WO2024082078A1 - 热管理系统及其阀门 - Google Patents

热管理系统及其阀门 Download PDF

Info

Publication number
WO2024082078A1
WO2024082078A1 PCT/CN2022/125561 CN2022125561W WO2024082078A1 WO 2024082078 A1 WO2024082078 A1 WO 2024082078A1 CN 2022125561 W CN2022125561 W CN 2022125561W WO 2024082078 A1 WO2024082078 A1 WO 2024082078A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve port
ports
port
inner valve
Prior art date
Application number
PCT/CN2022/125561
Other languages
English (en)
French (fr)
Inventor
陈安邦
曲涛
陶小鹤
王东
赵勇
刘晓宇
王海涛
秦锐锋
Original Assignee
广东德昌电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东德昌电机有限公司 filed Critical 广东德昌电机有限公司
Priority to PCT/CN2022/125561 priority Critical patent/WO2024082078A1/zh
Publication of WO2024082078A1 publication Critical patent/WO2024082078A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces

Definitions

  • the present application relates to the field of heat exchange technology, and in particular to a thermal management system and a valve thereof.
  • the thermal management system of electric vehicles includes multiple circuits, such as the motor circuit, battery circuit, passenger compartment temperature control circuit, etc., and under different working conditions, the heat exchange medium has different flow requirements in each circuit.
  • the flow direction of the heat exchange medium in the circuit is controlled by valves, but existing valves are difficult to match the heat exchange requirements of multiple circuits and multiple working conditions. This not only causes low heat exchange efficiency and serious waste of electricity, but also limits the improvement of the cruising range of electric vehicles to a certain extent, especially under special circumstances such as low temperatures.
  • the present application provides a thermal management system and a valve thereof, which can well match the heat exchange requirements under various working conditions.
  • the present application provides a valve, including a valve seat and a valve core rotatably arranged in the valve seat, a plurality of inner valve ports and a plurality of outer valve ports being provided at an axial end of the valve seat, the inner valve ports and the outer valve ports being respectively arranged at intervals along the circumference of the valve seat, the inner valve ports being located radially inward of the outer valve ports and being disconnected from each other;
  • the valve core is provided with a plurality of inner flow channels and a plurality of outer flow channels running through an axial side end thereof, the inner flow channels being located radially inward of the outer flow channels and being disconnected from each other, the respective inner flow channels and outer flow channels being disconnected from each other inside the valve core, the inner flow channels being provided corresponding to the inner valve ports, and the outer flow channels being provided corresponding to the outer valve ports, and the inner flow channels being selectively connected to different inner valve ports, and the outer flow channels being selectively connected to different outer valve ports through the rotation of the valve core relative to the valve seat
  • each internal flow channel is used to connect two or three of the internal valve ports.
  • each external flow channel is used to connect two or three of the external valve ports.
  • each of the inner valve ports and each of the outer valve ports are fan-ring shaped, and each of the inner flow channels and each of the outer flow channels are fan-ring shaped; each of the inner valve ports are arranged on the same circular ring, and each of the outer valve ports are arranged on the same circular ring; each of the inner flow channels are arranged on the same circular ring and overlap axially with the circular ring where the inner valve ports are located, and the outer flow channels are arranged on the same circular ring and overlap axially with the circular ring where the outer valve ports are located.
  • the circumferential width of the outer flow channel is twice that of the outer valve port; the circumferential width of the inner flow channel is three times that of the outer valve port; the circumferential width of some inner valve ports is equivalent to that of the outer valve port, and the circumferential width of some inner valve ports is twice that of the outer valve port.
  • the valve core further includes a universal flow channel, wherein the universal flow channel is partially located on the circular ring where the inner flow channel is located and partially located on the circular ring where the outer flow channel is located, and is used to connect the inner valve port and the outer valve port.
  • the valve core is provided with a first air hole and a second air hole, the first air hole is located on the circular ring where the inner flow channel is located and is connected to one of the inner flow channels, and the second air hole is located on the circular ring where the outer flow channel is located and is connected to one of the outer flow channels.
  • a dynamic ring is disposed at the axial side end of the valve core, and a static ring is disposed on the inner side of the valve seat. The dynamic ring and the static ring abut against each other in the axial direction to form a dynamic seal.
  • the present application provides a thermal management system, including a first circuit, a second circuit, a third circuit and the above-mentioned valve, the first circuit is connected to at least two inner valve ports of the valve; the second circuit is connected to at least two other inner valve ports of the valve; the third circuit is connected to at least two outer valve ports of the valve.
  • a traction motor and a radiator are connected in series in the first circuit, the inlet end of the traction motor serves as the first inlet end of the first circuit, the outlet end of the radiator serves as the first outlet end of the first circuit, and the first inlet end and the first outlet end are respectively connected to two inner valve ports of the valve;
  • a battery and a cooler are connected in series in the second circuit, the inlet end of the battery serves as the second inlet end of the second circuit, the outlet end of the cooler serves as the second outlet end of the second circuit, and the second inlet end and the second outlet end are respectively connected to the other two inner valve ports of the valve;
  • a heater and a warm air core are connected in series in the third circuit, the inlet end of the heater serves as the third inlet end of the third circuit, the outlet end of the warm air core serves as the third outlet end of the third circuit, and the third inlet end and the third outlet end are respectively connected to two outer valve ports of the valve.
  • a first three-way interface is arranged between the outlet end of the traction motor and the inlet end of the radiator, and the input/output ports of the first three-way interface are respectively connected to the three inner valve ports of the valve;
  • a second three-way interface is arranged between the outlet end of the battery and the inlet end of the cooler, and the input/output ports of the second three-way interface are respectively connected to the other three inner valve ports of the valve;
  • a third three-way interface is arranged between the outlet end of the heater and the inlet end of the warm air core, and the input/output ports of the third three-way interface are respectively connected to the three outer valve ports of the valve.
  • the cooler is provided with a first passage, a second passage and a third passage, the first passage is connected between the third three-way interface and an outer valve port corresponding to the valve; the second passage is connected between the second three-way interface and an inner valve port corresponding to the valve; the third passage is a refrigerant passage.
  • the cooler includes two independent heat exchangers, wherein one of the heat exchangers is provided with the first passage and the second passage, and the other of the heat exchangers is provided with the second passage and the third passage.
  • the inner valve port includes a first inner valve port, a second inner valve port, a third inner valve port, a fourth inner valve port, a fifth inner valve port and a sixth inner valve port, the first inner valve port is located between the second inner valve port and the third inner valve port, and the fourth inner valve port is located between the fifth inner valve port and the sixth inner valve port;
  • the outer valve port includes a first outer valve port, a second outer valve port and a third outer valve port, the first outer valve port is located between the second outer valve port and the third outer valve port; the first inlet end, the first outlet end and the first three-way interface are directly connected to the first inner valve port, the second inner valve port and the sixth inner valve port respectively; the second inlet end, the second outlet end and the second three-way interface are directly connected to the fourth inner valve port, the fifth inner valve port and the third inner valve port respectively; the third inlet end and the third outlet end are respectively connected to the second outer valve port and the first outer valve port, and the third three-way interface is connected to the second
  • the thermal management system has at least the following working states: a first working state: the first inner valve port of the valve is connected to the second inner valve port, the fourth inner valve port is connected to the fifth inner valve port, and the first outer valve port is connected to the second outer valve port; a second working state: the first inner valve port of the valve is connected to the second inner valve port, the fourth inner valve port is connected to the fifth inner valve port, and the first outer valve port is connected to the third outer valve port; a third working state: the first inner valve port of the valve is connected to the third inner valve port, the fourth inner valve port is connected to the sixth inner valve port, and the first outer valve port is connected to the second outer valve port;
  • Four working states the first inner valve port of the valve is connected to the fifth inner valve port, the fourth inner valve port is connected to the second inner valve port, and the first outer valve port is connected to the second outer valve port;
  • the fifth working state the first inner valve port of the valve is connected to the second inner valve port, the fourth inner valve port is connected to the fifth inner valve
  • the flow ratio of the second external valve port and the third external valve port can be adjusted by rotating the valve core.
  • the thermal management system provided in the present application has a valve with multiple internal valve ports and multiple external valve ports. Each internal valve port is selectively connected through an internal flow channel, and each external valve port is selectively connected through an external flow channel. It can switch the on and off of each circuit connected to it and adjust the flow rate of each reflux heat exchange medium as needed, so that the thermal management system has a variety of different working states to meet the heat exchange requirements under various working conditions.
  • FIG1 is a schematic diagram of the structure of a valve provided in one embodiment of the present application.
  • FIG. 2 is an exploded view of the valve shown in FIG. 1 .
  • FIG. 3 is a view of the valve shown in FIG. 1 from another angle.
  • FIG. 4 is an exploded view of the valve shown in FIG. 3 .
  • Fig. 5 is a cross-sectional view along line V-V of Fig. 3 .
  • FIG. 6 is a plan view of a valve core of the valve shown in FIG. 2 .
  • FIG. 7 is a further exploded view of the valve core of the valve shown in FIG. 2 .
  • FIG. 8 is a schematic diagram of the flow path of the valve core.
  • FIG. 9 is a schematic diagram of a valve port of a valve seat of the valve shown in FIG. 2 .
  • FIG. 10 is a schematic diagram showing the positional relationship between the valve core and the valve seat of the valve in the first use state.
  • FIG. 11 is a schematic diagram showing the positional relationship between the valve core and the valve seat of the valve in the second use state.
  • FIG. 12 is a schematic diagram showing the positional relationship between the valve core and the valve seat of the valve in the third use state.
  • FIG. 13 is a schematic diagram showing the positional relationship between the valve core and the valve seat of the valve in the fourth use state.
  • FIG. 14 is a schematic diagram showing the positional relationship between the valve core and the valve seat of the valve in the fifth use state.
  • FIG. 15 is a schematic diagram showing the positional relationship between the valve core and the valve seat of the valve in the sixth use state.
  • FIG. 16 is a schematic diagram showing the positional relationship between the valve core and the valve seat of the valve in the seventh use state.
  • FIG. 17 is a schematic diagram of the pipe connections of a thermal management system provided in an embodiment of the present application.
  • FIG18 is a schematic diagram showing the on-off state of each circuit of the thermal management system when the valve is in the first working state.
  • FIG19 is a schematic diagram showing the on-off state of each circuit of the thermal management system when the valve is in the second working state.
  • FIG. 20 is a schematic diagram showing the on-off state of each circuit of the thermal management system when the valve is in the third working state.
  • FIG. 21 is a schematic diagram showing the on-off state of each circuit of the thermal management system when the valve is in the fourth working state.
  • FIG. 22 is a schematic diagram showing the on-off state of each circuit of the thermal management system when the valve is in the fifth working state.
  • FIG. 23 is a schematic diagram showing the on-off state of each circuit of the thermal management system when the valve is in the sixth working state.
  • FIG. 24 is a schematic diagram of a flow path of a valve core of a valve provided in another embodiment of the present application.
  • FIG. 25 is a schematic diagram showing the positional relationship between the valve core and the valve seat shown in FIG. 24 in a use state.
  • FIG. 26 is a schematic diagram showing the positional relationship between the valve core and the valve seat shown in FIG. 24 in another use state.
  • FIG. 27 is a schematic diagram showing the positional relationship between the valve core and the valve seat shown in FIG. 24 in yet another use state.
  • Valve seat 12 base plate 121, side plate 123, cover plate 125, shaft hole 127, first inner valve port A1, second inner valve port A2, third inner valve port A3, fourth inner valve port A4, fifth inner valve port A5, sixth inner valve port A6, first outer valve port B1, second outer valve port B2, third outer valve port B3, universal flow channel E0;
  • valve core 14 The valve core 14, the shaft 141, the first air hole 143, the second air hole 145, the first inner flow channel C1, the second inner flow channel C2, the first outer flow channel D1, the second outer flow channel D2, and the third outer flow channel D3;
  • the present application provides a thermal management system and a valve thereof, which are preferably used in electric vehicles, and adjust the flow direction and/or flow rate of the heat exchange medium in each circuit as needed to meet the heat exchange requirements under different tooling.
  • the heat exchange medium can be a coolant with high heat exchange efficiency and good fluidity, such as water.
  • Figures 1-5 show a specific embodiment of the valve 10 provided in the present application, wherein the valve 10 includes a valve seat 12 and a valve core 14 rotatably mounted in the valve seat 12, wherein the valve seat 12 is provided with a plurality of inner valve ports and outer valve ports, which are respectively connected to different circuits of the thermal management system 100; the valve core 14 is provided with a plurality of inner flow channels and outer flow channels, which connect the corresponding inner valve ports and/or outer valve ports of the valve seat 12.
  • the valve 10 provided in the present application can be used to control the flow of fluid in any pipeline, and is not limited to the thermal management system 100.
  • the valve seat 12 is in the shape of a hollow cylinder as a whole, and includes a base plate 121, an annular side plate 123 extending vertically from the outer edge of the base plate 121, and a cover plate 125 covering the side plate 123.
  • the base plate 121, the side plate 123, and the cover plate 125 enclose a space for assembling the valve core 14.
  • the base plate 121 and the side plate 123 are an integral structure, and the cover plate 125 is fixedly connected to the side plate 123 by screws or the like.
  • a through-hole 127 is formed in the center of the cover plate 125 for assembling the valve core 14.
  • the inner valve port and the outer valve port are formed on the base plate 121, that is, arranged at an axial side end of the valve seat 12, wherein the inner valve port includes a first inner valve port A1, a second inner valve port A2, a third inner valve port A3, a fourth inner valve port A4, a fifth inner valve port A5, and a sixth inner valve port A6; and the outer valve port includes a first outer valve port B1, a second outer valve port B2, and a third outer valve port B3.
  • the valve core 14 is cylindrical in shape as a whole and is movably installed in the valve seat 12.
  • a shaft 141 is protruded outward from the center of the side end of the valve core 14 facing the cover plate 125, and the shaft 141 extends out of the valve seat 12 through the shaft hole 127 of the cover plate 125.
  • a power mechanism such as a motor, is connected to the shaft 141 to drive the valve core 14 to rotate relative to the valve seat 12 to change the use state of the valve 10 and adapt to different working conditions.
  • the valve core 14 is provided with an inner flow channel and an outer flow channel that penetrate the side end thereof facing the substrate 121, wherein the inner flow channel includes a first inner flow channel C1 and a second inner flow channel C2; the outer flow channel includes a first outer flow channel D1, a second outer flow channel D2, and a third outer flow channel D3.
  • the inner flow channels C1 and C2 connect different inner valve ports A1-A6, and the outer flow channels D1-D3 connect different outer valve ports B1-B3, so that the valve 10 presents different usage states.
  • a stationary ring 13 is provided on the inner side of the cover plate 125, and the stationary ring 13 is arranged around the shaft 141 and spaced therefrom; a moving ring 15 is provided on the side end of the valve core 14 facing the cover plate 125, and the moving ring 15 abuts against the stationary ring 13 in the axial direction of the valve 10.
  • the stationary ring 13 is made of a good wear-resistant and high-temperature resistant material, such as ceramic or silicon carbide;
  • the moving ring 15 is made of a good wear-resistant and high-temperature resistant lubricating material, such as polytetrafluoroethylene (PTFE).
  • the cover plate 125 and the valve core 14 are spaced apart in the axial direction, so that the friction between the valve core 14 and the cover plate 125 during the rotation process is effectively avoided.
  • an elastic member 16 such as a wave spring, is provided between the valve core 14 and the moving ring 15, which is used to provide an axial preload so that the moving ring 15 and the stationary ring 13 can abut tightly to form a dynamic seal. Since coolant may exist in the valve seat 12 under certain working conditions, the dynamic seal can prevent the coolant from leaking through the gap between the shaft 141 and the valve seat 12 .
  • a sealing gasket 17 is sandwiched between the substrate 121 and the valve core 14.
  • the sealing gasket 17 is made of a flexible material, such as silicone, which can prevent the valve core 14 from directly rubbing against the substrate 121 during rotation and prevent fluid from leaking from the contact surface between the valve core 14 and the substrate 121.
  • the sealing gasket 17 is opened at positions corresponding to the inner valve ports A1-A6 and the outer valve ports B1-B3 of the valve seat 12 and the inner flow channels C1-C2 and the outer flow channels D1-D3 of the valve core 14 to avoid affecting the conduction of the inner flow channels C1-C2 and the outer flow channels D1-D3 to the inner valve ports A1-A6 and the outer valve ports B1-B3.
  • a seal 18 is embedded in the outer circumference of the moving ring 15, and a seal ring 19 is provided between the outer circumference of the cover plate 125 and the shaft 141 as well as the inner circumference of the side plate 123, so that the various components of the valve 10 are sealed and connected.
  • the first inner flow channel C1 and the second inner flow channel C2 of the valve core 14 are located on the same circular ring, and the structures of the two are roughly the same and are symmetrically arranged.
  • the central angle corresponding to the first inner flow channel C1 and the second inner flow channel C2 is slightly greater than 90 degrees, and the interval angle between the two is slightly less than 90 degrees.
  • the first outer flow channel D1, the second outer flow channel D2, and the third outer flow channel D3 are located on the same circular ring, and the structures of the three are roughly the same and are arranged adjacent to each other.
  • the outer diameter of the circular ring where each inner flow channel C1 and C2 is located is smaller than the inner diameter of the circular ring where each outer flow channel D1 ⁇ D3 is located.
  • the first outer flow channel D1, the second outer flow channel D2, and the third outer flow channel D3 are located radially outside the first inner flow channel C1 and the second inner flow channel C2.
  • the first outer flow channel D1 is located between the second outer flow channel D2 and the third outer flow channel D3, and is radially opposite to the interval between the first inner flow channel C1 and the second inner flow channel C2; the second outer flow channel D2 is located outside the first inner flow channel C1; and the third outer flow channel D3 is located outside the second outer flow channel D2.
  • the side end of the valve core 14 facing the cover plate 125 is provided with a first air hole 143 and a second air hole 145 penetrating therethrough, wherein the first air hole 143 is located on the ring where the inner flow channels C1 and C2 are located and is connected to the second inner flow channel C2, and plays a role in balancing the air pressure of the inner flow channels C1 and C2 and the inner valve ports A1 to A6 connected thereto; the second air hole 145 is located on the ring where the outer flow channels D1 to D3 are located and is connected to the first outer flow channel D1, and plays a role in balancing the air pressure of the outer flow channels D1 to D3 and the outer valve ports B1 to B3 connected thereto, so that the heat exchange medium can flow smoothly through the valve 10.
  • the first air hole 143 may be connected to the first inner flow channel C1
  • the second air hole 145 may be connected to the second outer flow channel D2 or the
  • the first inner valve port A1, the second inner valve port A2, the third inner valve port A3, the fourth inner valve port A4, the fifth inner valve port A5, and the sixth inner valve port A6 of the valve seat 12 are located on the same circular ring and arranged in a circle along the circumference of the circular ring. They are closely arranged with each other, and the spacing angle is almost negligible; the first outer valve port B1, the second outer valve port B2, and the third outer valve port B3 are located on the same circular ring and arranged along the circumference of the circular ring. They are closely arranged with each other, and the spacing angle is almost negligible.
  • each inner valve port A1 ⁇ A6 and each outer valve port B1 ⁇ B3 are fan-shaped, and the outer diameter of the ring where each inner valve port A1 ⁇ A6 is located is smaller than the inner diameter of the ring where each outer valve port B1 ⁇ B3 is located. That is to say, the first inner valve port A1, the second inner valve port A2, the third inner valve port A3, the fourth inner valve port A4, the fifth inner valve port A5, and the sixth inner valve port A6 are located radially outside the first outer valve port B1, the second outer valve port B2, and the third outer valve port B3.
  • the first inner valve port A1 is disposed between the second and third inner valve ports A2 and A3, the fourth inner valve port A4 is disposed between the fifth and sixth inner valve ports A5 and A6, the second and sixth inner valve ports A2 and A6 are disposed adjacent to each other, and the third and fifth inner valve ports A3 and A5 are disposed adjacent to each other.
  • the widths of the first, second, fourth, and fifth inner valve ports A1, A2, A4, and A5 in the circumferential direction are equal; the widths of the third and sixth inner valve ports A3 and A6 in the circumferential direction are equal and smaller than the widths of the first, second, fourth, and fifth inner valve ports A1, A2, A4, and A5 in the circumferential direction.
  • the center angles corresponding to the first, second, fourth, and fifth inner valve ports A1, A2, A4, and A5 are approximately 72°; the center angles corresponding to the third and sixth inner valve ports A3 and A6 are approximately 36°.
  • the first, second, and third outer valve ports B1-B3 have the same width in the circumferential direction and are arranged adjacent to each other, wherein the first outer valve port B1 is located between the second outer valve port B2 and the third outer valve port B3.
  • the first outer valve port B1 is arranged corresponding to the third inner valve port A3
  • the second outer valve port B2 is arranged corresponding to the first inner valve port A1
  • the third outer valve port B3 is arranged corresponding to the fifth inner valve port A5.
  • the central angle corresponding to the first, second, and third outer valve ports B1-B3 is approximately 36°.
  • each inner flow channel C1, C2 is fan-shaped, and its inner diameter is equivalent to the inner diameter of each inner valve port A1 ⁇ A6, and the outer diameter of each inner flow channel C1, C2 is equivalent to the outer diameter of each inner valve port A1 ⁇ A6.
  • each inner flow channel C1, C2 and each inner valve port A1 ⁇ A6 are located on the same circular ring.
  • the widths of the first and second inner flow channels C1, C2 in the circumferential direction are equivalent, and are greater than the widths of each inner valve port A1 ⁇ A6 in the circumferential direction, so that each inner flow channel C1, C2 can at least simultaneously connect two adjacent inner valve ports A1 ⁇ A6 to conduct them.
  • the central angle corresponding to the first and second inner flow channels C1, C2 is approximately 108°, and its circumferential width is approximately 1.5 times that of the first, second, fourth, and fifth inner valve ports A1, A2, A4, and A5, and approximately 3 times that of the third and sixth inner valve ports A3 and A6.
  • Each outer flow channel D1 ⁇ D3 is fan-shaped, and its inner diameter is equivalent to the inner diameter of each outer valve port B1 ⁇ B3, and the outer diameter of each outer flow channel D1 ⁇ D3 is equivalent to the outer diameter of each outer valve port B1 ⁇ B3.
  • each outer flow channel D1 ⁇ D3 and each outer valve port B1 ⁇ B3 are located on the same circular ring.
  • the widths of the first, second, and third outer flow channels D1 ⁇ D3 in the circumferential direction are equivalent and larger than the widths of each outer valve port B1 ⁇ B3 in the circumferential direction, so that each outer flow channel D1 ⁇ D3 can at least simultaneously connect to two adjacent outer valve ports B1 ⁇ B3 to connect them.
  • the central angle corresponding to the first, second, and third outer flow channels D1 ⁇ D3 is approximately 72°, and its width in the circumferential direction is approximately twice that of each outer valve port B1 ⁇ B3.
  • each inner valve port A1 ⁇ A6 and each outer valve port B1 ⁇ B3 are all fan-shaped, each inner flow channel C1, C2 and each outer flow channel D1 ⁇ D3 are also fan-shaped, so the above-mentioned circumferential equality means that the corresponding central angles are equal, and the multiples of the width are also the multiples of the corresponding central angles.
  • the valve 10 switches to different use states by rotating its valve core 14 relative to the valve seat 12.
  • the valve core 14 can rotate to connect the first inner valve port A1 with the adjacent second inner valve port A2 through its first inner flow channel C1; or connect the first inner valve port A1 with the adjacent third inner valve port A3; or connect the first inner valve port A1 with both the second inner valve port A2 and the third inner valve port A3.
  • the valve core 14 can rotate arbitrarily within a range of 360 degrees relative to the valve seat 12. The following only describes several common use states of the valve 10.
  • the valve 10 when the valve core 14 rotates to the first position relative to the valve seat 12, the valve 10 is in the first use state.
  • the first inner flow channel C1 simultaneously connects the first and second inner valve ports A1 and A2 to connect the two
  • the second inner flow channel C2 simultaneously connects the fourth and fifth inner valve ports A4 and A5 to connect the two
  • the first outer flow channel D1 simultaneously connects the first and second outer valve ports B1 and B2 to connect the two.
  • the first position can be set as the initial position of the valve 10
  • the first use state is the initial state of the valve 10.
  • the valve seat 12 is represented by a dotted line
  • the valve core 14 is represented by a dotted line.
  • the valve 10 when the valve core 14 rotates a certain angle (such as 36° along the CW direction in the figure) from the initial position relative to the valve seat 12 to reach the second position, the valve 10 is in the second use state.
  • the first inner flow channel C1 simultaneously connects the first and second inner valve ports A1 and A2 to connect the two
  • the second inner flow channel C2 simultaneously connects the fourth and fifth inner valve ports A4 and A5 to connect the two
  • the first outer flow channel D1 simultaneously connects the first and third outer valve ports B1 and B3 to connect the two.
  • the conduction conditions of the outer valve ports B1 ⁇ B3 are different from those in the first use state.
  • the valve 10 is in the third use state.
  • the first inner flow channel C1 simultaneously connects the first and third inner valve ports A1 and A3 to connect the two
  • the second inner flow channel C2 simultaneously connects the fourth and sixth inner valve ports A4 and A6 to connect the two
  • the second outer flow channel D2 simultaneously connects the first and second outer valve ports B1 and B2 to connect the two.
  • the conduction conditions of the inner valve ports A1 ⁇ A6 and the outer valve ports B1 ⁇ B3 are changed.
  • the valve 10 when the valve core 14 rotates 36° from the initial position along the CCW direction in the figure relative to the valve seat 12 to reach the fourth position, the valve 10 is in the fourth use state.
  • the first inner flow channel C1 simultaneously connects to the second and sixth inner valve ports A2 and A6 to connect the two
  • the second inner flow channel C2 simultaneously connects to the third and fifth inner valve ports A3 and A5 to connect the two
  • the third outer flow channel D3 simultaneously connects to the first and third outer valve ports B1 and B3 to connect the two.
  • the conduction conditions of the inner valve ports A1 ⁇ A6 and the outer valve ports B1 ⁇ B3 change again.
  • the thermal management system 100 when the valve 10 is in the fourth use state, the thermal management system 100 is in a non-working state.
  • the valve 10 is in the fifth use state.
  • the first inner flow channel C1 simultaneously connects with the second and fourth inner valve ports A2 and A4 to connect the two
  • the second inner flow channel C2 simultaneously connects with the first and fifth inner valve ports A1 and A5 to connect the two
  • the third outer flow channel D3 simultaneously connects with the first and second outer valve ports B1 and B2 to connect the two.
  • the conduction conditions of the inner valve ports A1 ⁇ A6 and the outer valve ports B1 ⁇ B3 continue to change.
  • valve core 14 can also be rotated to any position among the first position, the second position, the third position, the fourth position and the fifth position:
  • the valve 10 is in the sixth use state.
  • the first inner flow channel C1 simultaneously connects the first and second inner valve ports A1 and A2 to connect the two
  • the second inner flow channel C2 simultaneously connects the fourth and fifth inner valve ports A4 and A5 to connect the two
  • the first outer flow channel D1 simultaneously connects the first, second, and third outer valve ports B1, B2, and B3 to connect the three.
  • the inner valve ports A1 to A6 are connected one-to-one
  • the outer valve ports B1 to B3 are connected one-to-many.
  • the valve 10 when the valve core 14 rotates a certain angle relative to the valve seat 12 (such as 54° along the CCW direction in the figure) and reaches the seventh position between the fourth position and the fifth position, the valve 10 is in the seventh use state.
  • the fourth inner valve port A4 simultaneously connects and conducts the second and sixth inner valve ports A2 and A6 through the first inner flow channel C1
  • the first inner valve port A1 simultaneously connects and conducts the third and fifth inner valve ports A3 and A5 through the second inner flow channel C2
  • the third outer flow channel D3 simultaneously connects the first, second, and third outer valve ports B1, B2, and B3 to conduct the three.
  • the inner valve ports A1 ⁇ A6 are one-to-many connected
  • the outer valve ports B1 ⁇ B3 are one-to-many connected.
  • valve 10 When the valve 10 provided in the present application is applied to a thermal management system 100 , it can connect multiple circuits of the thermal management system 100 and control the flow conditions of the heat exchange medium in each circuit.
  • the thermal management system 100 may be a thermal management system of an electric vehicle, having a first circuit, a second circuit, and a third circuit, wherein the first circuit may be an electric drive circuit, the second circuit may be a battery circuit, and the third circuit may be a passenger compartment temperature control circuit.
  • the electric drive circuit includes a first liquid pump, a traction motor 30, a radiator 40, etc. connected in series through pipelines;
  • the battery circuit includes a second liquid pump, a battery 50, a heat exchanger 60, etc. connected in series through pipelines;
  • the passenger compartment temperature control circuit includes a third liquid pump, a heater 70, a warm air core 80, etc. connected in series through pipelines, wherein the heater 70 is preferably a PTC heater.
  • each circuit may also include sensors, one-way valves, etc., which are not shown in the drawings to simplify the illustration.
  • the inlet end of the traction motor 30 is used as the first inlet end of the first circuit, and is connected to the first inner valve port A1 of the valve 10 through the first liquid pump; the outlet end of the radiator 40 is used as the first outlet end of the first circuit, and is connected to the second inner valve port A2 of the valve 10; a first three-way interface is arranged between the outlet end of the traction motor 30 and the inlet end of the radiator 40, and the first three-way interface has an input port and two output ports, wherein the input port is connected to the outlet end of the traction motor 30, one of the output ports is connected to the inlet end of the radiator 40, and the other output port is connected to the sixth inner valve port A6 of the valve 10.
  • the traction motor 30 and the radiator 40 form a first circulation path through the first and second inner valve ports A1 and A2; the traction motor 30 forms a second circulation path through the first and sixth inner valve ports A1 and A6.
  • the inlet end of the battery 50 is used as the second inlet end of the second circuit, and is connected to the fourth inner valve port A4 of the valve 10 through the second liquid pump;
  • the outlet end of the cooler 60 is used as the second outlet end of the second circuit, and is connected to the fifth inner valve port A5 of the valve 10;
  • a second three-way interface is set between the outlet end of the battery 50 and the inlet end of the cooler 60, and the second three-way interface has an input port and two output ports, wherein the input port is connected to the outlet end of the battery 50, one of the output ports is connected to the inlet end of the cooler 60, and the other output port is connected to the third inner valve port A3 of the valve 10.
  • the battery 50 and the cooler 60 form a third circulation path through the fourth and fifth inner valve ports A4 and A5;
  • the battery 50 forms a fourth circulation path through the fourth and third inner valve ports A4 and A3.
  • the inlet end of the heater core 80 is used as the third inlet end of the third circuit and is connected to the second external valve port B2 of the valve 10; the outlet end of the heater 70 is used as the third outlet end of the third circuit and is connected to the first external valve port B1 of the valve 10; a third three-way interface is arranged between the outlet end of the heater core 80 and the inlet end of the heater 70, and the third three-way interface has two input ports and one output port, wherein one input port is connected to the outlet end of the heater core 80, the other input port is connected to the third external valve port B3 of the valve 10 through the cooler 60, and the output port is connected to the inlet end of the heater 70.
  • the heater core 80 and the heater 70 form the fifth circulation path through the second and first external valve ports B2 and B1; the heater 70 and the cooler 60 form the sixth circulation path through the third and first external valve ports B3 and B1.
  • the cooler 60 is provided with a first passage 62, a second passage 64 and a third passage 66, wherein the first passage 62 and the second passage 64 are flow paths of the heat exchange medium, the first passage 62 is connected in series between the third external valve port B3 of the sixth circulation path and one of the input ports of the third three-way interface, the second passage 64 is connected in series between one of the output ports of the second three-way interface of the third circulation path and the fifth internal valve port A5; the third passage 66 is the flow path of the refrigerant, which is connected to the refrigerant pipeline of the vehicle air-conditioning compressor.
  • the heat exchange medium in the sixth circulation path absorbs the heat of the heater 70 and then releases the heat while flowing through the first passage 62; the heat exchange medium in the third circulation path absorbs the heat while flowing through the second passage 64 and then transfers the heat to the battery 50, and the heater 70 is used to heat the battery 50, thereby ensuring that the vehicle can be started at a low temperature.
  • the heat exchange medium in the third circulation path absorbs the heat of the battery 50 and releases heat while flowing through the second path 64.
  • the refrigerant of the air-conditioning system absorbs heat while flowing through the third path 66. The refrigerant is then used to cool the battery 50, so that the battery 50 is within an appropriate operating temperature range to ensure safe use.
  • the cooler 60 may be composed of two independent heat exchangers, one of which is provided with a first passage 62 and a second passage 64 for heating the battery 50 ; and the other heat exchanger is provided with a second passage 64 and a third passage 66 for cooling the battery 50 .
  • the valve 10 when the thermal management system 100 is in the first working state, the valve 10 is in the first use state, the first circulation path is turned on, and the second circulation path is turned off.
  • the heat of the traction motor 30 is transferred to the radiator 40 through the flow of the heat exchange medium for dissipation, thereby cooling the traction motor 30; at the same time, the third circulation path is turned on, and the fourth circulation path is turned off.
  • the heat of the battery 50 is taken away by the flow of the heat exchange medium and released to the refrigerant in the process of flowing through the cooler 60, thereby cooling the battery 50; at the same time, the fifth circulation path is turned on, and the sixth circulation path is turned off.
  • the heat of the heater 70 is transferred to the warm air core 80 through the flow of the heat exchange medium for dissipation, thereby heating the passenger compartment.
  • the solid line represents the turned-on circuit
  • the dotted line represents the turned-off circuit.
  • the valve 10 when the thermal management system 100 is in the second working state, the valve 10 is in the second use state, the first circulation path is connected, the second circulation path is disconnected, and the heat of the traction motor 30 is transferred to the radiator 40 through the flow of the heat exchange medium to dissipate, thereby cooling the traction motor 30; at the same time, the third circulation path and the sixth circulation path are connected, and the fourth circulation path and the fifth circulation path are disconnected, and the heat of the heater 70 is taken away by the flow of the heat exchange medium and heat is exchanged with the heat exchange medium in the third circulation path when flowing through the cooler 60, thereby rapidly heating the battery 50. At this time, the passenger compartment is no longer heated.
  • the valve 10 when the thermal management system 100 is in the third working state, the valve 10 is in the third use state, the first circulation path and the third circulation path are disconnected, the second circulation path and the fourth circulation path are connected in series and conducted, and the heat of the traction motor 30 is used to heat the battery 50, so as to fully utilize the thermal energy; at the same time, the fifth circulation path is conducted and the sixth circulation path is disconnected, and the heat of the heater 70 is used to heat the passenger compartment.
  • the valve 10 when the thermal management system 100 is in the fourth working state, the valve 10 is in the fifth use state, the first circulation path and the third circulation path are connected in series and conducted, the second circulation path and the fourth circulation path are disconnected, and the refrigerant is used to cool the battery 50 and the traction motor 30; at the same time, the fifth circulation path is connected and the sixth circulation path is disconnected, and the heat of the heater 70 is used to heat the passenger compartment.
  • the valve 10 when the thermal management system 100 is in the fifth working state, the valve 10 is in the sixth use state, the first circulation path is connected, and the second circulation path is disconnected, and the heat of the traction motor 30 is transferred to the radiator 40 through the flow of the heat exchange medium for dissipation, thereby cooling the traction motor 30; at the same time, the third circulation path, the fifth circulation path, and the sixth circulation path are connected, and the fourth circulation path is disconnected, and part of the heat of the heater 70 is used to heat the battery 50 through heat exchange in the cooler 60, and part of the heat is dissipated through the heater core 80 to heat the passenger compartment.
  • the rotation angle of the valve core 14 between the first position and the second position can be adjusted as needed to control the size ratio of the conduction area of the first outer valve port B1 and the second outer valve port B2/the third outer valve port B3, so as to control the flow ratio of the heat exchange medium flowing to the second outer valve port B2 and the third outer valve port B3, and adjust the heat supply to the battery 50 and the passenger compartment.
  • the conduction area of the first outer valve port B1 and the second outer valve port B2 is increased; conversely, when more heat is supplied to the battery 50, the conduction area of the first outer valve port B1 and the second outer valve port B2 is reduced and the conduction area of the first outer valve port B1 and the third outer valve port B3 is increased accordingly.
  • the valve 10 when the thermal management system 100 is in the sixth working state, the valve 10 is in the seventh use state, the first circulation path and the second circulation path are connected in parallel, the third circulation path and the fourth circulation path are connected in parallel, the fifth circulation path and the sixth circulation path are connected in parallel, and the first circulation path and the second circulation path in parallel are connected in series with the third circulation path and the fourth circulation path in parallel. At this time, all circulation paths are connected, which is convenient for the cooling liquid filling or detection and maintenance of the thermal management system 100.
  • the thermal management system 100 provided in the present application has a valve 10 provided with multiple internal valve ports A1 ⁇ A6 and multiple external valve ports B1 ⁇ B3.
  • the internal valve ports A1 ⁇ A6 are switched to the specific position of conduction through the internal flow channels C1 and C2, and the external valve ports B1 ⁇ B3 are switched to the specific position of conduction through the external flow channels D1 ⁇ D3.
  • the internal flow channels C1 and C2 are not connected to the external flow channels D1 ⁇ D3 themselves, and the internal valve ports A1 ⁇ A6 are not connected to the external valve ports B1 ⁇ B3.
  • the valve 10 can connect multiple circuits of the thermal management system 100 and enable the thermal management system 100 to have multiple working states.
  • each circuit can switch the on and off of each circuit as needed and adjust the flow rate of each reflux heat exchange medium to meet the heat exchange requirements under various working conditions. For example, when applied to electric vehicles, it can simultaneously meet the cooling requirements of the traction motor 30, the heating or cooling requirements of the battery 50, the heating or cooling requirements of the passenger compartment, etc., which can not only ensure the riding comfort, but also ensure the safe operation of the vehicle.
  • the valve core 14 includes inner flow channels C1 and C2, outer flow channels D1-D3 and a universal flow channel E0.
  • the universal flow channel E0 is also fan-shaped, and its inner diameter is equivalent to the inner diameter of the inner flow channels C1 and C2, and its outer diameter is equivalent to the outer flow channels D1-D3. That is to say, the universal flow channel E0 spans the circular ring where the inner flow channels C1, C2 and the outer flow channels D1-D3 are located in the radial direction, and can simultaneously connect the inner valve ports A1-A6 and the outer valve ports B1-B3 of the valve seat 12.
  • the universal flow channel E0 is arranged between the first and second inner flow channels C1 and C2 and away from the outer flow channels D1-D3.
  • Figure 25 shows one of the usage states of the valve 10. This state is similar to the first usage state of the valve 10 in the first embodiment.
  • the first inner flow channel C1 connects the first inner valve port A1 and the second inner valve port A2
  • the second inner flow channel C2 connects the fourth inner valve port A4 and the fifth inner valve port A5
  • the first outer flow channel D1 connects the first outer valve port B1 and the second outer valve port B2
  • the radial inner end of the universal flow channel E0 connects to the sixth inner valve port A6, and the radial outer end connects to the solid part of the valve seat 12. That is to say, the universal flow channel E0 does not serve to connect the valve ports.
  • FIG26 shows another use state of the valve 10 of this embodiment, in which the first inner flow channel C1 conducts to the third and fifth inner valve ports A3 and A5, the second inner flow channel C2 conducts to the sixth and second inner valve ports A6 and A2, and the universal flow channel E0 conducts to the first inner valve port A1 and the second outer valve port B2.
  • FIG27 shows another use state of the valve 10 of this embodiment, in which the first inner flow channel C1 conducts to the fourth and fifth inner valve ports A4 and A5, the second inner flow channel C2 conducts to the first and second inner valve ports A1 and A2, and the universal flow channel E0 conducts to the third inner valve port A3 and the first outer valve port B1.
  • valve 10 of this embodiment can also have a variety of different use states, thereby conducting different inner valve ports A1 to A6 and/or outer valve ports B1 to B3, so that the thermal management system 100 has a variety of different working states, which are not listed here one by one.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Multiple-Way Valves (AREA)

Abstract

一种热管理系统及其阀门,所述阀门包括阀座(12)和可转动地设置于阀座(12)中的阀芯(14),所述阀座(12)的一轴向端部设有若干内阀口和若干外阀口,所述内阀口和外阀口分别沿阀座(12)的周向间隔排布,所述内阀口位于外阀口的径向内侧且互不连通;所述阀芯(14)设有贯穿其一轴向侧端的若干内流道和若干外流道,所述内流道位于外流道的径向内侧且互不连通,所述各个内流道、外流道在阀芯(14)内部互不连通,所述内流道对应内阀口设置,所述外流道对应外阀口设置,通过所述阀芯(14)相对阀座(12)的转动使所述内流道可选择性地连通不同的内阀口、所述外流道可选择性地连通不同的外阀口,从而热管理系统(100)可以有多种不同的工作状态,能够良好的匹配各种工况下的换热需求。

Description

热管理系统及其阀门 技术领域
本申请涉及热交换技术领域,特别是涉及一种热管理系统及其阀门。
背景技术
对于电动汽车来说,存在多个部位的热管理需求,例如,牵引电机需要冷却、电池在不同工况时需要冷却或者加热、乘员仓在不同季节有降温或者供热的需求。因此,电动汽车的热管理系统包括多个回路,如电机回路、电池回路、乘员舱控温回路等,而且在不同的工况下,换热介质在各个回路中有不同的流向要求。
技术问题
换热介质在回路中的流向是通过阀门来控制,但是现有阀门难以匹配多回路多工况的换热需求,不仅造成换热效率低下、电能严重浪费,更是在一定程度上限制了电动汽车续航里程的提高,特别是低温等特殊情况下。
技术解决方案
有鉴于此,本申请提供一种热管理系统及其阀门,能够良好的匹配各种工况下的换热需求。
一方面,本申请提供一种阀门,包括阀座和可转动地设置于所述阀座中的阀芯,所述阀座的一轴向端部设有若干内阀口和若干外阀口,所述内阀口和外阀口分别沿所述阀座的周向间隔排布,所述内阀口位于所述外阀口的径向内侧且互不连通;所述阀芯设有贯穿其一轴向侧端的若干内流道和若干外流道,所述内流道位于所述外流道的径向内侧且互不连通,各个所述内流道、外流道在所述阀芯内部互不连通,所述内流道对应所述内阀口设置,所述外流道对应所述外阀口设置,通过所述阀芯相对所述阀座的转动使所述内流道可选择性地连通不同的所述内阀口、所述外流道可选择性地连通不同的所述外阀口。
在一些实施例中,所述内流道为两个、所述内阀口为六个,每一所述内流道用于连通其中两个或三个所述内阀口。
在一些实施例中,所述外流道为三个、所述外阀口为三个,每一所述外流道用于连通其中两个或三个所述外阀口。
在一些实施例中,各个所述内阀口及各个所述外阀口均为扇环状,各个所述内流道及各个所述外流道均为扇环状;各个所述内阀口均排列于同一圆环上,各个所述外阀口均排列于同一圆环;各个所述内流道排列于同一圆环上且与所述内阀口所在圆环在轴向上重叠,所述外流道排列于同一圆环上且与所述外阀口所在圆环在轴向上重叠。
在一些实施例中,所述外流道在周向上的宽度是所述外阀口的2倍;所述内流道在周向上的宽度是所述外阀口的3倍;部分所述内阀口在周向上的宽度与所述外阀口相当、部分所述内阀口在周向上的宽度是所述外阀口的2倍。
在一些实施例中,所述阀芯还包括通用流道,所述通用流道部分位于所述内流道所在圆环上、部分位于所述外流道所在圆环上,用于连通所述内阀口和外阀口。
在一些实施例中,所述阀芯设置有第一气孔和第二气孔,所述第一气孔位于所述内流道所在圆环上并与其中一所述内流道连通,所述第二气孔位于所述外流道所在圆环上并与其中一所述外流道连通。
在一些实施例中,所述阀芯的轴向侧端设置有动环,所述阀座的内侧设置有静环,在轴向上所述动环和静环相抵接而形成动密封。
另一方面,本申请提供一种热管理系统,包括第一回路、第二回路、第三回路以及上述阀门,所述第一回路与所述阀门的至少两个内阀口对接;所述第二回路与所述阀门的另外至少两个内阀口对接;所述第三回路与所述阀门的至少两个外阀口对接。
在一些实施例中,所述第一回路中串接有牵引电机和散热器,所述牵引电机的进口端作为所述第一回路的第一进口端,所述散热器的出口端作为所述第一回路的第一出口端,所述第一进口端、第一出口端分别连接至所述阀门的其中两个内阀口;所述第二回路中串接有电池和冷却器,所述电池的进口端作为所述第二回路的第二进口端,所述冷却器的出口端作为所述第二回路的第二出口端,所述第二进口端、第二出口端分别连接至所述阀门的另外两个内阀口;所述第三回路中串接有加热器和暖风芯体,所述加热器的进口端作为所述第三回路的第三进口端,所述暖风芯体的出口端作为所述第三回路的第三出口端,所述第三进口端、第三出口端分别连接至所述阀门的其中两个外阀口。
在一些实施例中,所述牵引电机的出口端和所述散热器的进口端之间设置第一三通接口,所述第一三通接口的输入/输出口分别连通所述阀门的三个内阀口;所述电池的出口端和所述冷却器的进口端之间设置第二三通接口,所述第二三通接口的输入/输出口分别连通所述阀门的另外三个内阀口;所述加热器的出口端和所述暖风芯体的进口端之间设置第三三通接口,所述第三三通接口的输入/输出口分别连通所述阀门的三个外阀口。
在一些实施例中,所述冷却器设置有第一通路、第二通路和第三通路,所述第一通路连接于所述第三三通接口和所述阀门相应的一外阀口之间;所述第二通路连接于所述第二三通接口和所述阀门相应的一内阀口之间;所述第三通路为冷媒通路。
在一些实施例中,所述冷却器包括两个独立的换热器,其中一个所述换热器设置所述第一通路和第二通路,另一个所述换热器设置所述第二通路和第三通路。
在一些实施例中,所述内阀口包括第一内阀口、第二内阀口、第三内阀口、第四内阀口、第五内阀口以及第六内阀口,所述第一内阀口位于所述第二内阀口和第三内阀口之间,所述第四内阀口位于所述第五内阀口和第六内阀口之间;所述外阀口包括第一外阀口、第二外阀口、第三外阀口,所述第一外阀口位于所述第二外阀口和第三外阀口之间;所述第一进口端、第一出口端和第一三通接口分别直接对接所述第一内阀口、第二内阀口、第六内阀口;所述第二进口端、第二出口端和第二三通接口分别直接对接所述第四内阀口、第五内阀口、第三内阀口;所述第三进口端和第三出口端分别对接所述第二外阀口和第一外阀口,所述第三三通接口通过所述冷却器对接所述第三外阀口。
在一些实施例中,所述热管理系统至少具有以下工作状态:第一工作状态:所述阀门的第一内阀口与第二内阀口导通,第四内阀口与第五内阀口导通,第一外阀口与第二外阀口导通;第二工作状态:所述阀门的第一内阀口与第二内阀口导通,第四内阀口与第五内阀口导通,第一外阀口与第三外阀口导通;第三工作状态:所述阀门的第一内阀口与第三内阀口导通,第四内阀口与第六内阀口导通,第一外阀口与第二外阀口导通;第四工作状态:所述阀门的第一内阀口与第五内阀口导通,第四内阀口与第二内阀口导通,第一外阀口与第二外阀口导通;第五工作状态:所述阀门的第一内阀口与第二内阀口导通,第四内阀口与第五内阀口导通,第一外阀口与第二外阀口、第三外阀口均导通;第六工作状态:所述阀门的第一内阀口与第三内阀口、第五内阀口均导通,第四内阀口与第二内阀口、第六内阀口均导通,第一外阀口与第二外阀口、第三外阀口均导通。
在一些实施例中,所述阀门的第一外阀口与第二外阀口、第三外阀口均导通时,所述第二外阀口与所述第三外阀口的流量比例可通过所述阀芯的转动调节。
本申请提供的热管理系统由于其阀门设置有多个内阀口和多个外阀口,各个内阀口通过内流道选择性地导通,各个外阀口通过外流道选择性地导通,能够根据需要切换与之连接的各个回路的通断以及调整各个回流的换热介质的流量,使得热管理系统具有多种不同的工作状态,满足各种工况下的换热需求。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的阀门的结构示意图。
图2为图1所示阀门的爆炸图。
图3为图1所示阀门的另一角度视图。
图4为图3所示阀门的爆炸图。
图5为图3沿V-V线的剖视图。
图6为图2所示阀门的阀芯的平面视图。
图7为图2所示阀门的阀芯的进一步爆炸图。
图8为阀芯的流道示意图。
图9为图2所示阀门的阀座的阀口示意图。
图10为阀门在第一使用状态下,其阀芯和阀座的位置关系示意图。
图11为阀门在第二使用状态下,其阀芯和阀座的位置关系示意图。
图12为阀门在第三使用状态下,其阀芯和阀座的位置关系示意图。
图13为阀门在第四使用状态下,其阀芯和阀座的位置关系示意图。
图14为阀门在第五使用状态下,其阀芯和阀座的位置关系示意图。
图15为阀门在第六使用状态下,其阀芯和阀座的位置关系示意图。
图16为阀门在第七使用状态下,其阀芯和阀座的位置关系示意图。
图17为本申请一实施例提供的热管理系统的管路连接示意图。
图18为阀门在第一工作状态下,热管理系统的各个回路的通断示意图。
图19为阀门在第二工作状态下,热管理系统的各个回路的通断示意图。
图20为阀门在第三工作状态下,热管理系统的各个回路的通断示意图。
图21为阀门在第四工作状态下,热管理系统的各个回路的通断示意图。
图22为阀门在第五工作状态下,热管理系统的各个回路的通断示意图。
图23为阀门在第六工作状态下,热管理系统的各个回路的通断示意图。
图24为本申请另一实施例提供的阀门的阀芯的流道示意图。
图25为一使用状态下,图24所示阀芯和阀座的位置关系示意图。
图26为另一使用状态下,图24所示阀芯和阀座的位置关系示意图。
图27为再一使用状态下,图24所示阀芯和阀座的位置关系示意图。
附图标号说明:
热管理系统100;
阀门10;
阀座12、基板121、侧板123、盖板125、轴孔127、第一内阀口A1、第二内阀口A2、第三内阀口A3、第四内阀口A4、第五内阀口A5、第六内阀口A6、第一外阀口B1、第二外阀口B2、第三外阀口B3、通用流道E0;
阀芯14、轴杆141、第一气孔143、第二气孔145、第一内流道C1、第二内流道C2、第一外流道D1、第二外流道D2、第三外流道D3;
静环13、动环15、弹性件16、密封垫17、密封件18、密封圈19;
牵引电机30、散热器40、电池50、冷却器60、第一通路62、第二通路64、第三通路66、加热器70、暖风芯体80。
本发明的实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供一种热管理系统及其阀门,优选地应用于电动汽车中,根据需要调整换热介质在各个回路中的流向和/或流速,满足不同工装下的换热需求。换热介质可以选用热交换效率高且流动性好的冷却液,如水等。
图1-5所示为本申请所提供的阀门10的一具体实施例,所示阀门10包括阀座12以及可转动地安装于阀座12中的阀芯14,其中阀座12设置有多个内阀口和外阀口,分别对接热管理系统100的不同回路;阀芯14设置有多个内流道和外流道,将阀座12相应的内阀口和/或外阀口导通。通过阀芯14相对于阀座12的转动,可以切换内流道、外流道所导通的内阀口、外阀口,进而切换所导通的回路,使得热管理系统100能够满足各种不同工况下的换热需求。应当理解地,本申请所提供的阀门10可以应用于任何管路中控制流体的流动,并不限于应用于热管理系统100中。
阀座12整体呈中空圆柱状,包括基板121、由基板121的外边缘垂直延伸的环形侧板123以及盖设于侧板123上的盖板125,基板121、侧板123、盖板125合围形成装配阀芯14的空间。图示实施例中,基板121和侧板123为一体结构,盖板125通过螺钉等固定连接至侧板123上。盖板125的中央形成贯穿的轴孔127,用于阀芯14的装配。图示实施例中,内阀口和外阀口形成于基板121上,即设置于阀座12的一轴向侧端,其中内阀口包括第一内阀口A1、第二内阀口A2、第三内阀口A3、第四内阀口A4、第五内阀口A5、第六内阀口A6;外阀口包括第一外阀口B1、第二外阀口B2、第三外阀口B3。
阀芯14整体为圆柱状,活动地安装于阀座12中。阀芯14面向盖板125的侧端中央向外凸设有轴杆141,轴杆141通过盖板125的轴孔127伸出阀座12之外。动力机构,如电机等与轴杆141传动连接,驱动阀芯14相对于阀座12转动以改变阀门10的使用状态,适配不同的工况需求。图示实施例中,阀芯14设有贯穿其面向基板121的侧端的内流道和外流道,其中内流道包括第一内流道C1、第二内流道C2;外流道包括第一外流道D1、第二外流道D2、第三外流道D3。阀芯14相对于阀座12转动至不同位置时,内流道C1、C2将不同的内阀口A1~A6导通、外流道D1~D3将不同的外阀口B1~B3导通,从而阀门10呈现不同的使用状态。
在一些实施例中,盖板125的内侧设置有静环13,静环13环绕轴杆141设置并与之相间隔;阀芯14面向盖板125的侧端设置有动环15,在阀门10的轴向上动环15与静环13相抵接。静环13由良好的耐磨、耐高温材料,例如陶瓷或碳化硅制成;动环15由良好的耐磨、耐高温的润滑材料,例如聚四氟乙烯(PTFE)制成。通过设置静环13和动环15,使得盖板125与阀芯14在轴向上相间隔,如此有效避免阀芯14转动过程中与盖板125的摩擦。较佳的,阀芯14与动环15之间设置有弹性件16,如波形弹簧等,用于提供轴向预紧力而使得动环15和静环13能够紧密地抵接从而形成动密封。由于在某些工作状态下阀座12可能存在冷却液,动密封可以避免冷却液通过轴杆141与阀座12之间的间隙外泄。
在一些实施例中,基板121与阀芯14之间夹设有密封垫17,密封垫17采用柔性材料,如硅胶等制成,既能避免阀芯14在转动过程中与基板121直接摩擦,又能避免流体自阀芯14与基板121的接触面泄露。密封垫17在对应阀座12的内阀口A1~A6、外阀口B1~B3以及阀芯14的内流道C1~C2、外流道D1~D3的位置处开孔,避免影响内流道C1~C2、外流道D1~D3对内阀口A1~A6、外阀口B1~B3的导通。另外,动环15的外周面嵌设有密封件18、盖板125与轴杆141的外周面以及侧板123的内周面之间均设置有密封圈19,使得阀门10的各个部件密封连接,流体由阀座12的某个内阀口A1~A6或外阀口B1~B3流入之后,只能经由与之导通的其它内阀口A1~A6或外阀口B1~B3流出。
请同时参阅图6至图8,阀芯14的第一内流道C1、第二内流道C2位于同一圆环上,两者的结构大致相同且对称设置。第一内流道C1、第二内流道C2所对应的圆心角略大于90度,两者之间的间隔角度略小于90度。第一外流道D1、第二外流道D2、第三外流道D3位于同一圆环上,三者结构大致相同且相邻设置。各个内流道C1、C2所在的圆环的外径小于各个外流道D1~D3所在的圆环的内径。也就是说,第一外流道D1、第二外流道D2、第三外流道D3位于第一内流道C1、第二内流道C2的径向外侧。
图示实施例中,第一外流道D1位于第二外流道D2和第三外流道D3之间,并与第一内流道C1、第二内流道C2之间的间隔径向正对设置;第二外流道D2位于第一内流道C1的外侧;第三外流道D3位于第二外流道D2的外侧。
在一些实施例中,如图2和图6所示,阀芯14面向盖板125的侧端设置有贯穿的第一气孔143和第二气孔145,其中第一气孔143位于内流道C1、C2所在的圆环上并与第二内流道C2连通,对内流道C1、C2及其所导通的内阀口A1~A6起到平衡气压的作用;第二气孔145位于外流道D1~D3所在的圆环上并第一外流道D1连通,对外流道D1~D3及其所导通的外阀口B1~B3起到平衡气压的作用,使得换热介质能够顺畅地流过阀门10。其他实施方式中,也可以第一气孔143与第一内流道C1连通,而第二气孔145与第二外流道D2或第三外流道D3连通。
请同时参阅图9,阀座12的第一内阀口A1、第二内阀口A2、第三内阀口A3、第四内阀口A4、第五内阀口A5、第六内阀口A6位于同一圆环上并沿该圆环的周向呈一圈排布,相互之间紧密排列,间隔角度几乎可以忽略;第一外阀口B1、第二外阀口B2、第三外阀口B3位于同一圆环上并沿该圆环的周向排布,相互之间紧密排列,间隔角度几乎可以忽略。在本实施方式中各个内阀口A1~A6及各个外阀口B1~B3均为扇环状,且各个内阀口A1~A6所在的圆环的外径小于各个外阀口B1~B3所在的圆环的内径,也就是说,第一内阀口A1、第二内阀口A2、第三内阀口A3、第四内阀口A4、第五内阀口A5、第六内阀口A6位于第一外阀口B1、第二外阀口B2、第三外阀口B3的径向外侧。
图示实施例中,第一内阀口A1设置于第二、第三内阀口A2、A3之间,第四内阀口A4设置于第五、第六内阀口A5、A6之间,第二、第六内阀口A2、A6相邻设置,第三、第五内阀口A3、A5相邻设置。第一、第二、第四、第五内阀口A1、A2、A4、A5在周向上的宽度相当;第三、第六内阀口A3、A6在周向上的宽度相当,且小于第一、第二、第四、第五内阀口A1、A2、A4、A5在周向上的宽度。在一具体实施例中,第一、第二、第四、第五内阀口A1、A2、A4、A5所对应的圆心角约为72°;第三、第六内阀口A3、A6所对应的圆心角约为36°。
图示实施例中,第一、第二、第三外阀口B1~B3在周向上的宽度相当且相邻设置,其中第一外阀口B1位于第二外阀口B2和第三外阀口B3之间。在径向上,第一外阀口B1对应第三内阀口A3设置,第二外阀口B2对应第一内阀口A1设置,第三外阀口B3对应第五内阀口A5设置。在一具体实施例中,第一、第二、第三外阀口B1~B3所对应的圆心角约为36°。
在本实施方式中,各个内流道C1、C2为扇环状,其内径与各个内阀口A1~A6的内径相当,各个内流道C1、C2的外径与各个内阀口A1~A6的外径相当。在轴向的投影上,各个内流道C1、C2和各个内阀口A1~A6位于同一圆环上。第一、第二内流道C1、C2在周向上的宽度相当,且大于各个内阀口A1~A6在周向上的宽度,使得各个内流道C1、C2至少可以同时对接两个相邻的内阀口A1~A6以将其导通。在一具体实施例中,第一、第二内流道C1、C2所对应的圆心角约为108°,其在周向上的宽度约为第一、第二、第四、第五内阀口A1、A2、A4、A5的1.5倍,约为第三、第六内阀口A3、A6的3倍。
各个外流道D1~D3为扇环状,其内径与各个外阀口B1~B3的内径相当,各个外流道D1~D3的外径与各个外阀口B1~B3的外径相当。在轴向的投影上,各个外流道D1~D3和各个外阀口B1~B3位于同一圆环上。第一、第二、第三外流道D1~D3在周向上的宽度相当,且大于各个外阀口B1~B3在周向上的宽度,使得各个外流道D1~D3至少可以同时对接两个相邻的外阀口B1~B3以将其导通。在一具体实施例中,第一、第二、第三外流道D1~D3所对应的圆心角约为72°,其在周向上的宽度约为各个外阀口B1~B3的2倍。
可以理解,因为各个内阀口A1~A6及各个外阀口B1~B3均为扇环状,各个内流道C1、C2及各个外流道D1~D3也均为扇环状,所以上述周向上相等即对应的圆心角相等,而宽度的倍数也即各自对应圆心角的倍数。
阀门10通过其阀芯14相对于阀座12的转动切换至不同的使用状态。如,阀芯14可以转动至通过其第一内流道C1将第一内阀口A1与相邻的第二内阀口A2导通;或者将第一内阀口A1与相邻的第三内阀口A3导通;或者,将第一内阀口A1同时与第二内阀口A2、第三内阀口A3导通。应当理解地,阀芯14可以相对于阀座12在360度范围内任意转动,以下仅就阀门10的几种常用的使用状态进行说明。
如图10所示,阀芯14相对于阀座12转动至第一位置时,阀门10处于第一使用状态。此时,第一内流道C1同时对接第一、第二内阀口A1、A2而将两者导通,第二内流道C2同时对接第四、第五内阀口A4、A5而将两者导通,第一外流道D1同时对接第一、第二外阀口B1、B2并将两者导通。在一些实施例中,可以将第一位置设置为阀门10的初始位置,第一使用状态即为阀门10的初始状态。为方便展示阀座12和阀芯14的位置对比,图10-16中,以实现表示阀座12、虚线表示阀芯14。
如图11所示,阀芯14相对于阀座12自初始位置转动一定角度(如沿着图中CW方向转动36°)而到达第二位置时,阀门10处于第二使用状态。此时,第一内流道C1同时对接第一、第二内阀口A1、A2而将两者导通,第二内流道C2同时对接第四、第五内阀口A4、A5而将两者导通,第一外流道D1同时对接第一、第三外阀口B1、B3而将两者导通。阀门10在第二使用状态下,外阀口B1~B3的导通情况与第一使用状态不同。
如图12所示,阀芯14相对于阀座12自初始位置沿着图中CW方向转动72°而到达第三位置时,阀门10处于第三使用状态。此时,第一内流道C1同时对接第一、第三内阀口A1、A3而将两者导通,第二内流道C2同时对接第四、第六内阀口A4、A6而将两者导通,第二外流道D2同时对接第一、第二外阀口B1、B2而将两者导通。阀门10在第三使用状态下,内阀口A1~A6、外阀口B1~B3的导通情况都产生变化。
如图13所示,阀芯14相对于阀座12自初始位置沿着图中CCW方向转动36°而到达第四位置时,阀门10处于第四使用状态。此时,第一内流道C1同时对接第二、第六内阀口A2、A6而将两者导通,第二内流道C2同时对接第三、第五内阀口A3、A5而将两者导通,第三外流道D3同时对接第一、第三外阀口B1、B3而将两者导通。阀门10在第四使用状态下,内阀口A1~A6、外阀口B1~B3的导通情况再次产生变化。在一些实施例中,阀门10处于第四使用状态时,热管理系统100为非工作状态。
如图14所示,阀芯14相对于阀座12自初始位置沿着图中CCW方向转动72°而到达第五位置时,阀门10处于第五使用状态。此时,第一内流道C1同时对接第二、第四内阀口A2、A4而将两者导通,第二内流道C2同时对接第一、第五内阀口A1、A5而将两者导通,第三外流道D3同时对接第一、第二外阀口B1、B2而将两者导通。阀门10在第五使用状态下,内阀口A1~A6、外阀口B1~B3的导通情况继续发生改变。
阀门10在以上各个使用状态下,相应的阀口一一对接。应当理解地,阀芯14也可以转动至第一位置、第二位置、第三位置、第四位置、第五位置之间的任意位置:
如图15所示,阀芯14相对于阀座12转动一定角度(如沿着图中CW方向转动18°)而到达第一位置和第二位置之间的第六位置时,阀门10处于第六使用状态。此时,第一内流道C1同时对接第一、第二内阀口A1、A2而将两者导通,第二内流道C2同时对接第四、第五内阀口A4、A5而将两者导通,第一外流道D1同时对接第一、第二、第三外阀口B1、B2、B3而将三者导通。也就是说,阀门10在第六使用状态下,内阀口A1~A6一对一导通,外阀口B1~B3一对多导通。
如图16所示,阀芯14相对于阀座12转动一定角度(如沿着图中CCW方向转动54°)而到达第四位置和第五位置之间的第七位置时,阀门10处于第七使用状态。此时,第四内阀口A4通过第一内流道C1同时对接并导通第二、第六内阀口A2、A6,第一内阀口A1通过第二内流道C2同时对接并导通第三、第五内阀口A3、A5,第三外流道D3同时对接第一、第二、第三外阀口B1、B2、B3而将三者导通。也就是说,阀门10在第七使用状态下,内阀口A1~A6一对多导通、外阀口B1~B3一对多导通。
请同时参阅图17,本申请所提供的阀门10应用于热管理系统100时,可以连接热管理系统100的多个回路并控制各个回路中换热介质的流动状况。
在一具体实施例中,热管理系统100可以是电动汽车的热管理系统,具有第一回路、第二回路、第三回路,其中第一回路可以是电驱动回路,第二回路可以是电池回路,第三回路可以是乘员舱控温回路。其中,电驱动回路包括通过管路串联的第一液泵、牵引电机30、散热器40等;电池回路包括通过管路串联的第二液泵、电池50、换热器60等;乘员舱控温回路包括通过管路串联的第三液泵、加热器70、暖风芯体80等,其中加热器70优选地为PTC加热器。应当理解地,各个回路中还可以包括有传感器、单向阀等,为简化图示,附图中并未示出。
电驱动回路中,牵引电机30的进口端作为第一回路的第一进口端,通过第一液泵与阀门10的第一内阀口A1对接;散热器40的出口端作为第一回路的第一出口端,与阀门10的第二内阀口A2对接;牵引电机30的出口端与散热器40的进口端之间设置第一三通接口,所述第一三通接口具有一输入口和两个输出口,其中输入口连通牵引电机30的出口端、其中一输出口连通散热器40的进口端、另一输出口与阀门10的第六内阀口A6对接。如此,牵引电机30、散热器40通过第一、第二内阀口A1、A2构成第一循环路径;牵引电机30通过第一、第六内阀口A1、A6构成第二循环路径。
电池回路中,电池50的进口端作为第二回路的第二进口端,通过第二液泵与阀门10的第四内阀口A4对接;冷却器60的出口端作为第二回路的第二出口端,与阀门10的第五内阀口A5对接;电池50的出口端与冷却器60的进口端之间设置第二三通接口,所述第二三通接口具有一输入口和两个输出口,其中输入口连通电池50的出口端、其中一输出口连通冷却器60的进口端,另一输出口与阀门10的第三内阀口A3对接。如此,电池50、冷却器60通过第四、第五内阀口A4、A5构成第三循环路径;电池50通过第四、第三内阀口A4、A3构成第四循环路径。
乘员舱控温回路中,暖风芯体80的进口端作为第三回路的第三进口端,与阀门10的第二外阀口B2对接;加热器70的出口端作为第三回路的第三出口端,与阀门10的第一外阀口B1对接;暖风芯体80的出口端与加热器70的进口端之间设置第三三通接口,所述第三三通接口具有两个输入口和一输出口,其中一输入口连通所述暖风芯体80的出口端、另一输入口通过冷却器60与阀门10的第三外阀口B3对接、输出口连通加热器70进口端。如此,暖风芯体80、加热器70通过第二、第一外阀口B2、B1构成第五循环路径;加热器70,冷却器60通过第三、第一外阀口B3、B1构成第六循环路径。
较佳地,冷却器60设置有第一通路62、第二通路64以及第三通路66,其中第一通路62、第二通路64为换热介质的流路,第一通路62串接于第六循环路径的第三外阀口B3与第三三通接口的其中一输入口之间,第二通路64串接于第三循环路径的第二三通接口的其中一输出口与第五内阀口A5之间;第三通路66为冷媒的流路,与车辆空调压缩机的冷媒管路连接。
第三循环路径、第六循环路径导通时,第六循环路径中的换热介质吸收了加热器70的热量之后,在流经第一通路62的过程中放热;第三循环路径中的换热介质在流经第二通路64的过程中吸热,之后将热量转移至电池50,利用加热器70实现对电池50的升温,确保车辆可以低温启动。
第三循环路径导通、第六循环路径断开时,第三循环路径中的换热介质吸收电池50的热量之后,在流经第二通路64的过程中放热,空调系统的冷媒在流经第三通路66的过程中吸热,进而利用冷媒实现对电池50的降温,使得电池50处于适当的工作温度范围内,保障使用安全。
在一些实施例中,冷却器60可以由两个独立的换热器构成,其中一个换热器设置第一通路62和第二通路64,用于电池50的升温;另一换热器设置第二通路64和第三通路66,用于电池50的降温。
如图18所示,热管理系统100在第一工作状态时,阀门10处于第一使用状态,第一循环路径导通、第二循环路径断开,牵引电机30的热量通过换热介质的流动转移至散热器40进行散发,实现对牵引电机30的冷却;同时,第三循环路径导通、第四循环路径断开,电池50的热量通过换热介质的流动带走并在流过冷却器60的过程中释放给冷媒,实现对电池50的降温;同时,第五循环路径导通、第六循环路径断开,加热器70的热量通过换热介质的流动转移至暖风芯体80散发,实现对乘员仓的供热。图18-23示中,以实线表示导通的回路,虚线表示断开的回路。
如图19所示,热管理系统100在第二工作状态时,阀门10处于第二使用状态,第一循环路径导通、第二循环路径断开,牵引电机30的热量通过换热介质的流动转移至散热器40进行散发,实现对牵引电机30的冷却;同时,第三循环路径、第六循环路径导通,第四循环路径、第五循环路径断开,加热器70的热量通过换热介质的流动带走并在流过冷却器60时与第三循环路径中的换热介质行热交换,进而实现对电池50的快速升温。此时,乘员仓不再供热。
如图20所示,热管理系统100在第三工作状态时,阀门10处于第三使用状态,第一循环路径、第三循环路径断开,第二循环路径、第四循环路径相串接而导通,利用牵引电机30的热量对电池50供热,实现热能充分利用;同时,第五循环路径导通、第六循环路径断开,利用加热器70的热量对乘员仓供热。
如图21所示,热管理系统100在第四工作状态时,阀门10处于第五使用状态,第一循环路径、第三循环路径相串接而导通,第二循环、第四循环路径断开,利用冷媒对电池50、牵引电机30降温;同时第五循环路径连通、第六循环路径断开,利用加热器70的热量对乘员仓供热。
如图22所示,热管理系统100在第五工作状态时,阀门10处于第六使用状态,第一循环路径导通、第二循环路径断开,牵引电机30的热量通过换热介质的流动转移至散热器40进行散发,实现对牵引电机30的冷却;同时,第三循环路径、第五循环路径、第六循环路径连通,第四循环路径断开,加热器70的部分热量通过在冷却器60的热交换对电池50升温、部分热量通过暖风芯体80的散发对乘员仓供热。
此时,可以根据需要调节阀芯14在第一位置和第二位置之间的转动角度来控制第一外阀口B1与第二外阀口B2/第三外阀口B3的导通面积的大小比例,如此控制流向第二外阀口B2和第三外阀口B3的换热介质的流量比,调节对电池50、乘员仓的供热量。如,需要加大乘员仓的供热量时,加大第一外阀口B1与第二外阀口B2的导通面积;反之,更多热量供给电池50时,减小第一外阀口B1与第二外阀口B2的导通面积而相应增大第一外阀口B1与第三外阀口B3的导通面积。
如图23所示,热管理系统100在第六工作状态时,阀门10处于第七使用状态,第一循环路径、第二循环路径相并联,第三循环路径、第四循环路径相并联,第五循环路径、第六循环路径相并联,并且并联的第一循环路径、第二循环路径与并联的第三循环路径、第四循环路径相串联。此时,所有的循环路径均导通,方便热管理系统100的冷却液加注或者检测维修。
本申请提供的热管理系统100由于其阀门10设置有多个内阀口A1~A6以及多个外阀口B1~B3,内阀口A1~A6通过内流道C1、C2来切换导通的具体位置,外阀口B1~B3通过外流道D1~D3切换导通的具体位置,内流道C1、C2与外流道D1~D3本身不相连通,内阀口A1~A6与外阀口B1~B3也不相连通,如此阀门10可以连接热管理系统100的多条回路并使得热管理系统100具有多种工作状态,能够根据需要切换各个回路的通断以及调整各个回流的换热介质的流量,满足各种工况下的换热需求,如应用于电动汽车时能够同时满足牵引电机30的冷却需求、电池50的升温或者降温需求、乘员仓的供热或降温需求等,既能保证乘坐的舒适性,又能保证车辆的安全运行。
图24-27所示为本申请另一实施例提供的阀门10的阀芯14,阀芯14包括内流道C1、C2,外流道D1~D3以及通用流道E0,通用流道E0也为扇环状,且其内径与内流道C1、C2的内径相当、外径与外流道D1~D3的相当,也就是说通用流道E0在径向上横跨内流道C1、C2和外流道D1~D3所在的圆环,可以同时连通阀座12的内阀口A1~A6和外阀口B1~B3。图示实施例中,通用流道E0设置于第一、第二内流道C1、C2之间且远离外流道D1~D3。
图25所示为阀门10的其中一种使用状态,此时类似于第一实施例的阀门10的第一使用状态,第一内流道C1导通第一内阀口A1和第二内阀口A2,第二内流道C2导通第四内阀口A4和第五内阀口A5,第一外流道D1导通第一外阀口B1和第二外阀口B2,通用流道E0的径向内端对接第六内阀口A6、径向外端对接阀座12的实体部分,也就是说此时通用流道E0不起到连通阀口的作用。
图26所示为本实施例阀门10的另一使用状态,此时第一内流道C1导通第三、第五内阀口A3、A5,第二内流道C2导通第六、第二内阀口A6、A2,通用流道E0导通第一内阀口A1和第二外阀口B2。图27所示为本实施例阀门10的再一使用状态,此时第一内流道C1导通第四、第五内阀口A4、A5,第二内流道C2导通第一、第二内阀口A1、A2,通用流道E0导通第三内阀口A3和第一外阀口B1。应当理解地,本实施例的阀门10同样可以有多种不同的使用状态,进而导通不同的内阀口A1~A6和/或外阀口B1~B3,使得热管理系统100具有多种不同的工作状态,在此不一一列举。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (16)

  1. 一种阀门,包括阀座和可转动地设置于所述阀座中的阀芯,其特征在于,所述阀座的一轴向端部设有若干内阀口和若干外阀口,所述内阀口和外阀口分别沿所述阀座的周向间隔排布,所述内阀口位于所述外阀口的径向内侧且互不连通;所述阀芯设有贯穿其一轴向侧端的若干内流道和若干外流道,所述内流道位于所述外流道的径向内侧且互不连通,各个所述内流道、外流道在所述阀芯内部互不连通,所述内流道对应所述内阀口设置,所述外流道对应所述外阀口设置,通过所述阀芯相对所述阀座的转动使所述内流道可选择性地连通不同的所述内阀口、所述外流道可选择性地连通不同的所述外阀口。
  2. 根据权利要求1所述的阀门,其特征在于,所述内流道为两个、所述内阀口为六个,每一所述内流道用于连通其中两个或三个所述内阀口。
  3. 根据权利要求1所述的阀门,其特征在于,所述外流道为三个、所述外阀口为三个,每一所述外流道用于连通其中两个或三个所述外阀口。
  4. 根据权利要求1所述的阀门,其特征在于,各个所述内阀口及各个所述外阀口均为扇环状,各个所述内流道及各个所述外流道均为扇环状;各个所述内阀口均排列于同一圆环上,各个所述外阀口均排列于同一圆环;各个所述内流道排列于同一圆环上且与所述内阀口所在圆环在轴向上重叠,所述外流道排列于同一圆环上且与所述外阀口所在圆环在轴向上重叠。
  5. 根据权利要求4所述的阀门,其特征在于,所述外流道在周向上的宽度是所述外阀口的2倍;所述内流道在周向上的宽度是所述外阀口的3倍;部分所述内阀口在周向上的宽度与所述外阀口相当、部分所述内阀口在周向上的宽度是所述外阀口的2倍。
  6. 根据权利要求4所述的阀门,其特征在于,所述阀芯还包括通用流道,所述通用流道部分位于所述内流道所在圆环上、部分位于所述外流道所在圆环上,用于连通所述内阀口和外阀口。
  7. 根据权利要求4所述的阀门,其特征在于,所述阀芯设置有第一气孔和第二气孔,所述第一气孔位于所述内流道所在圆环上并与其中一所述内流道连通,所述第二气孔位于所述外流道所在圆环上并与其中一所述外流道连通。
  8. 根据权利要求1-7任一项所述的阀门,其特征在于,所述阀芯的轴向侧端设置有动环,所述阀座的内侧设置有静环,在轴向上所述动环和静环相抵接而形成动密封。
  9. 一种热管理系统,其特征在于,包括第一回路、第二回路、第三回路以及权利要求1-8任一项所述的阀门,所述第一回路与所述阀门的至少两个内阀口对接;所述第二回路与所述阀门的另外至少两个内阀口对接;所述第三回路与所述阀门的至少两个外阀口对接。
  10. 根据权利要求9所述的热管理系统,其特征在于,
    所述第一回路中串接有牵引电机和散热器,所述牵引电机的进口端作为所述第一回路的第一进口端,所述散热器的出口端作为所述第一回路的第一出口端,所述第一进口端、第一出口端分别连接至所述阀门的其中两个内阀口;
    所述第二回路中串接有电池和冷却器,所述电池的进口端作为所述第二回路的第二进口端,所述冷却器的出口端作为所述第二回路的第二出口端,所述第二进口端、第二出口端分别连接至所述阀门的另外两个内阀口;
    所述第三回路中串接有加热器和暖风芯体,所述加热器的进口端作为所述第三回路的第三进口端,所述暖风芯体的出口端作为所述第三回路的第三出口端,所述第三进口端、第三出口端分别连接至所述阀门的其中两个外阀口。
  11. 根据权利要求10所述的热管理系统,其特征在于,
    所述牵引电机的出口端和所述散热器的进口端之间设置第一三通接口,所述第一三通接口的输入/输出口分别连通所述阀门的三个内阀口;
    所述电池的出口端和所述冷却器的进口端之间设置第二三通接口,所述第二三通接口的输入/输出口分别连通所述阀门的另外三个内阀口;
    所述加热器的出口端和所述暖风芯体的进口端之间设置第三三通接口,所述第三三通接口的输入/输出口分别连通所述阀门的三个外阀口。
  12. 根据权利要求11所述的热管理系统,其特征在于,所述冷却器设置有第一通路、第二通路和第三通路,所述第一通路连接于所述第三三通接口和所述阀门相应的一外阀口之间;所述第二通路连接于所述第二三通接口和所述阀门相应的一内阀口之间;所述第三通路为冷媒通路。
  13. 根据权利要求12所述的热管理系统,其特征在于,所述冷却器包括两个独立的换热器,其中一个所述换热器设置所述第一通路和第二通路,另一个所述换热器设置所述第二通路和第三通路。
  14. 根据权利要求11所述的热管理系统,其特征在于,
    所述内阀口包括第一内阀口、第二内阀口、第三内阀口、第四内阀口、第五内阀口以及第六内阀口,所述第一内阀口位于所述第二内阀口和第三内阀口之间,所述第四内阀口位于所述第五内阀口和第六内阀口之间;
    所述外阀口包括第一外阀口、第二外阀口、第三外阀口,所述第一外阀口位于所述第二外阀口和第三外阀口之间;
    所述第一进口端、第一出口端和第一三通接口分别直接对接所述第一内阀口、第二内阀口、第六内阀口;
    所述第二进口端、第二出口端和第二三通接口分别直接对接所述第四内阀口、第五内阀口、第三内阀口;
    所述第三进口端和第三出口端分别对接所述第二外阀口和第一外阀口,所述第三三通接口通过所述冷却器对接所述第三外阀口。
  15. 根据权利要求14所述的热管理系统,其特征在于,所述热管理系统至少具有以下工作状态:
    第一工作状态:所述阀门的第一内阀口与第二内阀口导通,第四内阀口与第五内阀口导通,第一外阀口与第二外阀口导通;
    第二工作状态:所述阀门的第一内阀口与第二内阀口导通,第四内阀口与第五内阀口导通,第一外阀口与第三外阀口导通;
    第三工作状态:所述阀门的第一内阀口与第三内阀口导通,第四内阀口与第六内阀口导通,第一外阀口与第二外阀口导通;
    第四工作状态:所述阀门的第一内阀口与第五内阀口导通,第四内阀口与第二内阀口导通,第一外阀口与第二外阀口导通;
    第五工作状态:所述阀门的第一内阀口与第二内阀口导通,第四内阀口与第五内阀口导通,第一外阀口与第二外阀口、第三外阀口均导通;
    第六工作状态:所述阀门的第一内阀口与第三内阀口、第五内阀口均导通,第四内阀口与第二内阀口、第六内阀口均导通,第一外阀口与第二外阀口、第三外阀口均导通。
  16. 根据权利要求15所述的热管理系统,其特征在于,所述阀门的第一外阀口与第二外阀口、第三外阀口均导通时,所述第二外阀口与所述第三外阀口的流量比例可通过所述阀芯的转动调节。
PCT/CN2022/125561 2022-10-17 2022-10-17 热管理系统及其阀门 WO2024082078A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125561 WO2024082078A1 (zh) 2022-10-17 2022-10-17 热管理系统及其阀门

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125561 WO2024082078A1 (zh) 2022-10-17 2022-10-17 热管理系统及其阀门

Publications (1)

Publication Number Publication Date
WO2024082078A1 true WO2024082078A1 (zh) 2024-04-25

Family

ID=90736550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125561 WO2024082078A1 (zh) 2022-10-17 2022-10-17 热管理系统及其阀门

Country Status (1)

Country Link
WO (1) WO2024082078A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050034688A1 (en) * 2003-08-14 2005-02-17 Mark Lelkes Engine cooling disc valve
JP2014185662A (ja) * 2013-03-22 2014-10-02 Saginomiya Seisakusho Inc ロータリー式弁装置
JP2020180623A (ja) * 2019-04-23 2020-11-05 株式会社不二工機 流路切換弁
CN215950468U (zh) * 2021-04-13 2022-03-04 广东德昌电机有限公司 多端口阀门、以及具有该多端口阀门的热管理系统
CN114738511A (zh) * 2022-05-06 2022-07-12 浙江吉利控股集团有限公司 一种集成式阀芯及其多通阀和车身热管理系统
CN217539713U (zh) * 2022-04-24 2022-10-04 联合汽车电子有限公司 多通阀阀芯、阀体及多通阀

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050034688A1 (en) * 2003-08-14 2005-02-17 Mark Lelkes Engine cooling disc valve
JP2014185662A (ja) * 2013-03-22 2014-10-02 Saginomiya Seisakusho Inc ロータリー式弁装置
JP2020180623A (ja) * 2019-04-23 2020-11-05 株式会社不二工機 流路切換弁
CN215950468U (zh) * 2021-04-13 2022-03-04 广东德昌电机有限公司 多端口阀门、以及具有该多端口阀门的热管理系统
CN216692256U (zh) * 2021-04-13 2022-06-07 广东德昌电机有限公司 多端口阀门、以及具有该多端口阀门的热管理系统
CN217539713U (zh) * 2022-04-24 2022-10-04 联合汽车电子有限公司 多通阀阀芯、阀体及多通阀
CN114738511A (zh) * 2022-05-06 2022-07-12 浙江吉利控股集团有限公司 一种集成式阀芯及其多通阀和车身热管理系统

Similar Documents

Publication Publication Date Title
JP4457958B2 (ja) 車両用空調装置
JP6054627B2 (ja) 車両用熱交換器
CN102840777B (zh) 一种流体径向流动的铝制板翅式环形散热器
WO2018099359A1 (zh) 流量控制装置
US20240035581A1 (en) Multi-port valve, and thermal management system provided with same and application thereof
JPWO2014148126A1 (ja) 流量制御弁
JP7227050B2 (ja) 制御バルブ
JP2013064583A (ja) 車両用熱交換器
CN115139751B (zh) 热管理集成系统及电动汽车
WO2022050543A1 (en) Variable cylinder wall for seals on plug valve cross-reference to related application
WO2017217112A1 (ja) 切替流調弁
CN110894884A (zh) 控制阀
US20190390781A1 (en) Control valve
WO2024082078A1 (zh) 热管理系统及其阀门
CN113883747B (zh) 冷媒换热装置及间接式热泵系统
WO2023143068A1 (zh) 多通切换阀、热管理系统及车辆
WO2024045138A1 (zh) 热管理系统
CN115628304B (zh) 一种新能源汽车热管理系统用八通阀
KR102478096B1 (ko) 유량제어밸브
KR101318635B1 (ko) 워터 밸브
CN217559033U (zh) 高温通风蝶阀
WO2023112602A1 (ja) 制御バルブ
CN220118683U (zh) 一种阀组件及阀门
WO2023112738A1 (ja) 制御バルブ
CN217355662U (zh) 可切换多个通道流通状态的控制阀