskite solution is coated on the surface of the substrate to form a tin-based perovskite liquid film.
  • the coating can be performed by any process of spin coating, spray coating, immersion coating, blade coating or roller coating.
  • Step S200 placing the tin-based perovskite liquid film and the ligand solution in the same chamber and stopping the vacuuming after the vacuum degree of the chamber is reduced to less than 1000 Pa, wherein the ligand solution is a solution containing amino or thiol functional groups.
  • the vacuum degree can be selected to be 100Pa to 1000Pa.
  • the solvent and ligand solution in the tin-based perovskite liquid film will evaporate rapidly under vacuum.
  • the vacuuming time is as short as possible so that the solution quickly reaches a supersaturated state and reduces lattice defects.
  • the vacuuming time is controlled within 10s.
  • the ligand solution is selected from a solution containing an amine or thiol functional group, which can bind to uncoordinated tin in a subsequent step.
  • the ligand solution can be selected from any one or a mixture of several of methylamine, dimethylamine, ethylamine, diethylamine, ethylenediamine, dipropylamine, 2-phenylethanethiol, ethanethiol, and 1,2-dithiolphenol.
  • Step S300 Maintain the chamber in a closed state, so that part of the solvent in the tin-based perovskite liquid film evaporates, and the tin-based perovskite and the solvent are complexed to form an intermediate phase solid film with the ability to resist thermal stress shock, and the ligand solution continues to evaporate to fill the chamber to form a ligand atmosphere, and the volatilized ligand combines with the uncoordinated tin in the intermediate phase solid film to reduce surface defects.
  • the chamber After stopping the vacuum, the chamber is sealed and maintained for a period of time to allow the internal reagents to react.
  • the solvent and ligand solvent in the tin-based perovskite liquid film quickly reach a supersaturated state and evaporate. Part of the solvent in the tin-based perovskite liquid film evaporates, and the tin-based perovskite is complexed with the remaining solvent to form an intermediate phase solid film.
  • the intermediate phase is a metal salt and a complex SnX2 ⁇ Y, wherein X is a halogen and Y is the complexed solvent, such as DMSO.
  • the reaction degree between the ligand and the intermediate phase solid film is controlled by controlling the amount of the ligand solution and the reaction time. If the reaction between the ligand and the intermediate phase solid film is too strong, the structure of the intermediate solid phase film itself will be destroyed, while if the reaction between the ligand and the intermediate phase solid film is too weak, the effect of weakening the dangling bonds and defects will not be achieved. Therefore, in this embodiment, the amount of the ligand solution is selected to be 10 ⁇ L ⁇ 50 ⁇ L, and when the vacuum degree is 100Pa ⁇ 1000Pa, the time for maintaining the closed state of the chamber is 60s ⁇ 180s, and the effect is better under this parameter range.
  • Step S400 taking out the intermediate phase solid film and annealing it at a temperature of 45°C to 110°C.
  • the intermediate phase solid film after defect treatment is annealed again. Since an intermediate phase solid film with the ability to resist thermal stress impact has been formed in the vacuum chamber and has been defect-treated, the distortion can be reduced during annealing, and the final film quality is high.
  • a low-temperature annealing of 45°C to 50°C can be performed first, and then a high-temperature annealing of 90°C to 110°C can be performed. Since direct high-temperature annealing will cause the tin-based perovskite intermediate phase solid film to directly and rapidly change phases, the film has many pinholes and is severely affected by thermal stress, which will lead to the formation of defects and non-radiative recombination centers again.
  • the low-temperature pre-annealing treatment promotes the further fusion growth of small intermediate phase grains to form smooth and complete grains.
  • the low-temperature annealing time is controlled to be 3min to 5min
  • the high-temperature annealing time is controlled to be 5min to 15min.
  • the control of the annealing time can not only ensure the fusion growth of small intermediate phase grains, but also ensure that the intermediate phase is smoothly transformed into a perovskite structure and remove residual solvents.
  • the present invention also relates to a high-quality tin-based perovskite film prepared by the above-mentioned preparation method and a photoelectric device comprising the high-quality tin-based perovskite film.
  • the photoelectric device can specifically be a solar cell, a light-emitting diode, a sensor, a transistor, or a laser.
  • the surface SEM image of the obtained film is shown in Figure 2, and it can be seen that there are holes on the surface of the film and the coverage is incomplete.
  • the open circuit voltage of the device prepared by the obtained tin-based perovskite film is 0.31V, and the energy conversion efficiency is 3.75%.
  • the device prepared by the obtained tin-based perovskite film had an open circuit voltage of 0.32V and an energy conversion efficiency of 3.88%.
  • the tin-based perovskite liquid film was placed in a vacuum chamber, and the vacuum was quickly evacuated to reach 1000Pa within 5s, and then the vacuum state of 1000Pa was maintained for 90s to obtain an intermediate phase solid film.
  • the intermediate phase solid film was taken out, it was directly placed on a hot plate at 90° C. for heat treatment for 10 minutes.
  • the open circuit voltage of the device prepared by the obtained tin-based perovskite film was 0.34 V, and the energy conversion efficiency was 4.36%.
  • the spin coating process was directly annealed at 90°C for 10 minutes, and then defect treatment was performed in an ethylenediamine ligand atmosphere.
  • the open circuit voltage of the device prepared by the obtained tin-based perovskite film was 0.33V, and the energy conversion efficiency was 3.93%.
  • the tin-based perovskite liquid film and ethylenediamine solution were placed together in a vacuum chamber, and the vacuum was quickly evacuated to reach 1000Pa within 5s. The vacuum state of 1000Pa was then maintained for 90s for ligand surface treatment to obtain an intermediate phase solid film.
  • the intermediate phase solid film was taken out, it was directly placed on a hot plate at 90°C for heat treatment for 10 minutes.
  • the surface SEM image of the obtained film is shown in Figure 3.
  • the open circuit voltage of the device prepared by the obtained tin-based perovskite film was 0.41V, and the energy conversion efficiency was 5.69%.
  • the solute component is CsSnI 2 Br.
  • the intermediate phase solid film was taken out, it was pre-annealed at 45°C for 5 minutes and then annealed at 90°C for 10 minutes.
  • the open circuit voltage of the device prepared with the obtained tin-based perovskite film was 0.45V, and the energy conversion efficiency was 5.95%.
  • the CsSnI 3 film obtained by direct annealing has holes on the surface and is not fully covered, while the film prepared by the present invention is uniform and dense, and has a high coverage rate on the substrate. Under high magnification, it can be observed that the surface of the perovskite film has no holes and covers the substrate.
  • the process of vacuum drying + annealing can improve the open circuit voltage relative to direct high temperature annealing.
  • the current-voltage curve shown in FIG4 wherein the dotted line is the current-voltage curve of the device obtained when the vacuum chamber does not form a ligand atmosphere, and the solid line is the current-voltage curve of the device obtained when the vacuum chamber forms a ligand atmosphere.
  • the defect treatment is performed in the ligand atmosphere after annealing, the improvement in the film performance is not obvious.
  • the photoelectric performance of the obtained device is significantly improved.
  • Example 1 and Example 3 Comparing Example 1 and Example 3, combined with the current-voltage curve graph shown in Figure 6, the dotted line is the current-voltage curve of the device formed by direct high-temperature annealing after vacuum drying, and the solid line is the current-voltage curve of the device obtained by pre-annealing and then high-temperature annealing after vacuum drying.
  • the dotted line is the current-voltage curve of the device formed by direct high-temperature annealing after vacuum drying
  • the solid line is the current-voltage curve of the device obtained by pre-annealing and then high-temperature annealing after vacuum drying.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种基于应力调控的锡基钙钛矿薄膜,其制备方法包括:将锡基钙钛矿液膜和配体溶液置于同一腔室内并通过抽气使腔室真空度低于1000Pa后停止抽气,其中,配体溶液为含胺基或巯基官能团的溶液;维持腔室密闭状态,锡基钙钛矿与溶剂络合形成具有抵抗热应力冲击能力的中间相固膜,且配体溶液持续挥发充满腔室形成配体氛围,配体与中间相固膜中未配位的锡结合以减少表面缺陷;将中间相固膜取出后退火。通过分两步调节应力冲击并把握缺陷处理的时机,在真空干燥时利用配体与中间相固膜中未配位的锡结合,弱化钙钛矿表面的悬挂键和缺陷;再进行退火处理,使退火期间导致的晶格畸变减小,最终提高锡基钙钛矿薄膜的质量。

Description

基于应力调控的锡基钙钛矿薄膜及其制备方法、光电器件 【技术领域】
本发明属于光电技术领域,更具体地,涉及一种基于应力调控的锡基钙钛矿薄膜及其制备方法、光电器件。
【背景技术】
相较传统的铅基钙钛矿,锡基钙钛矿具有优异的光电性能如光学带隙较窄,光、热稳定性较好,是最有希望实现高效稳定低毒的钙钛矿材料。得到均匀、致密以及高质量的钙钛矿薄膜是制备高性能钙钛矿光电器件的关键。然而,由于钙钛矿较低的杨氏模量使其更易受到外界光、热影响产生晶格畸变,而钙钛矿薄膜的制备过程存在退火环节,退火过程会导致晶格拉伸应变而使晶格畸变,该畸变区域会成为缺陷中心,增强载流子非辐射复合,导致锡基钙钛矿光电器件性能下降。因此,需寻求一种工艺方法降低锡基钙钛矿缺陷,对提高器件的光电性能有着重要的意义。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于应力调控的锡基钙钛矿薄膜及其制备方法、光电器件,其目的在于解决锡基钙钛矿缺陷较多的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种基于应力调控的锡基钙钛矿薄膜的制备方法,其包括:
将锡基钙钛矿溶液涂敷在基体表面形成锡基钙钛矿液膜;
将锡基钙钛矿液膜和配体溶液置于同一腔室内并通过抽气使腔室真空度低于1000Pa后停止抽气,其中,配体溶液为含胺基或巯基官能团的溶液;
维持腔室密闭状态,使锡基钙钛矿液膜中的部分溶剂挥发、锡基钙钛矿与溶剂络合形成具有抵抗热应力冲击能力的中间相固膜,且配体溶液持 续挥发充满腔室形成配体氛围,所挥发的配体与中间固相膜中未配位的锡结合以减少表面缺陷;
将所述中间固相膜取出,于45℃~110℃的温度下进行退火。
在其中一个实施例中,所述配体溶液的体积为10μL~50μL,真空度为100Pa~1000Pa,维持腔室密闭状态的时长为60s~180s。
在其中一个实施例中,通过抽气使腔室真空度低于1000Pa的抽气时长不超过10s。
在其中一个实施例中,低温退火的时长为3min~5min,高温退火的时长为5min~15min。
在其中一个实施例中,退火时,先进行45℃~50℃的低温退火,再进行90℃~110℃高温退火。
在其中一个实施例中,配体溶液为甲胺、二甲胺、乙胺、二乙胺、乙二胺、二丙胺、2-苯乙硫醇、乙硫醇、乙-1,2-二硫醇酚中的任一种或几种的混合物。
在其中一个实施例中,所述锡基钙钛矿溶液中的溶剂为二甲基甲酰胺、二甲基亚砜、N,N-二甲基乙酰胺、γ-丁内酯、N-甲基吡咯烷酮中的任意一种或多种混合而成。
在其中一个实施例中,所述锡基钙钛矿溶液中的溶质为甲胺锡碘、甲脒锡碘、甲胺锡碘溴、甲脒锡碘溴、铯锡碘、铯锡碘溴、苯乙胺锡碘、正丁胺锡碘、异丁胺锡碘或苯二甲胺锡碘中的一种或多种组成。
按照本发明的另一方面,提供了一种锡基钙钛矿薄膜,其由上述任一所述的基于应力调控的锡基钙钛矿薄膜的制备方法制备而成。
按照本发明的又一方面,提供了一种光电器件,其包含上述锡基钙钛矿薄膜。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
本发明在得到钙钛矿液膜后,分两个阶段处理,第一阶段为真空干燥处理并在真空干燥处理期间形成配体氛围,第二阶段为退火处理。
首先,本发明采用真空干燥,获得锡基钙钛矿与溶剂络合形成的中间相固膜,减少后续退火过程中热应力对薄膜晶体结构影响,通过真空辅助制备技术调控钙钛矿薄膜中的应变分布均匀性,从而减少薄膜中离子迁移,有利于实现高效稳定锡基钙钛矿太阳能电池的制造;同时,通过降低环境气压,室温下加速溶剂蒸发,使溶液快速具有高过饱和度,从而使大量溶质能够在基体上快速形核并提高后续退火获得生长,制备得到致密、高质量的钙钛矿薄膜,能有效抑制钙钛矿薄膜表面因针孔造成的泄漏电流,提高器件的光电转换效率。
其次,本发明在真空干燥处理期间形成配体氛围,通过配体弱化缺陷,再逐步退火,得到高质量的锡基钙钛矿薄膜。通过把握缺陷处理的时机,先于真空下初步蒸发溶剂,钙钛矿液膜中的钙钛矿与溶剂络合形成中间相固膜,此时,中间相固膜表面会存在未配位的锡,出现悬浮键和缺陷,本发明通过形成配体氛围,通过所挥发的配体与中间固相膜中未配位的锡结合,弱化钙钛矿表面的悬挂键和缺陷从而抑制载电荷载流子复合。再将中间固相膜进行退火处理,由于退火前已经对中间固相膜本身进行了缺陷弱化,因此,在退火期间导致的晶格畸变减小,最终得到的基钙钛矿薄膜质量较高。
【附图说明】
图1为一实施例的基于应力调控的锡基钙钛矿薄膜的制备方法的步骤流程图;
图2为对比例1提供的锡基钙钛矿薄膜SEM形貌图;
图3为实施例1提供的锡基钙钛矿薄膜SEM形貌图;
图4为无配体处理和有配体处理后的钙钛矿薄膜制作形成的钙钛矿太阳能电池性能测试对比图;
图5为直接退火后进行配体处理和真空期间进行配体处理后的钙钛矿薄膜制作形成的钙钛矿太阳能电池性能测试对比图;
图6为一实施例的直接高温退火和先预退火再高温退火后的钙钛矿薄膜制作形成的钙钛矿太阳能电池性能测试对比图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示为一实施例中的基于应力调控的锡基钙钛矿薄膜的制备方法的步骤流程图,其主要包括以下步骤:
步骤S100:将锡基钙钛矿溶液涂敷在基体表面形成锡基钙钛矿液膜。
首先,需要配置锡基钙钛矿溶液,可根据传统方式配置锡基钙钛矿溶液。具体的,锡基钙钛矿溶液中的溶质材料可以为甲胺锡碘、甲脒锡碘、甲胺锡碘溴、甲脒锡碘溴、铯锡碘、铯锡碘溴、苯乙胺锡碘、正丁胺锡碘、异丁胺锡碘或苯二甲胺锡碘中的一种或多种组成。其溶剂可以选择二甲基甲酰胺、二甲基亚砜、N,N-二甲基乙酰胺、γ-丁内酯、N-甲基吡咯烷酮中的任意一种或多种混合而成。将溶质和溶剂按照一定的比例混合,得到所需的锡基钙钛矿溶液。
其次,将锡基钙钛矿溶液涂敷在基体表面形成锡基钙钛矿液膜,具体的,可以采用旋涂、喷涂、浸泡、刮涂或辊涂工艺中的任一种工艺进行涂敷。
步骤S200:将锡基钙钛矿液膜和配体溶液置于同一腔室内并通过抽气使腔室真空度低于1000Pa后停止抽气,其中,配体溶液为含胺基或巯基官能团的溶液。
具体的,真空度可以选择100Pa~1000Pa,锡基钙钛矿液膜中的溶剂和配体溶液在真空下会迅速挥发。其中,抽真空的时间尽可能短,以时溶液迅速达到过饱和状态,减少晶格缺陷。具体的,抽真空的时间控制在10s以内。
其中,配体溶液选择含胺基或巯基官能团的溶液,其能够在后续步骤中结合未配位的锡。具体的,配体溶液可以选择甲胺、二甲胺、乙胺、二乙胺、乙二胺、二丙胺、2-苯乙硫醇、乙硫醇、乙-1,2-二硫醇酚中的任一种或几种的混合物。
步骤S300:维持腔室密闭状态,使锡基钙钛矿液膜中的部分溶剂挥发、锡基钙钛矿与溶剂络合形成具有抵抗热应力冲击能力的中间相固膜,且配体溶液持续挥发充满腔室形成配体氛围,所挥发的配体与中间相固膜中未配位的锡结合以减少表面缺陷。
停止抽气后,密封腔室并维持一段时间,使内部试剂进行反应。其中,在真空下,锡基钙钛矿液膜中的溶剂以及配体溶剂迅速达到过饱和状态而挥发。锡基钙钛矿液膜中的部分溶剂挥发,锡基钙钛矿与剩余溶剂络合形成中间相固膜,中间相为金属盐和络合物SnX 2·Y,其中,X为卤素,Y为所络合的溶剂,例如DMSO。锡基钙钛矿与剩余溶剂络合形成中间相固膜后,中间相固膜的表面会存在未配位的锡,导致出现悬挂键和缺陷,此时,通过所挥发的配体与未配位的锡结合,弱化钙钛矿表面的悬挂键和缺陷,从而抑制了电荷载流子复合。
在一实施例中,通过控制配体溶液的量和反应时长,控制配体与中间相固膜的反应程度,配体与中间相固膜的反应太强烈,反而会破坏中间固相膜本身的结构,而配体与中间相固膜的反应太微弱,将达不到弱化悬挂键和缺陷的效果。因此,在本实施例中,配体溶液的量选择10μL~50μL,在真空度为100Pa~1000Pa时,维持腔室密闭状态的时长为60s~180s,此参数范围下的效果较佳。
步骤S400:将中间相固膜取出,于45℃~110℃的温度下进行退火。
将经过缺陷处理后的中间相固膜再进行退火处理,由于在真空腔室中已经形成具有抵抗热应力冲击能力的中间相固膜且经过缺陷处理,再进行退火时将能够减小畸变,最终得到的薄膜质量较高。在一实施例中,可以先进行45℃~50℃的低温退火,再进行90℃~110℃高温退火,由于直接高温退火会导致锡基钙钛矿中间相固膜直接快速相变,薄膜针孔多且受热应力影响严重,重新导致缺陷和非辐射复合中心形成。而低温预退火处理,促进中间相小晶粒进一步融合生长,形成光滑完整晶粒。在一实施例中,控制低温退火的时长为3min~5min,高温退火的时长为5min~15min,该退火时长的控制,既可以保证中间相小晶粒的融合生长,又能够保证中间相顺利转变为钙钛矿结构并驱除残余溶剂。
相应的,本发明还涉及一种由上述制备方法制备而成的高质量锡基钙钛矿薄膜以及包含该高质量锡基钙钛矿薄膜的光电器件,光电器件具体可以是太阳能电池、发光二极管、传感器、晶体管、激光器。
以下,以具体的对比例和实施例说明本发明的效果。
对比例1
采用组分为DMF:DMSO=1:0.25的混合溶剂,配备溶质组分为CsSnI 3的钙钛矿前驱体溶液,并使用旋涂工艺加90℃直接退火10分钟的方法制备锡基钙钛矿薄膜。所得薄膜的表面SEM图见图2,可看出薄膜表面有孔洞,覆盖不全。所得锡基钙钛矿薄膜所制备器件的开路电压为0.31V,能量转换效率为3.75%。
对比例2
采用组分为DMF:DMSO=1:0.25的混合溶剂,配备溶质组分为CsSnI 2Br的钙钛矿前驱体溶液,并使用旋涂工艺加90℃直接退火10分钟的方法制备锡基钙钛矿薄膜。所得锡基钙钛矿薄膜所制备器件的开路电压为0.32V,能量转换效率为3.88%。
对比例3
采用组分为DMF:DMSO=1:0.25的混合溶剂,配备溶质组分为CsSnI 3的钙钛矿前驱体溶液,并使用旋涂工艺得到一层淡黄色钙钛矿液膜。
将锡基钙钛矿液膜置于真空腔体内,快速抽真空在5s内达到1000Pa,后保持1000Pa真空状态下90s,得到中间相固膜。
将中间相固膜取出后,直接置于90℃的热板上热处理10min,所得锡基钙钛矿薄膜所制备器件的开路电压为0.34V,能量转换效率为4.36%。
对比例4
采用组分为DMF:DMSO=1:0.25的混合溶剂,配备溶质组分为CsSnI 3的钙钛矿前驱体溶液,并使用旋涂工艺加90℃直接退火10分钟,后于乙二胺配体氛围中进行缺陷处理。所得锡基钙钛矿薄膜所制备器件的开路电压为0.33V,能量转换效率为3.93%。。
实施例1
采用组分为DMF:DMSO=1:0.25的混合溶剂,配备溶质组分为CsSnI 3的钙钛矿前驱体溶液,并使用旋涂工艺得到一层淡黄色钙钛矿液膜。
将锡基钙钛矿液膜与乙二胺溶液共同置于真空腔体内,快速抽真空在5s内达到1000Pa,后保持1000Pa真空状态下90s进行配体表面处理,得到中间相固膜。
将中间相固膜取出后,直接置于90℃的热板上热处理10min,所得薄膜的表面SEM图见图3,所得锡基钙钛矿薄膜所制备器件的开路电压为0.41V,能量转换效率为5.69%。
实施例2
与实施例1中的制备方法的区别在于:
配备溶质组分为CsSnI 2Br。
实施例3
与实施例1中的制备方法的区别在于:
将中间相固膜取出后,先在45℃下预退火处理5min,后在90℃条件下退火处理10min,所得锡基钙钛矿薄膜所制备器件的开路电压为0.45V,能量转换效率为5.95%。
如下表1所示未上述对比例和实施例的对比数据。
表1各对比例和实施例的数据对比
Figure PCTCN2022133587-appb-000001
首先,比较图2和图3比较可知,直接进行退火所得的CsSnI 3薄膜表面有孔洞,覆盖不全,而本发明所制备出的薄膜均匀、致密,对基体的覆盖率高,在高倍放大倍数下可观察到该钙钛矿薄膜的表面无孔洞,覆盖基底。
而且,比较对比例1、对比例3和实施例1,相对直接高温退火,进行真空干燥+退火的工艺能够改善开路电压。结合图4所示的电流电压曲线图, 其中,虚线为真空腔室未形成配体氛围的情况下,所得器件的电流电压曲线,实线为真空腔室形成配体氛围的情况下,所得器件的电流电压曲线,通过比较可知,本发明在真空干燥期间形成配体氛围后,所得器件的光电性能进一步提升。
比较对比例4和实施例1,结合图5所示的电流电压曲线图,其中,虚线为直接退火后在进行配体处理所得器件的电流电压曲线,实线为真空腔室形成配体氛围的情况下,所得器件的电流电压曲线,通过对比可知,即使在退火之后再在配体氛围中进行缺陷处理,其对薄膜性能的改善也并不明显,而本发明在真空干燥期间形成配体氛围后,所得器件的光电性能明显提升。
比较实施例1和实施例3,结合附图6所示的电流电压曲线图,其中,虚线为真空干燥后直接高温退火所形成的器件的电流电压曲线,实线为真空干燥后先预退火再高温退火所得器件的电流电压曲线,通过对比可知,在退火期间,在高温退火之前,先执行低温预退火,能进一步提升器件性能。
本领域的技术人员容易理解,以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于应力调控的锡基钙钛矿薄膜的制备方法,其特征在于,包括:
    将锡基钙钛矿溶液涂敷在基体表面形成锡基钙钛矿液膜;
    将锡基钙钛矿液膜和配体溶液置于同一腔室内并通过抽气使腔室真空度低于1000Pa后停止抽气,其中,配体溶液为含胺基或巯基官能团的溶液;
    维持腔室密闭状态,使锡基钙钛矿液膜中的部分溶剂挥发、锡基钙钛矿与溶剂络合形成具有抵抗热应力冲击能力的中间相固膜,且配体溶液持续挥发充满腔室形成配体氛围,所挥发的配体与中间固相膜中未配位的锡结合以减少表面缺陷;
    将所述中间固相膜取出,于45℃~110℃的温度下进行退火。
  2. 如权利要求1所述的基于应力调控的锡基钙钛矿薄膜的制备方法,其特征在于,所述配体溶液的体积为10μL~50μL,真空度为100Pa~1000Pa,维持腔室密闭状态的时长为60s~180s。
  3. 如权利要求1所述的基于应力调控的锡基钙钛矿薄膜的制备方法,其特征在于,通过抽气使腔室真空度低于1000Pa的抽气时长不超过10s。
  4. 如权利要求1所述的基于应力调控的锡基钙钛矿薄膜的制备方法,其特征在于,低温退火的时长为3min~5min,高温退火的时长为5min~15min。
  5. 如权利要求1所述的基于应力调控的锡基钙钛矿薄膜的制备方法,其特征在于,退火时,先进行45℃~50℃的低温退火,再进行90℃~110℃高温退火。
  6. 如权利要求1所述的基于应力调控的锡基钙钛矿薄膜的制备方法,其特征在于,配体溶液为甲胺、二甲胺、乙胺、二乙胺、乙二胺、二丙胺、2-苯乙硫醇、乙硫醇、乙-1,2-二硫醇酚中的任一种或几种的混合物。
  7. 如权利要求1所述的基于应力调控的锡基钙钛矿薄膜的制备方法, 其特征在于,所述锡基钙钛矿溶液中的溶剂为二甲基甲酰胺、二甲基亚砜、N,N-二甲基乙酰胺、γ-丁内酯、N-甲基吡咯烷酮中的任意一种或多种混合而成。
  8. 如权利要求1所述的基于应力调控的锡基钙钛矿薄膜的制备方法,其特征在于,所述锡基钙钛矿溶液中的溶质为甲胺锡碘、甲脒锡碘、甲胺锡碘溴、甲脒锡碘溴、铯锡碘、铯锡碘溴、苯乙胺锡碘、正丁胺锡碘、异丁胺锡碘或苯二甲胺锡碘中的一种或多种组成。
  9. 一种锡基钙钛矿薄膜,其特征在于,由权利要求1至8任一项所述的基于应力调控的锡基钙钛矿薄膜的制备方法制备而成。
  10. 一种光电器件,其特征在于,包含权利要求9所述的锡基钙钛矿薄膜。
PCT/CN2022/133587 2022-10-21 2022-11-23 基于应力调控的锡基钙钛矿薄膜及其制备方法、光电器件 WO2024082372A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/554,540 US20240237503A9 (en) 2022-10-21 2022-11-23 Preparation method and photoelectric device of tin-based perovskite thin film employing stress control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211294766.6A CN115623835A (zh) 2022-10-21 2022-10-21 基于应力调控的锡基钙钛矿薄膜及其制备方法、光电器件
CN202211294766.6 2022-10-21

Publications (1)

Publication Number Publication Date
WO2024082372A1 true WO2024082372A1 (zh) 2024-04-25

Family

ID=84864642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133587 WO2024082372A1 (zh) 2022-10-21 2022-11-23 基于应力调控的锡基钙钛矿薄膜及其制备方法、光电器件

Country Status (3)

Country Link
US (1) US20240237503A9 (zh)
CN (1) CN115623835A (zh)
WO (1) WO2024082372A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160285021A1 (en) * 2013-11-12 2016-09-29 The Regents Of The University Of California Sequential processing with vapor treatment of thin films of organic-inorganic perovskite materials
CN106159097A (zh) * 2015-04-19 2016-11-23 中国科学院青岛生物能源与过程研究所 一种改善钙钛矿薄膜质量的新方法
CN107534088A (zh) * 2015-05-29 2018-01-02 学校法人冲绳科学技术大学院大学学园 气体诱导钙钛矿形成
CN110767808A (zh) * 2018-07-27 2020-02-07 中国科学院化学研究所 钙钛矿薄膜及其制备方法和应用
CN111816770A (zh) * 2020-06-12 2020-10-23 北京大学 钙钛矿薄膜的制备方法、钙钛矿薄膜以及使用该钙钛矿薄膜的太阳能电池器件、磁控溅射仪
CN113594396A (zh) * 2021-07-08 2021-11-02 浙江大学 一种溶剂氛围控制的钙钛矿原位成膜方法及其产品和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160285021A1 (en) * 2013-11-12 2016-09-29 The Regents Of The University Of California Sequential processing with vapor treatment of thin films of organic-inorganic perovskite materials
CN106159097A (zh) * 2015-04-19 2016-11-23 中国科学院青岛生物能源与过程研究所 一种改善钙钛矿薄膜质量的新方法
CN107534088A (zh) * 2015-05-29 2018-01-02 学校法人冲绳科学技术大学院大学学园 气体诱导钙钛矿形成
CN110767808A (zh) * 2018-07-27 2020-02-07 中国科学院化学研究所 钙钛矿薄膜及其制备方法和应用
CN111816770A (zh) * 2020-06-12 2020-10-23 北京大学 钙钛矿薄膜的制备方法、钙钛矿薄膜以及使用该钙钛矿薄膜的太阳能电池器件、磁控溅射仪
CN113594396A (zh) * 2021-07-08 2021-11-02 浙江大学 一种溶剂氛围控制的钙钛矿原位成膜方法及其产品和应用

Also Published As

Publication number Publication date
US20240237503A9 (en) 2024-07-11
US20240138246A1 (en) 2024-04-25
CN115623835A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
Yin et al. Vapor-assisted crystallization control toward high performance perovskite photovoltaics with over 18% efficiency in the ambient atmosphere
CN110854274B (zh) 一种钙钛矿薄膜的制备方法及其在太阳能电池中的应用
Zhang et al. Accelerated formation and improved performance of CH 3 NH 3 PbI 3-based perovskite solar cells via solvent coordination and anti-solvent extraction
CN105702871B (zh) 一种利用溶液抽气通气法制备钙钛矿太阳能电池中钙钛矿薄膜的方法
Gao et al. High efficiently CsPbBr3 perovskite solar cells fabricated by multi-step spin coating method
Tu et al. Solvent engineering for forming stonehenge-like PbI 2 nano-structures towards efficient perovskite solar cells
CN108682745B (zh) 一种基于反溶剂动态旋涂制备钙钛矿薄膜的方法
Zhao et al. Exploring the film growth in perovskite solar cells
US20100221901A1 (en) Method for preparing cadmium sulfide film
CN113637355B (zh) 操作时间窗口可控调节的钙钛矿溶液、电池、制备方法及应用
AU2021387072B2 (en) Perovskite layer, manufacture method for perovskite layer, perovskite layer solar cell, and perovskite layer solar cell assembly
Dong et al. 4-Tert butylpyridine induced MAPbI3 film quality enhancement for improving the photovoltaic performance of perovskite solar cells with two-step deposition route
US20240114760A1 (en) Close space annealing method and method for preparing perovskite film or solar cell
CN111697142A (zh) 一种有机无机杂化钙钛矿薄膜的制备方法
CN111370582A (zh) 一种在微米级大绒面上钙钛矿太阳电池的制备方法
CN112071993B (zh) 一种利用修饰剂提高钙钛矿太阳能电池光电性能的方法
CN111244220A (zh) 一种全无机p/n异质结硒化锑/钙钛矿太阳能电池及其制备方法
Huang et al. Improvement on performance of hybrid CH3NH3PbI3− xClx perovskite solar cells induced sequential deposition by low pressure assisted solution processing
KR102080748B1 (ko) 고품질 페로브스카이트 광 활성층 박막 제조 방법 및 이를 포함하는 페로브스카이트 태양전지
WO2024179088A1 (zh) 一种长效稳定的钙钛矿太阳能电池及其制备方法
WO2024082372A1 (zh) 基于应力调控的锡基钙钛矿薄膜及其制备方法、光电器件
CN111403550B (zh) 一种钙钛矿太阳能电池及其制备方法
KR102304347B1 (ko) 레이저 기반 멀티인쇄장치 및 이를 이용한 표면 모폴로지가 제어된 대면적 페로브스카이트 박막의 제조방법
Shen et al. Covering effect of conductive glass: a facile route to tailor the grain growth of hybrid perovskites for highly efficient solar cells
CN110098332B (zh) 一种适用于高湿度环境下的钙钛矿薄膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962551

Country of ref document: EP

Kind code of ref document: A1