WO2024045138A1 - 热管理系统 - Google Patents

热管理系统 Download PDF

Info

Publication number
WO2024045138A1
WO2024045138A1 PCT/CN2022/116574 CN2022116574W WO2024045138A1 WO 2024045138 A1 WO2024045138 A1 WO 2024045138A1 CN 2022116574 W CN2022116574 W CN 2022116574W WO 2024045138 A1 WO2024045138 A1 WO 2024045138A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
heat exchange
flow channel
valve
exchange pipeline
Prior art date
Application number
PCT/CN2022/116574
Other languages
English (en)
French (fr)
Inventor
刘晓宇
陈安邦
王海涛
秦锐锋
Original Assignee
广东德昌电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东德昌电机有限公司 filed Critical 广东德昌电机有限公司
Priority to PCT/CN2022/116574 priority Critical patent/WO2024045138A1/zh
Publication of WO2024045138A1 publication Critical patent/WO2024045138A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating

Definitions

  • the present application relates to the technical field of heat exchange equipment, and in particular to a thermal management system.
  • thermal management systems of electric vehicles generally include multiple circuits, such as battery circuits, cabin air conditioning circuits, etc.
  • high requirements are placed on the thermal management system. For example, when the battery needs to be cooled down and the passenger compartment needs to be heated, the passenger compartment air conditioning circuit is disconnected from the battery circuit, and the heat exchange medium will not flow from the heating circuit to the battery circuit; when the battery and the passenger compartment need to be heated at the same time, the passenger compartment air conditioning circuit is disconnected from the battery circuit.
  • the circuits are connected in series, and the heat exchange medium can flow from the passenger compartment air conditioning circuit to the battery circuit. This requires that the heat exchange medium has different flow directions in the loop under different working conditions. It is difficult for the existing thermal management system to match the needs of various working conditions well, resulting in low heat exchange efficiency and serious waste of electric energy, which limits the The cruising range of electric vehicles is improved, especially in special circumstances such as low temperature environments.
  • This application provides a thermal management system that can well match various heat exchange requirements of functional components.
  • a thermal management system including: a first heat exchange pipeline and a second heat exchange pipeline configured to accommodate a heat exchange medium; a functional component configured to exchange heat flowing in the first heat exchange pipeline The medium is heated or cooled through heat exchange; a heating module is configured in the second heat exchange pipeline for heating the heat exchange medium flowing in the second heat exchange pipeline; and a valve is connected to the The first heat exchange pipeline and the second heat exchange pipeline, the valve is provided with a first flow channel and a second flow channel that are not connected to each other.
  • the valve can be in the first working state, the second working state and the third working state. Switch between three working states; among them,
  • the first heat exchange pipeline and the second heat exchange pipeline are connected to each other through the first flow channel and the second flow channel and are connected in series to form a first circular passage;
  • the first heat exchange pipe is connected to the first flow channel and forms a second annular passage
  • the second heat exchange pipe is connected to the second flow channel.
  • the second annular passage and the third annular passage are connected in parallel and are not connected, so that the heat exchange medium of the second annular passage and the third annular passage does not exchange fluid.
  • the first heat exchange pipeline and the second heat exchange pipeline are connected to each other and connected in series to jointly form the first annular passage; at the same time, the first flow The channel is connected with the first heat exchange pipeline and/or the second flow channel is connected with the second heat exchange pipeline to form the second annular passage and/or the third annular shape, and the first annular passage is opposite to The heat exchange medium flow ratio in the second annular passage and/or the third annular passage can be changed by operating the valve.
  • the first heat exchange pipeline includes opposing first and second ports
  • the second heat exchange pipeline includes opposing third ports and fourth ports
  • the valve includes a valve seat and a valve core that is rotatably arranged relative to the valve seat.
  • the valve seat is provided with a first interface, a second interface, a third interface and a fourth interface.
  • the first interface, the second interface, the third interface and the third interface The four interfaces are respectively connected to the first port, the second port, the third port and the fourth port; the first flow channel and the second flow channel are provided on the valve core, and are relative to the valve core through the valve core.
  • the rotation of the valve seat can selectively connect the first flow channel and the second flow channel to the first interface, the second interface, the third interface and the fourth interface of the valve seat.
  • valve core is rotatable between a first position and a second position, wherein:
  • the valve core When the valve core rotates to the first position, the valve is in the first working state, the first flow channel is connected to the first interface and the fourth interface, and the second flow channel is connected to the second interface and the third interface;
  • the valve core rotates to the second position
  • the valve is in the second working state
  • the first flow channel communicates with the first interface and the second interface
  • the second flow channel communicates with the third interface and the fourth interface
  • valve core can also be rotated to a third position, corresponding to the valve being in the third working state, wherein,
  • the first interface is connected to the second interface and the fourth interface simultaneously through the first flow channel
  • the third interface is connected to the second interface and the fourth interface simultaneously through the second flow channel.
  • the third position of the valve core corresponds to a rotation range of the valve core.
  • the conduction area of the first flow channel and the second interface is consistent with the third position.
  • the ratio of the conductive area between the first flow channel and the fourth interface is variable, the conductive area between the second flow channel and the second interface and the conductive area between the second flow channel and the fourth interface The ratio is variable.
  • valve seat is cylindrical, and the first interface, the second interface, the third interface and the fourth interface are provided at the axial side end of the valve seat.
  • the first interface, the second interface, the third interface and the fourth interface are all in the shape of a fan ring and are arranged at intervals along the circumferential direction of the valve seat.
  • both the first flow channel and the second flow channel are semicircles extending circumferentially of the valve core, and the corresponding central angles are both 180°; the first interface, the The central angles corresponding to the second interface, the third interface and the fourth interface are all 90°.
  • valve seat is in a hollow cylindrical shape
  • valve core is in a cylindrical shape and is rotatably received in the valve seat.
  • the valve further includes a sealing member disposed between the valve core and the valve seat, and the edge of the sealing member surrounds the first interface, the second interface, and the third interface. and the fourth interface.
  • the valve core extends outwards with a drive shaft
  • the thermal management system further includes a driving member, the driving member is drivingly connected to the drive shaft, and is used to drive the valve core relative to the The valve seat rotates.
  • the valve seat further includes a fifth interface, and the third and fifth interfaces are simultaneously connected to the third port of the second heat exchange pipeline; the valve core can also rotate to a third position. , corresponding to causing the valve to be in the third working state, where,
  • the first interface and the fifth interface are simultaneously connected to the fourth interface through the first flow channel, and the third interface is connected to the second interface through the second flow channel;
  • the third position of the valve core corresponds to a rotation range of the valve core.
  • the conduction area of the first flow channel and the first interface is in contact with the third position.
  • the ratio of the conductive areas of the first channel and the fifth interface is variable.
  • the thermal management system further includes a manifold, which is disposed between the valve and the first heat exchange pipeline and the second heat exchange pipeline for docking.
  • the first to fifth interfaces and the first to fourth ports are provided with a through slot on the bus plate to connect the third interface and the fifth interface.
  • the functional component is a power battery.
  • the heating module includes a heating element and a heat exchanger.
  • the heating element is a positive temperature coefficient ceramic heating element (PTC) or a condenser of an air conditioning system.
  • PTC positive temperature coefficient ceramic heating element
  • the heating element is a positive temperature coefficient ceramic heating element (PTC) or a condenser of an air conditioning system.
  • the thermal management system controls the connection status of the first heat exchange pipeline and the second heat exchange pipeline through valves, thereby matching the different heat exchange requirements of functional components.
  • the valve can be adjusted to the first working state or the third working state.
  • the first heat exchange pipeline and the second heat exchange pipeline are connected, and the heat exchange medium is sucked into the second heat exchange pipeline.
  • the valve After heating, it can flow to the first heat exchange pipeline, and then conduct heat exchange with the functional components to heat them up; when the functional components need to be cooled down, the valve can be adjusted to the second working state, at which time the first heat exchange pipeline and the second heat exchanger
  • the heat pipes are not connected to each other, and the heat exchange medium will not flow from the second heat exchange pipe to the first heat exchange pipe.
  • the heat exchange medium circulating in the first heat exchange pipe can effectively dissipate and cool the functional components. In this way, the thermal management system provided by this application can well match the various heat exchange requirements of functional components.
  • Figure 1 is a schematic diagram of the pipeline connection of the thermal management system provided by the first embodiment of the present application, in which the valve is in the first working state.
  • Figure 2 is a schematic diagram of the pipeline connection of the thermal management system provided by the first embodiment of the present application, in which the valve is in the second working state.
  • Figure 3 is a schematic diagram of the pipeline connection of the thermal management system provided by the first embodiment of the present application, in which the valve is in the third working state.
  • Figure 4 is an exploded view of the valve of the thermal management system provided by the first embodiment of the present application.
  • FIG. 5 is an exploded view from another angle of the valve of the thermal management system provided by the first embodiment of the present application.
  • Figure 6 is an axial cross-sectional view of the valve of the thermal management system provided by the first embodiment of the present application.
  • Figure 7 is a plan view of the valve core of the valve of the thermal management system provided by the first embodiment of the present application.
  • Figure 8 is a schematic diagram of the flow direction of the heat exchange medium in the valve when the valve is in the first working state.
  • Figure 9 is a schematic diagram of the flow direction of the heat exchange medium in the valve when the valve is in the second working state.
  • Figure 10 is a schematic diagram of the flow direction of the heat exchange medium in the valve when the valve is in the third working state.
  • Figure 11 is a plan view of the valve of the thermal management system provided by the second embodiment of the present application.
  • Figure 12 is a plan view of the valve core of the valve of the thermal management system provided by the second embodiment of the present application.
  • Figure 13 is a schematic diagram of the thermal management system provided in the second embodiment of the present application when it is in the third working state.
  • Figure 14 is an exploded view of the valve of the thermal management system provided by the third embodiment of the present application.
  • Figure 15 is an exploded view from another angle of the valve of the thermal management system provided by the third embodiment of the present application.
  • Figure 16 is a cross-sectional view of the valve of the thermal management system provided by the third embodiment of the present application.
  • Figure 17 is a schematic diagram of the internal structure of the valve core of the valve of the thermal management system provided by the third embodiment of the present application.
  • Figure 18 is a schematic diagram of the flow direction of the heat exchange medium in the valve when the valve is in the first working state.
  • Figure 19 is a schematic diagram of the flow direction of the heat exchange medium in the valve when the valve is in the second working state.
  • Figure 20 is a schematic diagram of the flow direction of the heat exchange medium in the valve when the valve is in the third working state.
  • Valve seat 210 first interface 211, second interface 212, third interface 213, fourth interface 214, base plate 215, side plate 216, shaft hole 217, fifth interface 218, through slot 219;
  • Valve core 220 first flow channel 221, second flow channel 222, third flow channel 223, fourth flow channel 224, drive shaft 226, rotating shaft 227;
  • Sealing gasket 230 first through hole 231, second through hole 232, third through hole 233, fourth through hole 234, and through hole 237;
  • Heating module 400 Heating element 410, heat exchanger 420;
  • One-way valve 600 is
  • the bus plate 800 the through slot 810 , the first connection hole 811 , the second connection hole 812 , the third connection hole 813 , the fourth connection hole 814 , and the fifth connection hole 815 .
  • a first embodiment of the present application provides a thermal management system 10.
  • the thermal management system 10 includes a first heat exchange pipeline 110, a second heat exchange pipeline 120, and a first heat exchange pipeline connected to the first heat exchange pipeline. 110 and the valve 200 of the second heat exchange pipeline 120 , the functional component 300 that exchanges heat with the first heat exchange pipeline 110 , and the heating module 400 configured on the second heat exchange pipeline 120 .
  • the first heat exchange pipe 110 and the second heat exchange pipe 120 are used to accommodate the heat exchange medium 700.
  • the heat exchange medium 700 can be stored in the first heat exchange pipe 110 and the second heat exchange pipe. Circulation flows within the annular passage defined by the path 120 to realize heat transfer.
  • the heat exchange medium 700 may be in a gaseous state, a liquid state, or a gas-liquid mixed state. In this embodiment, the heat exchange medium 700 is in a liquid state, and may specifically be liquid water.
  • the heating module 400 is used to heat the heat exchange medium 700 flowing in the second heat exchange pipeline 120. After the heat exchange medium 700 is heated, it transfers heat to other components of the thermal management system 10, such as functions, by flowing in the annular passage. Parts 300 etc.
  • the functional component 300 is configured to perform heat exchange with the heat exchange medium 700 in the first heat exchange pipeline 110 , for example, to absorb the heat of the heat exchange medium 700 flowing in the first heat exchange pipeline 110 to achieve the function of the functional component 300 . to increase the temperature; or, it can transfer its own heat to the heat exchange medium 700 flowing in the first heat exchange pipeline 110 to achieve cooling of the functional component 300 .
  • the heating module 400 includes a heating element 410.
  • the heating element 410 is preferably a positive temperature coefficient ceramic heating element (PTC), which exchanges heat flowing in the second heat exchange pipeline 120 by directly converting electrical energy into thermal energy. Medium 700 heated.
  • PTC positive temperature coefficient ceramic heating element
  • heating element 410 may be a condenser of an air conditioning system. The refrigerant absorbs heat from the external environment in the evaporator of the air conditioning system and releases the absorbed heat in the condenser to heat the heat exchange medium 700 flowing in the second heat exchange pipeline 120 .
  • the heating module 400 further includes a heat exchanger 420, thereby improving the heat exchange efficiency of the heat exchange medium 700.
  • the functional component 300 is a component whose temperature needs to be controlled.
  • the functional component 300 is a component whose temperature needs to be controlled corresponding to the scenario.
  • the functional component 300 may be a power battery of the vehicle or the like.
  • the thermal management system 10 needs to heat the power battery to heat up the power battery, thereby reducing the low-temperature attenuation of the power battery; when the outside temperature is too high, the thermal management system 10 needs to cool down the power battery to avoid The temperature is too high and affects the safety of use.
  • the functional component 300 can be directly attached to the wall of the first heat exchange pipeline 110, and the two are in thermal contact for heat conduction.
  • the functional component 300 and the first heat exchange pipeline 110 can also be provided separately, and thermal conductive components such as radiators and heat pipes can be connected between the two to facilitate the arrangement of components and heat transfer; or, both Heat can be transferred between them by means of thermal radiation, and is not limited to the specific embodiment.
  • thermal conductive components such as radiators and heat pipes can be connected between the two to facilitate the arrangement of components and heat transfer; or, both Heat can be transferred between them by means of thermal radiation, and is not limited to the specific embodiment.
  • the valve 200 is provided with a first flow channel 221 and a second flow channel 222 that are not connected to each other. Under different working conditions, the valve 200 communicates with the first heat exchange pipeline 110 and the first heat exchange pipeline 110 through its first flow channel 221 and second flow channel 222.
  • the two heat exchange pipelines 120 are connected or disconnected so that the first heat exchange pipeline 110 and the second heat exchange pipeline 120 define one or more annular passages.
  • each of the annular passages may be connected to each other, in which case the heat exchange medium 700 may flow from one of the annular passages to another; or, the various annular passages may not be connected to each other, in which case the heat exchange medium 700 It can only flow within the corresponding annular passage but cannot flow from one annular passage to another.
  • the valve 200 has at least three different working states, specifically:
  • the first flow channel 221 and the second flow channel 222 are connected in series between the first heat exchange pipe 110 and the second heat exchange pipe 120, so that the first heat exchange pipe
  • the path 110 and the second heat exchange pipe 120 are connected with each other and connected in series to form a first annular passage L1.
  • the first heat exchange pipeline 110 and the second heat exchange pipeline 120 jointly define the first annular passage L1, and the heat exchange medium 700 can pass through the second heat exchange pipeline.
  • 120 flows to the first heat exchange pipeline 110, and the heat can be transferred from the second heat exchange pipeline 120 to the first heat exchange pipeline 110 to heat the functional component 300.
  • the first flow channel 221 connects both ends of the first heat exchange pipeline 110 to form a second annular passage L2, and the second flow channel 222 connects both ends of the second heat exchange pipeline 120.
  • a third annular passage L3 is formed at the end, and the second annular passage L2 and the third annular passage L3 are connected in parallel with each other and are not connected.
  • part of the heat exchange medium 700 can circulate in the first heat exchange pipeline 110, and part of the heat exchange medium 700 can circulate in the second heat exchange pipeline 120, but
  • the heat exchange medium 700 cannot flow from the second heat exchange pipeline 120 to the first heat exchange pipeline 110, and heat cannot be transferred from the second heat exchange pipeline 120 to the first heat exchange pipeline 110.
  • the functional component 300 passes through the first heat exchange pipeline 110.
  • the heat exchange medium 700 circulating in the heat pipe 110 dissipates heat.
  • the first flow channel 221 and the second flow channel 222 connect the first heat exchange pipeline 110 and the second heat exchange pipeline 120 in series and jointly form the first annular passage L1.
  • the first flow channel 221 connects both ends of the first heat exchange pipeline 110 to form a second annular passage L2
  • the second flow channel 222 connects both ends of the second heat exchange pipeline 120 to form a third annular passage.
  • L3 and the flow ratio of the heat exchange medium 700 of the first annular passage L1 relative to the second annular passage L2 or the third annular passage L3 can be changed by operating the valve 200.
  • part of the heat exchange medium 700 can circulate in the first heat exchange pipeline 110 and the second heat exchange pipeline 120, and part of the heat exchange medium 700 can circulate in the first heat exchange pipeline 110 or the second heat exchange pipeline 120. Circulation flows in the second heat exchange pipeline 120. Heat can be transferred from the second heat exchange pipeline 120 to the first heat exchange pipeline 110. The amount of transferred heat can be determined by connecting the first heat exchange pipeline 110 and the second heat exchange pipeline 110. The flow rate of the heat exchange medium 700 circulating in the heat pipe 120 can be controlled by operating the valve 200 .
  • the valve 200 is adjusted to the first working state or the third working state.
  • the first heat exchange pipeline 110 and the second heat exchange pipeline 120 are connected in series and connected with each other.
  • all (first working state) or Part (the third working state) flows into the first heat exchange pipeline 110 to transfer the heat generated by the heating module 400 to the functional component 300 to achieve temperature rise, so that the energy used for heating is fully utilized and the energy utilization rate is improved. .
  • the valve 200 is adjusted to the second working state.
  • the first heat exchange pipeline 110 and the second heat exchange pipeline 120 are connected in parallel and are not connected with each other.
  • the first heat exchange pipeline 110 independently defines the second annular passage L2
  • the second heat exchange pipeline 120 independently defines the second annular passage L2.
  • the heat exchange medium 700 in the second heat exchange pipeline 120 cannot flow to the first heat exchange pipeline 110, preventing the heat transfer of the heating module 400 to the first heat exchange pipeline 110 and the functional component 300.
  • the heat generated by the functional component 300 itself is dissipated through the heat exchange medium 700 flowing in the first heat exchange pipeline 110, thereby realizing the cooling of the functional component 300.
  • the heat exchange medium in the second heat exchange pipeline 120 can be heated without affecting the normal operation of the functional component 300. Heat dissipation avoids the problem of poor heat dissipation of the functional component 300.
  • the thermal management system 10 provided by the embodiment of the present application can well match the various heat exchange requirements of the functional component 300, with less heat loss and good heat exchange effect.
  • the heat exchange medium 700 can flow spontaneously in the first heat exchange pipeline 110 and/or the second heat exchange pipeline 120, or can be driven by a driving component, such as a pump, etc. Or flow in the second heat exchange pipeline 120.
  • the thermal management system 10 further includes a first driving member 510 , and the first driving member 510 is connected in series to the first heat exchange pipeline 110 .
  • the first driving member 510 drives the heat exchange medium 700 to flow in the first annular passage L1, including the first heat exchange pipeline 110 and the second heat exchange pipeline 120.
  • the first driving member 510 drives the heat exchange medium 700 to flow in the second annular passage L2, that is, the first heat exchange pipeline 110.
  • the thermal management system 10 further includes a second driving member 520 , and the second driving member 520 is connected in series to the second heat exchange pipeline 120 .
  • the first driving member 510 and the second driving member 520 drive the heat exchange medium 700 in the same direction, and they jointly drive the heat exchange medium 700 to flow in the first annular passage L1.
  • the second driving member 520 drives the heat exchange medium 700 to flow in the third annular passage L3, that is, the second heat exchange pipeline 120.
  • the driving pressure of the second driving member 520 is the same as the driving pressure of the first driving member 510 .
  • the driving pressure of the second driving member 520 may be greater or less than the driving pressure of the first driving member 510 .
  • the thermal management system 10 further includes a one-way valve 600 serially connected in the first heat exchange pipeline 110 .
  • the first heat exchange pipeline 110 includes opposite first ports 111 and second ports 112
  • the second heat exchange pipeline 120 includes opposite third ports 121 and fourth ports 122
  • the valve 200 is provided with a first interface 211, a second interface 212, a third interface 213 and a fourth interface 214.
  • the first interface 211 and the second interface 212 of the valve 200 are respectively connected with the first port 111 and the second port 112 of the first heat exchange pipeline 110
  • the third interface 213 and the fourth interface 214 of the valve 200 are respectively connected with the first port 111 and the second port 112 of the first heat exchange pipeline 110.
  • the third port 121 and the fourth port 122 of the two heat exchange pipelines 120 are connected.
  • the valve 200 adjusts the conduction mode between its first interface 211, second interface 212, third interface 213 and fourth interface 214 through its first flow channel 221 and second flow channel 222 to achieve the first working state, Switching between the second working state and the third working state.
  • the valve 200 includes a valve seat 210 and a valve core 220 rotatably disposed in the valve seat 210 .
  • the valve seat 210 is cylindrical and includes a base plate 215 and an annular side plate 216 extending vertically from the outer edge of the base plate 215 .
  • the base plate 215 and the side plate 216 enclose a space for accommodating the valve core 220 .
  • the first interface 211 , the second interface 212 , the third interface 213 and the fourth interface 214 penetrate through the substrate 215 and are spaced apart along the circumferential direction of the substrate 215 .
  • the first interface 211 , the second interface 212 , the third interface 213 and the fourth interface 214 are all in the shape of a fan ring and are of similar size, and the central angles corresponding to the interfaces 211 to 214 are approximately 90° respectively.
  • the valve core 220 is cylindrical, and its axial end facing the base plate 215 of the valve seat 210 is concave to form the first flow channel 221 and the second flow channel 222 .
  • the first flow channel 221 and the second flow channel 222 are both semicircular, and the corresponding central angles are approximately 180° respectively.
  • the valve core 220 is configured to be rotatable relative to the central axis of the valve seat 210 between a first position and a second position, which preferably differ by 90 degrees in the circumferential direction.
  • the conduction conditions of the first flow channel 221 and the second flow channel 222 and the first interface 211, the second interface 212, the third interface 213 and the fourth interface 214 are different, so the operation of the valve 200 is different.
  • the status is different, specifically:
  • the valve 200 when the valve core 220 rotates to the first position, the valve 200 is in the first working state.
  • the first flow channel 221 faces the first interface 211 and the fourth interface 214 and connects them, so that the first port 111 of the first heat exchange pipeline 110 and the fourth port of the second heat exchange pipeline 120 122 is connected;
  • the second flow channel 222 faces the second interface 212 and the third interface 213 and connects the two, so that the second port 112 of the first heat exchange pipeline 110 and the second heat exchange pipeline 120
  • the third port 121 is connected.
  • the heat exchange medium 700 can flow from the second heat exchange pipeline 120 to the first heat exchange pipeline 110 sequentially through the fourth interface 214 and the first interface 211, and at the same time, it can flow from the first heat exchange pipeline 120 to the first heat exchange pipeline 110.
  • 110 sequentially flows into the second heat exchange pipeline 120 through the second interface 212 and the third interface 213, and circulates in the first annular passage L1.
  • the valve 200 when the valve core 220 rotates to the second position, the valve 200 is in the second working state.
  • the first flow channel 221 faces the first interface 211 and the second interface 212 and connects the two, so that the first port 111 and the second port 112 of the first heat exchange pipeline 110 are connected;
  • the second flow channel 222 faces the third interface 213 and the fourth interface 214 and connects them, so that the third port 121 and the fourth port 122 of the second heat exchange pipeline 120 are connected.
  • the heat exchange medium 700 flowing out from the second port 112 of the first heat exchange pipeline 110 returns to the first heat exchange pipeline 110 through the second interface 212 and the first interface 211.
  • the heat exchange medium 700 flowing out from the fourth port 122 of the second heat exchange pipeline 120 returns to the second heat exchange pipeline 120 through the fourth interface 214 and the third interface 213. Circulation flow in L3.
  • the valve 200 can also reach the third position during the rotation from the first position to the second position, so that the valve 200 is in the third working state.
  • the first flow channel 221 is facing the first interface 211 and part of the second interface 212 and part of the fourth interface 214, so that the first port 111 of the first heat exchange pipeline 110 can not only be connected with its second port 112, but also can It is connected with the fourth port 122 of the second heat exchange pipeline 120;
  • the second flow channel 222 faces the third interface 213 and part of the second interface 212 and part of the fourth interface 214, so that the second heat exchange pipeline 120
  • the third port 121 can be connected with the fourth port 122 and the second port 112 of the first heat exchange pipeline 110 .
  • the heat exchange medium 700 enters the fourth interface 214 from the fourth port 122 of the second heat exchange pipeline 120, part of it returns to the second heat exchange pipeline 120 through the third interface 213. It flows in the annular passage L3, and part of it enters the first heat exchange pipe 110 through the first interface 211 and flows in the first annular passage L1; at the same time, the heat exchange medium 700 enters through the second port 112 of the first heat exchange pipe 110.
  • the second interface 212 part of it returns to the first heat exchange pipe 110 through the first interface 211 and flows in the second annular passage L2, and part of it enters the second heat exchange pipe 120 through the third interface 213 and flows in the first annular passage L2. flows in passage L1.
  • part of the heat exchange medium 700 can circulate in the first annular passage L1
  • part of the heat exchange medium 700 can circulate in the second annular passage L2
  • part of the heat exchange medium 700 can circulate in the third annular passage L3. Circular flow.
  • the conduction between the first flow channel 221 and the second interface 212 and the fourth interface 214 is controlled, as well as the size of the conduction area during conduction, and Controlling whether the second flow channel 222 is connected to the second interface 212 and the fourth interface 214 and the size of the conduction area during conduction can be used to control the relative position of the first annular passage L1 in the third state relative to the third The flow ratio of the heat exchange medium in the annular passage L3.
  • the conduction area between the second flow channel 222 and the second interface 212 is smaller.
  • the ratio of the conduction area of the first flow channel 221 and the second interface 212 to the conduction area of the first flow channel 221 and the fourth interface 214 is variable, and the second flow channel 222 and The ratio of the conductive area of the second interface 212 to the conductive areas of the second flow channel 222 and the fourth interface 214 is variable.
  • the heat exchange medium 700 is heated in the second heat exchange pipeline 120 After the module 400 is heated, most of the flow will be diverted to the first heat exchange pipeline 110, and the heating rate of the functional component 300 will be faster and the temperature rise upper limit will be higher; when the conduction area between the first flow channel 221 and the fourth interface 214 is small, the When the conductive area between the second flow channel 222 and the second interface 212 is small, a small part of the heat exchange medium 700 heated by the heating module 400 will be diverted from the second heat exchange pipeline 120 to the first heat exchange pipeline 110, and the functional components 300 has a slower heating rate and a lower upper temperature limit, so that precise temperature control of the functional component 300 can be achieved as needed.
  • the communication area between the first flow channel 221 and the fourth interface 214 is smaller than the area of the fourth interface 214 itself, and only part of the heat exchange medium 700 in the second heat exchange pipeline 120 is diverted. to the first heat exchange pipeline 110, so the heating effect on the functional component 300 when the valve 200 is in the third working state is weaker than the heating effect on the functional component 300 when the valve 200 is in the first working state.
  • the valve 200 can be adjusted to the first working state; conversely, the valve 200 can be adjusted to the third working state.
  • the valve core 220 further includes a drive shaft 226 extending outward from the center of the valve core 220 (ie, facing away from the base plate 215 of the valve seat 210) for connecting external driving components, such as motors.
  • the drive shaft 226 is connected to a gear, and the motor drives the valve core 220 to rotate relative to the valve seat 210 through gear meshing transmission.
  • a rotating shaft 227 extends from the center of the valve core 220 toward the valve seat 210.
  • An axis hole 217 is provided in the center of the base plate 215 of the valve seat 210. The rotating shaft 227 is rotatably inserted into the axis hole 217, so that the valve core 220 faces each other.
  • the rotation of the valve seat 210 is more stable.
  • the first flow channel 221 and the second flow channel 222 are distributed on opposite sides of the rotating shaft 227 , and the first interface 211 , the second interface 212 , the third interface 213 and the fourth interface 214 are evenly spaced around the shaft hole 217 .
  • a sealing member 230 such as a sealing ring, a sealing gasket, etc.
  • the seal 230 is a sealing gasket made of flexible material, such as rubber, silicone, etc., which can effectively reduce the leakage of the heat exchange medium 700 from the joint between the valve core 220 and the valve seat 210. probability.
  • the seal 230 is formed with a first through hole 231, a second through hole 232, a third through hole 233 and a fourth through hole 234, respectively facing the first interface 211, the second interface 212 and the third interface 213 of the valve seat 210.
  • a through hole 237 is provided in the center of the seal 230 for the rotating shaft 227 to pass through.
  • the first through hole 231 , the second through hole 232 , the third through hole 233 and the fourth through hole 234 are distributed around the through hole 237 .
  • Figures 11-12 show a thermal management system 10 provided in the second embodiment of the present application.
  • the main difference from the first embodiment lies in the valve core 220 of the valve 200.
  • a first flow channel 221 and a second flow channel 222 are provided on the side of the valve core 220 facing the valve seat 210.
  • the first flow channel 221 is semicircular, and its corresponding central angle is approximately 180°; the second flow channel 221 is semicircular.
  • the flow channel 222 is fan-shaped, and the corresponding central angle is less than 180°.
  • the second flow channel 222 while connecting the third interface 213 and part of the second interface 212, is completely staggered from the fourth interface 214, so that the third The interface 213 and the fourth interface 214 cannot be connected.
  • the heat exchange medium 700 flowing out from the fourth port 122 of the second heat exchange pipe 120 can only flow into the first heat exchange pipe 110 through the fourth interface 214 and the first interface 211;
  • the heat exchange medium 700 flowing out of the second port 112 of the pipeline 110 can return to the first heat exchange pipeline 110 through the second interface 212 and the first interface 211, or can also flow into the second heat exchange medium 700 through the second interface 212 and the third interface 213.
  • Heat exchange pipeline 120 That is to say, when the valve 200 is in the third working state, the heat exchange medium 700 can only flow in the first annular passage L1 and the second annular passage L2, so that the overall thermal efficiency of the thermal management system 10 is higher.
  • the first flow channel 221 may also be configured in a fan shape, and the corresponding central angle is less than 180°.
  • the valve core 220 rotates from the first position to the second position, the first flow channel 221 is completely offset from the second interface 212 when connecting the first interface 211 and part of the fourth interface 214 , so that the first interface 211 It cannot communicate with the second interface 212.
  • the heat exchange medium 700 flowing out from the second port 112 of the first heat exchange pipe 110 can only flow into the second heat exchange pipe 120 through the second interface 212 and the third interface 213;
  • the heat exchange medium 700 flowing out of the fourth port 122 of the path 120 can not only return to the second heat exchange pipeline 120 through the fourth interface 214 and the third interface 213, but can also flow into the third interface through the fourth interface 214 and the first interface 211.
  • One heat exchange pipeline 110 That is to say, when the valve 200 is in the third working state, the heat exchange medium 700 can only circulate in the first annular passage L1 and the third annular passage L3, so that the overall thermal efficiency of the thermal management system 10 is higher.
  • FIGS 13-20 show the thermal management system 10 provided by the third embodiment of the present application.
  • the main difference from the first embodiment lies in the valve 200.
  • the valve 200 includes a valve seat 210 and a valve core 220 rotatably disposed in the valve seat 210 .
  • the base plate 215 of the valve seat 210 is provided with a penetrating first interface 211, a second interface 212, a third interface 213, a fourth interface 214 and a fifth interface 218.
  • the central angles corresponding to the first interface 211 and the fifth interface 218 are It is about 45°, and the central angle corresponding to the second interface 212, the third interface 213, and the fourth interface 214 is about 90°.
  • the thermal management system of this embodiment also has a first heat exchange pipeline 110 and a second heat exchange pipeline 120 .
  • the first heat exchange pipeline includes opposite first ports 111 and second ports 112
  • the second heat exchange pipeline 120 includes opposite third ports 121 and fourth ports 122 .
  • the third interface 213 and the fifth interface 218 are simultaneously connected to the third port 121 of the second heat exchange pipeline 120; the first interface 211, the second interface 212, and the fourth interface 214 are respectively connected to the first port 111 and the third port 121.
  • the second port 112 and the fourth port 122 is a first heat exchange pipeline 110 and a second heat exchange pipeline 120 .
  • the first heat exchange pipeline includes opposite first ports 111 and second ports 112
  • the second heat exchange pipeline 120 includes opposite third ports 121 and fourth ports 122 .
  • the third interface 213 and the fifth interface 218 are simultaneously connected to the third port 121 of the second heat exchange pipeline 120; the first interface 211, the second interface 212, and the fourth interface 214 are respectively connected to the first port
  • the thermal management system 10 further includes a manifold 800 .
  • the manifold 800 is installed on the outside of the base plate 215 of the valve seat 210, and is formed with a first connecting hole 811, a second connecting hole 812, a third connecting hole 813, a fourth connecting hole 814 and a fifth connecting hole 818, respectively.
  • first connecting hole 811 a first connecting hole 811
  • second connecting hole 812 a third connecting hole 813
  • a fourth connecting hole 814 a fifth connecting hole 818
  • the manifold 800 is provided with a through slot 810, which connects the third connection hole 813 and the fifth connection hole 818, conducts the third interface 213 and the fifth interface 218 of the valve seat 210, and jointly connects the second heat exchanger.
  • the manifold 800 and the valve seat 210 can also be integrated into one body.
  • the valve core 220 is provided with a first flow channel 221 and a second flow channel 222 that open on one side of the base plate 215 of the valve seat 210.
  • the first flow channel 221 and the second flow channel 222 are generally arc-shaped, and the corresponding central angle is approximately 135 degrees.
  • a separation portion 223 is formed between the corresponding ends of the first flow channel 221 and the second flow channel 222, and the corresponding central angle of the separation portion 223 is approximately 45 degrees.
  • the partition 223 prevents the first flow channel 221 and the second flow channel 222 from communicating with each other.
  • a baffle 224 is formed in the middle of the first flow channel 221 and the second flow channel 222 respectively.
  • the baffle 224 is located on the side of the valve core 220 facing the valve seat 210.
  • the thickness of the baffle 224 is smaller than that of the first flow channel 221.
  • the depth of the second flow channel 222 is such that the circumferential ends of the first flow channel 221 / the second flow channel 222 are disconnected on the opening side and connected inside each other.
  • the baffle 224 of the first flow channel 221 completely covers the fifth interface 218, and the baffle 224 and the two partitions 223 of the second flow channel 222 face each other respectively.
  • the second interface 212, the third interface 213 and the fourth interface 214 form a semi-cover, and the first interface 211 is completely exposed.
  • the first flow channel 221 connects the first interface 211 and the fourth interface 214; the second flow channel 222 connects the second interface 212 and the third interface 213.
  • a partition 223 rotates to completely block the fifth interface 218, the first interface 211 is fully exposed, the second interface 212, and the third interface 213
  • the fourth interface 214 is half-blocked by another partition 223 and two baffles 224 .
  • the first flow channel 221 connects the first interface 211 and the second interface 212; the second flow channel 222 connects the third interface 213 and the fourth interface 214.
  • the heat exchange medium 700 in the first heat exchange pipeline 110 enters the second interface 212 through the second port 112, it returns to the first heat exchange pipeline 110 through the first interface 211, forming a similar Circular flow of the second annular passage L2 in the first embodiment; after the heat exchange medium 700 in the second heat exchange pipeline 120 enters the fourth interface 214 through the fourth port 122, it returns to the second exchange medium through the third interface 213.
  • the heat pipe 120 forms a circulation flow along the third annular passage L3 similar to that in the first embodiment.
  • valve 200 rotates to the third working state (eg, rotates 30°)
  • the baffle 224 of the first flow channel 221 rotates to partially cover the fourth interface 214 and the fifth interface 218, so
  • the baffle 224 of the second flow channel 222 is rotated to span the second interface 212 and the third interface 213 to partially block the second interface 212 and the third interface 213 respectively.
  • the first flow channel 221 is used to connect the fourth interface 214 to the first interface 211 and the fifth interface 218 at the same time; the second flow channel 222 is used to connect the second interface 212 to the third interface 213; because the through groove 810 is connected to the third interface 213 and the fifth interface 218, so that the third interface 213 can be connected to the second interface 212 and the fifth interface 218 at the same time, and the second flow channel 222 can be connected to the fifth interface 218.
  • the heat exchange medium 700 in the second heat exchange pipeline 120 enters the fourth interface 214 of the valve through its second port 122, part of it passes through the first interface 211 and then passes through the first heat exchange pipeline.
  • the first port 111 of 110 enters the first heat exchange pipeline 110, and the other part can also pass through the fifth interface 218, and then return to the second heat exchange pipeline 120 through the third port 121 of the second heat exchange pipeline 120.
  • the second heat exchange pipeline 120 can simultaneously form a circulating flow similar to the first annular passage L1 and the third annular passage L3 in the first embodiment.
  • the continuity between the first flow channel 221 and the first interface 211, the fourth interface 214, and the fifth interface 218 can be controlled, as well as the conduction area during conduction.
  • the size is used to control the flow ratio of the heat exchange medium in the first annular passage L1 relative to the third annular passage L3 in the third state. For example, when turning clockwise, the conductive area between the first flow channel 221 and the first interface 211 becomes larger, while the conductive area between the first flow channel 221 and the fifth interface 218 becomes smaller. On the contrary, when rotating counterclockwise, the conductive area between the first flow channel 221 and the first interface 211 becomes smaller, while the conductive area between the first flow channel 221 and the fifth interface 218 becomes larger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)

Abstract

一种热管理系统(10),包括第一换热管路(110)、第二换热管路(120)、与第一换热管路(110)热交换的功能部件(300)、配置在第二换热管路(120)中的加热模块(400)以及连接第一、第二换热管路的阀门(200),阀门(200)设有互不连通的第一流道(221)和第二流道(222),在第一工作状态时,第一、第二换热管路串联形成第一环形通路(L1);在第二工作状态时,第一换热管路(110)形成第二环形通路(L2),第二换热管路(120)形成第三环形通路(L3),第二、第三环形通路相并联而互不相通;在第三工作状态时,第一、第二换热管路相串联形成第一环形通路(L1),第一流道(221)与第一换热管路(110)连通和/或第二流道(222)与第二换热管路(120)连通而形成第二环形通路(L2)和/或第三环形通路(L3),第一环形通路相对于第二和/或第三环形通路的换热介质流量比可变,匹配功能部件的各种换热需求。

Description

热管理系统 技术领域
本申请涉及热交换设备技术领域,特别是涉及一种热管理系统。
背景技术
对于电动汽车来说,存在多个部位的热管理需求,例如,电池在不同工况时需要冷却或者加热,电机需要冷却,乘员仓既有降温也有加热需求。因此现有电动汽车的热管理系统一般包括多个回路,如电池回路、成员仓空调回路等。为了适用不同的工况,对热管理系统提出了很高的要求。例如当电池需要降温时而乘员仓需要加热时,乘员仓空调回路与电池回路断开,换热介质不会从加热回路流向电池回路;当电池和乘员仓同时需要升温时,乘员仓空调回路与电池回路相串接,换热介质可以从乘员仓空调回路流向电池回路。如此要求在不同的工况需求下,换热介质在回路中有不同的流向,现有热管理系统难以良好地匹配各种不同的工况需求,造成换热效率低,电能浪费严重,限制了电动汽车续航里程的提高,特别是低温环境等特殊情况下。
技术问题
本申请提供一种热管理系统,能够良好的匹配功能部件各种换热需求。
技术解决方案
为解决上述技术问题,本申请采用的技术方案是:
一种热管理系统,包括:第一换热管路和第二换热管路,配置为用于容纳换热介质;功能部件,配置为与所述第一换热管路中流动的换热介质进行热交换而被加热或者被冷却;加热模块,配置在所述第二换热管路中用于加热所述第二换热管路中流动的换热介质;以及阀门,同时连接所述第一换热管路和所述第二换热管路,所述阀门设有互不连通的第一流道和第二流道,所述阀门可在第一工作状态、第二工作状态以及第三工作状态中切换;其中,
所述阀门在所述第一工作状态时,所述第一换热管路和所述第二换热管路通过所述第一流道和所述第二流道相互连通并且相互串联,共同形成第一环形通路;
所述阀门在所述第二工作状态时,所述第一换热管路与所述第一流道相连通并形成第二环形通路,所述第二换热管与所述第二流道路相连通并形成第三环形通路,所述第二环形通路与所述第三环形通路相互并联并且不相连通,使得所述第二环形通路和所述第三环形通路的换热介质不发生流体交换;
所述阀门在所述第三工作状态时,所述第一换热管路和所述第二换热管路相互连通并且相互串联,共同形成所述第一环形通路;同时,所述第一流道与第一换热管路连通和/或所述第二流道与第二换热管路连通而形成所述第二环形通路和/或所述第三环形,所述第一环形通路相对于所述第二环形通路和/或所述第三环形通路的换热介质流量比可通过操作所述阀门而变化。
在一些实施例中,所述第一换热管路包括相对的第一端口和第二端口,所述第二换热管路包括相对的第三端口和第四端口;所述阀门包括阀座和相对所述阀座可转动设置的阀芯,所述阀座设有第一接口、第二接口、第三接口以及第四接口,所述第一接口、第二接口、第三接口以及第四接口分别对接所述第一端口、第二端口、第三端口以及第四端口;所述第一流道和所述第二流道设置于所述阀芯,并且通过所述阀芯相对所述阀座的旋转可选择性地使所述第一流道和所述第二流道连通所述阀座的第一接口、第二接口、第三接口以及第四接口。
在一些实施例中,所述阀芯可在第一位置和第二位置之间转动,其中,
所述阀芯转动至所述第一位置时,所述阀门处于所述第一工作状态,所述第一流道连通所述第一接口和所述第四接口,并且所述第二流道连通所述第二接口和所述第三接口;
所述阀芯转动至所述第二位置时,所述阀门处于所述第二工作状态,所述第一流道连通所述第一接口和所述第二接口,并且所述第二流道连通所述第三接口和所述第四接口。
在一些实施例中,所述阀芯还可转动到第三位置,对应使得所述阀门处于所述第三工作状态,其中,
所述第一接口通过所述第一流道同时连通所述第二接口和所述第四接口,所述第三接口通过所述第二流道同时连通所述第二接口和所述第四接口;
所述阀芯的第三位置对应所述阀芯的一转动范围,当所述阀芯在该转动范围内转动时,所述第一流道和所述第二接口的导通面积与所述第一流道和所述第四接口的导通面积之比可变,所述第二流道和所述第二接口的导通面积与所述第二流道和所述第四接口的导通面积之比可变。
在一些实施例中,所述阀座为圆筒状,所述第一接口、第二接口、第三接口以及第四接口设置在所述阀座的轴向侧端。
在一些实施例中,所述第一接口、第二接口、第三接口以及第四接口均呈扇环形,且沿所述阀座的圆周方向间隔排列。
在一些实施例中,所述第一流道和所述第二流道均为沿所述阀芯周向延伸的半圆形,所对应的圆心角均为180°;所述第一接口、第二接口、第三接口以及第四接口所对应的圆心角均为90°。
在一些实施例中,所述阀座为中空圆筒状,所述阀芯为圆柱状并可转动地收容于所述阀座中。
在一些实施例中,所述阀门还包括密封件,所述密封件设于所述阀芯与阀座之间,所述密封件的边缘环绕所述第一接口、第二接口、第三接口以及第四接口。
在一些实施例中,所述阀芯向外延伸一驱动轴,所述热管理系统还包括驱动件,所述驱动件与所述驱动轴传动连接,用于驱动所述阀芯相对于所述阀座转动。
在一些实施例中,所述阀座还包括第五接口,所述第三和第五接口同时对接所述第二换热管路的第三端口;所述阀芯还可转动到第三位置,对应使得所述阀门处于所述第三工作状态,其中,
所述第一接口及第五接口通过所述第一流道同时连通所述第四接口,并且所述第三接口通过所述第二流道连通所述第二接口;
所述阀芯的第三位置对应所述阀芯的一转动范围,当所述阀芯在该转动范围内转动时,所述第一流道和所述第一接口的导通面积与所述第一流道和所述第五接口的导通面积之比可变。
在一些实施例中,所述热管理系统还包括一汇流板,所述汇流板设置在所述阀门和所述第一换热管路、所述第二换热管路之间,用于对接所述第一至第五接口与所述第一至第四端口,所述汇流板设有一通槽连通所述第三接口与第五接口。
在一些实施例中,所述功能部件为动力电池。
在一些实施例中,所述加热模块包括加热元件和换热器。
在一些实施例中,所述加热元件为正温度系数陶瓷加热元件(PTC)或空调系统的冷凝器。
有益效果
本申请提供的热管理系统,通过阀门控制第一换热管路和第二换热管路的连通状态,从而匹配功能部件的不同换热需求。当功能部件需要升温时,阀门可以调整为第一工作状态或第三工作状态,此时第一换热管路和第二换热管路相连通,换热介质在第二换热管路吸热后可以流向第一换热管路,进而与功能部件进行热交换使其升温;当功能部件需要降温时,阀门可以调整为第二工作状态,此时第一换热管路和第二换热管路互不相通,换热介质不会由第二换热管路流向第一换热管路,第一换热管路内循环流动的换热介质可以对功能部件进行有效的散热降温。如此,本申请提供的热管理系统能够良好的匹配功能部件的各种换热需求。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例。
图1是本申请第一实施例提供的热管理系统的管路连接示意图,其中阀门处于第一工作状态。
图2是本申请第一实施例提供的热管理系统的管路连接示意图,其中阀门处于第二工作状态。
图3是本申请第一实施例提供的热管理系统的管路连接示意图,其中阀门处于第三工作状态。
图4是本申请第一实施例提供的热管理系统的阀门的爆炸图。
图5是本申请第一实施例提供的热管理系统的阀门的另一角度爆炸图。
图6是本申请第一实施例提供的热管理系统的阀门的轴向剖视图。
图7是本申请第一实施例提供的热管理系统的阀门的阀芯的平面视图。
图8是阀门处于第一工作状态时,换热介质在阀门中的流向示意图。
图9是阀门处于第二工作状态时,换热介质在阀门中的流向示意图。
图10是阀门处于第三工作状态时,换热介质在阀门中的流向示意图。
图11是本申请第二实施例提供的热管理系统的阀门的平面视图。
图12是本申请第二实施例提供的热管理系统的阀门的阀芯的平面视图。
图13是本申请第二实施例提供的热管理系统处于第三工作状态时的示意图。
图14是本申请第三实施例提供的热管理系统的阀门的爆炸图。
图15是本申请第三实施例提供的热管理系统的阀门的另一角度爆炸图。
图16是本申请第三实施例提供的热管理系统的阀门的剖视图。
图17是本申请第三实施例提供的热管理系统的阀门的阀芯的内部结构示意图。
图18是阀门处于第一工作状态时,换热介质在阀门中的流向示意图。
图19是阀门处于第二工作状态时,换热介质在阀门中的流向示意图。
图20是阀门处于第三工作状态时,换热介质在阀门中的流向示意图。
附图标号说明:
热管理系统10;
第一换热管路110、第一端口111、第二端口112;
第二换热管路120、第三端口121、第四端口122;
阀门200;
阀座210、第一接口211、第二接口212、第三接口213、第四接口214、基板215、侧板216、轴孔217、第五接口218、通槽219;
阀芯220、第一流道221、第二流道222、第三流道223、第四流道224、驱动轴226、转轴227;
密封垫230、第一通孔231、第二通孔232、第三通孔233、第四通孔234、穿孔237;
功能部件300;
加热模块400、加热元件410、换热器420;
第一驱动件510、第二驱动件520;
单向阀600;
换热介质700;
汇流板800、通槽810、第一连接孔811、第二连接孔812、第三连接孔813、第四连接孔814、第五连接孔815。
本发明的实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
参见图1-10,本申请第一实施例提供了一种热管理系统10,该热管理系统10包括第一换热管路110、第二换热管路120、连接第一换热管路110和第二换热管路120的阀门200、与第一换热管路110进行热交换的功能部件300以及配置在第二换热管路120上的加热模块400。
如图1-3所示,第一换热管路110、第二换热管路120用于容纳换热介质700,换热介质700能够在第一换热管路110、第二换热管路120限定出的环形通路内循环流动,实现热量的转移。换热介质700可以为气态、液态或气液混合状态。本实施例中,换热介质700为液态,具体可以为液态水。加热模块400用于加热第二换热管路120中流动的换热介质700,换热介质700被加热后,通过在环形通路内流动,将热量传递至热管理系统10的其他部件,如功能部件300等。功能部件300配置为能够与第一换热管路110中的换热介质700进行热交换,如,能够吸收第一换热管路110中流动的换热介质700的热量,实现功能部件300的升温;或者,能够将自身热量传递至第一换热管路110中流动的换热介质700,实现功能部件300的降温。
加热模块400包括加热元件410,在一些实施例中,加热元件410优选地为正温度系数陶瓷加热元件(PTC),通过将电能直接转换为热能对第二换热管路120中流动的换热介质700加热。在其他实施方式中,加热元件410可以是一空调系统的冷凝器。冷媒在空调系统的蒸发器中吸收外部环境中的热量、在冷凝器中将所吸收的热量释放而对第二换热管路120中流动的换热介质700加热。
在一些实施例中,加热模块400还包括一换热器420,从而提高换热介质700的换热效率。
功能部件300为需要对其温度进行控制的元件,当热管理系统10应用于不同场景时,功能部件300即为对应该场景的需要进行温度控制的元件。如热管理系统10应用于电动汽车时,功能部件300可以是汽车的动力电池等。当外界气温过低时,热管理系统10需要对动力电池加热,使得动力电池升温,从而减少动力电池的低温衰减;当外界气温过高较高时,热管理系统10需要对动力电池降温,避免温度过高而影响使用安全。本实施例中,功能部件300可以直接贴合在第一换热管路110的管壁上,两者热接触进行热传导。
在一些实施例中,功能部件300与第一换热管路110也可以分开设置,两者之间可以连接有散热器、热管等导热部件,方便元件的布置和热量的传递;或者,两者之间可以通过热辐射的方式进行热量的传递,不以具体实施例为限。
阀门200设有互不连通的第一流道221和第二流道222,在不同的工作状态下,阀门200通过其第一流道221、第二流道222与第一换热管路110、第二换热管路120的连通或者不连通,使得第一换热管路110、第二换热管路120限定出一个或多个环形通路。当环形通路为多个时,各个环形通路可以相互连通,此时换热介质700可以由其中一个环形通路流动至另一个环形通路;或者,各环形通路可以互不相通,此时换热介质700仅能够在对应的环形通路内流动而不能由其中一个环形通路流动至另一个环形通路。本实施例中,阀门200具有至少三种不同的工作状态,具体地:
阀门200在第一工作状态下,参见图1,第一流道221、第二流道222串接于第一换热管路110和第二换热管路120之间,使得第一换热管路110和第二换热管路120相互连通并串联形成第一环形通路L1。换句话说,阀门200处于第一工作状态时,第一换热管路110和第二换热管路120共同限定出的第一环形通路L1,换热介质700能够由第二换热管路120流向第一换热管路110,热量可以由第二换热管路120向第一换热管路110转移,对功能部件300加热。
阀门200在第二工作状态下,参见图2,第一流道221连通第一换热管路110的两端形成第二环形通路L2,第二流道222连通第二换热管路120的两端形成第三环形通路L3,第二环形通路L2与第三环形通路L3相互并联并且不相连通。换句话说,阀门200处于第二工作状态时,部分换热介质700能够在第一换热管路110中循环流动,部分换热介质700能够在第二换热管路120中循环流动,但是换热介质700不能由第二换热管路120流向第一换热管路110,热量不能由第二换热管路120向第一换热管路110转移,功能部件300通过在第一换热管路110中循环流动的换热介质700散热。
阀门200在第三工作状态下,参见图3,第一流道221、第二流道222串连第一换热管路110和第二换热管路120并共同形成第一环形通路L1的同时,第一流道221连通第一换热管路110的两端而形成第二环形通路L2,和/或,第二流道222连通第二换热管路120的两端而形成第三环形通路L3,而且第一环形通路L1相对于第二环形通路L2或第三环形通路L3的换热介质700流量比可通过操作阀门200而变化。
阀门200处于第三工作状态时,部分换热介质700能够在第一换热管路110和第二换热管路120中循环流动,部分换热介质700能够在第一换热管路110或第二换热管路120中循环流动,热量可以由第二换热管路120向第一换热管路110转移且所转移的热量多少可以通过在第一换热管路110和第二换热管路120中循环流动的换热介质700的流量来控制,即可以通过操作阀门200来控制。
当功能部件300需要升温(如电池温度过低)时,将阀门200调整至第一工作状态或第三工作状态。此时,第一换热管路110与第二换热管路120串联并相互连通,第二换热管路120中的换热介质700被加热模块400加热后全部(第一工作状态)或者部分(第三工作状态)流动至第一换热管路110中,将加热模块400所产生的热量传递至功能部件300以实现升温,使得用于加热的能量被充分利用,提高了能源利用率。
当功能部件300需要降温(如电池温度过高)时,将阀门200调整至第二工作状态。此时,第一换热管路110与第二换热管路120并联并且互不相通,第一换热管路110单独限定出第二环形通路L2,第二换热管路120单独限定出第三环形通路L3,第二换热管路120中的换热介质700无法流通至第一换热管路110,杜绝加热模块400的热量向第一换热管路110以及功能部件300的传递,功能部件300自身所产生的热量通过第一换热管路110中流动的换热介质700散发,实现功能部件300的降温。由于第一换热管路110与第二换热管路120之间没有换热介质700流动,可以在第二换热管路120内的换热介质被加热的同时不影响功能部件300的正常散热,避免了功能部件300散热不良的问题。
本申请实施例提供的热管理系统10,能够良好的匹配功能部件300的各种换热需求,热损失少,换热效果佳。
换热介质700可以通过自发地在第一换热管路110和/或第二换热管路120中流动,也可以通过驱动件,如泵等的驱动在第一换热管路110和/或第二换热管路120中流动。本实施例中,参见图1-2,热管理系统10还包括第一驱动件510,第一驱动件510串接于第一换热管路110中。当阀门200处于第一工作状态时,第一驱动件510驱动换热介质700在第一环形通路L1,包括第一换热管路110和第二换热管路120中流动。当阀门200处于第二工作状态时,第一驱动件510驱动换热介质700在第二环形通路L2,即第一换热管路110中流动。
在一些实施例中,热管理系统10还包括第二驱动件520,第二驱动件520串接于第二换热管路120中。当阀门200处于第一工作状态时,第一驱动件510和第二驱动件520对于换热介质700的驱动方向相同,两者共同驱动换热介质700在第一环形通路L1内流动。当阀门200处于第二工作状态时,第二驱动件520驱动换热介质700在第三环形通路L3,即第二换热管路120中流动。本实施例中,第二驱动件520的驱动压力与第一驱动件510的驱动压力相同。在一些实施例中,第二驱动件520的驱动压力可以大于或小于第一驱动件510的驱动压力。
为了使第一换热管路110内的换热介质700能够始终沿单一方向流动,本实施例中,热管理系统10还包括串接于第一换热管路110中的单向阀600。
参见图1-3,第一换热管路110包括相对的第一端口111和第二端口112,第二换热管路120包括相对的第三端口121和第四端口122。参见图4-6,阀门200设有第一接口211、第二接口212、第三接口213以及第四接口214。其中,阀门200的第一接口211、第二接口212分别与第一换热管路110的第一端口111、第二端口112对接,阀门200的第三接口213、第四接口214分别与第二换热管路120的第三端口121、第四端口122对接。阀门200通过其第一流道221、第二流道222对于其第一接口211、第二接口212、第三接口213以及第四接口214之间的导通方式进行调整,实现第一工作状态、第二工作状态以及第三工作状态的切换。
具体地,如图4-7所示,阀门200包括阀座210和可转动地设置于阀座210中的阀芯220。阀座210呈圆筒状,包括基板215以及由基板215的外边缘垂直延伸的环形侧板216,基板215和侧板216合围形成收容阀芯220的空间。第一接口211、第二接口212、第三接口213以及第四接口214贯穿基板215,并且顺延基板215的圆周方向间隔设置。较佳的,第一接口211、第二接口212、第三接口213以及第四接口214均呈扇环形且大小相当,各接口211~214所对应的圆心角分别约为90°。
阀芯220为圆柱状,其面向阀座210的基板215的轴向端内凹形成所述第一流道221和第二流道222。第一流道221和第二流道222均为半圆形,所对应的圆心角分别约为180°。阀芯220配置为能够相对于阀座210的中心轴线在第一位置和第二位置之间转动,第一位置和第二位置优选地在周向上相差90度。阀芯220在不同位置时,第一流道221和第二流道222与第一接口211、第二接口212、第三接口213以及第四接口214的导通情况不一样,从而阀门200的工作状态不一样,具体地:
参见图1和图8,当阀芯220转动至第一位置时,阀门200处于第一工作状态。此时,第一流道221正对第一接口211和第四接口214并将两者导通,使得第一换热管路110的第一端口111和第二换热管路120的第四端口122连通;同时,第二流道222正对第二接口212和第三接口213并将两者导通,使得第一换热管路110的第二端口112和第二换热管路120的第三端口121连通。如图中箭头所示,换热介质700能够从第二换热管路120顺序通过第四接口214、第一接口211流入至第一换热管路110,同时能够从第一换热管路110顺序通过第二接口212、第三接口213流入至第二换热管路120,在第一环形通路L1中循环流动。
参见图2和图9,当阀芯220转动至第二位置时,阀门200处于第二工作状态。此时,第一流道221正对第一接口211和第二接口212并将两者导通,使得第一换热管路110的第一端口111和第二端口112连通;同时第二流道222正对第三接口213和第四接口214并将两者导通,使得第二换热管路120的第三端口121和第四端口122连通。如图中箭头所示,由第一换热管路110的第二端口112流出的换热介质700经过第二接口212、第一接口211回到第一换热管路110,在第二环形通路L2中循环流动;由第二换热管路120的第四端口122流出的换热介质700经过第四接口214、第三接口213回到第二换热管路120,在第三环形通路L3中循环流动。
参见图3和图10,阀门200在由第一位置转动至第二位置的过程中还能到达第三位置,使得阀门200处于第三工作状态。此时,第一流道221正对第一接口211以及部分第二接口212和部分第四接口214,使得第一换热管路110的第一端口111既能与其第二端口112连通,又能与第二换热管路120的第四端口122连通;同时,第二流道222正对第三接口213以及部分第二接口212和部分第四接口214,使得第二换热管路120的第三端口121既能与其第四端口122连通,又能与第一换热管路110的第二端口112连通。
如图中箭头所示,换热介质700由第二换热管路120的第四端口122进入第四接口214后,一部分经由第三接口213回到第二换热管路120,在第三环形通路L3中流动,一部分经由第一接口211进入第一换热管路110,在第一环形通路L1中流动;同时,换热介质700由第一换热管路110的第二端口112进入第二接口212后,一部分经由第一接口211回到第一换热管路110,在第二环形通路L2中流动,一部分经由第三接口213进入第二换热管路120,在第一环形通路L1中流动。也就是说,部分换热介质700能在第一环形通路L1中循环流动,部分换热介质700能在第二环形通路L2中循环流动,并且部分换热介质700能在第三环形通路L3中循环流动。
本实施例中,通过控制阀芯220相对于阀座210的转动角度来控制第一流道221与第二接口212、第四接口214的导通与否以及导通时导通面积的大小,以及控制第二流道222与第二接口212、第四接口214的导通与否以及导通时导通面积的大小,可以用来控制第三状态下所述第一环形通路L1相对于第三环形通路L3中换热介质的流量比。第一流道221与第四接口214导通时的导通面积越大,则第一流道221与第二接口212的导通面积越小;相应地,第二流道222与第二接口212的导通面积越大、则与第四接口214的导通面积越小。通过对阀芯220的转动角度的控制,使得第一流道221和第二接口212的导通面积与第一流道221和第四接口214的导通面积之比可变,第二流道222和第二接口212的导通面积与第二流道222和第四接口214的导通面积之比可变。
当第一流道221与第四接口214的导通面积较大、第二流道222与第二接口212的导通面积较大时,换热介质700在第二换热管路120中被加热模块400加热后,大部分会分流至第一换热管路110,功能部件300的升温速率更快、升温上限更高;当第一流道221与第四接口214的导通面积较小、第二流道222与第二接口212的导通面积较小时,被加热模块400加热后的换热介质700少部分会由第二换热管路120分流至第一换热管路110,功能部件300的升温速率更慢、升温上限更低,如此能够根据需要实现对功能部件300的精准控温。
可以理解的是,阀门200处于第三工作状态时,第一流道221与第四接口214的导通面积小于第四接口214本身的面积,第二换热管路120只有部分换热介质700分流至第一换热管路110,因此阀门200处于第三工作状态时对功能部件300的加热效果要弱于阀门200在第一工作状态时对功能部件300的加热效果。当功能部件300需要快速升温或者升温至较高度数时,可以选择将阀门200调整至第一工作状态;反之,可以选择将阀门200调整至第三工作状态。
在一些实施例中,阀芯220还包括驱动轴226,驱动轴226由阀芯220的中央向外(即背向阀座210的基板215)延伸,用于连接外部驱动件,如电机等。较佳的,驱动轴226连接齿轮,电机通过齿轮啮合传动,驱使阀芯220相对于阀座210转动。本实施例中,阀芯220中央朝向阀座210延伸有转轴227,阀座210的基板215的中央设有轴孔217,转轴227可转动地插接于轴孔217中,使得阀芯220相对于阀座210的转动更加平稳。第一流道221和第二流道222分布于转轴227的相对两侧,第一接口211、第二接口212、第三接口213以及第四接口214环绕轴孔217均匀间隔布置。
在一些实施例中,阀芯220的侧端与阀座210的基板215之间夹置有密封件230,如密封圈、密封垫等。参见图4-6,本实施例中,密封件230为密封垫,采用柔性材质,如橡胶、硅胶等制成,能够有效减小换热介质700由阀芯220与阀座210的结合处泄露的几率。密封件230形成有第一通孔231、第二通孔232、第三通孔233以及第四通孔234,分别正对阀座210的第一接口211、第二接口212、第三接口213以及第四接口214,避免影响阀座210的各个接口211~214与阀芯220相应的流道221、221的导通。密封件230的中央设有穿孔237供转轴227穿设,第一通孔231、第二通孔232、第三通孔233以及第四通孔234环绕穿孔237分布。
图11-12所示为本申请第二实施例提供的热管理系统10,其与第一实施例中的不同之处主要在于的阀门200的阀芯220。本实施例中,阀芯220面向阀座210的一侧设置有第一流道221和第二流道222,其中第一流道221为半圆形,其对应的圆心角大约为180°;第二流道222为扇形,所对应的圆心角小于180°。
阀芯220在由第一位置转动至第二位置的其中一段行程内,第二流道222在连通第三接口213和部分第二接口212的同时,与第四接口214完全错开,使得第三接口213和第四接口214不能连通。此时,由第二换热管路120的第四端口122流出的换热介质700,只能通过第四接口214、第一接口211流入第一换热管路110;由第一换热管路110的第二端口112流出的换热介质700,可以通过第二接口212、第一接口211回到第一换热管路110,也可以通过第二接口212、第三接口213流入第二换热管路120。也就是说,阀门200在第三工作状态下,换热介质700可以仅在第一环形通路L1和第二环形通路L2中流动,使得热管理系统10整体的热效率更高。
在一些实施例中,第一流道221也可以设置为扇形,所对应的圆心角小于180°。阀芯220在由第一位置转动至第二位置的其中一段行程内,第一流道221在连通第一接口211和部分第四接口214时,与第二接口212完全错开,使得第一接口211和第二接口212不能连通。此时,由第一换热管路110的第二端口112流出的换热介质700,只能通过第二接口212、第三接口213流入第二换热管路120;由第二换热管路120的第四端口122流出的换热介质700,既能通过第四接口214、第三接口213回到第二换热管路120,也能通过第四接口214、第一接口211流入第一换热管路110。也就是说,阀门200在第三工作状态下,换热介质700可以仅在第一环形通路L1和第三环形通路L3中循环流动,使得热管理系统10整体的热效率更高。
图13-20所示为本申请第三实施例提供的热管理系统10,其与第一实施例的不同之处主要在于阀门200。
参见图14至图17,阀门200包括阀座210和转动地设置于阀座210中的阀芯220。阀座210的基板215设置有贯穿的第一接口211、第二接口212、第三接口213、第四接口214以及第五接口218,其中第一接口211、第五接口218所对应的圆心角约为45°,第二接口212、第三接口213、第四接口214所对应的圆心角约为90°。
参见图13,本实施施例的热管理系统也具有第一换热管路110及第二换热管路120。所述第一换热管路包括相对的第一端口111和第二端口112,第二换热管路120包括相对的第三端口121和第四端口122。所述第三接口213和第五接口218同时对接所述第二换热管路120的第三端口121;第一接口211、第二接口212、第四接口214分别对接第一端口111、第二端口112、第四端口122。
在本实施方式中,热管理系统10还包括一汇流板800。汇流板800装在阀座210的基板215的外侧,形成有贯穿的第一连接孔811、第二连接孔812、第三连接孔813、第四连接孔814以及第五连接孔818,分别用于对接所述阀门200的第一至第五接口211、212、213、214、218与所述第一、第二换热管路110、120的第一端口111、第二端口112、第三端口121、第四端口122。汇流板800设有一通槽810,通槽810连通第三连接孔813和第五连接孔818,将阀座210的第三接口213和第五接口218导通并共同对接所述第二换热管路120的第三端口121。在一些实施例中,汇流板800与阀座210也可以集成为一体。
阀芯220设有面向阀座210的基板215的一侧开口的第一流道221和第二流道222,第一流道221和第二流道222大致为弧形,所对应的圆心角约为135度。第一流道221和第二流道222相应的端部之间形成分隔部223,分隔部223所对应的圆心角约为45度。分隔部223使得第一流道221和第二流道222互不相通。如图17所示,第一流道221和第二流道222的中部分别形成有挡板224,挡板224位于阀芯220面向阀座210的一侧,挡板224的厚度小于第一流道221/第二流道222的深度,使得第一流道221/第二流道222的周向两端在开口侧呈断开状、在各自内部为连通状。
参见图18,当阀门200处于第一工作状态时,所述第一流道221的挡板224完全遮盖第五接口218,所述第二流道222的挡板224和两个分隔部223分别对第二接口212、第三接口213和第四接口214形成半遮盖,第一接口211完全露出。第一流道221连通第一接口211和第四接口214;第二流道222连通第二接口212和第三接口213。如图中箭头所示,第一换热管路110中的换热介质700经由第二端口112进入第二接口212内后,经过第三接口213而进入第二换热管路120;第二换热管路120中的换热介质700经由第四端口122进入第四接口214后,经过第一接口211而进入第一换热管路110,形成沿类似第一实施例中的第一环形通路L1的流动循环。
参见图19,当阀门200转动至第二工作状态(如转动90°)时,一个分隔部223转动至完全遮挡第五接口218,第一接口211完全露出,第二接口212、第三接口213和第四接口214被另一分隔部223和两个挡板224半遮挡。第一流道221连通第一接口211和第二接口212;第二流道222连通第三接口213和第四接口214。如图中箭头所示,第一换热管路110中的换热介质700经由第二端口112进入第二接口212后,通过第一接口211回到第一换热管路110,形成沿类似第一实施例中的第二环形通路L2的循环流动;第二换热管路120中的换热介质700经由第四端口122进入第四接口214后,通过第三接口213回到第二换热管路120,形成沿类似第一实施例中的第三环形通路L3的循环流动。
参见图13和图20,当阀门200转动至第三工作状态(如转动30°)时,所述第一流道221的挡板224转动至同时部分遮盖第四接口214和第五接口218,所述第二流道222的挡板224转动至横跨第二接口212与第三接口213而分别部分遮挡第二接口212和第三接口213。第一流道221用于将第四接口214同时连通第一接口211与第五接口218;第二流道222用于将第二接口212连通第三接口213;由于通槽810连通第三接口213和第五接口218,如此第三接口213能够同时连通第二接口212和第五接口218,第二流道222能够与第五接口218连通。
如图13中箭头所示,第二换热管路120内的换热介质700通过其第二端口122进入阀门的第四接口214后,一部分经过第一接口211进而通过第一换热管路110的第一端口111进入所述第一换热管路110,另一部分还可经由第五接口218,进而通过第二换热管路120的第三端口121回到第二换热管路120;第一换热管路110中的换热介质700通过其第二端口112进入阀门的第二接口212后,经过第三接口213,进而通过第二换热管路120的第三端口121进入第二换热管路120,从而能够同时形成类似第一实施例中的第一环形通路L1及第三环形通路L3的循环流动。
本实施例可以通过控制阀芯220相对于阀座210的转动角度来控制第一流道221与第一接口211、第四接口214、第五接口218的导通与否以及导通时导通面积的大小来控制第三状态下所述第一环形通路L1相对于第三环形通路L3中换热介质的流量比。例如,顺时针转动时,第一流道221和第一接口211的导通面积变大,同时第一流道221和第五接口218的导通面积变小。反之,逆时针旋转时,第一流道221和第一接口211的导通面积变小,同时第一流道221和第五接口218的导通面积变大。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (15)

  1. 一种热管理系统,其特征在于,包括:
    第一换热管路和第二换热管路,配置为用于容纳换热介质;
    功能部件,配置为与所述第一换热管路中流动的换热介质进行热交换而被加热或者被冷却;
    加热模块,配置在所述第二换热管路中用于加热所述第二换热管路中流动的换热介质;以及
    阀门,同时连接所述第一换热管路和所述第二换热管路,所述阀门至少设有互不连通的第一流道和第二流道,所述阀门可在第一工作状态、第二工作状态以及第三工作状态中切换;其中,
    所述阀门在所述第一工作状态时,所述第一换热管路和所述第二换热管路通过所述第一流道和所述第二流道相互连通并且相互串联,共同形成第一环形通路;
    所述阀门在所述第二工作状态时,所述第一换热管路与所述第一流道相连通并形成第二环形通路,所述第二换热管与所述第二流道路相连通并形成第三环形通路,所述第二环形通路与所述第三环形通路相互并联并且不相连通,使得所述第二环形通路和所述第三环形通路的换热介质不发生流体交换;
    所述阀门在所述第三工作状态时,所述第一换热管路和所述第二换热管路相互连通并且相互串联,共同形成所述第一环形通路;同时,所述第一流道与第一换热管路连通和/或所述第二流道与第二换热管路连通而形成所述第二环形通路和/或所述第三环形,所述第一环形通路相对于所述第二环形通路和/或所述第三环形通路的换热介质流量比可通过操作所述阀门而变化。
  2. 根据权利要求1所述的热管理系统,其特征在于,所述第一换热管路包括相对的第一端口和第二端口,所述第二换热管路包括相对的第三端口和第四端口;所述阀门包括阀座和相对所述阀座可转动设置的阀芯,所述阀座设有第一接口、第二接口、第三接口以及第四接口,所述第一接口、第二接口、第三接口以及第四接口分别对接所述第一端口、第二端口、第三端口以及第四端口;所述第一流道和所述第二流道设置于所述阀芯,并且通过所述阀芯相对所述阀座的旋转可选择性地使所述第一流道和所述第二流道连通所述阀座的第一接口、第二接口、第三接口以及第四接口。
  3. 根据权利要求2所述的热管理系统,其特征在于,所述阀芯可在第一位置和第二位置之间转动,其中,
    所述阀芯转动至所述第一位置时,所述阀门处于所述第一工作状态,所述第一流道连通所述第一接口和所述第四接口,并且所述第二流道连通所述第二接口和所述第三接口;
    所述阀芯转动至所述第二位置时,所述阀门处于所述第二工作状态,所述第一流道连通所述第一接口和所述第二接口,并且所述第二流道连通所述第三接口和所述第四接口。
  4. 根据权利要求3所述的热管理系统,其特征在于,所述阀芯还可转动到第三位置,对应使得所述阀门处于所述第三工作状态,其中,
    所述第一接口通过所述第一流道同时连通所述第二接口和所述第四接口,所述第三接口通过所述第二流道同时连通所述第二接口和所述第四接口;
    所述阀芯的第三位置对应所述阀芯的一转动范围,当所述阀芯在该转动范围内转动时,所述第一流道和所述第二接口的导通面积与所述第一流道和所述第四接口的导通面积之比可变,所述第二流道和所述第二接口的导通面积与所述第二流道和所述第四接口的导通面积之比可变。
  5. 根据权利要求2-4中任意一项所述的热管理系统,其特征在于,所述阀座为圆筒状,所述第一接口、第二接口、第三接口以及第四接口设置在所述阀座的轴向侧端。
  6. 根据权利要求5中所述的热管理系统,其特征在于,所述第一接口、第二接口、第三接口以及第四接口均呈扇环形,且沿所述阀座的圆周方向间隔排列。
  7. 根据权利要求6中所述的热管理系统,其特征在于,所述第一流道和所述第二流道均为沿所述阀芯周向延伸的半圆形,所对应的圆心角均为180°;所述第一接口、第二接口、第三接口以及第四接口所对应的圆心角均为90°。
  8. 根据权利要求2中所述的热管理系统,其特征在于,所述阀座为中空圆筒状,所述阀芯为圆柱状并可转动地收容于所述阀座中。
  9. 根据权利要求2中所述的热管理系统,其特征在于,所述阀门还包括密封件,所述密封件设于所述阀芯与阀座之间,所述密封件的边缘环绕所述第一接口、第二接口、第三接口以及第四接口。
  10. 根据权利要求2中所述的热管理系统,其特征在于,所述阀芯向外延伸一驱动轴,所述热管理系统还包括驱动件,所述驱动件与所述驱动轴传动连接,用于驱动所述阀芯相对于所述阀座转动。
  11. 根据权利要求3中所述的热管理系统,其特征在于,所述阀座还包括第五接口,所述第三和第五接口同时对接所述第二换热管路的第三端口;所述阀芯还可转动到第三位置,对应使得所述阀门处于所述第三工作状态,其中,
    所述第一接口及第五接口通过所述第一流道同时连通所述第四接口,并且所述第三接口通过所述第二流道连通所述第二接口;
    所述阀芯的第三位置对应所述阀芯的一转动范围,当所述阀芯在该转动范围内转动时,所述第一流道和所述第一接口的导通面积与所述第一流道和所述第五接口的导通面积之比可变。
  12. 根据权利要求11中所述的热管理系统,其特征在于,所述热管理系统还包括一汇流板,所述汇流板设置在所述阀门和所述第一换热管路、所述第二换热管路之间,用于对接所述第一至第五接口与所述第一至第四端口,所述汇流板设有一通槽连通所述第三接口与第五接口。
  13. 根据权利要求1中所述的热管理系统,其特征在于,所述功能部件为动力电池。
  14. 根据权利要求1中所述的热管理系统,其特征在于,所述加热模块包括加热元件和换热器。
  15. 根据权利要求14中所述的热管理系统,其特征在于,所述加热元件为正温度系数陶瓷加热元件(PTC)或空调系统的冷凝器。
PCT/CN2022/116574 2022-09-01 2022-09-01 热管理系统 WO2024045138A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116574 WO2024045138A1 (zh) 2022-09-01 2022-09-01 热管理系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116574 WO2024045138A1 (zh) 2022-09-01 2022-09-01 热管理系统

Publications (1)

Publication Number Publication Date
WO2024045138A1 true WO2024045138A1 (zh) 2024-03-07

Family

ID=90100167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116574 WO2024045138A1 (zh) 2022-09-01 2022-09-01 热管理系统

Country Status (1)

Country Link
WO (1) WO2024045138A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108749513A (zh) * 2018-06-13 2018-11-06 上海加冷松芝汽车空调股份有限公司 一种电动车热管理系统
CN109228962A (zh) * 2017-06-27 2019-01-18 杭州三花研究院有限公司 热管理系统
CN209232912U (zh) * 2019-01-09 2019-08-09 北京新能源汽车股份有限公司 一种电池热管理系统及汽车
CN111196127A (zh) * 2020-03-12 2020-05-26 浙江银轮机械股份有限公司 汽车热管理系统及新能源汽车
US20220097487A1 (en) * 2019-01-09 2022-03-31 Hanon Systems Thermal management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109228962A (zh) * 2017-06-27 2019-01-18 杭州三花研究院有限公司 热管理系统
CN108749513A (zh) * 2018-06-13 2018-11-06 上海加冷松芝汽车空调股份有限公司 一种电动车热管理系统
CN209232912U (zh) * 2019-01-09 2019-08-09 北京新能源汽车股份有限公司 一种电池热管理系统及汽车
US20220097487A1 (en) * 2019-01-09 2022-03-31 Hanon Systems Thermal management system
CN111196127A (zh) * 2020-03-12 2020-05-26 浙江银轮机械股份有限公司 汽车热管理系统及新能源汽车

Similar Documents

Publication Publication Date Title
CN110529628B (zh) 一种多通阀、热管理系统及电动汽车
KR102276255B1 (ko) 차량 통합 열관리 멀티포트 밸브
WO2018099359A1 (zh) 流量控制装置
WO2024051040A1 (zh) 热管理集成系统及电动汽车
KR102299299B1 (ko) 차량 통합 열관리 멀티포트 밸브
KR102299300B1 (ko) 차량 통합 열관리 멀티포트 밸브
US20240035581A1 (en) Multi-port valve, and thermal management system provided with same and application thereof
WO2024051038A1 (zh) 热管理集成模块及电动汽车
CN114542760A (zh) 用于车辆冷却系统的双六通阀
WO2020015296A1 (zh) 一种多联机冷热水机组
EP4357650A1 (en) Multi-port valve and thermal management system having multi-port valve
CN114382919B (zh) 流路切换阀
WO2019123970A1 (ja) 冷却回路及びオイルクーラ
WO2024045138A1 (zh) 热管理系统
US20230358325A1 (en) Multi-ports valve and thermal management system having same
WO2023060852A1 (zh) 冷媒换热装置及间接式热泵系统
CN117052951A (zh) 一种多通阀、热管理装置、储能设备和车辆
KR102429374B1 (ko) 다중 포트 밸브 장치 및 이를 이용한 열관리 시스템
CN114923003A (zh) 可切换多个通道流通状态的控制阀
CN115143306A (zh) 十二通阀、热管理系统及车辆
CN215751891U (zh) 热管理系统及流体控制装置
US20240229945A9 (en) Multi-port valve and thermal management system having multi-port valve
WO2024082078A1 (zh) 热管理系统及其阀门
CN219388688U (zh) 转轴管式多通阀、热管理系统以及车辆
CN219911842U (zh) 一种多通阀及汽车热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956963

Country of ref document: EP

Kind code of ref document: A1