WO2024082298A1 - 电池模组、电池及用电设备 - Google Patents

电池模组、电池及用电设备 Download PDF

Info

Publication number
WO2024082298A1
WO2024082298A1 PCT/CN2022/126811 CN2022126811W WO2024082298A1 WO 2024082298 A1 WO2024082298 A1 WO 2024082298A1 CN 2022126811 W CN2022126811 W CN 2022126811W WO 2024082298 A1 WO2024082298 A1 WO 2024082298A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
wall
end plate
section
fixing seat
Prior art date
Application number
PCT/CN2022/126811
Other languages
English (en)
French (fr)
Inventor
林新炜
李玲玉
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280089819.2A priority Critical patent/CN118575354A/zh
Priority to PCT/CN2022/126811 priority patent/WO2024082298A1/zh
Priority to CN202322036145.4U priority patent/CN220692229U/zh
Publication of WO2024082298A1 publication Critical patent/WO2024082298A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery module, a battery and an electrical device.
  • the purpose of the present application is to provide a battery module, a battery and an electrical device, wherein the battery formed by the battery module has a higher energy density.
  • the present application provides a battery module, which includes a battery cell group, an end plate, a fixing seat and an output pole;
  • the battery cell group includes a plurality of battery cells stacked along a first direction;
  • the end plate is arranged on one side of the battery cell group along the first direction, and the end plate includes a first surface facing away from the battery cell group;
  • the fixing seat is connected to the end plate and protrudes from the first surface; one end of the output pole is electrically connected to the battery cell group, and the other end of the output pole is fixed to the fixing seat.
  • the fixing seat is connected to the end plate and protrudes from the first surface of the end plate facing away from the battery cell group, so that the thickness of the end plate can be thinner, so as to reduce the assembly space occupied by the battery module, thereby making the battery composed of the battery module have a higher energy density.
  • the fixing seat and the end plate are integrally formed.
  • the fixing seat and the end plate can be manufactured simultaneously, which is convenient for processing and reduces the manufacturing difficulty.
  • a battery cell includes an outer shell and an electrode terminal, the outer shell has a first wall facing the end plate, the electrode terminal is installed on the first wall, the electrode terminal has a first side surface, the plane where the first side surface is located intersects with the first wall, and the output pole is connected to the first side surface of the electrode terminal of a battery cell closest to the end plate in the battery cell group.
  • the electrode terminal is arranged on the first wall of the housing facing the end plate, so as to realize the electrical connection between the output pole and the battery cell group.
  • the output pole includes a first section, a second section and a third section, the first section is connected to the first side of the electrode terminal of a battery cell closest to the end plate in the battery cell group, the third section is fixed to the fixing seat, and the second section connects the first section and the third section.
  • the first section is connected to the first side surface of the electrode terminal of a battery cell in the battery cell group that is closest to the end plate, so that the size of the first section in the first direction can be smaller, so as to facilitate the electrical connection between the output pole and the battery cell group; the third section is fixed to the fixing seat, so as to facilitate the assembly of the output pole and the fixing seat.
  • the first segment extends from one end of the second segment in the width direction
  • the third segment extends from one end of the second segment in the length direction.
  • the width direction and the length direction of the second segment intersect with the first direction in pairs.
  • the first section extends from one end of the second section in the width direction, which facilitates the connection between the first section and the battery cell group; the third section extends from one end of the second section in the length direction, which reasonably utilizes the assembly space and facilitates assembly.
  • the first segment is perpendicular to the second segment, and/or the third segment is perpendicular to the second segment.
  • the first section is perpendicular to the second section, and/or the third section is perpendicular to the second section, and the structure is simple and easy to process and manufacture.
  • a first groove is disposed on a side of the end plate facing the battery cell group, and at least a portion of the second section is disposed in the first groove.
  • At least a part of the second section is arranged in the first groove, so as to rationally utilize the assembly space and reduce the space occupation, so as to make the battery module structure compact.
  • the second section is parallel to the bottom surface of the first groove.
  • the second section is parallel to the bottom surface of the first groove, which facilitates the assembly of the second section and the end plate, and the assembly efficiency of the second section and the end plate is high.
  • a size of the first gap is C, satisfying 1 mm ⁇ C ⁇ 5 mm.
  • the size of the first gap satisfies the above range, which can not only reduce the risk of interference between the second section and the bottom surface of the first groove, but also occupy a smaller assembly space; if the first gap is too small, it is easy to cause interference between the second section and the bottom surface of the first groove; if the first gap is too large, the output pole and the end plate will occupy a larger assembly space after assembly, resulting in space waste.
  • the first groove extends along the second direction
  • the fixing seat is arranged at one end of the first groove along the second direction
  • the second direction intersects with the first direction
  • the fixing seat is arranged at one end of the first groove along the second direction, which is convenient for processing and manufacturing.
  • the end plate includes an end plate body and an extension portion, wherein the extension portion extends from one end of the end plate body along a third direction, and the thickness of the extension portion is less than the thickness of the end plate body, so as to form a first groove on the side of the end plate away from the first surface, and the fixing seat is arranged at one end of the extension portion along the second direction, and the third direction, the second direction and the first direction intersect each other.
  • the extension part is connected to the end plate body to form a first groove, which has a simple structure and is easy to process and manufacture; since the thickness of the extension part is smaller than the thickness of the end plate body, the fixed seat is arranged at one end of the extension part along the second direction, and the thickness of the end plate body can be smaller to reduce the space occupied by the end plate in the first direction.
  • one end of the end plate body is provided with a fixing seat beyond the extension portion.
  • one end of the end plate body is provided with a fixing seat beyond the extension portion in the second direction, so that the structure after the fixing seat and the extension portion cooperate takes up less space in the second direction, thereby reducing the space occupied by the battery module in the second direction.
  • a side of the extension portion facing away from the battery cell group is coplanar with a side of the end plate body facing away from the battery cell group.
  • the side of the extension away from the battery cell group is coplanar with the side of the end plate body away from the battery cell group, that is, the surface of the end plate away from the battery cell group is flat, which facilitates the coordination of the battery module with other components.
  • the housing further has a second wall arranged opposite to the first wall, and a first area of an edge of the second wall is recessed to form a second groove, and the second groove is used to accommodate an electrode terminal of a battery cell adjacent to the second wall.
  • the second groove is provided to accommodate the electrode terminal of the battery cell adjacent to the second wall, so that the battery module has a compact structure and a high energy density.
  • the shell has a first wall and a second wall arranged opposite to each other along a first direction, a third wall and a fourth wall arranged opposite to each other along a second direction, and a fifth wall and a sixth wall arranged opposite to each other along a third direction
  • the area of the third wall and the area of the fourth wall are both smaller than the area of the first wall
  • the area of the third wall and the area of the fourth wall are both smaller than the area of the second wall
  • the area of the fifth wall and the area of the sixth wall are both smaller than the area of the first wall
  • the area of the fifth wall and the area of the sixth wall are both smaller than the area of the second wall
  • the first direction, the second direction and the third direction intersect each other.
  • the first wall and the second wall are walls of the shell with larger areas, and the first wall is perpendicular to the first direction, so that the battery cell group structure is compact and the battery module has a higher energy density.
  • the present application further provides a battery, which includes a box and a battery module provided by any of the above embodiments, wherein the battery module is disposed in the box.
  • the above-mentioned battery module is adopted, and the space utilization rate in the box is high, so that the battery has a higher energy density.
  • the battery further includes a partition beam, which is disposed in the box body. Along the first direction, the end plate is located between the battery cell group and the partition beam, and the fixing seat is disposed on the partition beam.
  • the end plate is located between the battery cell group and the partition beam to facilitate the isolation of the battery cell group and the partition beam and reduce the risk of short circuit between the battery cell group and the partition beam;
  • the fixing seat is arranged on the partition beam, which, on the one hand, can make the end plate have a thinner thickness and reduce the space occupied by the end plate in the first direction; on the other hand, it is convenient to position and support the fixing seat.
  • the box body includes a bottom wall and side walls, the side walls are arranged around the bottom wall, the partition beams are arranged on the bottom wall, the partition beams extend along a third direction, and the third direction, the thickness direction of the bottom wall and the first direction intersect each other.
  • the side wall and the bottom wall define a space for accommodating the battery cell group, and the partition beam is arranged on the bottom wall, so that the partition beam is stably connected to the box body, so that the fixing seat can be fixed to the partition beam; the partition beam extends along the third direction, and the size of the partition beam in the first direction can be smaller, reducing the space occupied by the partition beam in the first direction, so that the space utilization rate in the box body is higher.
  • the partition beam includes a top surface away from the bottom wall, the partition beam is provided with a third groove recessed from the top surface toward the bottom wall, and at least a portion of the fixing seat is disposed in the third groove.
  • the third groove provides a space for accommodating the fixing seat, and the fixing seat is at least partially arranged in the third groove, which can reduce the space occupied by the fixing seat and the partition beam in the thickness direction of the bottom wall after assembly, and reduce the impact of the fixing seat on the space utilization in the box.
  • the fixing seat does not protrude from the top surface.
  • the fixing seat does not protrude from the top surface. After the fixing seat is installed on the partition beam, it will not occupy additional space in the thickness direction of the bottom wall, thereby reducing the impact on the energy density of the battery.
  • the fixing seat contacts the bottom surface of the third groove.
  • the fixing seat contacts the bottom surface of the third groove, so that the bottom surface of the third groove supports the fixing seat, thereby facilitating the positioning and assembly of the fixing seat and the partition beam.
  • battery modules are arranged on both sides of the partition beam along the first direction, and the battery further includes a busbar connecting output poles of two battery modules located on both sides of the partition beam.
  • the fixing seats of two battery modules are arranged along a first direction.
  • the fixing seats of the two battery modules are arranged along the first direction, which facilitates the connection between the busbar and the output poles of the two battery modules and facilitates assembly.
  • a avoidance portion is provided on one side of the fixing seats of the two battery modules that are close to each other, and the avoidance portion is used to avoid the busbar.
  • the avoidance portion avoids the busbar, so that the busbar and the fixing seat have a compact structure and reduce space occupation.
  • the provision of the second gap reduces the risk of interference between the fixing seats of the two battery modules.
  • the busbar includes a bending portion and two connecting portions, the two connecting portions are respectively connected to the output poles of two battery modules, and the bending portion connects the two connecting portions.
  • the bent portion when the battery is vibrated, the bent portion can absorb the stress on the busbar, reducing the probability of the connection portion moving relative to the output pole, so that the connection portion is reliably connected to the output pole of the corresponding battery module.
  • the output pole includes a first connecting hole
  • the busbar includes two through holes
  • the two through holes are respectively arranged corresponding to the first connecting holes of the two output poles of the two battery modules located on both sides of the partition beam.
  • the battery also includes a fastener, and the busbar is connected to the output pole of the corresponding battery module by the fastener inserted in the through hole and the first connecting hole.
  • the busbar is connected to the output pole of the corresponding battery module by fasteners, which is simple to operate and easy to assemble.
  • the battery also includes a nut, which is fixed on the side of the output pole facing the fixing seat, the threaded hole of the nut is arranged corresponding to the first connecting hole, the fixing seat is provided with a second connecting hole, at least a portion of the nut is located in the second connecting hole and is gap-matched with the second connecting hole, and the fastener is inserted into the through hole and the first connecting hole and is threadedly connected to the nut.
  • the fastener is threadedly connected to the nut, which makes assembly convenient; since the nut and the second connecting hole are clearance-matched, during the assembly process, the position of the nut in the second connecting hole can be adjusted according to actual conditions to absorb processing errors, thereby facilitating the assembly of the busbar, the output pole and the fixing seat.
  • the diameter of the second connecting hole is D1
  • the outer diameter of the nut is D2, satisfying 2mm ⁇ D1-D2 ⁇ 8mm.
  • the diameter D1 of the second connecting hole is larger than the outer diameter D2 of the nut, and the difference between the diameter D1 of the second connecting hole and the outer diameter D2 of the nut satisfies 2mm ⁇ D1-D2 ⁇ 8mm, which is convenient for absorbing processing errors and making the busbar and the output pole accurately assembled; if D1-D2 is smaller (such as less than 2mm), it is easy to cause interference between the nut and the fixing seat; if D1-D2 is larger (such as greater than 8mm), it is easy to cause loose assembly between the nut and the fixing seat.
  • 4mm ⁇ D1-D2 ⁇ 6mm 4mm ⁇ D1-D2 ⁇ 6mm.
  • one of the two through holes is a long hole extending along the first direction.
  • the arrangement of the long holes is to absorb the processing error so that the busbar and the output poles of the two battery modules can be assembled accurately.
  • the present application also provides an electrical device, comprising a battery provided in any of the above embodiments.
  • FIG1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present application.
  • FIG2 is an exploded view of a battery provided in some embodiments of the present application.
  • FIG3 is a schematic diagram of a battery module provided in some embodiments of the present application.
  • FIG4 is a schematic diagram of the matching state of the end plate and the fixing seat provided in some embodiments of the present application.
  • FIG5 is a schematic diagram of the structure of a battery cell and an output electrode provided in some embodiments of the present application.
  • FIG6 is a schematic diagram of assembling an electrode terminal and a first wall according to some embodiments of the present application.
  • FIG7 is a partial enlarged view of point A in FIG3 ;
  • FIG8 is a schematic diagram of the structure of an output pole and an end plate provided in some embodiments of the present application.
  • FIG9 is a partial enlarged view of point B in FIG8 ;
  • FIG10 is a partial schematic diagram of the matching state of the output pole and the end plate provided in some embodiments of the present application.
  • FIG11 is a schematic diagram of the structure of a battery provided in some embodiments of the present application.
  • FIG12 is a schematic diagram of assembling a fixing seat and a partition beam provided in some embodiments of the present application.
  • FIG13 is a partial enlarged view of point E in FIG11 ;
  • FIG14 is a schematic diagram of the structure of a busbar and a fixing seat provided in some embodiments of the present application.
  • FIG15 is a cross-sectional view of a battery provided in some embodiments of the present application.
  • FIG16 is a partial enlarged view of point F in FIG15 ;
  • FIG. 17 is a partial enlarged view of point G in FIG. 16 .
  • Marking instructions 100-battery; 10-box; 11-first sub-box; 111-bottom wall; 112-side wall; 12-second sub-box; 20-battery module; 21-battery cell; 211-housing; 2111-first wall; 2112-second wall; 2113-second groove; 212-electrode end sub; 2121-first side; 22-end plate; 221-end plate body; 222-extension portion; 223-first groove; 224-first surface; 23-fixed seat; 231-avoidance portion; 232-second connecting hole; 24-output pole; 241-first section; 242-second section; 243-third section; 2431-first connecting hole; 30-partitioning beam; 31-top surface; 32-third groove; 40-collector; 41-bending portion; 42-connecting portion; 421-through hole; 50-fastener; 60-nut; 200-controller; 300-motor; 1000-vehicle; Q1-first gap; Q2-second gap.
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • a and/or B can represent: A exists, A and B exist at the same time, and B exists.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups)
  • multiple sheets refers to more than two sheets (including two sheets).
  • the battery includes a box body and a battery module disposed in the box body.
  • the battery module includes a battery cell group, two end plates, a fixing seat and an output pole.
  • the two end plates are respectively disposed on both sides of the battery cell group.
  • the output pole is used to output the electric energy of the battery cell group.
  • the output pole is fixed to the end plate through the fixing seat.
  • the thickness of the end plate is usually thicker, so that the battery module occupies a larger assembly space.
  • the battery module is assembled in the box, due to the thick thickness of the end plate, it will occupy more internal space of the box, which will lead to a lower energy density of the battery.
  • the inventor has designed a technical solution after in-depth research, in which the fixing seat is connected to the end plate and protrudes from the surface of the end plate away from the battery cell group, so that the thickness of the end plate can be thinner, thereby reducing the assembly space of the battery module.
  • the battery module is matched with the box, more battery cells can be arranged inside the box, thereby enabling the battery to have a higher energy density.
  • the battery disclosed in the embodiment of the present application can be used in, but not limited to, electrical equipment such as vehicles, ships or aircraft.
  • the battery disclosed in the present application can be used to form a power supply system of the electrical equipment.
  • the embodiment of the present application provides an electric device using a battery as a power source
  • the electric device may be, but is not limited to, a mobile phone, a tablet computer, a laptop computer, an electric toy, an electric tool, an electric bicycle, an electric motorcycle, an electric car, a ship, a spacecraft, etc.
  • the electric toy may include a fixed or mobile electric toy, for example, a game console, an electric car toy, an electric ship toy, an electric airplane toy, etc.
  • the spacecraft may include an airplane, a rocket, a space shuttle, a spacecraft, etc.
  • FIG. 1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present application.
  • Vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 100 is provided inside the vehicle 1000, and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000.
  • the battery 100 may be used to power the vehicle 1000, for example, the battery 100 may be used as an operating power source for the vehicle 1000, for the circuit system of the vehicle 1000, for example, for the working power requirements during the startup, navigation and operation of the vehicle 1000.
  • the vehicle 1000 may further include a controller 200 and a motor 300 , wherein the controller 200 is used to control the battery 100 to supply power to the motor 300 , for example, to meet the power requirements of starting, navigating, and driving the vehicle 1000 .
  • the battery 100 can not only serve as an operating power source for the vehicle 1000, but also serve as a driving power source for the vehicle 1000, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000.
  • the battery 100 includes a box body 10 and a battery module 20, and the battery module 20 is disposed in the box body 10.
  • the box 10 is used to provide a storage space for the battery module 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first sub-box 11 and a second sub-box 12, the first sub-box 11 and the second sub-box 12 cover each other, and the first sub-box 11 and the second sub-box 12 jointly define a storage space for accommodating the battery module 20.
  • the first sub-box 11 may be a hollow structure with one end open, and the second sub-box 12 may be a plate-like structure, and the second sub-box 12 covers the open side of the first sub-box 11, so that the first sub-box 11 and the second sub-box 12 jointly define a storage space; the first sub-box 11 and the second sub-box 12 may also be hollow structures with one side open, and the open side of the first sub-box 11 covers the open side of the second sub-box 12.
  • Figure 3 is a schematic diagram of a battery module provided by some embodiments of the present application.
  • the battery module in Figure 3 is a schematic diagram of a local structure
  • Figure 4 is a schematic diagram of the matching state of the end plate and the fixing seat provided by some embodiments of the present application.
  • the present application provides a battery module 20, which includes a battery cell group, an end plate 22, a fixing seat 23 and an output pole 24.
  • the battery cell group includes a plurality of battery cells 21 stacked along a first direction X.
  • the end plate 22 is arranged on one side of the battery cell group along the first direction X, and the end plate 22 includes a first surface 224 facing away from the battery cell group; the fixing seat 23 is connected to the end plate 22 and protrudes from the first surface 224; one end of the output pole 24 is electrically connected to the battery cell group, and the other end of the output pole 24 is fixed to the fixing seat 23.
  • the multiple battery cells 21 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the multiple battery cells 21 are connected in series and in parallel.
  • the battery cell 21 may be a secondary battery or a primary battery; the battery cell 21 may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the end plate 22 is disposed on one side of the battery cell group along the first direction X.
  • the end plate 22 is disposed adjacent to the battery cell group and can protect the battery cell group.
  • the end plate 22 may be an insulating component to isolate the battery cell group from other components (such as a partition beam, etc.) to reduce the risk of short circuits caused by contact between the battery cell group and other components.
  • the material of the end plate 22 may be a mixture of polycarbonate (PC) and acrylonitrile-butadiene-styrene copolymer (ABS), polyhexamethylene adipamide, fiberglass, etc.
  • PC polycarbonate
  • ABS acrylonitrile-butadiene-styrene copolymer
  • the present application does not limit the material of the end plate 22 .
  • the number of the end plates 22 may be two, and the two end plates 22 are disposed on opposite sides of the battery cell group along the first direction X to clamp the battery cell group.
  • the first surface 224 is a surface of the end plate 22 that is away from the battery cell group.
  • the first surface 224 is farther away from the battery cell group along the first direction X than other surfaces of the end plate 22 .
  • the fixing seat 23 is a component for fixing the output pole 24, and the fixing seat 23 is connected to the end plate 22 to fix the output pole 24 to the end plate 22.
  • the material of the fixing seat 23 can be the same as that of the end plate 22, and the material of the fixing seat 23 can be polyhexamethylene adipamide, glass fiber reinforced plastic, etc., and the present application does not limit the material of the fixing seat 23.
  • the fixing seat 23 protrudes from the first surface 224 , which means that the fixing seat 23 protrudes from the first surface 224 along the first direction X toward a direction away from the battery cell group.
  • the output pole 24 is a component for outputting the electric energy of the battery cell group.
  • the output pole 24 may be a metal component, and the material of the output pole 24 may be copper, aluminum, etc.
  • the fixing seat 23 is connected to the end plate 22 and protrudes from the first surface 224 of the end plate 22 facing away from the battery cell group.
  • the overlapping area between the fixing seat 23 and the end plate 22 is small, so that the thickness of the end plate 22 can be thinner, so as to reduce the assembly space occupied by the battery module 20, thereby making the battery 100 composed of the battery module 20 have a higher energy density.
  • the fixing seat 23 and the end plate 22 are integrally formed.
  • the fixing seat 23 and the end plate 22 can be integrally injection molded.
  • the fixing seat 23 and the end plate 22 can be manufactured simultaneously, which is convenient for processing and reduces the manufacturing difficulty.
  • the fixing seat 23 and the end plate 22 may be separately provided and fixed together.
  • the fixing seat 23 and the end plate 22 may be snap-fitted, riveted, bonded, or the like.
  • Figure 5 is a schematic diagram of the structure of the battery cell and the output pole provided in some embodiments of the present application
  • Figure 6 is a schematic diagram of the assembly of the electrode terminal and the first wall provided in some embodiments of the present application
  • Figure 7 is a partial enlarged view of A in Figure 3, and Figure 7 shows the assembly state of the output pole with the battery cell and the fixing seat.
  • the battery cell 21 includes a shell 211 and an electrode terminal 212, the shell 211 has a first wall 2111 facing the end plate 22, the electrode terminal 212 is installed on the first wall 2111, the electrode terminal 212 has a first side surface 2121, the plane where the first side surface 2121 is located intersects with the first wall 2111, and the output pole 24 is connected to the first side surface 2121 of the electrode terminal 212 of a battery cell 21 closest to the end plate 22 in the battery cell group.
  • the housing 211 includes a shell and a cover.
  • the shell has an opening, and the cover closes the opening to isolate the internal environment of the battery cell 21 from the external environment.
  • the shell is a component used to cooperate with the cover to form the internal environment of the battery cell 21, wherein the formed internal environment can be used to accommodate the electrode assembly, electrolyte and other components.
  • the shell and the cover can be independent components.
  • the shell can be of various shapes and sizes. Specifically, the shape of the shell can be determined according to the specific shape and size of the electrode assembly.
  • the material of the shell can be various, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., and the embodiment of the present application does not impose any special restrictions on this.
  • the embodiment of the present application takes the shell as a rectangular parallelepiped as an example.
  • the cover body refers to a component that covers the opening of the shell to isolate the internal environment of the battery cell 21 from the external environment.
  • the shape of the cover body can be adapted to the shape of the shell to match the shell.
  • the cover body can be made of a material with a certain hardness and strength (such as aluminum alloy), so that the cover body is not easily deformed when squeezed and collided, so that the battery cell 21 can have a higher structural strength and the safety performance can also be improved.
  • Functional components such as electrode terminals 212 can be provided on the cover body. The electrode terminal 212 can be used to electrically connect to the electrode assembly for outputting or inputting electrical energy of the battery cell 21.
  • the material of the cover body can also be a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., and the embodiments of the present application are not particularly limited to this.
  • an insulating structure can also be provided on the inner side of the cover body, and the insulating structure can be used to isolate the electrical connection components in the shell from the cover body to reduce the risk of short circuit.
  • the insulating structure can be plastic, rubber, etc.
  • the battery cell 21 also includes an electrode assembly, which is a component in the battery cell 21 where an electrochemical reaction occurs.
  • One or more electrode assemblies may be contained in the housing.
  • the electrode assembly is mainly formed by winding or stacking the positive electrode sheet and the negative electrode sheet, and a separator is usually provided between the positive electrode sheet and the negative electrode sheet, and the separator is used to separate the positive electrode sheet and the negative electrode sheet to avoid short circuits between the positive electrode sheet and the negative electrode sheet.
  • the parts of the positive electrode sheet and the negative electrode sheet with active materials constitute the main body of the battery cell assembly, and the parts of the positive electrode sheet and the negative electrode sheet without active materials each constitute a pole ear.
  • the positive pole ear and the negative pole ear may be located together at one end of the main body or respectively at both ends of the main body.
  • the positive active material and the negative active material react with the electrolyte, and the pole ear connects the electrode terminal 212 to form a current loop.
  • the first wall 2111 is a wall of the housing 211 facing the end plate 22, and the first wall 2111 may be perpendicular to the first direction X.
  • the first wall 2111 may be a cover, or the first wall 2111 may be a wall of the housing.
  • the first wall 2111 is a cover to facilitate assembly of the electrode terminal 212 and the first wall 2111.
  • the electrode terminal 212 is installed on the first wall 2111 and has a first side surface 2121 and a first end surface.
  • the first end surface is the surface of the electrode terminal 212 away from the first wall 2111.
  • the plane where the first side surface 2121 is located intersects with the first wall 2111 and the first end surface.
  • the plane where the first side surface 2121 is located intersects with the first wall 2111, and the plane where the first side surface 2121 is located may be parallel to the thickness direction of the first wall 2111, or the plane where the first side surface 2121 is located may be inclined to the thickness direction of the first wall 2111.
  • the angle ⁇ between the plane where the first side surface 2121 is located and the first wall 2111 is 60° to 120°; preferably, the angle ⁇ between the plane where the first side surface 2121 is located and the first wall 2111 is 85° to 95°; preferably, the plane where the first side surface 2121 is located may be perpendicular to the first wall 2111, that is, the plane where the first side surface 2121 is located may be parallel to the thickness direction of the first wall 2111, so as to facilitate the connection between the first side surface 2121 and the output pole 24.
  • the first side surface 2121 may be welded to the output electrode 24 , so that the output electrode 24 and the electrode terminal 212 are firmly connected.
  • the output electrode 24 is connected to the first side surface 2121 of the electrode terminal 212, which facilitates the electrical connection between the output electrode 24 and the battery cell group.
  • the output pole 24 includes a first section 241, a second section 242 and a third section 243, the first section 241 is connected to the first side surface 2121 of the electrode terminal 212 of a battery cell 21 closest to the end plate 22 in the battery cell group, the third section 243 is fixed to the fixing seat 23, and the second section 242 connects the first section 241 and the third section 243.
  • the second section 242 connects the first section 241 and the third section 243.
  • the second section 242 can be integrally formed with the first section 241 and the third section 243, such as by stamping, bending, etc.; or, the second section 242 can also be separately provided with the first section 241 and the third section 243, and the first section 241 and the third section 243 are respectively welded or riveted to the second section 242 to be fixed as a whole; or, the second section 242 is integrally formed with the first section 241, the second section 242 is separately provided with the third section 243, and the second section 242 and the third section 243 are welded or riveted to be integrated; or, the second section 242 and the third section 243 are integrally formed, the second section 242 and the first section 241 are separately provided, and the second section 242 and the first section 241 are welded or riveted to be integrated.
  • the first section 241 is connected to the first side surface 2121 of the electrode terminal 212 of a battery cell 21 in the battery cell group that is closest to the end plate 22, so that the size of the first section 241 in the first direction X can be smaller, so as to facilitate the electrical connection between the output pole 24 and the battery cell group; the third section 243 is fixed to the fixing seat 23, so as to facilitate the assembly of the output pole 24 and the fixing seat 23.
  • the first section 241 extends from one end of the second section 242 in the width direction
  • the third section 243 extends from one end of the second section 242 in the length direction.
  • the width direction of the second section 242 and the length direction of the second section 242 intersect with the first direction X in pairs.
  • the width direction of the second section 242 and the length direction of the second section 242 may intersect with the first direction X in various forms.
  • the width direction of the second section 242 may be perpendicular to the length direction of the second section 242, and the width direction of the second section 242 and the length direction of the second section 242 may not be perpendicular to the first direction X; or, the width direction of the second section 242 may be perpendicular to the first direction X, and the width direction of the second section 242 and the first direction X may not be perpendicular to the length direction of the second section 242; or, the length direction of the second section 242 may be perpendicular to the first direction X, and the length direction of the second section 242 and the first direction X may not be perpendicular to the width direction of the second section 242; or, the width direction of the second section 242 and the length direction of the second section 242 are perpendicular to the first direction X.
  • the width direction of the second segment 242 and the length direction of the second segment 242 are perpendicular to the first direction X.
  • the width direction of the second segment 242 can be parallel to the direction indicated by the letter Y
  • the length direction of the second segment 242 can be parallel to the direction indicated by the letter Z.
  • the thickness direction of the second section 242 may be parallel to the first direction X. In other words, the second section 242 may be disposed facing the battery cell group.
  • the first section 241 and the third section 243 may be located on both sides of the second section 242 in the thickness direction.
  • the first section 241 extends from one end of the second section 242 in the width direction toward the battery cell group, and the extension direction of the first section 241 intersects with the plane where the surface of the second section 242 facing the battery cell group is located;
  • the third section 243 extends from one end of the second section 242 in the length direction toward a direction away from the battery cell group, and the extension direction of the third section 243 intersects with the plane where the surface of the second section 242 facing away from the battery cell group is located.
  • the first section 241 extends from one end of the second section 242 in the width direction, which facilitates the connection between the first section 241 and the battery cell group;
  • the third section 243 extends from one end of the second section 242 in the length direction, which reasonably utilizes the assembly space and facilitates assembly.
  • the first segment 241 is perpendicular to the second segment 242
  • the third segment 243 is perpendicular to the second segment 242 .
  • the first section 241, the second section 242 and the third section 243 form different structures.
  • the first section 241 is perpendicular to the second section 242, or the third section 243 is perpendicular to the second section 242, or the first section 241 and the third section 243 are respectively perpendicular to the second section 242.
  • the first section 241 is perpendicular to the second section 242, and the extension direction of the first section 241 is perpendicular to the plane where the surface of the second section 242 facing the battery cell group is located.
  • the third section 243 is perpendicular to the second section 242, and the extension direction of the third section 243 is perpendicular to the plane where the surface of the second section 242 facing away from the battery cell group is located.
  • the first section 241 can be bent relative to the second section 242 so that the first section 241 is perpendicular to the second section 242 ;
  • the third section 243 can be bent relative to the second section 242 so that the third section 243 is perpendicular to the second section 242 .
  • the first section 241 is perpendicular to the second section 242, and/or the third section 243 is perpendicular to the second section 242, which has a simple structure and is easy to manufacture.
  • Figure 8 is a schematic diagram of the structure of the output pole and the end plate provided in some embodiments of the present application
  • Figure 9 is a partial enlarged view of B in Figure 8
  • Figure 10 is a partial schematic diagram of the matching state of the output pole and the end plate provided in some embodiments of the present application.
  • a first groove 223 is provided on a side of the end plate 22 facing the battery cell group, and at least a portion of the second section 242 is provided in the first groove 223.
  • the first groove 223 is a concave structure provided on the side of the end plate 22 facing the battery cell group. A local area of the side of the end plate 22 facing the battery cell group is concave in a direction away from the battery cell group to form the first groove 223 .
  • a portion of the second section 242 may be disposed in the first groove 223 , and another portion of the second section 242 may be disposed outside the first groove 223 ; or, the entire second section 242 may be disposed in the first groove 223 .
  • the second section 242 is disposed in the first groove 223 , so as to rationally utilize the assembly space and reduce space occupation, so that the battery module 20 has a compact structure.
  • the groove bottom surface 223 a of the first groove 223 may be perpendicular to the first direction X.
  • the second section 242 is parallel to the groove bottom surface 223 a of the first groove 223 .
  • the second section 242 may be a plate-shaped structure with a simple structure.
  • the second section 242 is parallel to the groove bottom surface 223a of the first groove 223, and the surface of the second section 242 with a larger area can be parallel to the groove bottom surface 223a of the first groove 223.
  • the plane formed by the length direction and the width direction of the second section 242 can be parallel to the groove bottom surface 223a of the first groove 223, that is, the length direction and the width direction of the second section 242 can be parallel to the groove bottom surface 223a of the first groove 223, respectively.
  • the second section 242 is parallel to the groove bottom surface 223a of the first groove 223, which facilitates the assembly of the second section 242 and the end plate 22, and the assembly efficiency of the second section 242 and the end plate 22 is high.
  • a first gap Q1 is provided between the second segment 242 and the groove bottom surface 223 a of the first groove 223 .
  • the second section 242 has a second surface facing the groove bottom surface 223a of the first groove 223.
  • the first gap Q1 can be the minimum distance between the second surface and the groove bottom surface 223a of the first groove 223; when the second surface is parallel to the groove bottom surface 223a of the first groove 223, the first gap Q1 is the distance between the second surface and the first groove 223 in the first direction X.
  • the size of the first gap Q1 is C, satisfying 1 mm ⁇ C ⁇ 5 mm.
  • the dimension C of the first gap Q1 is the dimension of the first gap Q1 in the first direction X.
  • a dimension C of the first gap Q1 may be 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm or 5 mm.
  • the size C of the first gap Q1 satisfies 1mm ⁇ C ⁇ 5mm, which can reduce the risk of interference between the second section 242 and the bottom surface 223a of the first groove 223 and occupy a smaller assembly space; if the first gap Q1 is too small (such as less than 1mm), it is easy to cause interference between the second section 242 and the bottom surface 223a of the first groove 223; if the first gap Q1 is too large (such as greater than 5mm), the output pole 24 and the end plate 22 will occupy a larger assembly space after assembly, resulting in space waste.
  • the dimension C of the first gap Q1 may be 2.5 mm, 2.75 mm, 3 mm, 3.25 mm or 3.5 mm.
  • the first groove 223 extends along the second direction
  • the fixing seat 23 is arranged at one end of the first groove 223 along the second direction
  • the second direction intersects with the first direction X.
  • the second direction can be parallel to the direction indicated by the letter Z, that is, the second direction can be perpendicular to the first direction X.
  • the first groove 223 extends along the second direction, and the first groove 223 may extend from an edge of one end of the end plate 22 located in the second direction toward the other end; or, the first groove 223 may extend along the second direction from between the two ends of the end plate 22 located in the second direction.
  • the first groove 223 extends from an edge of one end of the end plate 22 located in the second direction toward the other end, which is convenient for processing and manufacturing.
  • the fixing seat 23 is disposed at one end of the first groove 223 along the second direction. In a plane perpendicular to the second direction, the projection of the fixing seat 23 does not fall into the first groove 223 .
  • the fixing seat 23 is disposed at one end of the first groove 223 along the second direction, which is convenient for processing and manufacturing.
  • the end plate 22 includes an end plate body 221 and an extension portion 222.
  • the extension portion 222 extends from one end of the end plate body 221 along the third direction.
  • the thickness of the extension portion 222 is less than the thickness of the end plate body 221 to form a first groove 223 on the side of the end plate 22 away from the first surface 224.
  • the fixing seat 23 is arranged at one end of the extension portion 222 along the second direction.
  • the third direction, the second direction and the first direction X intersect each other.
  • the third direction, the second direction, and the first direction X may intersect in various forms.
  • the third direction may be perpendicular to the second direction, and the third direction and the second direction may not be perpendicular to the first direction X; or, the third direction may be perpendicular to the first direction X, and the third direction and the first direction X may not be perpendicular to the second direction; or, the second direction may be perpendicular to the first direction X, and the second direction and the first direction X may not be perpendicular to the third direction; or, the third direction, the second direction, and the first direction X are perpendicular to each other.
  • the third direction, the second direction and the first direction X are perpendicular to each other.
  • the third direction may be parallel to the direction indicated by the letter Y.
  • the second direction and the third direction may both be parallel to the groove bottom surface 223 a of the first groove 223 .
  • the end plate body 221 and the extension portion 222 are two components that constitute the end plate 22.
  • the extension portion 222 extends from one end of the end plate body 221 along the third direction.
  • the extension portion 222 and the end plate body 221 can be integrally formed, for example, the extension portion 222 and the end plate body 221 can be integrally injection molded; or, a first groove 223 is thinned out at one end of the end plate 22 along the third direction so that the end plate 22 is divided into the end plate body 221 and the extension portion 222.
  • the end plate body 221 may be a portion of the end plate 22 with a relatively thick thickness
  • the extension portion 222 may be a portion of the end plate 22 with a relatively thin thickness
  • the thickness direction of the end plate 22 may be parallel to the first direction X
  • the thickness of the extension portion 222 may be the dimension of the extension portion 222 in the first direction X
  • the thickness of the end plate body 221 may be the dimension of the end plate body 221 in the first direction X.
  • the extension portion 222 is connected to the end plate body 221 to form a first groove 223, which has a simple structure and is easy to process and manufacture; since the thickness of the extension portion 222 is smaller than the thickness of the end plate body 221, the fixing seat 23 is arranged at one end of the extension portion 222 along the second direction, and the thickness of the end plate body 221 can be smaller to reduce the space occupied by the end plate 22 in the first direction X.
  • the surface of the connection between the end plate body 221 and the extension portion 222 located in the first groove 223 may be an arc surface.
  • the end plate body 221 extends beyond the end of the extension portion 222 where the fixing seat 23 is disposed.
  • the end plate body 221 extends beyond one end of the extending portion 222 where the fixing seat 23 is disposed along the second direction, and the end plate body 221 and the fixing seat 23 have a partial overlapping area in the second direction.
  • the end plate body 221 extends beyond the end of the extension portion 222 provided with the fixing seat 23 in the second direction, so that the structure after the fixing seat 23 and the extension portion 222 are matched takes up less space in the second direction, thereby reducing the space occupied by the battery module 20 in the second direction.
  • a side of the extension portion 222 facing away from the battery cell group is coplanar with a side of the end plate body 221 facing away from the battery cell group.
  • the side of the extension 222 facing away from the battery cell group is coplanar with the side of the end plate body 221 facing away from the battery cell group, which means that the surface of the extension 222 facing away from the battery cell group is coplanar with the surface of the end plate body 221 facing away from the battery cell group.
  • the surface of the extension portion 222 on the side facing away from the battery cell group is coplanar with the surface of the end plate body 221 on the side facing away from the battery cell group, that is, the surface of the end plate 22 on the side facing away from the battery cell group is flat, which facilitates the coordination of the battery module 20 with other components.
  • the housing 211 also has a second wall 2112 arranged opposite to the first wall 2111.
  • the first area of the edge of the second wall 2112 is recessed to form a second groove 2113, and the second groove 2113 is used to accommodate the electrode terminal 212 of the battery cell 21 adjacent to the second wall 2112.
  • the second wall 2112 is disposed opposite to the first wall 2111 along the first direction X.
  • the first region is an edge region of the second wall 2112, and along the first direction X, the first region corresponds to a region of the first wall 2111 where the electrode terminal 212 is installed.
  • the first region is recessed toward the first wall 2111 along the first direction X to form a second groove 2113.
  • the depth of the second groove 2113 is greater than the height of the electrode terminal 212 protruding from the first wall 2111. It is understandable that the electrode terminal 212 of the battery cell 21 adjacent to the second wall 2112 may also be only partially accommodated in the second groove 2113.
  • the surface of the second wall 2112 may be provided with an insulating structure, so that when a plurality of battery cells 21 are stacked, the second wall 2112 is insulated and isolated from the electrode terminal 212 of the adjacent battery cell 21.
  • the insulating structure may also be provided on the surface of the electrode terminal 212 away from the first wall 2111, so that when a plurality of battery cells 21 are stacked, the electrode terminal 212 may be insulated and isolated from the second wall 2112 of the battery cell 21 adjacent to the first wall 2111.
  • the second groove 2113 can accommodate the electrode terminal 212 of the battery cell 21 adjacent to the second wall 2112, and reasonably utilize the assembly space, so that the battery module 20 has a compact structure and a higher energy density.
  • the housing 211 has a first wall 2111 and a second wall 2112 relatively arranged along a first direction X, a third wall (not shown in the figure) and a fourth wall (not shown in the figure) relatively arranged along the second direction, and a fifth wall (not shown in the figure) and a sixth wall (not shown in the figure) relatively arranged along a third direction
  • the area of the third wall and the area of the fourth wall are both smaller than the area of the first wall 2111
  • the area of the third wall and the area of the fourth wall are both smaller than the area of the second wall 2112
  • the area of the fifth wall and the area of the sixth wall are both smaller than the area of the first wall 2111
  • the area of the fifth wall and the area of the sixth wall are both smaller than the area of the first wall 2111
  • the area of the fifth wall and the area of the sixth wall are both smaller than the area of the first wall 2111
  • the area of the fifth wall and the area of the sixth wall are both smaller than the area of the first wall 2111
  • the third direction, the second direction, and the first direction X may intersect in various forms.
  • the third direction may be perpendicular to the second direction, and the third direction and the second direction may not be perpendicular to the first direction; or the third direction may be perpendicular to the first direction, and the third direction and the first direction may not be perpendicular to the second direction; or the second direction may be perpendicular to the first direction X, and the second direction and the first direction X may not be perpendicular to the third direction; or the third direction, the second direction, and the first direction X may be perpendicular to each other.
  • the third direction, the second direction, and the first direction X are perpendicular to each other.
  • the first wall 2111 , the second wall 2112 , the third wall, the fourth wall, the fifth wall and the sixth wall are walls constituting the outer shell 211 , and these walls may enclose a space for accommodating the electrode assembly.
  • the first wall 2111 and the second wall 2112 are walls with larger areas of the housing 211 , and the first wall 2111 is perpendicular to the first direction X, so that the battery cell group structure is compact, and the battery module 20 has a higher energy density.
  • Figure 11 is a schematic diagram of the structure of the battery provided in some embodiments of the present application.
  • the second sub-box is not shown in Figure 11;
  • Figure 12 is a schematic diagram of the assembly of the fixing seat and the partition beam provided in some embodiments of the present application, and
  • Figure 12 is a schematic diagram of the partial structure of Figure 11.
  • the battery 100 further includes a partition beam 30, which is disposed in the box 10. Along the first direction X, the end plate 22 is located between the battery cell group and the partition beam 30, and the fixing seat 23 is disposed on the partition beam 30.
  • the partition beam 30 is a component disposed in the box body 10.
  • the partition beam 30 is used to separate the box body 10 into multiple spaces, and the multiple spaces can respectively accommodate battery cell groups and other components (such as wiring harnesses, etc.).
  • the partition beam 30 is disposed in the box body 10, which can also improve the overall strength of the box body 10.
  • the partition beam 30 and the battery module 20 may be arranged in various positions in the box body 10, and different positions may be arranged according to different requirements.
  • the partition beam 30 may be located on one side of the battery module 20 along the first direction X, or, along the first direction X, the battery modules 20 may be arranged on both sides of the partition beam 30.
  • the material of the partition beam 30 may be the same as or different from the material of the box body 10.
  • the partition beam 30 may be made of aluminum, aluminum alloy, stainless steel, etc., and has high strength.
  • the end plate 22 is located between the battery cell group and the partition beam 30, so as to achieve isolation between the battery cell group and the partition beam 30 and reduce the risk of short circuit between the battery cell group and the partition beam 30; the fixing seat 23 is arranged on the partition beam 30.
  • the end plate 22 can make the end plate 22 have a thinner thickness, reduce the space occupied by the end plate 22 in the first direction X, improve the space utilization rate in the box body 10, and make the battery 100 have a higher energy density.
  • it is convenient to position and support the fixing seat 23.
  • the box body 10 includes a bottom wall 111 and a side wall 112.
  • the side wall 112 is arranged around the bottom wall 111.
  • the partition beam 30 is arranged on the bottom wall 111.
  • the partition beam 30 extends along a third direction. The third direction, the thickness direction of the bottom wall 111 and the first direction X intersect each other.
  • the third direction, the thickness direction of the bottom wall 111, and the first direction X may intersect in various ways.
  • the third direction is perpendicular to the thickness direction of the bottom wall 111, and the third direction and the thickness direction of the bottom wall 111 are not perpendicular to the first direction X; or, the third direction is perpendicular to the first direction X, and the third direction and the first direction X are not perpendicular to the thickness direction of the bottom wall 111; or, the thickness direction of the bottom wall 111 may be perpendicular to the first direction X, and the thickness direction of the bottom wall 111 and the first direction X may not be perpendicular to the third direction; or, the third direction, the thickness direction of the bottom wall 111, and the first direction X are perpendicular to each other.
  • the third direction, the thickness direction of the bottom wall 111 and the first direction X are perpendicular to each other, the third direction may be parallel to the direction indicated by the letter Y, and the thickness direction of the bottom wall 111 may be parallel to the direction indicated by the letter Z.
  • the third direction may be the width direction of the box body 10, or the third direction may be the length direction of the box body 10.
  • the third direction, the thickness direction of the bottom wall 111, and the first direction X are perpendicular to each other.
  • the side wall 112 and the bottom wall 111 enclose a space for accommodating a battery cell group, and the partition beam 30 is disposed in the space.
  • the side wall 112 may be disposed at the edge of the bottom wall 111 so that the space enclosed by the side wall 112 and the bottom wall 111 has a larger capacity.
  • the side wall 112 and the bottom wall 111 may be connected in various ways.
  • the side wall 112 and the bottom wall 111 may be integrally formed, such as being extruded from aluminum; or, the side wall 112 and the bottom wall 111 may be separately provided and connected by welding.
  • the partition beam 30 is disposed on the bottom wall 111, and the partition beam 30 can be welded to the bottom wall 111 to ensure a stable connection between the partition beam 30 and the bottom wall 111.
  • the material of the partition beam 30 can be the same as that of the bottom wall 111 to facilitate welding of the partition beam 30 and the bottom wall 111.
  • the partition beam 30 extends along the third direction.
  • the dimension of the partition beam 30 in the third direction is larger than the dimensions of the partition beam 30 in other directions.
  • the length direction of the partition beam 30 may be parallel to the third direction; the thickness direction of the partition beam 30 may be parallel to the first direction X.
  • the two opposite ends of the partition beam 30 along the third direction can be connected to the side wall 112 respectively, so that the connection area between the partition beam 30 and the box body 10 is large, and the connection between the partition beam 30 and the box body 10 is stable.
  • the two ends of the partition beam 30 can be welded to the side wall 112, so that the partition beam 30 and the side wall 112 are firmly connected, thereby improving the overall strength of the box body 10.
  • the side wall 112 and the bottom wall 111 define a space for accommodating a battery cell group
  • the partition beam 30 is arranged on the bottom wall 111, so that the partition beam 30 is stably connected to the box body 10, so that the fixing seat 23 is fixed to the partition beam 30;
  • the partition beam 30 extends along the third direction, and the size of the partition beam 30 in the first direction X can be smaller, reducing the space occupied by the partition beam 30 in the first direction X, so that the space utilization rate in the box body 10 is higher.
  • the partition beam 30 includes a top surface 31 away from the bottom wall 111.
  • the partition beam 30 is provided with a third groove 32 recessed from the top surface 31 toward the bottom wall 111. At least a portion of the fixing seat 23 is disposed in the third groove 32.
  • the top surface 31 is the surface of the partition beam 30 away from the bottom wall 111.
  • the partition beam 30 also includes a bottom surface facing the bottom wall 111 (not shown in the figure).
  • the bottom surface and the top surface 31 are arranged opposite to each other along the thickness direction of the bottom wall 111.
  • the bottom surface can contact the bottom wall 111 so that the bottom wall 111 has a better supporting effect on the partition beam 30.
  • the third groove 32 is a groove formed by being recessed from the top surface 31 toward the bottom wall 111, and the groove depth direction of the third groove 32 is directed from the top surface 31 to the bottom wall 111.
  • the profile of the third groove 32 is similar to that of the fixing seat 23, so that at least a portion of the fixing seat 23 can be accommodated in the third groove 32.
  • the assembly method of the fixing seat 23 and the third groove 32 can be selected according to actual conditions.
  • a part of the fixing seat 23 can be disposed in the third groove 32 , or the entire fixing seat 23 can be disposed in the third groove 32 .
  • the third groove 32 provides a space for accommodating the fixing seat 23, and at least a portion of the fixing seat 23 is arranged in the third groove 32, which can reduce the space occupied by the fixing seat 23 and the partition beam 30 in the thickness direction of the bottom wall 111 after being assembled, and reduce the influence of the fixing seat 23 on the space utilization in the box body 10, so that the battery 100 has a higher energy density.
  • the fixing seat 23 does not protrude from the top surface 31 .
  • the fixing seat 23 does not protrude from the top surface 31 means that, in the thickness direction of the bottom wall 111, the fixing seat 23 does not protrude from the top surface 31. Specifically, when the fixing seat 23 is assembled with the partition beam 30, the entirety of the fixing seat 23 is located in the third groove 32, and the surface of the fixing seat 23 away from the bottom wall 111 is lower than the top surface 31, or, the surface of the fixing seat 23 away from the bottom wall 111 is coplanar with the top surface 31.
  • the fixing seat 23 does not protrude from the top surface 31 . After the fixing seat 23 is installed on the partition beam 30 , it does not occupy additional space in the thickness direction of the bottom wall 111 , thereby reducing the impact on the energy density of the battery 100 .
  • the fixing seat 23 is in contact with the bottom surface 32 a of the third groove 32 .
  • the fixing seat 23 has a surface facing the groove bottom surface 32 a of the third groove 32 , and the surface is in contact with the groove bottom surface 32 a of the third groove 32 .
  • the fixing seat 23 contacts the groove bottom surface 32 a of the third groove 32 , so that the groove bottom surface 32 a of the third groove 32 supports the fixing seat 23 , thereby facilitating the positioning and assembly of the fixing seat 23 and the partition beam 30 .
  • battery modules 20 are arranged on both sides of the partition beam 30 along the first direction X, and the battery 100 further includes a busbar 40, which connects the output poles 24 of the two battery modules 20 located on both sides of the partition beam 30.
  • the battery modules 20 are disposed on both sides of the partition beam 30 along the first direction X.
  • one battery module 20 is disposed on each side of the partition beam 30 along the first direction X.
  • the two battery modules 20 are disposed adjacent to the partition beam 30 .
  • the busbar 40 is a conductive member, and is used to realize the electrical connection of the output electrodes 24 of the two battery modules 20 on both sides of the partition beam 30.
  • the busbar 40 may be made of copper, aluminum, or the like.
  • the electrical connection of the output poles 24 of the two battery modules 20 located on both sides of the partition beam 30 is achieved through the busbar 40, which is convenient for assembly.
  • the fixing seats 23 of the two battery modules 20 are arranged along the first direction X.
  • the two battery modules 20 are arranged adjacent to the partition beam 30, and the fixing seat 23 of each battery module 20 is located on the side of the battery module 20 facing the partition beam 30.
  • the fixing seats 23 of the two battery modules 20 are arranged along the first direction X.
  • the two fixing seats 23 are arranged opposite to each other, so that there is a small distance between the two fixing seats 23, which is convenient for the connection between the busbar 40 and the output pole 24 fixed to the fixing seat 23.
  • the fixing seats 23 of the two battery modules 20 are arranged along the first direction X, which facilitates the connection between the busbar 40 and the output poles 24 of the two battery modules 20 and facilitates assembly.
  • the fixing seats 23 of the two battery modules 20 are provided with a evacuation portion 231 on the side close to each other, and the evacuation portion 231 is used to evade the busbar 40.
  • the escape portion 231 may be a recessed portion provided on a side of the fixing seat 23 close to another fixing seat 23 , and a portion of the current collector 40 may be accommodated in the recessed portion.
  • the avoidance portion 231 may be disposed at an edge of the fixing base 23 at one end away from the bottom wall 111 , which is convenient for processing and manufacturing on the one hand, and convenient for assembling the current collector 40 and the fixing base 23 on the other hand.
  • the avoidance portion 231 avoids the busbar 40 , so that the busbar 40 and the fixing seat 23 have a compact structure and reduce space occupation.
  • the busbar 40 includes a bending portion 41 and two connecting portions 42.
  • the two connecting portions 42 are respectively connected to the output poles 24 of two battery modules 20 (see Figure 11).
  • the bending portion 41 connects the two connecting portions 42.
  • the bending portion 41 connects two connecting portions 42 , and the two connecting portions 42 may be located at opposite ends of the bending portion 41 .
  • the bending portion 41 and the two connecting portions 42 may be integrally formed, for example, the bending portion 41 and the two connecting portions 42 may be stamped.
  • the bending portion 41 is a portion of the busbar 40 having a bending structure, and the bending portion 41 may protrude from one side of the busbar 40 to the other side along the thickness direction of the busbar 40.
  • the busbar 40 may be a plate, and a local area between two ends of the plate is bent to form the bending portion 41.
  • the thickness direction of the busbar 40 may be parallel to the direction indicated by the letter Z.
  • the connecting portion 42 is a portion of the busbar 40 used to connect to the output pole 24 . During assembly, the connecting portion 42 is connected to the output pole 24 of the corresponding battery module 20 to achieve electrical connection between the busbar 40 and the output pole 24 .
  • the bending portion 41 can absorb the stress on the busbar 40, reducing the probability of the connection portion 42 moving relative to the output pole 24, so that the connection portion 42 is reliably connected to the output pole 24 of the corresponding battery module 20.
  • two connecting portions 42 can be arranged at both ends of the length direction of the busbar 40, and the bending portion 41 is located between the two connecting portions 42.
  • the bending portion 41 penetrates the busbar 40 along the width direction of the busbar 40.
  • the length direction of the busbar 40 is parallel to the first direction X (see Figure 11), and the width direction of the busbar 40 is parallel to the third direction.
  • the output pole 24 includes a first connecting hole 2431
  • the busbar 40 includes two through holes 421
  • the two through holes 421 are respectively arranged to correspond to the first connecting holes 2431 of the two output poles 24 of the two battery modules 20 located on both sides of the partition beam 30, and the battery 100 also includes a fastener 50
  • the busbar 40 is connected to the output pole 24 of the corresponding battery module 20 through the fastener 50 inserted in the through hole 421 and the first connecting hole 2431.
  • the first connection hole 2431 may be a threaded hole or a through hole, and the first connection hole 2431 is used for inserting the fastener 50 .
  • the through hole 421 is disposed corresponding to the first connection hole 2431 , and the fastener 50 can be inserted into the through hole 421 and the first connection hole 2431 corresponding to the through hole 421 to fix the busbar 40 to the output pole 24 of the corresponding battery module 20 .
  • the busbar 40 is connected to the output pole 24 of the corresponding battery module 20 by the fastener 50, which is simple to operate and convenient to assemble.
  • FIG. 15 is a cross-sectional view of a battery provided in some embodiments of the present application
  • FIG. 16 is a partial enlarged view of F in FIG. 15
  • FIG. 17 is a partial enlarged view of G in FIG. 16 .
  • the battery 100 further includes a nut 60 , which is fixed to the side of the output pole 24 facing the fixing seat 23 , the threaded hole of the nut 60 is arranged corresponding to the first connection hole 2431 , the fixing seat 23 is provided with a second connection hole 232 , at least a portion of the nut 60 is located in the second connection hole 232 and is clearance-matched with the second connection hole 232 , and the fastener 50 (see FIG. 13 ) is inserted in the through hole 421 and the first connection hole 2431 and is threadedly connected to the nut 60 .
  • the first connection hole 2431 may be a through hole.
  • the nut 60 is fixed to the output pole 24 .
  • the nut 60 may be welded to the output pole 24 , or the nut 60 may be riveted to the output pole 24 .
  • the threaded hole of the nut 60 is arranged corresponding to the first connection hole 2431, so that the fastener 50 can be inserted into the first connection hole 2431 and threadedly connected with the nut 60.
  • the threaded hole of the nut 60 can be coaxially arranged with the first connection hole 2431, or the central axis of the threaded hole of the nut 60 can also be eccentrically arranged with the central axis of the first connection hole 2431, as long as it is ensured that the fastener 50 can be inserted into the first connection hole 2431 and the threaded hole of the nut 60 and threadedly connected with the nut 60.
  • the second connection hole 232 is a hole provided in the fixing seat 23 for cooperating with the nut 60.
  • the nut 60 is fixed to the side of the output pole 24 facing the fixing seat 23, so that the nut 60 cooperates with the second connection hole 232.
  • a part of the nut 60 is located in the second connection hole 232, and another part of the nut 60 is located outside the second connection hole 232; or, the whole nut 60 is located in the second connection hole 232.
  • the nut 60 is loosely fitted with the second connecting hole 232 . After the nut 60 is disposed in the second connecting hole 232 , the nut 60 can move relative to the fixing seat 23 in a plane perpendicular to the central axis of the second connecting hole 232 .
  • the fastener 50 is threadedly connected to the nut 60, which is convenient for assembly. Since the nut 60 and the second connecting hole 232 are clearance-matched, during the assembly process, the position of the nut 60 in the second connecting hole 232 can be adjusted according to actual conditions to absorb processing errors, thereby facilitating the assembly of the busbar 40, the output pole 24 and the fixing seat 23.
  • the diameter of the second connecting hole 232 is D1
  • the outer diameter of the nut 60 is D2 , satisfying 2 mm ⁇ D1 - D2 ⁇ 8 mm.
  • the outer diameter of the nut 60 refers to the diameter of the circumscribed circle of the nut 60, or, when the outer contour of the nut 60 is circular, the diameter of the outer contour.
  • the outer diameter of the nut 60 refers to the diameter of the circumscribed circle of the nut 60; when the nut 60 is a circular nut, the outer diameter of the nut 60 refers to the diameter of the outer contour of the nut 60.
  • the nut 60 is a circular nut
  • the second connecting hole 232 is a circular hole
  • D1-D2 can be 2mm, 2.5mm, 3mm, 3.5mm, 4mm, 4.5mm, 5mm, 5.5mm, 6mm, 6.5mm, 7mm, 7.5mm, or 8mm.
  • the diameter D1 of the second connecting hole 232 is larger than the outer diameter D2 of the nut 60, and the difference between the diameter D1 of the second connecting hole 232 and the outer diameter D2 of the nut 60 satisfies 2mm ⁇ D1-D2 ⁇ 8mm, which is convenient for absorbing processing errors and making the busbar 40 and the output pole 24 accurately assembled; if D1-D2 is smaller (such as less than 2mm), it is easy to cause the assembly interference between the nut 60 and the fixing seat 23; if D1-D2 is larger (such as greater than 8mm), it is easy to cause the assembly looseness of the nut 60 and the fixing seat 23.
  • 4mm ⁇ D1-D2 ⁇ 6mm 4mm ⁇ D1-D2 ⁇ 6mm.
  • D1-D2 may be 4 mm, 4.25 mm, 4.5 mm, 4.75 mm, 5 mm, 5.25 mm, 5.5 mm, 5.75 mm or 6 mm.
  • one of the two through holes 421 is a long hole extending along the first direction X.
  • the elongated hole refers to a hole formed by extending a circular hole along the first direction X.
  • the arrangement of the long holes is to absorb the processing error, so that the busbar 40 and the output poles 24 of the two battery modules 20 can be assembled accurately.
  • the two through holes 421 may both be long holes extending along the first direction X.
  • the present application further provides an electric device, which includes the battery 100 provided by any of the above embodiments, and the battery 100 provides electrical energy for the electric device.
  • the electrical equipment may be any of the above-mentioned devices or systems using the battery 100 .
  • the present application provides a battery 100 , which includes a box body 10 , a battery module 20 , a partition beam 30 , a busbar 40 , and a fastener 50 .
  • the box body 10 is in a rectangular parallelepiped shape, and includes a first sub-box body 11 and a second sub-box body 12.
  • the first sub-box body 11 includes a bottom wall 111 and a side wall 112.
  • the side wall 112 is arranged around the bottom wall 111.
  • the thickness direction of the bottom wall 111 is perpendicular to the first direction X.
  • the second sub-box body 12 is arranged on the side of the side wall 112 away from the bottom wall 111.
  • the first sub-box body 11 and the second sub-box body 12 are buckled to form a storage space.
  • the battery module 20 and the partition beam 30 are both arranged in the storage space.
  • the partition beam 30 is disposed on the bottom wall 111, and the partition beam 30 extends along the third direction, and both ends of the partition beam 30 are respectively connected to the side walls 112.
  • the partition beam 30 includes a top surface 31 away from the bottom wall 111, and the partition beam 30 is provided with a third groove 32 recessed from the top surface 31 toward the bottom wall 111.
  • Battery modules 20 are disposed on both sides of the partition beam 30 along the first direction X.
  • the battery module 20 includes a battery cell group, an end plate 22, a fixing seat 23 and an output pole 24.
  • the battery cell group includes a plurality of battery cells 21 stacked along a first direction X, and the end plate 22 is disposed on one side of the battery cell group along the first direction X.
  • the end plate 22 includes a first surface 224 facing away from the battery cell group, and the fixing seat 23 is connected to the end plate 22 and protrudes from the first surface 224.
  • the output pole 24 is used to output the electric energy of the battery cell group.
  • the battery cell 21 includes a shell 211 and an electrode terminal 212.
  • the shell 211 has a first wall 2111 facing the end plate 22 and a second wall 2112 away from the end plate 22.
  • the first wall 2111 and the second wall 2112 are arranged opposite to each other along the first direction X.
  • the electrode terminal 212 is installed on the first wall 2111.
  • the electrode terminal 212 has a first side surface 2121.
  • the plane where the first side surface 2121 is located is perpendicular to the first wall 2111.
  • the first area of the edge of the second wall 2112 is sunken to form a second groove 2113.
  • the second groove 2113 is used to accommodate the electrode terminal 212 of the battery cell 21 adjacent to the second wall 2112.
  • the end plate 22 includes an end plate body 221 and an extension portion 222, wherein the extension portion 222 extends from one end of the end plate body 221 along the third direction, and the thickness of the extension portion 222 is less than the thickness of the end plate body 221 to form a first groove 223 on the side of the end plate 22 away from the first surface 224, and the first groove 223 extends along the second direction.
  • the fixing seat 23 is disposed at one end of the first groove 223 away from the bottom wall 111 along the second direction, and the second direction is parallel to the thickness direction of the bottom wall 111. A portion of the fixing seat 23 is disposed in the third groove 32, and the fixing seat 23 contacts the groove bottom surface 32a of the third groove 32.
  • the output pole 24 includes a first section 241, a second section 242 and a third section 243.
  • the second section 242 connects the first section 241 and the third section 243.
  • the first section 241 extends from one end of the second section 242 in the width direction
  • the third section 243 extends from one end of the second section 242 in the length direction.
  • the first section 241 is perpendicular to the second section 242, and the third section 243 is perpendicular to the second section 242.
  • the width direction of the second section 242 is parallel to the third direction, and the length direction, the second direction and the thickness direction of the bottom wall 111 of the second section 242 are parallel to each other.
  • the first section 241 is connected to the first side surface 2121 of the electrode terminal 212 of a battery cell 21 closest to the end plate 22 in the battery cell group, and the third section 243 is provided with a first connection hole 2431.
  • the nut 60 is fixed to the third section 243 of the output pole 24 .
  • the threaded hole of the nut 60 is arranged corresponding to the first connection hole 2431 .
  • the fixing seat 23 is provided with a second connection hole 232 .
  • a part of the nut 60 is located in the second connection hole 232 and is loosely matched with the second connection hole 232 .
  • the busbar 40 includes a bending portion and two connecting portions 42 , wherein the bending portion connects the two connecting portions 42 , each connecting portion 42 is provided with a through hole 421 , and the two through holes 421 are respectively provided corresponding to the first connecting holes 2431 of the two output poles 24 of the two battery modules 20 located on both sides of the partition beam 30 .
  • each fastener 50 is provided corresponding to a through hole 421 ; the fastener 50 is inserted into the through hole 421 and the first connecting hole 2431 and is threadedly connected with the nut 60 to fix the busbar 40 to the corresponding output pole 24 .
  • the fixing seat 23 is arranged on the end plate 22 and protrudes from the first surface 224 of the end plate 22 facing away from the battery cell group.
  • the fixing seat 23 is arranged in the third groove 32 of the partition beam 30.
  • the fixing seat 23 is assembled with the partition beam 30 so that the thickness of the end plate 22 can be thinner, so as to reduce the space occupied by the end plate 22 in the first direction X, thereby improving the space utilization in the box body 10, so that the battery 100 has a higher energy density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池模组、电池及用电设备,属于电池技术领域。该电池模组包括电池单体组、端板、固定座及输出极;电池单体组包括沿第一方向层叠设置的多个电池单体;端板设置于电池单体组的沿第一方向的一侧,端板包括背离电池单体组的第一表面;固定座连接于端板且凸出于第一表面;输出极的一端与电池单体组电连接,输出极的另一端固定于固定座。由该电池模组构成的电池具有较高的能量密度。

Description

电池模组、电池及用电设备 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池模组、电池及用电设备。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的安全性外,能量密度也是一个不可忽视的问题。因此,如何提高电池的能量密度,是电池技术一个亟需解决的技术问题。
发明内容
本申请的目的在于提供一种电池模组、电池及用电设备,由该电池模组构成的电池具有较高的能量密度。
本申请是通过如下技术方案实现的:
第一方面,本申请提供了一种电池模组,该电池模组包括电池单体组、端板、固定座及输出极;电池单体组包括沿第一方向层叠设置的多个电池单体;端板设置于电池单体组的沿第一方向的一侧,端板包括背离电池单体组的第一表面;固定座连接于端板且凸出于第一表面;输出极的一端与电池单体组电连接,输出极的另一端固定于固定座。
根据本申请实施例的电池模组,固定座连接于端板且凸出于端板的背离电池单体组的第一表面,使得端板的厚度可以较薄,以减少电池模组占用的装配空间,进而使得由该电池模组构成的电池具有较高的能量密度。
根据本申请的一些实施例,固定座与端板一体成型。
在上述方案中,固定座与端板能够同步制造,便于加工,降低制造难度。
根据本申请的一些实施例,电池单体包括外壳和电极端子,外壳具有面向端板的第一壁,电极端子安装于第一壁,电极端子具有第一侧面,第一侧面所在平面与第一壁相交,输出极连接于电池单体组中最靠近端板的一个电池单体的电极端子的第一侧面。
在上述方案中,电极端子设置于外壳的面向端板的第一壁,以便于实现输出极与电池单体组的电连接。
根据本申请的一些实施例,输出极包括第一段、第二段和第三段,第一段连接于电池单体组中最靠近端板的一个电池单体的电极端子的第一侧面,第三段固定于固定座,第二段连接第一段和第三段。
在上述方案中,第一段连接于电池单体组中最靠近端板的一个电池单体的电极端子的第一侧面,使得第一段在第一方向上的尺寸可以较小,以便于实现输出极与电池单体组的电连接;第三段固定于固定座,以便于实现输出极与固定座的装配。
根据本申请的一些实施例,第一段从第二段的宽度方向的一端延伸出,第三段从第二段的长度方向的一端延伸出,第二段的宽度方向、第二段的长度方向与第一方向两两相交。
在上述方案中,第一段从第二段的宽度方向的一端延伸出,便于实现第一段与电池单体组连接;第三段从第二段的长度方向的一端延伸出,合理利用装配空间,便于装配。
根据本申请的一些实施例,第一段与第二段垂直,和/或第三段与第二段垂直。
在上述方案中,第一段与第二段垂直,和/或第三段与第二段垂直,结构简单,便于加工制造。
根据本申请的一些实施例,端板的面向电池单体组的一侧设置有第一凹槽,第二段的至少一部分设置于第一凹槽内。
在上述方案中,第二段的至少一部分设置于第一凹槽内,合理利用装配空间,减少空间占用,以使得电池模组结构紧凑。
根据本申请的一些实施例,第二段与第一凹槽的槽底面平行。
在上述方案中,第二段与第一凹槽的槽底面平行,便于实现第二段与端板的装配,第二段与端板的装配效率较高。
根据本申请的一些实施例,沿第一方向,第二段与第一凹槽的槽底面之间具有第一间隙。
在上述方案中,第二段与第一凹槽的槽底面之间具有第一间隙,便于第二段与端板的装配,降低第二段与第一凹槽的槽底面干涉的风险。
根据本申请的一些实施例,第一间隙的尺寸为C,满足,1mm≤C≤5mm。
在上述方案中,第一间隙的尺寸满足上述范围,既能够降低第二段与第一凹槽的槽底面干涉的风险,还能够占用较小的装配空间;如果第一间隙过小,则容易引起第二段与第一凹槽的槽底面之间的干涉;固若第一间隙过大,则使得输出极与端板装配后占用较大的装配空间,造成空间浪费。
根据本申请的一些实施例,2.5mm≤C≤3.5mm。
在上述方案中,相较于1mm≤C≤5mm,当2.5mm≤C≤3.5mm时,进一步降低第二段与第一凹槽的槽底面干涉的风险,占用的装配空间较小。
根据本申请的一些实施例,第一凹槽沿第二方向延伸,固定座设置于第一凹槽的沿第二方向的一端,第二方向与第一方向相交。
在上述方案中,固定座设置于第一凹槽的沿第二方向的一端,便于加工制造。
根据本申请的一些实施例,端板包括端板本体和延伸部,延伸部从端板本体的沿第三方向的一端延伸出,延伸部的厚度小于端板本体的厚度,以在端板的背离第一表面的一侧形成第一凹槽,固定座设置于延伸部沿第二方向的一端,第三方向、第二方向及第一方向两两相交。
在上述方案中,延伸部与端板本体连接形成第一凹槽,结构简单,便于加工制造;由于延伸部的厚度小于端板本体的厚度,固定座设置于延伸部沿第二方向的一端,端板本体的厚度可以较小,以减少端板在第一方向上的空间占用。
根据本申请的一些实施例,沿第二方向,端板本体超出延伸部的设置有固定座的一端。
在上述方案中,端板本体沿第二方向超出延伸部的设置有固定座的一端,使得固定座与延伸部配合后的结构在第二方向上占用的空间较小,减少电池模组在第二方向上的空间占用。
根据本申请的一些实施例,延伸部的背离电池单体组的一侧与端板本体的背离电池单体组的一侧共面。
在上述方案中,延伸部的背离电池单体组的一侧与端板本体的背离电池单体组的一侧共面,也即,端板的背离电池单体组的一侧的表面为平面,便于电池模组与其他部件的配合。
根据本申请的一些实施例,外壳还具有与第一壁相对设置的第二壁,第二壁的边缘的第一区域内陷形成第二凹槽,第二凹槽用于容纳与第二壁相邻的电池单体的电极端子。
在上述方案中,第二凹槽的设置,能够容纳与第二壁相邻的电池单体的电极端子,使得电池模组结构紧凑,电池模组具有较高的能量密度。
根据本申请的一些实施例,外壳具有沿第一方向相对设置的第一壁和第二壁、沿第二方向相对设置的第三壁和第四壁、以及沿第三方向相对设置的第五壁和第六壁,第三壁的面积和第四壁的面积均小于第一壁的面积,第三壁的面积和第四壁的面积均小于第二壁的面积,第五壁的面积和第六壁的面积均小于第一壁的面积,第五壁的面积和第六壁的面积均小于第二壁的面积,第一方向、第二方向和第三方向两两相交。
在上述方案中,第一壁和第二壁为外壳的面积较大的壁,第一壁与第一方向垂直,以便于电池单体组结构紧凑,使得电池模组具有较高的能量密度。
第二方面,本申请还提供了一种电池,该电池包括箱体和上述任一实施例提供的电池模组,电池模组设置于箱体内。
根据本申请实施例的电池,采用上述的电池模组,箱体内的空间利用率较高,使得电池具 有较高的能量密度。
根据本申请的一些实施例,电池还包括分隔梁,分隔梁设置于箱体内,沿第一方向,端板位于电池单体组和分隔梁之间,固定座设置于分隔梁。
在上述方案中,端板位于电池单体组和分隔梁之间,以便于实现电池单体组与分隔梁的隔离,降低电池单体组与分隔梁接触短路的风险;固定座设置于分隔梁,一方面,能够使得端板具有较薄的厚度,减少端板在第一方向上的空间占用,另一方面,便于对固定座进行定位支撑。
根据本申请的一些实施例,箱体包括底壁和侧壁,侧壁围设于底壁的周围,分隔梁设置于底壁,分隔梁沿第三方向延伸,第三方向、底壁的厚度方向和第一方向两两相交。
在上述方案中,侧壁和底壁限定出用于容纳电池单体组的空间,分隔梁设置于底壁,使得分隔梁与箱体连接稳定,以便于固定座固定于分隔梁;分隔梁沿第三方向延伸,分隔梁在第一方向上的尺寸可以较小,减少分隔梁在第一方向上的空间占用,使得箱体内的空间利用率较高。
根据本申请的一些实施例,分隔梁包括远离底壁的顶面,分隔梁设置有从顶面朝向底壁凹陷的第三凹槽,固定座的至少部分设置于第三凹槽内。
在上述方案中,第三凹槽为固定座提供容纳的空间,固定座至少部分设置于第三凹槽内,能够减少固定座与分隔梁装配后在底壁的厚度方向上的空间占用,减少固定座对箱体内的空间利用率的影响。
根据本申请的一些实施例,固定座不凸出于顶面。
在上述方案中,固定座不凸出于顶面,固定座安装于分隔梁后,在底壁的厚度方向上不会占用额外的空间,减少对电池的能量密度的影响。
根据本申请的一些实施例,固定座与第三凹槽的槽底面接触。
在上述方案中,固定座与第三凹槽的槽底面接触,以便于第三凹槽的槽底面支撑固定座,便于实现固定座与分隔梁的定位装配。
根据本申请的一些实施例,分隔梁的沿第一方向的两侧均设置有电池模组,电池还包括汇流件,汇流件连接位于分隔梁的两侧的两个电池模组的输出极。
在上述方案中,通过汇流件实现位于分隔梁的两侧的两个电池模组的输出极的电连接,装配方便。
根据本申请的一些实施例,两个电池模组的固定座沿第一方向排布。
在上述方案中,两个电池模组的固定座沿第一方向排布,便于汇流件与两个电池模组的输出极的连接,便于装配。
根据本申请的一些实施例,两个电池模组的固定座的相互靠近的一侧设置有避让部,避让部用于避让汇流件。
在上述方案中,通过避让部避让汇流件,使得汇流件与固定座结构紧凑,减少空间占用。
根据本申请的一些实施例,沿第一方向,两个电池模组的固定座之间具有第二间隙。
在上述方案中,第二间隙的设置,降低两个电池模组的固定座干涉的风险。
根据本申请的一些实施例,汇流件包括弯折部和两个连接部,两个连接部分别与两个电池模组的输出极连接,弯折部连接两个连接部。
在上述方案中,在电池受到振动时,弯折部能够吸收汇流件受到的应力,降低连接部相对于输出极移动的概率,使得连接部与对应的电池模组的输出极连接可靠。
根据本申请的一些实施例,输出极包括第一连接孔,汇流件包括两个通孔,两个通孔分别与位于分隔梁的两侧的两个电池模组的两个输出极的第一连接孔对应设置,电池还包括紧固件,汇流件与对应的电池模组的输出极通过插设于通孔和第一连接孔的紧固件连接。
在上述方案中,通过紧固件将汇流件与对应的电池模组的输出极连接,操作简单,便于装配。
根据本申请的一些实施例,电池还包括螺母,螺母固定于输出极朝向固定座的一侧,螺母的螺纹孔与第一连接孔对应设置,固定座设置有第二连接孔,螺母的至少一部分位于第二连接孔内且与第二连接孔间隙配合,紧固件插设于通孔和第一连接孔且与螺母螺纹连接。
在上述方案中,通过紧固件与螺母螺纹连接,装配方便;由于螺母与第二连接孔间隙配合,在装配过程中,能够根据实际情况调整螺母在第二连接孔内的位置,以吸收加工误差,便于实现汇流件、输出极及固定座的装配。
根据本申请的一些实施例,第二连接孔的直径为D1,螺母的外径为D2,满足,2mm≤D1-D2≤8mm。
在上述方案中,第二连接孔的直径D1大于螺母的外径D2,第二连接孔的直径D1与螺母的外径D2的差值满足2mm≤D1-D2≤8mm,便于吸收加工误差,使得汇流件与输出极装配精确;如果D1-D2较小(如小于2mm),则容易导致螺母与固定座装配干涉;如果D1-D2较大(如大于8mm),则容易导致螺母与固定座装配松动。
根据本申请的一些实施例,4mm≤D1-D2≤6mm。
在上述方案中,相较于2mm≤D1-D2≤8mm,当4mm≤D1-D2≤6mm时,既便于螺母与固定座的装配,还降低螺母与固定座装配后松动的概率。
根据本申请的一些实施例,两个通孔中一者为沿第一方向延伸的长条孔。
在上述方案中,长条孔的设置,以便于吸收加工误差,使得汇流件与两个电池模组的输出极装配精确。
第三方面,本申请还提供了一种用电设备,包括上述任一实施例提供的电池。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸图;
图3为本申请一些实施例提供的电池模组的示意图;
图4为本申请一些实施例提供的端板与固定座配合状态示意图;
图5为本申请一些实施例提供的电池单体和输出极的结构示意图;
图6为本申请一些实施例提供的电极端子与第一壁的装配示意图;
图7为图3的A处局部放大图;
图8为本申请一些实施例提供的输出极与端板的结构示意图;
图9为图8的B处局部放大图;
图10为本申请一些实施例提供的输出极与端板的配合状态的局部示意图;
图11为本申请一些实施例提供的电池的结构示意图;
图12为本申请一些实施例提供的固定座与分隔梁的装配示意图;
图13为图11的E处局部放大图;
图14为本申请一些实施例提供的汇流件和固定座的结构示意图;
图15为本申请一些实施例提供的电池的剖视图;
图16为图15的F处局部放大图;
图17为图16的G处局部放大图。
在附图中,附图并未按照实际的比例绘制。
标记说明:100-电池;10-箱体;11-第一子箱体;111-底壁;112-侧壁;12-第二子箱体;20-电池模组;21-电池单体;211-外壳;2111-第一壁;2112-第二壁;2113-第二凹槽;212-电极端 子;2121-第一侧面;22-端板;221-端板本体;222-延伸部;223-第一凹槽;224-第一表面;23-固定座;231-避让部;232-第二连接孔;24-输出极;241-第一段;242-第二段;243-第三段;2431-第一连接孔;30-分隔梁;31-顶面;32-第三凹槽;40-汇流件;41-弯折部;42-连接部;421-通孔;50-紧固件;60-螺母;200-控制器;300-马达;1000-车辆;Q1-第一间隙;Q2-第二间隙。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
电池技术的发展要同时考虑多方面的设计因素,例如,安全性、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的能量密度。
电池包括箱体和设置于箱体内的电池模组。电池模组包括电池单体组、两个端板、固定座和输出极,两个端板分别设置于电池单体组的两侧,输出极用于输出电池单体组的电能,输出极通过固定座固定于端板。
相关技术中,为了安装固定座,端板的厚度通常较厚,从而使得电池模组占用较大的装配空间,当电池模组装配于箱体内时,由于端板的厚度较厚,会占用较多箱体的内部空间,进而导致电池的能量密度较低。
鉴于此,为了解决端板的厚度较厚导致的电池的能量密度较低的技术问题,发明人经过深入研究,设计了一种技术方案,将固定座连接于端板且凸出于端板的背离电池单体组的表面,使得端板的厚度可以较薄,减少电池模组的装配空间,当电池模组与箱体配合时,箱体的内部可以设置较多的电池单体,进而使得电池能够具有较高的能量密度。
本申请实施例公开的电池可以但不限用于车辆、船舶或飞行器等用电设备中。可以使用具备本申请公开的电池组成该用电设备的电源系统。
本申请实施例提供一种使用电池作为电源的用电设备,用电设备可以为但不限于手机、平板电脑、笔记本电脑、电动玩具、电动工具、电动自行车、电动摩托车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为车辆1000为例进行说 明。
请参照图1,图1为本申请一些实施例提供的车辆的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路系统,例如用于车辆1000的启动、导航和运行时的工作用电需求。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池的爆炸图。电池100包括箱体10和电池模组20,电池模组20设置于箱体10内。
其中,箱体10用于为电池模组20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一子箱体11和第二子箱体12,第一子箱体11与第二子箱体12相互盖合,第一子箱体11和第二子箱体12共同限定出用于容纳电池模组20的容纳空间。第一子箱体11可以为一端开口的空心结构,第二子箱体12可以为板状结构,第二子箱体12盖合于第一子箱体11的开口侧,以使第一子箱体11与第二子箱体12共同限定出容纳空间;第一子箱体11和第二子箱体12也可以是均为一侧开口的空心结构,第一子箱体11的开口侧盖合于第二子箱体12的开口侧。
请参见图3和图4,图3为本申请一些实施例提供的电池模组的示意图,为了便于描述,图3中的电池模组为局部结构示意;图4为本申请一些实施例提供的端板与固定座配合状态示意图。根据本申请的一些实施例,本申请提供了一种电池模组20,该电池模组20包括电池单体组、端板22、固定座23及输出极24。电池单体组包括沿第一方向X层叠设置的多个电池单体21。端板22设置于电池单体组的沿第一方向X的一侧,端板22包括背离电池单体组的第一表面224;固定座23连接于端板22且凸出于第一表面224;输出极24的一端与电池单体组电连接,输出极24的另一端固定于固定座23。
在电池模组20中,多个电池单体21之间可串联或并联或混联,混联是指多个电池单体21中既有串联又有并联。
其中,电池单体21可以为二次电池或一次电池;电池单体21还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。
端板22设置于电池单体组的沿第一方向X的一侧,端板22与电池单体组相邻设置,端板22能够起到保护电池单体组的作用。端板22可以为绝缘部件,以将电池单体组与其他部件(如分隔梁等)隔离,降低电池单体组与其他部件接触短路的风险。
端板22的材质可以为聚碳酸酯(PC)和丙烯腈-丁二烯-苯乙烯共聚物(ABS)的混合物、聚己二酰己二胺、玻璃钢等,本申请对于端板22的材质不作限定。
在一些实施例中,端板22的数量可以为两个,两个端板22设置于电池单体组的沿第一方向X的相对的两侧,以夹持电池单体组。
第一表面224为端板22的背离电池单体组的表面,第一表面224相对于端板22的其他表面沿第一方向X更远离电池单体组。
固定座23为用于固定输出极24的部件,固定座23连接于端板22,以将输出极24固定于端板22。固定座23的材质可以与端板22的材质相同,固定座23的材质可以为聚己二酰己二胺、玻璃钢等,本申请对于固定座23的材质不作限定。
固定座23凸出于第一表面224是指,固定座23由第一表面224沿第一方向X朝背离电池单体组的方向凸出。
输出极24为用于输出电池单体组的电能的部件,输出极24可以为金属件,输出极24的材质可以为铜、铝等。
根据本申请实施例的电池模组20,固定座23连接于端板22且凸出于端板22的背离 电池单体组的第一表面224,在第一方向X上,固定座23与端板22的重叠区域较少,使得端板22的厚度可以较薄,以减少电池模组20占用的装配空间,进而使得由该电池模组20构成的电池100具有较高的能量密度。
根据本申请的一些实施例,固定座23与端板22一体成型。
固定座23与端板22可以一体注塑成型。
在上述方案中,固定座23与端板22能够同步制造,便于加工,降低制造难度。
根据本申请的一些实施例,固定座23与端板22也可以分体设置且两者固定于一体,例如,固定座23与端板22可以卡接配合、铆接配合、粘接配合等。
请参见图3,并进一步参见图5至图7,图5为本申请一些实施例提供的电池单体和输出极的结构示意图,图6为本申请一些实施例提供的电极端子与第一壁的装配示意图,图7为图3的A处局部放大图,图7示出了输出极与电池单体和固定座的装配状态。根据本申请的一些实施例,电池单体21包括外壳211和电极端子212,外壳211具有面向端板22的第一壁2111,电极端子212安装于第一壁2111,电极端子212具有第一侧面2121,第一侧面2121所在平面与第一壁2111相交,输出极24连接于电池单体组中最靠近端板22的一个电池单体21的电极端子212的第一侧面2121。
外壳211包括壳体和盖体,壳体具有开口,盖体封闭开口,以将电池单体21的内部环境与外部环境隔绝。
壳体是用于配合盖体以形成电池单体21的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件、电解液以及其他部件。壳体和盖体可以是独立的部件。壳体可以是多种形状和多种尺寸的。具体地,壳体的形状可以根据电极组件的具体形状和尺寸大小来确定。壳体的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。本申请实施例以壳体为长方体形为例介绍。
盖体是指盖合于壳体的开口处以将电池单体21的内部环境隔绝于外部环境的部件。不限地,盖体的形状可以与壳体的形状相适应以配合壳体。可选地,盖体可以由具有一定硬度和强度的材质(如铝合金)制成,这样,盖体在受挤压碰撞时就不易发生形变,使电池单体21能够具备更高的结构强度,安全性能也可以有所提高。盖体上可以设置有如电极端子212等的功能性部件。电极端子212可以用于与电极组件电连接,以用于输出或输入电池单体21的电能。盖体的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在盖体的内侧还可以设置有绝缘结构,绝缘结构可以用于隔离壳体内的电连接部件与盖体,以降低短路的风险。示例性的,绝缘结构可以是塑料、橡胶等。
电池单体21还包括电极组件,电极组件是电池单体21中发生电化学反应的部件。壳体内可以包含一个或更多个电极组件。电极组件主要由正极极片和负极极片卷绕或层叠放置形成,并且通常在正极极片与负极极片之间设有隔离膜,隔离膜用于分隔正极极片和负极极片,以避免正极极片和负极极片内接短路。正极极片和负极极片具有活性物质的部分构成电芯组件的主体部,正极极片和负极极片不具有活性物质的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池100的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子212以形成电流回路。
第一壁2111为外壳211的面向端板22的壁,第一壁2111可以垂直于第一方向X。第一壁2111可以为盖体,或者,第一壁2111也可以为壳体的一个壁。可选地,第一壁2111为盖体,以便于电极端子212与第一壁2111的装配。
电极端子212安装于第一壁2111,电极端子212具有第一侧面2121和第一端面,第一端面为电极端子212的背离第一壁2111的表面,第一侧面2121所在平面与第一壁2111和第一端面相交。
如图6所示,第一侧面2121所在的平面与第一壁2111相交,可以为第一侧面2121所在的平面与第一壁2111的厚度方向平行,或者,可以为第一侧面2121所在的平面与第一壁2111的厚度方向倾斜设置。例如,第一侧面2121所在的平面与第一壁2111之间的角度θ为60°~120°;较优地,第一侧面2121所在的平面与第一壁2111之间的角度θ为85°~95°;优选地,第一侧面2121所在的平面可以垂直于第一壁2111,也即,第一侧面2121所在的平面可以与第一壁 2111的厚度方向平行,以便于第一侧面2121与输出极24连接。
第一侧面2121可以与输出极24焊接,以使得输出极24与电极端子212连接牢固。
在上述方案中,输出极24连接于电极端子212的第一侧面2121,便于输出极24与电池单体组的电连接。
请参见图3,并进一步参见图5和图7。根据本申请的一些实施例,输出极24包括第一段241、第二段242和第三段243,第一段241连接于电池单体组中最靠近端板22的一个电池单体21的电极端子212的第一侧面2121,第三段243固定于固定座23,第二段242连接第一段241和第三段243。
第二段242连接第一段241和第三段243,第二段242可以与第一段241和第三段243一体成型,如冲压成型、折弯成型等;或者,第二段242也可以与第一段241和第三段243分体设置,第一段241和第三段243分别与第二段242焊接或铆接固定于一体;又或者,第二段242与第一段241一体成型,第二段242与第三段243分体设置,第二段242与第三段243焊接或铆接规定于一体;又或者,第二段242与第三段243一体成型,第二段242与第一段241分体设置,第二段242与第一段241焊接或铆接规定于一体。
第一段241连接于电池单体组中最靠近端板22的一个电池单体21的电极端子212的第一侧面2121,使得第一段241在第一方向X上的尺寸可以较小,以便于实现输出极24与电池单体组的电连接;第三段243固定于固定座23,以便于实现输出极24与固定座23的装配。
请参见图5,根据本申请的一些实施例,第一段241从第二段242的宽度方向的一端延伸出,第三段243从第二段242的长度方向的一端延伸出,第二段242的宽度方向、第二段242的长度方向与第一方向X两两相交。
第二段242的宽度方向、第二段242的长度方向与第一方向X两两相交的形式可以为多种,例如,第二段242的宽度方向可以与第二段242的长度方向垂直,第二段242的宽度方向和第二段242的长度方向可以与第一方向X不垂直;或者,第二段242的宽度方向可以与第一方向X垂直,第二段242的宽度方向和第一方向X可以与第二段242的长度方向不垂直;又或者,第二段242的长度方向可以与第一方向X垂直,第二段242的长度方向和第一方向X可以与第二段242的宽度方向不垂直;又或者,第二段242的宽度方向、第二段242的长度方向与第一方向X两两垂直。
可选地,第二段242的宽度方向、第二段242的长度方向与第一方向X两两垂直,图中,第二段242的宽度方向可以与字母Y所指示的方向平行,第二段242的长度方向可以与字母Z所指示的方向平行。
第二段242的厚度方向可以与第一方向X平行,换句话说,第二段242可以面向电池单体组设置。
第一段241和第三段243可以位于第二段242的厚度方向的两侧,例如,第一段241从第二段242的宽度方向的一端朝向电池单体组延伸,第一段241的延伸方向与第二段242的面向电池单体组的表面所在的平面相交;第三段243从第二段242的长度方向的一端朝背离电池单体组的方向延伸,第三段243的延伸方向与第二段242的背离电池单体组的表面所在的平面相交。
在上述方案中,第一段241从第二段242的宽度方向的一端延伸出,便于实现第一段241与电池单体组连接;第三段243从第二段242的长度方向的一端延伸出,合理利用装配空间,便于装配。
根据本申请的一些实施例,第一段241与第二段242垂直,和/或第三段243与第二段242垂直。
根据不同的需求,第一段241、第二段242及第三段243构成不同的结构,例如,第一段241与第二段242垂直,或者,第三段243与第二段242垂直,又或者,第一段241和第三段243分别与第二段242垂直。
第一段241与第二段242垂直,第一段241的延伸方向与第二段242的面向电池单体组的表面所在的平面垂直。第三段243与第二段242垂直,第三段243的延伸方向与第二段242的背离电池单体组的表面所在的平面垂直。
当第一段241、第二段242及第三段243一体成型时,第一段241可以相对于第二段242折弯,以使第一段241垂直于第二段242;第三段243可以相对于第二段242折弯,以使第三段243垂直于第二段242。
在上述方案中,第一段241与第二段242垂直,和/或第三段243与第二段242垂直,结构简单,便于加工制造。
请参见图7,并进一步参见图8至图10,图8为本申请一些实施例提供的输出极与端板的结构示意图,图9为图8的B处局部放大图,图10为本申请一些实施例提供的输出极与端板的配合状态的局部示意图。根据本申请的一些实施例,端板22的面向电池单体组的一侧设置有第一凹槽223,第二段242的至少一部分设置于第一凹槽223内。
第一凹槽223为设置于端板22的面向电池单体组的一侧的凹陷结构,端板22的面向电池单体组的一侧的局部区域朝背离电池单体组的方向凹陷形成第一凹槽223。
第二段242的一部分可以设置于第一凹槽223内,第二段242的另一部分可以设置于第一凹槽223外;或者,第二段242的全部可以设置于第一凹槽223内。
在上述方案中,第二段242的至少一部分设置于第一凹槽223内,合理利用装配空间,减少空间占用,以使得电池模组20结构紧凑。
根据本申请的一些实施例,第一凹槽223的槽底面223a可以与第一方向X垂直。
请参见图10,根据本申请的一些实施例,第二段242与第一凹槽223的槽底面223a平行。
第二段242可以为板状结构,结构简单。
第二段242与第一凹槽223的槽底面223a平行,第二段242的面积较大的表面可以与第一凹槽223的槽底面223a平行,例如,第二段242的长度方向和宽度方向构成的平面可以与第一凹槽223的槽底面223a平行,也即,第二段242的长度方向、宽度方向可以分别与第一凹槽223的槽底面223a平行。
在上述方案中,第二段242与第一凹槽223的槽底面223a平行,便于实现第二段242与端板22的装配,第二段242与端板22的装配效率较高。
请参见图10,根据本申请的一些实施例,沿第一方向X,第二段242与第一凹槽223的槽底面223a之间具有第一间隙Q1。
第二段242具有面向第一凹槽223的槽底面223a的第二表面,当第二表面所在的平面与第一凹槽223的槽底面223a所在的平面相交时,第一间隙Q1可以为第二表面与第一凹槽223的槽底面223a之间的最小距离;当第二表面与第一凹槽223的槽底面223a平行时,第一间隙Q1为第二表面与第一凹槽223在第一方向X上的距离。
在上述方案中,第二段242与第一凹槽223的槽底面223a之间具有第一间隙Q1,便于第二段242与端板22的装配,降低第二段242与第一凹槽223的槽底面223a干涉的风险。
请参见图10,根据本申请的一些实施例,第一间隙Q1的尺寸为C,满足,1mm≤C≤5mm。
第一间隙Q1的尺寸C为第一间隙Q1在第一方向X上的尺寸。
可选地,第一间隙Q1的尺寸C可以为1mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm、4.5mm或5mm。
第一间隙Q1的尺寸C满足1mm≤C≤5mm,既能够降低第二段242与第一凹槽223的槽底面223a干涉的风险,还能够占用较小的装配空间;如果第一间隙Q1过小(如小于1mm),则容易引起第二段242与第一凹槽223的槽底面223a之间的干涉;固若第一间隙Q1过大(如大于5mm),则使得输出极24与端板22装配后占用较大的装配空间,造成空间浪费。
根据本申请的一些实施例,2.5mm≤C≤3.5mm。
可选地,第一间隙Q1的尺寸C可以为2.5mm、2.75mm、3mm、3.25mm或3.5mm。
在上述方案中,相较于1mm≤C≤5mm,当2.5mm≤C≤3.5mm时,进一步降低第二段242与第一凹槽223的槽底面223a干涉的风险,占用的装配空间较小。
请参见图9和图10,根据本申请的一些实施例,第一凹槽223沿第二方向延伸,固定座23设置于第一凹槽223的沿第二方向的一端,第二方向与第一方向X相交。
第二方向与第一方向X相交,可以根据不同的需求,确定第一凹槽223的延伸方向,可选地,第二方向可以与字母Z所指示的方向平行,也即,第二方向可以与第一方向X垂直。
第一凹槽223沿第二方向延伸,第一凹槽223可以由端板22的位于第二方向上的一端的边缘朝向另一端延伸;或者,第一凹槽223也可以从端板22的位于第二方向上的两端之间沿第二方向延伸。可选地,第一凹槽223由端板22的位于第二方向上的一端的边缘朝向另一端延伸,便于加工制造。
固定座23设置于第一凹槽223的沿第二方向的一端,在垂直于第二方向的平面内,固定座23的投影不落入第一凹槽223内。
在上述方案中,固定座23设置于第一凹槽223的沿第二方向的一端,便于加工制造。
请参见图9和图10,根据本申请的一些实施例,端板22包括端板本体221和延伸部222,延伸部222从端板本体221的沿第三方向的一端延伸出,延伸部222的厚度小于端板本体221的厚度,以在端板22的背离第一表面224的一侧形成第一凹槽223,固定座23设置于延伸部222沿第二方向的一端,第三方向、第二方向及第一方向X两两相交。
第三方向、第二方向及第一方向X两两相交的形式可以为多种,例如,第三方向可以与第二方向垂直,第三方向和第二方向可以与第一方向X不垂直;或者,第三方向可以与第一方向X垂直,第三方向和第一方向X可以与第二方向不垂直;又或者,第二方向可以与第一方向X垂直,第二方向和第一方向X可以与第三方向不垂直;又或者,第三方向、第二方向及第一方向X两两垂直。
可选地,第三方向、第二方向及第一方向X两两垂直,图中,第三方向可以与字母Y所指示的方向平行。
第二方向和第三方向可以均与第一凹槽223的槽底面223a平行。
端板本体221和延伸部222为构成端板22的两个组成部分,延伸部222从端板本体221的沿第三方向的一端延伸出,延伸部222和端板本体221可以一体成型,例如,延伸部222和端板本体221可以一体注塑成型;或者,端板22的沿第三方向的一端削薄出第一凹槽223,以使得端板22分为端板本体221和延伸部222。
端板本体221可以为端板22的厚度较厚的部分,延伸部222可以为端板22的厚度较薄的部分。
端板22的厚度方向可以与第一方向X平行,延伸部222的厚度可以为延伸部222在第一方向X上的尺寸,端板本体221的厚度可以为端板本体221在第一方向X上的尺寸。
在上述方案中,延伸部222与端板本体221连接形成第一凹槽223,结构简单,便于加工制造;由于延伸部222的厚度小于端板本体221的厚度,固定座23设置于延伸部222沿第二方向的一端,端板本体221的厚度可以较小,以减少端板22在第一方向X上的空间占用。
根据本申请的一些实施例,端板本体221与延伸部222的连接处位于第一凹槽223内的表面可以为圆弧面。
请参见图9和图10,根据本申请的一些实施例,沿第二方向,端板本体221超出延伸部222的设置有固定座23的一端。
端板本体221沿第二方向超出延伸部222的设置有固定座23的一端,端板本体221与固定座23在第二方向上具有部分重叠区域。
在上述方案中,端板本体221沿第二方向超出延伸部222的设置有固定座23的一端,使得固定座23与延伸部222配合后的结构在第二方向上占用的空间较小,减少电池模组20在第二方向上的空间占用。
请参见图4,根据本申请的一些实施例,延伸部222的背离电池单体组的一侧与端板本体221的背离电池单体组的一侧共面。
延伸部222的背离电池单体组的一侧与端板本体221的背离电池单体组的一侧共面,是指,延伸部222的背离电池单体组的一侧的表面与端板本体221的背离电池单体组的一侧的表面 共面。
在上述方案中,延伸部222的背离电池单体组的一侧的表面与端板本体221的背离电池单体组的一侧的表面共面,也即,端板22的背离电池单体组的一侧的表面为平面,便于电池模组20与其他部件的配合。
请参见图5和图7,根据本申请的一些实施例,外壳211还具有与第一壁2111相对设置的第二壁2112,第二壁2112的边缘的第一区域内陷形成第二凹槽2113,第二凹槽2113用于容纳与第二壁2112相邻的电池单体21的电极端子212。
第二壁2112与第一壁2111沿第一方向X相对设置。第一区域为第二壁2112的边缘的区域,沿第一方向X,第一区域与第一壁2111的安装电极端子212的区域相对应。第一区域沿第一方向X朝向第一壁2111凹陷形成第二凹槽2113。
在一些实施例中,第二凹槽2113的凹陷深度大于电极端子212凸出第一壁2111的高度。可以理解的,与第二壁2112相邻的电池单体21的电极端子212也可以只有部分容纳于第二凹槽2113内。
第二壁2112的表面可以设置有绝缘结构,以便于在多个电池单体21层叠设置时,第二壁2112与相邻的电池单体21的电极端子212绝缘隔离。绝缘结构也可以设置在电极端子212远离第一壁2111的表面,以便于在多个电池单体21层叠设置时,电极端子212可以与第一壁2111相邻的电池单体21的第二壁2112绝缘隔离。
在上述方案中,在多个电池单体21层叠时,第二凹槽2113的设置,能够容纳与第二壁2112相邻的电池单体21的电极端子212,合理利用装配空间,使得电池模组20结构紧凑,电池模组20具有较高的能量密度。
根据本申请的一些实施例,外壳211具有沿第一方向X相对设置的第一壁2111和第二壁2112、沿第二方向相对设置的第三壁(图中未示出)和第四壁(图中未示出)、以及沿第三方向相对设置的第五壁(图中未示出)和第六壁(图中未示出),第三壁的面积和第四壁的面积均小于第一壁2111的面积,第三壁的面积和第四壁的面积均小于第二壁2112的面积,第五壁的面积和第六壁的面积均小于第一壁2111的面积,第五壁的面积和第六壁的面积均小于第二壁2112的面积,第一方向X、第二方向和第三方向两两相交。
第三方向、第二方向及第一方向X两两相交的形式可以为多种,例如,第三方向可以与第二方向垂直,第三方向和第二方向可以与第一方向不垂直;或者,第三方向可以与第一方向垂直,第三方向和第一方向可以与第二方向不垂直;又或者,第二方向可以与第一方向X垂直,第二方向和第一方向X可以与第三方向不垂直;又或者,第三方向、第二方向及第一方向X两两垂直。可选地,第三方向、第二方向及第一方向X两两垂直。
第一壁2111、第二壁2112、第三壁、第四壁、第五壁和第六壁为构成外壳211的壁,这些壁可以围成用于容纳电极组件的空间。
在上述方案中,第一壁2111和第二壁2112为外壳211的面积较大的壁,第一壁2111与第一方向X垂直,以便于电池单体组结构紧凑,使得电池模组20具有较高的能量密度。
请参见图图11和图12,图11为本申请一些实施例提供的电池的结构示意图,为了便于描述,图11中未示出第二子箱体;图12为本申请一些实施例提供的固定座与分隔梁的装配示意图,图12为图11的局部结构示意图。根据本申请的一些实施例,电池100还包括分隔梁30,分隔梁30设置于箱体10内,沿第一方向X,端板22位于电池单体组和分隔梁30之间,固定座23设置于分隔梁30。
分隔梁30为设置于箱体10内的部件,分隔梁30用于将箱体10内部分隔出多个空间,多个空间能够分别容纳电池单体组和其他部件(如线束等)。同时,分隔梁30设置于箱体10内,还能够提高箱体10的整体强度。
分隔梁30和电池模组20在箱体10内的设置位置可以为多种形式,根据不同需求可以设置不同的设置位置,例如,分隔梁30可以位于电池模组20的沿第一方向X的一侧,或者,沿第一方向X,分隔梁30的两侧均设置有电池模组20。
分隔梁30的材质可以与箱体10的材质相同,也可以与箱体10的材质不同。分隔梁30的材质可以为铝、铝合金、不锈钢等,具有较高的强度。
在上述方案中,端板22位于电池单体组和分隔梁30之间,以便于实现电池单体组与分隔梁30的隔离,降低电池单体组与分隔梁30接触短路的风险;固定座23设置于分隔梁30,一方面,能够使得端板22具有较薄的厚度,减少端板22在第一方向X上的空间占用,提高箱体10内的空间利用率,使得电池100具有较高的能量密度,另一方面,便于对固定座23进行定位支撑。
请参见图11,根据本申请的一些实施例,箱体10包括底壁111和侧壁112,侧壁112围设于底壁111的周围,分隔梁30设置于底壁111,分隔梁30沿第三方向延伸,第三方向、底壁111的厚度方向和第一方向X两两相交。
第三方向、底壁111的厚度方向和第一方向X两两相交的形式可以为多种,例如,第三方向与底壁111的厚度方向垂直,第三方向和底壁111的厚度方向不与第一方向X垂直;或者,第三方向与第一方向X垂直,第三方向和第一方向X不与底壁111的厚度方向垂直;又或者,底壁111的厚度方向可以与第一方向X垂直,底壁111的厚度方向和第一方向X可以与第三方向不垂直;又或者,第三方向、底壁111的厚度方向和第一方向X两两垂直。
可选地,第三方向、底壁111的厚度方向和第一方向X两两垂直,第三方向可以与字母Y所指示的方向平行,底壁111的厚度方向可以与字母Z所指示的方向平行。
第三方向可以为箱体10的宽度方向,或者,第三方向可以为箱体10的长度方向。第三方向、底壁111的厚度方向和第一方向X相互垂直。
侧壁112和底壁111围成用于容纳电池单体组的空间,并且分隔梁30设置于该空间内。侧壁112可以设置于底壁111的边缘,以使得侧壁112与底壁111围成的空间具有较大的容量。
侧壁112与底壁111的连接方式为多种形式,例如,侧壁112与底壁111可以一体成型,如,侧壁112与底壁111由铝材挤压成型;或者,侧壁112与底壁111可以分体设置且两者焊接连接。
分隔梁30设置于底壁111,分隔梁30可以与底壁111焊接,以使得分隔梁30与底壁111连接稳定。当分隔梁30与底壁111焊接时,分隔梁30的材质可以与底壁111的材质相同,以便于分隔梁30与底壁111的焊接。
分隔梁30沿第三方向延伸,分隔梁30在第三方向上的尺寸比分隔梁30在其他方向上的尺寸较大,分隔梁30的长度方向可以与第三方向平行;分隔梁30的厚度方向可以与第一方向X平行。
分隔梁30的沿第三方向相对的两端可以分别连接于侧壁112,使得分隔梁30与箱体10的连接面积较大,使得分隔梁30与箱体10连接稳定。分隔梁30的两端可以与侧壁112焊接,使得分隔梁30与侧壁112连接牢固,提高箱体10的整体强度。
在上述方案中,侧壁112和底壁111限定出用于容纳电池单体组的空间,分隔梁30设置于底壁111,使得分隔梁30与箱体10连接稳定,以便于固定座23固定于分隔梁30;分隔梁30沿第三方向延伸,分隔梁30在第一方向X上的尺寸可以较小,减少分隔梁30在第一方向X上的空间占用,使得箱体10内的空间利用率较高。
请参见图12,根据本申请的一些实施例,分隔梁30包括远离底壁111的顶面31,分隔梁30设置有从顶面31朝向底壁111凹陷的第三凹槽32,固定座23的至少部分设置于第三凹槽32内。
顶面31为分隔梁30的远离底壁111的表面,分隔梁30还包括面向底壁111的底面(图中未示出),底面与顶面31沿底壁111的厚度方向相对设置,底面可以与底壁111接触,以使得底壁111对分隔梁30具有较好的支撑效果。
第三凹槽32为从顶面31朝向底壁111凹陷形成的槽,第三凹槽32的槽深方向由顶面31指向底壁111。第三凹槽32的轮廓与固定座23的轮廓相似,以便于固定座23的至少部分能够容纳于第三凹槽32内。
固定座23与第三凹槽32的装配方式可以根据实际情况选取,例如,固定座23的一部分可以设置于第三凹槽32内,或者,固定座23的整体可以设置于第三凹槽32内。
在上述方案中,第三凹槽32为固定座23提供容纳的空间,固定座23的至少部分设置于第三凹槽32内,能够减少固定座23与分隔梁30装配后在底壁111的厚度方向上的空间占用,减少固定座23对箱体10内的空间利用率的影响,使得电池100具有较高的能量密度。
根据本申请的一些实施例,固定座23不凸出于顶面31。
固定座23不凸出于顶面31是指,在底壁111的厚度方向上,固定座23不凸出于顶面31,具体为,当固定座23与分隔梁30装配后,固定座23的整体位于第三凹槽32内,固定座23的远离底壁111的表面低于顶面31,或者,固定座23的远离底壁111的表面与顶面31共面。
在上述方案中,固定座23不凸出于顶面31,固定座23安装于分隔梁30后,在底壁111的厚度方向上不会占用额外的空间,减少对电池100的能量密度的影响。
请参见图12,根据本申请的一些实施例,固定座23与第三凹槽32的槽底面32a接触。
固定座23具有面向第三凹槽32的槽底面32a的表面,该表面与第三凹槽32的槽底面32a接触。
在上述方案中,固定座23与第三凹槽32的槽底面32a接触,以便于第三凹槽32的槽底面32a支撑固定座23,便于实现固定座23与分隔梁30的定位装配。
请参见图11,并进一步参见图13,图13为图11的E处局部放大图。根据本申请的一些实施例,分隔梁30的沿第一方向X的两侧均设置有电池模组20,电池100还包括汇流件40,汇流件40连接位于分隔梁30的两侧的两个电池模组20的输出极24。
分隔梁30的沿第一方向X的两侧均设置有电池模组20,例如,分隔梁30的沿第一方向X的两侧分别设置有一个电池模组20,该两个电池模组20分别与分隔梁30相邻设置。
汇流件40为导电件,汇流件40为用于实现分隔梁30的两侧的两个电池模组20的输出极24的电连接。汇流件40的材质可以为铜、铝等。
在上述方案中,通过汇流件40实现位于分隔梁30的两侧的两个电池模组20的输出极24的电连接,装配方便。
请参见图11和图13,根据本申请的一些实施例,两个电池模组20的固定座23沿第一方向X排布。
两个电池模组20均与分隔梁30相邻设置,每个电池模组20的固定座23均位于电池模组20的面向分隔梁30的一侧,两个电池模组20的固定座23沿第一方向X排布,两个固定座23相对设置,使得两个固定座23之间具有较小的距离,便于汇流件40与固定于固定座23的输出极24连接。
在上述方案中,两个电池模组20的固定座23沿第一方向X排布,便于汇流件40与两个电池模组20的输出极24的连接,便于装配。
请参见图11至图13,并进一步参见图14,图14为本申请一些实施例提供的汇流件和固定座的结构示意图。根据本申请的一些实施例,两个电池模组20的固定座23的相互靠近的一侧设置有避让部231,避让部231用于避让汇流件40。
避让部231可以为设置于固定座23的靠近另一个固定座23的一侧的凹部,汇流件40的一部分能够容纳于该凹部内。
避让部231可以设置于固定座23的背离底壁111的一端的边缘,一方面,便于加工制造,另一方面,便于汇流件40与固定座23的装配。
在上述方案中,通过避让部231避让汇流件40,使得汇流件40与固定座23结构紧凑,减少空间占用。
请参见图14,根据本申请的一些实施例,沿第一方向X,两个电池模组20的固定座23之间具有第二间隙Q2。
在固定座23设置于分隔梁30后,沿第一方向X,位于分隔梁30的两侧的两个电池模组20的固定座23之间具有第二间隙Q2,该两个电池模组20的固定座23不接触,降低两个电池模组20的固定座23干涉的风险。
请参见图13和图14,根据本申请的一些实施例,汇流件40包括弯折部41和两个连接部42,两个连接部42分别与两个电池模组20(请参见图11)的输出极24连接,弯折部41连接两个连接部42。
弯折部41连接两个连接部42,两个连接部42可以位于弯折部41的相对的两端。
弯折部41和两个连接部42可以一体成型,例如,弯折部41和两个连接部42可以冲压成型。
弯折部41为汇流件40的具有折弯结构的部分,弯折部41可以沿汇流件40的厚度方向由汇流件40的一侧向另一侧凸出。例如,汇流件40可以为板件,板件的两端之间的局部区域折弯形成弯折部41。汇流件40的厚度方向可以与字母Z所指示的方向平行。
连接部42为汇流件40的用于与输出极24连接的部位,组装过程中,连接部42与对应的电池模组20的输出极24连接,以实现汇流件40与输出极24的电连接。
在上述方案中,在电池100受到振动时,弯折部41能够吸收汇流件40受到的应力,降低连接部42相对于输出极24移动的概率,使得连接部42与对应的电池模组20的输出极24连接可靠。
请参见图13和图14,根据本申请的一些实施例,两个连接部42可以设置于汇流件40的长度方向的两端,弯折部41位于两个连接部42之间,弯折部41沿汇流件40的宽度方向贯穿汇流件40,汇流件40的长度方向与第一方向X(请参见图11)平行,汇流件40的宽度方向与第三方向平行。
请参见图13和图14,根据本申请的一些实施例,输出极24包括第一连接孔2431,汇流件40包括两个通孔421,两个通孔421分别与位于分隔梁30的两侧的两个电池模组20的两个输出极24的第一连接孔2431对应设置,电池100还包括紧固件50,汇流件40与对应的电池模组20的输出极24通过插设于通孔421和第一连接孔2431的紧固件50连接。
第一连接孔2431可以为螺纹孔,也可以为通孔,第一连接孔2431用于供紧固件50插设。
通孔421与第一连接孔2431对应设置,紧固件50能够插设于通孔421和与该通孔421对应的第一连接孔2431,以将汇流件40固定于对应的电池模组20的输出极24。
在上述方案中,通过紧固件50将汇流件40与对应的电池模组20的输出极24连接,操作简单,便于装配。
请参见图9,并进一步参见图15至图17,图15为本申请一些实施例提供的电池的剖视图,图16为图15的F处局部放大图,图17为图16的G处局部放大图。根据本申请的一些实施例,电池100还包括螺母60,螺母60固定于输出极24朝向固定座23的一侧,螺母60的螺纹孔与第一连接孔2431对应设置,固定座23设置有第二连接孔232,螺母60的至少一部分位于第二连接孔232内且与第二连接孔232间隙配合,紧固件50(请参见图13)插设于通孔421和第一连接孔2431且与螺母60螺纹连接。
第一连接孔2431可以为通孔。
螺母60固定于输出极24,螺母60可以与输出极24焊接,或者,螺母60也可以与输出极24铆接。
螺母60的螺纹孔与第一连接孔2431对应设置,以使得紧固件50能够插设于第一连接孔2431且与螺母60螺纹连接。螺母60的螺纹孔可以与第一连接孔2431同轴设置,或者,螺母60的螺纹孔的中心轴线也可以与第一连接孔2431的中心轴线偏心设置,只要保证紧固件50能够插设于第一连接孔2431和螺母60的螺纹孔且与螺母60螺纹连接即可。
第二连接孔232为固定座23设置的、用于与螺母60配合的孔。螺母60固定于输出极24朝向固定座23的一侧,以便于螺母60与第二连接孔232配合。螺母60的一部分位于第二连接孔232内,螺母60的另一部分位于第二连接孔232外;或者,螺母60的整体位于第二连接孔232内。
螺母60与第二连接孔232间隙配合,螺母60设置于第二连接孔232内后,螺母60能够相对于固定座23在垂直于第二连接孔232的中心轴线的平面内移动。
在上述方案中,通过紧固件50与螺母60螺纹连接,装配方便;由于螺母60与第二连接孔232间隙配合,在装配过程中,能够根据实际情况调整螺母60在第二连接孔232内的位置,以吸收加工误差,便于实现汇流件40、输出极24及固定座23的装配。
请参见图17,根据本申请的一些实施例,第二连接孔232的直径为D1,螺母60的外径为D2,满足,2mm≤D1-D2≤8mm。
螺母60的外径是指,该螺母60的外接圆的直径,或者,该螺母60的外轮廓为圆形时,外轮廓的直径。例如,螺母60为六角螺母时,螺母60的外径是指该螺母60的外接圆的直径;螺母60为圆形螺母时,螺母60的外径是指该螺母60的外轮廓的直径。
在一些实施例中,螺母60为圆形螺母,第二连接孔232为圆孔。
可选地,D1-D2可以为2mm、2.5mm、3mm、3.5mm、4mm、4.5mm、5mm、5.5mm、6mm、6.5mm、7mm、7.5mm、或8mm。
在上述方案中,第二连接孔232的直径D1大于螺母60的外径D2,第二连接孔232的直径D1与螺母60的外径D2的差值满足2mm≤D1-D2≤8mm,便于吸收加工误差,使得汇流件40与输出极24装配精确;如果D1-D2较小(如小于2mm),则容易导致螺母60与固定座23装配干涉;如果D1-D2较大(如大于8mm),则容易导致螺母60与固定座23装配松动。
根据本申请的一些实施例,4mm≤D1-D2≤6mm。
可选地,D1-D2可以为4mm、4.25mm、4.5mm、4.75mm、5mm、5.25mm、5.5mm、5.75mm或6mm。
在上述方案中,相较于2mm≤D1-D2≤8mm,当4mm≤D1-D2≤6mm时,既便于螺母60与固定座23的装配,还降低螺母60与固定座23装配后松动的概率。
请参见图14,根据本申请的一些实施例,两个通孔421中一者为沿第一方向X延伸的长条孔。
长条孔是指圆孔沿第一方向X延伸而成的孔。当汇流件40与输出极24装配时,由于长条孔的设置,即使存在加工误差,可以调整紧固件50在长条孔内的位置,以使得紧固件50插设于对应的第二连接孔232且与对应的螺母60螺纹连接。
在上述方案中,长条孔的设置,以便于吸收加工误差,使得汇流件40与两个电池模组20的输出极24装配精确。
根据本申请的一些实施例,两个通孔421可以均为沿第一方向X延伸的长条孔。
根据本申请的一些实施例,本申请还提供了一种用电设备,该用电设备包括上述任一实施例提供的电池100,电池100为用电设备提供电能。
用电设备可以为上述任一应用电池100的装置或系统。
根据本申请的一些实施例,请参见图3至图17,本申请提供了一种电池100,该电池100包括箱体10、电池模组20、分隔梁30、汇流件40、紧固件50。
箱体10呈长方体形,箱体10包括第一子箱体11和第二子箱体12,第一子箱体11包括底壁111和侧壁112,侧壁112围设于底壁111的周围,底壁111的厚度方向与第一方向X垂直,第二子箱体12设置于侧壁112的背离底壁111的一侧,第一子箱体11和第二子箱体12扣合形成用于容纳空间。电池模组20和分隔梁30均设置于容纳空间内。
分隔梁30设置于底壁111,分隔梁30沿第三方向延伸,分隔梁30的两端分别连接于侧壁112。分隔梁30包括远离底壁111的顶面31,分隔梁30设置有从顶面31朝向底壁111凹陷的第三凹槽32。分隔梁30的沿第一方向X的两侧均设置有电池模组20。
电池模组20包括电池单体组、端板22、固定座23及输出极24。电池单体组包括沿第一方向X层叠设置的多个电池单体21,端板22设置于电池单体组的沿第一方向X的一侧。端板22包括背离电池单体组的第一表面224,固定座23连接于端板22且凸出于第一表面224。输出极24用于输出电池单体组的电能。
电池单体21包括外壳211和电极端子212,外壳211具有面向端板22的第一壁2111和背离端板22的第二壁2112,第一壁2111与第二壁2112沿第一方向X相对设置,电极端子212 安装于第一壁2111,电极端子212具有第一侧面2121,第一侧面2121所在的平面垂直于第一壁2111。第二壁2112的边缘的第一区域内陷形成第二凹槽2113,第二凹槽2113用于容纳与第二壁2112相邻的电池单体21的电极端子212。
端板22包括端板本体221和延伸部222,延伸部222从端板本体221的沿第三方向的一端延伸出,延伸部222的厚度小于端板本体221的厚度,以在端板22的背离第一表面224的一侧形成第一凹槽223,第一凹槽223沿第二方向延伸。
固定座23设置于第一凹槽223的沿第二方向的背离底壁111的一端,第二方向与底壁111的厚度方向平行。固定座23的一部分设置于第三凹槽32内,固定座23与第三凹槽32的槽底面32a接触。
输出极24包括第一段241、第二段242和第三段243,第二段242连接第一段241和第三段243,第一段241从第二段242的宽度方向的一端延伸出,第三段243从第二段242的长度方向的一端延伸出,第一段241与第二段242垂直,第三段243与第二段242垂直,第二段242的宽度方向与第三方向平行,第二段242的长度方向、第二方向和底壁111的厚度方向相互平行。第一段241连接于电池单体组中最靠近端板22的一个电池单体21的电极端子212的第一侧面2121,第三段243设置有第一连接孔2431。
螺母60固定于输出极24的第三段243,螺母60的螺纹孔与第一连接孔2431对应设置,固定座23设置有第二连接孔232,螺母60的一部分位于第二连接孔232内且与第二连接孔232间隙配合。
汇流件40包括折弯部和两个连接部42,折弯部连接两个连接部42,每个连接部42设置有一个通孔421,两个通孔421分别与位于分隔梁30的两侧的两个电池模组20的两个输出极24的第一连接孔2431对应设置。
紧固件50设置有两个,每个紧固件50与一个通孔421对应设置;紧固件50插设于通孔421和第一连接孔2431且与螺母60螺纹连接,以将汇流件40固定于对应的输出极24。
根据本申请实施例的电池100,固定座23设置于端板22且凸出于端板22的背离电池单体组的第一表面224,固定座23设置于分隔梁30的第三凹槽32内,固定座23装配与分隔梁30,使得端板22的厚度可以较薄,以减少端板22在第一方向X上的空间占用,进而提高箱体10内的空间利用率,使得电池100具有较高的能量密度。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (34)

  1. 一种电池模组,包括:
    电池单体组,所述电池单体组包括沿第一方向层叠设置的多个电池单体;
    端板,设置于所述电池单体组的沿所述第一方向的一侧,所述端板包括背离所述电池单体组的第一表面;
    固定座,连接于所述端板且凸出于所述第一表面;以及
    输出极,所述输出极的一端与所述电池单体组电连接,所述输出极的另一端固定于所述固定座。
  2. 根据权利要求1所述的电池模组,其中,所述固定座与所述端板一体成型。
  3. 根据权利要求1或2所述的电池模组,其中,所述电池单体包括外壳和电极端子,所述外壳具有面向所述端板的第一壁,所述电极端子安装于所述第一壁,所述电极端子具有第一侧面,所述第一侧面所在平面与所述第一壁相交,所述输出极连接于所述电池单体组中最靠近所述端板的一个所述电池单体的所述电极端子的所述第一侧面。
  4. 根据权利要求3所述的电池模组,其中,所述输出极包括第一段、第二段和第三段,所述第一段连接于所述电池单体组中最靠近所述端板的一个所述电池单体的所述电极端子的所述第一侧面,所述第三段固定于所述固定座,所述第二段连接所述第一段和所述第三段。
  5. 根据权利要求4所述的电池模组,其中,所述第一段从所述第二段的宽度方向的一端延伸出,所述第三段从所述第二段的长度方向的一端延伸出,所述第二段的宽度方向、所述第二段的长度方向与所述第一方向两两相交。
  6. 根据权利要求5所述的电池模组,其中,所述第一段与所述第二段垂直,和/或所述第三段与所述第二段垂直。
  7. 根据权利要求4-6中任一项所述的电池模组,其中,所述端板的面向所述电池单体组的一侧设置有第一凹槽,所述第二段的至少一部分设置于所述第一凹槽内。
  8. 根据权利要求7所述的电池模组,其中,所述第二段与所述第一凹槽的槽底面平行。
  9. 根据权利要求7所述的电池模组,其中,沿所述第一方向,所述第二段与所述第一凹槽的槽底面之间具有第一间隙。
  10. 根据权利要求9所述的电池模组,其中,所述第一间隙的尺寸为C,满足,1mm≤C≤5mm。
  11. 根据权利要求10所述的电池模组,其中,2.5mm≤C≤3.5mm。
  12. 根据权利要求7-11中任一项所述的电池模组,其中,所述第一凹槽沿第二方向延伸,所述固定座设置于所述第一凹槽的沿所述第二方向的一端,所述第二方向与所述第一方向相交。
  13. 根据权利要求12所述的电池模组,其中,所述端板包括端板本体和延伸部,所述延伸部从所述端板本体的沿第三方向的一端延伸出,所述延伸部的厚度小于所述端板本体的厚度,以在所述端板的背离所述第一表面的一侧形成所述第一凹槽,所述固定座设置于所述延伸部沿所述第二方向的一端,所述第三方向、所述第二方向及所述第一方向两两相交。
  14. 根据权利要求13所述的电池模组,其中,沿所述第二方向,所述端板本体超出所述延伸部的设置有所述固定座的一端。
  15. 根据权利要求13或14所述的电池模组,其中,所述延伸部的背离所述电池单体组的一侧与所述端板本体的背离所述电池单体组的一侧共面。
  16. 根据权利要求3-15中任一项所述的电池模组,其中,所述外壳还具有与所述第一壁相对设置的第二壁,所述第二壁的边缘的第一区域内陷形成第二凹槽,所述第二凹槽用于容纳与所述第二壁相邻的所述电池单体的所述电极端子。
  17. 根据权利要求3-16中任一项所述的电池模组,其中,所述外壳具有沿所述第一方向相对设置的所述第一壁和第二壁、沿第二方向相对设置的第三壁和第四壁、以及沿第三方向相对设置的第五壁和第六壁,所述第三壁的面积和所述第四壁的面积均小于所述第一壁的面积,所述第三壁的面积和所述第四壁的面积均小于所述第二壁的面积,所述第五壁的面积和所述第六壁的面积均小于所述第一壁的面积,所述第五壁的面积和所述第六壁的面积均小于所述第二壁的面积,所述第一方向、所述第二方向和所述第三方向两两相交。
  18. 一种电池,包括箱体和如权利要求1-17中任一项所述的电池模组,所述电池模组设置于所 述箱体内。
  19. 根据权利要求18所述的电池,其中,所述电池还包括分隔梁,所述分隔梁设置于所述箱体内,沿所述第一方向,所述端板位于所述电池单体组和所述分隔梁之间,所述固定座设置于所述分隔梁。
  20. 根据权利要求19所述的电池,其中,所述箱体包括底壁和侧壁,所述侧壁围设于所述底壁的周围,所述分隔梁设置于所述底壁,所述分隔梁沿第三方向延伸,所述第三方向、所述底壁的厚度方向与所述第一方向两两相交。
  21. 根据权利要求20所述的电池,其中,所述分隔梁包括远离所述底壁的顶面,所述分隔梁设置有从所述顶面朝向所述底壁凹陷的第三凹槽,所述固定座的至少部分设置于所述第三凹槽内。
  22. 根据权利要求21所述的电池,其中,所述固定座不凸出于所述顶面。
  23. 根据权利要求21或22所述的电池,其中,所述固定座与所述第三凹槽的槽底面接触。
  24. 根据权利要求19-23任一项所述的电池,其中,所述分隔梁的沿所述第一方向的两侧均设置有所述电池模组,所述电池还包括汇流件,所述汇流件连接位于所述分隔梁的两侧的两个所述电池模组的所述输出极。
  25. 根据权利要求24所述的电池,其中,两个所述电池模组的所述固定座沿所述第一方向排布。
  26. 根据权利要求24或25所述的电池,其中,两个所述电池模组的所述固定座的相互靠近的一侧设置有避让部,所述避让部用于避让所述汇流件。
  27. 根据权利要求25或26所述的电池,其中,沿所述第一方向,两个所述电池模组的所述固定座之间具有第二间隙。
  28. 根据权利要求24-27任一项所述的电池,其中,所述汇流件包括弯折部和两个连接部,所述两个连接部分别与两个所述电池模组的所述输出极连接,所述弯折部连接所述两个连接部。
  29. 根据权利要求24-28任一项所述的电池,其中,所述输出极包括第一连接孔,所述汇流件包括两个通孔,所述两个通孔分别与位于所述分隔梁的两侧的两个所述电池模组的两个所述输出极的所述第一连接孔对应设置,所述电池还包括紧固件,所述汇流件与对应的所述电池模组的所述输出极通过插设于所述通孔和所述第一连接孔的所述紧固件连接。
  30. 根据权利要求29所述的电池,其中,所述电池还包括螺母,所述螺母固定于所述输出极朝向所述固定座的一侧,所述螺母的螺纹孔与所述第一连接孔对应设置,所述固定座设置有第二连接孔,所述螺母的至少一部分位于所述第二连接孔内且与所述第二连接孔间隙配合,所述紧固件插设于所述通孔和所述第一连接孔且与所述螺母螺纹连接。
  31. 根据权利要求30所述的电池,其中,所述第二连接孔的直径为D1,所述螺母的外径为D2,满足,2mm≤D1-D2≤8mm。
  32. 根据权利要求31所述的电池,其中,4mm≤D1-D2≤6mm。
  33. 根据权利要求29所述的电池,其中,所述两个通孔中一者为沿所述第一方向延伸的长条孔。
  34. 一种用电设备,包括如权利要求18-33中任一项所述的电池。
PCT/CN2022/126811 2022-10-21 2022-10-21 电池模组、电池及用电设备 WO2024082298A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280089819.2A CN118575354A (zh) 2022-10-21 2022-10-21 电池模组、电池及用电设备
PCT/CN2022/126811 WO2024082298A1 (zh) 2022-10-21 2022-10-21 电池模组、电池及用电设备
CN202322036145.4U CN220692229U (zh) 2022-10-21 2023-07-31 电池模组、电池及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/126811 WO2024082298A1 (zh) 2022-10-21 2022-10-21 电池模组、电池及用电设备

Publications (1)

Publication Number Publication Date
WO2024082298A1 true WO2024082298A1 (zh) 2024-04-25

Family

ID=90378359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126811 WO2024082298A1 (zh) 2022-10-21 2022-10-21 电池模组、电池及用电设备

Country Status (2)

Country Link
CN (2) CN118575354A (zh)
WO (1) WO2024082298A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209747626U (zh) * 2019-06-28 2019-12-06 宁德时代新能源科技股份有限公司 一种电池模组
CN111834560A (zh) * 2019-04-15 2020-10-27 宁德时代新能源科技股份有限公司 一种电池模组
CN113725548A (zh) * 2021-08-31 2021-11-30 蜂巢能源科技有限公司 电池包
US20220006160A1 (en) * 2020-07-03 2022-01-06 Molex, Llc Battery connection module
CN217009513U (zh) * 2022-04-12 2022-07-19 浙江极氪智能科技有限公司 电池模组输出组件、电池模组和车辆
CN115133226A (zh) * 2022-08-22 2022-09-30 孚能科技(赣州)股份有限公司 模组输出电极一体件、模组端板组件、电池模组及电池包

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834560A (zh) * 2019-04-15 2020-10-27 宁德时代新能源科技股份有限公司 一种电池模组
CN209747626U (zh) * 2019-06-28 2019-12-06 宁德时代新能源科技股份有限公司 一种电池模组
US20220006160A1 (en) * 2020-07-03 2022-01-06 Molex, Llc Battery connection module
CN113725548A (zh) * 2021-08-31 2021-11-30 蜂巢能源科技有限公司 电池包
CN217009513U (zh) * 2022-04-12 2022-07-19 浙江极氪智能科技有限公司 电池模组输出组件、电池模组和车辆
CN115133226A (zh) * 2022-08-22 2022-09-30 孚能科技(赣州)股份有限公司 模组输出电极一体件、模组端板组件、电池模组及电池包

Also Published As

Publication number Publication date
CN220692229U (zh) 2024-03-29
CN118575354A (zh) 2024-08-30

Similar Documents

Publication Publication Date Title
KR20220146627A (ko) 배터리 셀, 배터리 및 전기 설비
CN216648533U (zh) 集流构件、电池单体、电池以及用电设备
CN213401344U (zh) 电池单体、电池及用电装置
EP4425654A1 (en) Battery cell, battery and electric device
US20230216154A1 (en) Current collecting member, battery cell, battery, and power consuming device
CN216720098U (zh) 电池盖板、电池单体、电池及用电设备
WO2024001058A1 (zh) 电池单体、电池及用电设备
CN217719785U (zh) 电池单体、电池及用电装置
WO2024082298A1 (zh) 电池模组、电池及用电设备
CN217740741U (zh) 电池单体、电池及用电设备
CN215732099U (zh) 电池单体、电池以及用电装置
WO2024082299A1 (zh) 电池及用电设备
WO2024082297A1 (zh) 电池及用电设备
CN221262547U (zh) 电池单体、电池和用电设备
CN219144330U (zh) 电池单体、电池及用电装置
WO2024000507A1 (zh) 电池单体、电池及用电设备
CN221805779U (zh) 电池单体、电池和用电装置
CN220821845U (zh) 电池及用电装置
WO2024040837A1 (zh) 端盖组件、电池单体、电池及用电装置
CN218827694U (zh) 电池单体的转接部件、电池单体、电池及用电装置
CN220421141U (zh) 高压配电盒、电池及用电装置
WO2024055144A1 (zh) 转接部件、电池单体、电池及用电装置
WO2024021082A1 (zh) 电池及用电设备
CN221466747U (zh) 电池模组、电池和用电装置
CN115189082B (zh) 电池模块、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022962480

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022962480

Country of ref document: EP

Effective date: 20240923