WO2024080260A1 - 磁化推定装置、磁化推定方法、及びプログラム - Google Patents
磁化推定装置、磁化推定方法、及びプログラム Download PDFInfo
- Publication number
- WO2024080260A1 WO2024080260A1 PCT/JP2023/036645 JP2023036645W WO2024080260A1 WO 2024080260 A1 WO2024080260 A1 WO 2024080260A1 JP 2023036645 W JP2023036645 W JP 2023036645W WO 2024080260 A1 WO2024080260 A1 WO 2024080260A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetization
- estimation device
- permanent magnet
- estimation
- magnetic flux
- Prior art date
Links
- 230000005415 magnetization Effects 0.000 title claims abstract description 423
- 238000000034 method Methods 0.000 title claims description 52
- 230000004907 flux Effects 0.000 claims abstract description 120
- 238000005259 measurement Methods 0.000 claims abstract description 55
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 47
- 230000005291 magnetic effect Effects 0.000 claims description 124
- 238000009826 distribution Methods 0.000 claims description 100
- 238000012937 correction Methods 0.000 claims description 34
- 238000004088 simulation Methods 0.000 claims description 27
- 238000005457 optimization Methods 0.000 claims description 14
- 238000013459 approach Methods 0.000 claims description 12
- 230000005672 electromagnetic field Effects 0.000 claims description 11
- 238000004458 analytical method Methods 0.000 claims description 9
- 230000009471 action Effects 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 239000000696 magnetic material Substances 0.000 abstract description 11
- 230000006870 function Effects 0.000 description 74
- 238000010586 diagram Methods 0.000 description 28
- 230000006866 deterioration Effects 0.000 description 22
- 238000004364 calculation method Methods 0.000 description 19
- 230000005347 demagnetization Effects 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 15
- 229910000859 α-Fe Inorganic materials 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000007689 inspection Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 229910052692 Dysprosium Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002907 paramagnetic material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 1
- 241001270131 Agaricus moelleri Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 238000002940 Newton-Raphson method Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/12—Measuring magnetic properties of articles or specimens of solids or fluids
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
Definitions
- This disclosure relates to a magnetization estimation device, a magnetization estimation method, and a program.
- Patent Document 1 discloses a method for determining the deterioration of permanent magnets in a simple manner without removing the permanent magnet from the electrical equipment being inspected.
- Patent Document 1 can roughly estimate whether or not the performance of a permanent magnet has deteriorated, it is difficult to estimate more specific information about the deterioration of the permanent magnet, including the demagnetization and damaged parts of the permanent magnet.
- the present disclosure aims to provide a magnetization estimation device, a magnetization estimation method, and a program that can more specifically estimate deterioration information of permanent magnets.
- the present disclosure relates to (1) A magnetization estimation device that estimates a magnetization state of a permanent magnet loaded on a magnetic body, comprising: A measurement unit for measuring leakage magnetic flux generated from the permanent magnet; a control unit that estimates a magnetization state of the permanent magnet when the leakage magnetic flux occurs by using a magnetization estimation algorithm based on the leakage magnetic flux measured by the measurement unit; and Equipped with Magnetization estimation device, It is.
- the control unit may estimate the state of magnetization in the magnetization estimation algorithm by solving an optimization problem based on an objective function including a difference between a first magnetic flux density of the leakage magnetic flux measured by the measurement unit and a second magnetic flux density of the leakage magnetic flux based on a magnetization distribution generated by simulation.
- the control unit may calculate, in the magnetization estimation algorithm, a correction amount of the magnetization distribution generated by the simulation, and update the magnetization distribution.
- the control unit may calculate a gradient of the objective function and calculate the correction amount by an optimization method.
- the control unit may calculate a gradient of the objective function by an adjoint variable method while using a constraint function as a constraint condition.
- the constraint function may be configured to transform a variable to a variable that conforms to the constraint, such that on one side of an axis of the variable before transformation, the transformed variable asymptotically approaches a maximum value, and on the other side, the transformed variable asymptotically approaches a minimum value.
- the constraint function may be configured such that the transformed variables vary monotonically and continuously between the minimum and maximum values.
- the constraint function may include a sigmoid function.
- the control unit may terminate the magnetization estimation algorithm when the correction amount becomes equal to or less than a permissible value.
- the control unit may calculate the second magnetic flux density from the magnetization distribution generated by the simulation by electromagnetic field analysis taking into account magnetic nonlinearity.
- the control unit may add a predetermined relative error to the first magnetic flux density.
- the measurement unit may measure the leakage magnetic flux in a state where a rotor on which the permanent magnets are mounted is stationary.
- the present disclosure relates to (13) A magnetization estimation method for estimating a magnetization state of a permanent magnet loaded on a magnetic body, comprising: Measuring leakage magnetic flux from the permanent magnet; estimating a magnetization state of the permanent magnet when the leakage flux occurs using a magnetization estimation algorithm based on the measured leakage flux; including, Magnetization estimation method, It is.
- the present disclosure relates to (14) A magnetization estimation device that estimates the magnetization state of a permanent magnet loaded on a magnetic body, Measuring leakage magnetic flux from the permanent magnet; estimating a magnetization state of the permanent magnet when the leakage flux occurs using a magnetization estimation algorithm based on the measured leakage flux; performing an action including program, It is.
- the magnetization estimation device, magnetization estimation method, and program according to one embodiment of the present disclosure make it possible to more specifically estimate deterioration information of permanent magnets.
- FIG. 1 is a configuration diagram showing a configuration of a magnetization estimation system including a magnetization estimation device according to an embodiment of the present disclosure.
- FIG. 2 is a block diagram showing a schematic configuration of the magnetization estimation device of FIG. 1 .
- 3 is a functional block diagram mainly showing a schematic configuration of a control unit in FIG. 2.
- 3 is a graph for explaining an example of a process executed by the magnetization estimation device of FIG. 2 .
- 3 is a flowchart for explaining an example of a magnetization estimation method executed by the magnetization estimation device of FIG. 2 .
- 3 is a schematic diagram showing a first example of an estimation result output to an output section in FIG. 2 .
- FIG. 3 is a schematic diagram showing a target magnetization distribution to be compared with the estimation result by the magnetization estimation device of FIG. 2 .
- FIG. 2 is a schematic diagram showing a measurement area and leakage flux distribution in the IPMSM of FIG. 1 .
- FIG. 3 is a schematic diagram showing an initial distribution in a simulation performed by the control unit in FIG. 2 .
- FIG. 3 is a schematic diagram showing a second example of the estimation result output to the output section in FIG. 2 .
- 3 is a schematic diagram showing an example of a system in which a magnetization state is estimated using the magnetization estimation device of FIG. 2 .
- FIG. 12 is an enlarged view of the area enclosed by the dashed line in FIG. 11 .
- FIG. 3 is a schematic diagram showing a third example of an estimation result output to the output section in FIG. 2 .
- FIG. 14 is a schematic diagram showing an example of an estimation result based on a conventional technique for comparison with the estimation result shown in FIG. 13 .
- IPMSM interior permanent magnet synchronous motor
- EVs electric vehicles
- IPMSMs interior permanent magnet synchronous motor
- eddy current losses generated in the permanent magnets have been steadily increasing. This has raised concerns about aging-related deterioration due to thermal demagnetization of the permanent magnets, which is irreversible demagnetization. Demagnetization of permanent magnets induces a decrease in the efficiency of the IPMSM, which directly leads to a decrease in the efficiency of EVs.
- a conventional magnetization estimation method for a permanent magnet involves placing the permanent magnet in a free space with no magnetic material, and estimating the magnetization distribution M from the magnetic flux density B0 measured at a measurement point outside the permanent magnet by using an inverse problem method such as truncated singular value decomposition.
- an inverse problem method such as truncated singular value decomposition.
- Patent Document 1 The conventional technology described in Patent Document 1 above is similar to the objective of the present disclosure in that it estimates the deterioration of permanent magnets, but it actually rotates the motor and estimates the deterioration of the permanent magnets from the current vector of the armature current.
- This conventional technology is fundamentally different from the technology of the present disclosure, which estimates the magnetization state of the permanent magnets from leakage magnetic flux, as described below.
- magnet demagnetization is estimated from the armature current assuming a rotating state without rotating the motor, but this is fundamentally different from the technology of the present disclosure above. With these conventional technologies, it is possible to roughly estimate the presence or absence of performance deterioration of the permanent magnets, but it is difficult to more specifically estimate deterioration information of the permanent magnets, including demagnetization and damaged parts of the permanent magnets.
- the present disclosure aims to provide a magnetization estimation device, a magnetization estimation method, and a program capable of more specifically estimating deterioration information of a permanent magnet in order to solve the above problems.
- the present disclosure is novel in that it estimates the magnetization state of a permanent magnet 24 by utilizing leakage magnetic flux from the permanent magnet 24 when the permanent magnet 24, described below, is loaded into an IPMSM 20. Below, one embodiment of the present disclosure will be mainly described with reference to the attached drawings.
- FIG. 1 is a configuration diagram showing the configuration of a magnetization estimation system 1 including a magnetization estimation device 10 according to an embodiment of the present disclosure.
- an output unit 13 which will be described later with reference to FIG. 2, is not shown, and only a part of the configuration of the magnetization estimation device 10 is shown.
- the magnetization estimation system 1 has an IPMSM 20 in addition to the magnetization estimation device 10.
- the IPMSM 20 has a fixed cylindrical stator core 21.
- the IPMSM 20 has a rotor core 22 arranged inside the stator core 21.
- the IPMSM 20 has a shaft 23 attached to the rotor core 22 so as to pass through the rotor core 22.
- the IPMSM 20 has a permanent magnet 24 embedded inside the rotor core 22.
- the permanent magnet 24 contains rare earth elements such as neodymium and dysprosium.
- the IPMSM 20 has an armature winding 25 formed on the stator core 21.
- the stator is composed of the stator core 21 and the armature winding 25.
- the rotor is composed of the rotor core 22, the permanent magnet 24, and the shaft 23.
- the permanent magnet 24 is loaded onto a magnetic material.
- the term "magnetic material” includes any of ferromagnetic materials, including soft magnetic materials and hard magnetic materials, and paramagnetic materials.
- the soft magnetic material includes, for example, an iron core.
- the hard magnetic material includes, for example, a permanent magnet.
- the paramagnetic material includes, for example, aluminum, copper, glass, diamond, and the like.
- the permanent magnet 24 is loaded onto the rotor iron core 22, which is a soft magnetic material, in the IPMSM 20, as an example.
- the IPMSM20 In the IPMSM20, four permanent magnets 24 are periodically arranged in the circumferential direction on the rotor core 22, with the center of rotation as the reference.
- the IPMSM20 is, for example, a four-pole motor.
- the armature winding 25 In the IPMSM20, the armature winding 25 is formed so as to surround the four permanent magnets 24 by 360°.
- the rotor having the shaft 23 rotates relative to the stator.
- the magnetization estimation device 10 estimates, for example, the magnetization state of the permanent magnet 24 of the IPMSM 20.
- the "magnetization state” includes, for example, magnetization distribution, the degree and location of demagnetization, and damaged locations.
- the magnetization estimation device 10 is placed within a predetermined region relative to the permanent magnet 24, for example, when the rotor of the IPMSM 20 to which the permanent magnet 24 is loaded is stationary.
- the "predetermined region” includes, for example, a region in which the magnetization estimation device 10 can measure leakage flux from the permanent magnet 24 with an accuracy equal to or higher than a threshold.
- the magnetization estimation device 10 is placed near, adjacent to, or above the permanent magnet 24.
- the magnetization estimation device 10 is placed directly above the permanent magnet 24.
- the magnetization estimation device 10 non-destructively estimates the magnetization state of the permanent magnet 24 by measuring leakage flux from the permanent magnet 24.
- the magnetization estimation device 10 is also capable of estimating the magnetization state when the relationship between the magnetization of the permanent magnets 24 and the leakage flux of the magnetic circuit is nonlinear.
- the magnetization estimation device 10 has a measurement unit 11 that is arranged, for example, directly above the permanent magnet 24 when the rotor on which the permanent magnet 24 is loaded is stationary.
- the measurement unit 11 measures leakage magnetic flux from the permanent magnet 24.
- the measurement unit 11 includes any measurement module that can measure leakage magnetic flux generated from the permanent magnet 24.
- the measurement unit 11 includes a measurement module such as a gaussmeter and an MI (Magneto-Impedance) sensor.
- FIG. 2 is a block diagram showing a schematic configuration of the magnetization estimation device 10 in FIG. 1.
- the magnetization estimation device 10 has a memory unit 12, an output unit 13, and a control unit 14 in addition to a measurement unit 11.
- the storage unit 12 is, for example, but not limited to, a semiconductor memory, a magnetic memory, or an optical memory.
- the storage unit 12 functions as a main storage device, an auxiliary storage device, or a cache memory.
- the storage unit 12 stores any information used in the operation of the magnetization estimation device 10.
- the storage unit 12 stores system programs, application programs, and various information calculated by the control unit 14.
- the output unit 13 includes one or more output interfaces that output information to notify the user.
- the output unit 13 includes a display that outputs information as a video, as well as a speaker, earphones, and headphones that output information as audio.
- the control unit 14 includes one or more processors.
- the "processor” is, but is not limited to, a general-purpose processor or a dedicated processor specialized for a particular process.
- the control unit 14 is communicatively connected to each component of the magnetization estimation device 10, and controls the operation of the magnetization estimation device 10 as a whole.
- the control unit 14 uses a magnetization estimation algorithm based on the leakage magnetic flux from the permanent magnet 24 measured by the measurement unit 11 to estimate the magnetization state of the permanent magnet 24 when the leakage magnetic flux occurs.
- the control unit 14 has multiple function blocks corresponding to each step of the magnetization estimation algorithm.
- FIG. 3 is a functional block diagram mainly showing the schematic configuration of the control unit 14 in FIG. 2. With reference to FIG. 3, we will mainly explain the functional blocks of the control unit 14 corresponding to each step of the magnetization estimation algorithm.
- the control unit 14 measures leakage magnetic flux generated from the permanent magnet 24 loaded on the rotor core 22 of the IPMSM 20 while controlling the measurement unit 11. As a result, a first magnetic flux density B1 of the leakage magnetic flux measured by the measurement unit 11 is obtained.
- the first magnetic flux density B1 is a vector including three numerical values along three axes in a Cartesian coordinate system.
- the first magnetic flux density B1 is obtained for Nm , the number of measurement points on the permanent magnet 24 by the measurement unit 11.
- numerical data including 3Nm numerical values based on the Nm first magnetic flux densities B1 is obtained.
- the control unit 14 adds a predetermined relative error to the first magnetic flux density B 1 , for example. More specifically, the control unit 14 adds a predetermined relative error to the first magnetic flux density B 1 obtained at each measurement point. That is, the control unit 14 processes numerical data including 3 Nm numerical values.
- the predetermined relative error includes an error included in a numerical range of 10% or less, preferably 7% or less, more preferably 5% or less, and further preferably 3% or less for each numerical value.
- the magnetization generating unit 141 of the control unit 14 generates a tentative magnetization distribution corresponding to the actual magnetization distribution of the permanent magnet 24 when the first magnetic flux density B1 is obtained as an initial distribution by simulation.
- the tentative magnetization distribution may be expressed based on Cartesian coordinates, cylindrical coordinates, or the like, instead of polar coordinates.
- the electromagnetic field calculation unit 142 of the control unit 14 calculates the second magnetic flux density B i of the leakage magnetic flux based on the provisional magnetization distribution by electromagnetic field analysis considering magnetic nonlinearity from the provisional magnetization distribution generated by simulation in the magnetization generation unit 141.
- the magnetization M i and the second magnetic flux density B i are related to each other by the Biot-Savart law, but when calculating the leakage magnetic flux from the iron core, the finite element method and the magnetic moment method are used as electromagnetic field analysis methods that can consider the magnetic nonlinearity of the iron core.
- the second magnetic flux density B i is a vector that includes three numerical values along three axes in the Cartesian coordinate system, corresponding to the first magnetic flux density B l .
- the second magnetic flux density B i is obtained in the number corresponding to the number N m of measurement points on the permanent magnet 24 by the measurement unit 11.
- the second magnetic flux density B i is calculated based on the following nonlinear equation: (Equation 1)
- K(A) is a stiffness matrix dependent on the magnetic vector potential A
- F is a right-hand side vector resulting from the magnetization M i of the permanent magnet 24.
- Equation 2 A nonlinear equation such as Equation 1 is solved for A by a nonlinear solution method such as the Newton-Raphson method, the under-relaxation method, or the fixed point method, and the second magnetic flux density B i is calculated by further using the following Equation 2. (Equation 2)
- the objective function calculation unit 143 of the control unit 14 calculates an objective function including a difference between the first magnetic flux density B l of the leakage magnetic flux measured by the measurement unit 11 and the second magnetic flux density B i of the leakage magnetic flux based on the magnetization distribution generated by the simulation.
- the control unit 14 estimates the magnetization state of the permanent magnet 24 by solving an optimization problem based on the calculated objective function in a magnetization estimation algorithm.
- Equation 3 The summation in Equation 3 is performed for the number Nm of measurement points on the permanent magnet 24 measured by the measurement unit 11.
- the control unit 14 estimates the magnetization state of the permanent magnet 24 by solving an optimization problem that minimizes the objective function W calculated by Equation 3 in the magnetization estimation algorithm.
- the objective function calculation unit 143 of the control unit 14 may impose constraint conditions on each element of the vector of the magnetization distribution M that combines Nc magnetizations Mi.
- the constraint conditions are set in order to derive the physical magnetization distribution M.
- the magnetization distribution M is a vector including 3Nc numerical values obtained by multiplying three numerical values corresponding to the radial coordinate and two angular coordinates in the polar coordinates by the number Nc of data points on the permanent magnet 24 obtained by simulation.
- the jth element is defined as M (j) .
- the jth element is defined as ⁇ (j) .
- the jth element is defined as ⁇ (j) .
- the following constraints may be imposed.
- Equation 4 Mmin is the minimum value of M (j) , and Mmax is the maximum value of M (j) .
- ⁇ min is the minimum value of ⁇ (j)
- ⁇ max is the maximum value of ⁇ (j) .
- ⁇ min is the minimum value of ⁇ (j)
- ⁇ max is the maximum value of ⁇ (j) .
- the objective function calculation unit 143 of the control unit 14 calculates the gradient ⁇ W of the objective function W.
- the correction amount calculation unit 144 of the control unit 14 calculates the amount of correction of the magnetization distribution M by an optimization method based on the gradient ⁇ W calculated by the objective function calculation unit 143. Such a correction amount is calculated based on the gradient ⁇ W.
- the correction amount calculation unit 144 of the control unit 14 calculates the correction amount ⁇ M i of the magnetization M i by an optimization method.
- the convergence determination unit 146 of the control unit 14 ends the magnetization estimation algorithm when the correction amount of the magnetization distribution M calculated by the correction amount calculation unit 144 becomes equal to or less than the allowable value.
- the convergence determination unit 146 of the control unit 14 moves to the magnetization generation unit 141 and repeats the magnetization estimation algorithm. For example, when the correction amount ⁇ M i of the magnetization M i is equal to or less than the allowable amount ⁇ and max
- control unit 14 When the control unit 14 ends the magnetization estimation algorithm, it outputs the estimation result of the magnetization state of the permanent magnet 24 obtained by the magnetization estimation algorithm through the output unit 13. For example, the control unit 14 displays on the display a distribution diagram and a graph diagram comparing the actual magnetization distribution immediately after the permanent magnet 24 is magnetized with the magnetization distribution M after aging estimated by the magnetization estimation algorithm.
- the control unit 14 applies the adjoint variable method to Equation 3, which indicates the calculated value of the difference between the actual measurement value by the measurement unit 11 and the simulation value, and uses the constraint condition shown in Equation 4.
- the control unit 14 calculates the gradient ⁇ W of the objective function W by the adjoint variable method while using a constraint function as the constraint condition.
- the control unit 14 expresses the constraint condition as a sigmoid function, as an example, as described below.
- FIG. 4 is a graph diagram for explaining an example of processing executed by the magnetization estimation device 10 of FIG. 2.
- FIG. 4 shows, as a graph, an example of a constraint function used as a constraint condition.
- the constraint function includes, for example, a sigmoid function.
- the constraint condition shown in Equation 4 will be described in detail with reference to FIG. 4.
- the constraint function converts variables into variables that comply with the constraint conditions.
- “variables” include the radial coordinate and two angular coordinates in polar coordinates of magnetization distribution M.
- the variables include the radial coordinate M in magnetization distribution M, the angular coordinate ⁇ in magnetization distribution M, and the angular coordinate ⁇ in magnetization distribution M.
- the angular coordinate ⁇ in magnetization distribution M is illustrated as an example of a variable. In this case, the variable before conversion is ⁇ ', and the variable after conversion is ⁇ .
- the explanation of the constraint function using FIG. 4 is not limited to the angular coordinate ⁇ , and applies similarly to the radial coordinate M and the angular coordinate ⁇ .
- the constraint function is configured so that the transformed variable ⁇ asymptotically approaches a maximum value ⁇ max on one side of the axis of the pre-transformed variable ⁇ ', and approaches a minimum value ⁇ min on the other side.
- the constraint function is configured so that the transformed variable ⁇ changes monotonically and continuously between a minimum value ⁇ min and a maximum value ⁇ max .
- the variable ⁇ increases monotonically continuously between a minimum value ⁇ min and a maximum value ⁇ max as the value of the variable ⁇ ' increases.
- the inflection point is located at a position where the variable ⁇ ' is zero.
- the constraint function is point-symmetric with respect to the inflection point.
- FIG. 5 is a flowchart for explaining an example of a magnetization estimation method executed by the magnetization estimation device 10 of FIG. 2.
- FIG. 5 an example of a magnetization estimation method for estimating the magnetization state of the permanent magnet 24, executed by the magnetization estimation device 10 of FIG. 2, will be mainly explained.
- step S100 the control unit 14 of the magnetization estimation device 10 measures leakage magnetic flux generated from the permanent magnet 24, for example, a first magnetic flux density B l , using the measurement unit 11.
- step S101 the magnetization generation unit 141 of the control unit 14 generates, by simulation, a tentative magnetization distribution that corresponds to the actual magnetization distribution of the permanent magnet 24 when the first magnetic flux density B 1 is obtained, as an initial distribution.
- step S102 the electromagnetic field calculation unit 142 of the control unit 14 calculates the second magnetic flux density B i of the leakage magnetic flux based on the provisional magnetization distribution generated in step S101 by electromagnetic field analysis taking into account magnetic nonlinearity.
- step S103 the objective function calculation unit 143 of the control unit 14 calculates an objective function W including the difference between the first magnetic flux density B l of the leakage magnetic flux measured in step S100 and the second magnetic flux density B i of the leakage magnetic flux based on the magnetization distribution generated in step S101.
- step S104 the objective function calculation unit 143 of the control unit 14 calculates the gradient ⁇ W of the objective function W calculated in step S103.
- step S105 the correction amount calculation unit 144 of the control unit 14 calculates the correction amount of the magnetization distribution M by an optimization method based on the gradient ⁇ W calculated in step S104.
- step S106 the update unit 145 of the control unit 14 updates the magnetization distribution M generated by simulation in step S101 based on the correction amount calculated in step S105.
- step S107 the convergence determination unit 146 of the control unit 14 determines whether the correction amount of the magnetization distribution M calculated in step S105 has become equal to or less than the allowable value. If the control unit 14 determines that the correction amount has become equal to or less than the allowable value, it ends the magnetization estimation algorithm including the above steps, and executes the processing of step S108. If the control unit 14 determines that the correction amount is greater than the allowable value, it returns to step S102, and repeats the magnetization estimation algorithm based on the magnetization distribution M updated in step S106.
- step S108 when the control unit 14 ends the magnetization estimation algorithm in step S107, the control unit 14 outputs the estimation result of the magnetization state of the permanent magnet 24 obtained by the magnetization estimation algorithm via the output unit 13.
- Fig. 6 is a schematic diagram showing a first example of the estimation results output to the output unit 13 in Fig. 2.
- Fig. 6(a) shows the estimation result of estimating the magnetization state of the permanent magnet 24 in an unused state immediately after magnetization.
- Fig. 6(b) shows the estimation result of estimating the magnetization state of the permanent magnet 24 after it has been used in an IPMSM 20 or the like and has deteriorated over time.
- Fig. 6(a) and (b) both show the magnetization distribution M of the permanent magnet 24.
- the magnitude of the magnetization Mi is represented by the shade of color. The darker the color, the larger the absolute value of the magnetization Mi , and the lighter the color, the smaller the absolute value of the magnetization Mi.
- a uniform magnetization distribution M is estimated with high accuracy for the permanent magnet 24 in an unused state immediately after magnetization.
- the absolute value of magnetization M i is large and substantially the same in each cell inside the permanent magnet 24.
- a non-uniform magnetization distribution M is estimated with high accuracy for the permanent magnet 24 after it has been used in an IPMSM 20 or the like and has deteriorated over time.
- the absolute value of magnetization M i is maintained relatively large in each cell in the center of the permanent magnet 24, while the absolute value of magnetization M i is smaller in the peripheral portion due to demagnetization.
- Fig. 7 is a schematic diagram showing a target magnetization distribution to be compared with the estimation result by the magnetization estimation device 10 of Fig. 2.
- Fig. 7(a) is a diagram showing the four permanent magnets 24 loaded on the rotor core 22 of the IPMSM 20 of Fig. 1 as viewed obliquely from above as if they were virtually independent, with other configurations not shown.
- Fig. 7(b) is a diagram showing the four permanent magnets 24 shown in Fig. 7(a) as viewed from above.
- Figs. 7(a) and 7(b) both show the magnetization distribution M of the permanent magnet 24.
- the magnitude of the magnetization M i is represented by the shade of color. The darker the color, the larger the absolute value of the magnetization M i , and the lighter the color, the smaller the absolute value of the magnetization M i .
- FIG. 8 is a schematic diagram showing a measurement area and leakage flux distribution in the IPMSM 20 of FIG. 1.
- FIG. 8(a) shows the arrangement of measurement points when the measurement unit 11 measures leakage flux generated from the permanent magnet 24 of the IPMSM 20 of FIG. 1.
- FIG. 8(b) shows the state of leakage flux measured by the measurement unit 11 at each measurement point shown in FIG. 8(a).
- the leakage flux distribution in FIG. 8(b) corresponds to Nm first magnetic flux densities B l used as numerical data in the magnetization estimation algorithm.
- the magnitude of the first magnetic flux density B l is represented by the shade of color.
- the darker the color the larger the absolute value of the first magnetic flux density B l
- the lighter the color the smaller the absolute value of the first magnetic flux density B l .
- FIG. 9 is a schematic diagram showing the initial distribution in a simulation by the control unit 14 of FIG. 2.
- FIG. 9 shows the initial distribution of a tentative magnetization distribution generated by simulation in the magnetization generation unit 141 of the control unit 14.
- (a) of FIG. 9 corresponds to (a) of FIG. 7, and the same explanation applies.
- (b) of FIG. 9 corresponds to (b) of FIG. 7, and the same explanation applies.
- FIG. 10 is a schematic diagram showing a second example of the estimation result output to the output unit 13 in FIG. 2.
- FIG. 10 shows the estimation result of estimating the magnetization state of the permanent magnet 24 in an unused state immediately after magnetization, for example.
- (a) in FIG. 10 corresponds to (a) in FIG. 7, and the same explanation applies.
- (b) in FIG. 10 corresponds to (b) in FIG. 7, and the same explanation applies.
- the magnetization estimation device 10 uses input data related to the first magnetic flux density B1 as shown in Fig. 8 to estimate the magnetization state of the permanent magnet 24 based on the initial distribution as shown in Fig. 9 as a result as shown in Fig. 10.
- the target magnetization distribution shown in Fig. 7 and the magnetization distribution in the estimation result shown in Fig. 10 are very similar to each other. Therefore, the magnetization estimation device 10 can accurately estimate the magnetization distribution M of the permanent magnet 24.
- FIG. 11 is a schematic diagram showing an example of a system to be estimated for the state of magnetization using the magnetization estimation device 10 of FIG. 2.
- FIG. 12 is an enlarged view of the area enclosed by the dashed line in FIG. 11.
- the system shown in FIG. 11 is a test model for actually estimating the state of magnetization of the permanent magnet 24 using the magnetization estimation device 10.
- the magnetization estimation device 10 estimates the state of magnetization of the permanent magnet 24 using input data related to the first magnetic flux density B 1 as shown in FIG. 8, but the same estimation process can also be performed using the first magnetic flux density B 1 of the leakage magnetic flux measured by the measurement unit 11 using an actual system.
- the principle of the present invention is similarly realized even when an actual measurement value measured by the measurement unit 11 using an actual system is used.
- a ferrite core 30 having an inverted C shape is disposed throughout the system.
- the ferrite core 30 corresponds to a soft magnetic material among ferromagnetic materials.
- the permanent magnet 24 is loaded on the ferrite core 30 so that it is sandwiched by the ferrite core 30 in a partial region of the ferrite core 30.
- leakage magnetic flux is generated from the permanent magnet 24, as shown in the area enclosed by the dashed line in Fig. 11.
- the distribution of the leakage magnetic flux generated from the permanent magnet 24 corresponds to Nm first magnetic flux densities B l used as actual measurement data in the magnetization estimation algorithm.
- the magnitude of the first magnetic flux density B l is represented by the shade of color.
- the magnetization estimation device 10 measures leakage magnetic flux from the permanent magnet 24 loaded in the ferrite core 30 using the measurement unit 11.
- the magnetization estimation device 10 estimates the magnetization state of the permanent magnet 24 using the first magnetic flux density B1 of the leakage magnetic flux measured by the measurement unit 11, according to the flowchart shown in FIG.
- Fig. 13 is a schematic diagram showing a third example of the estimation result output to the output unit 13 in Fig. 2.
- Fig. 13 shows the estimation result obtained by estimating the magnetization state of the permanent magnet 24 loaded in the ferrite core 30 using the magnetization estimation device 10.
- Fig. 13 shows the magnetization distribution M of the permanent magnet 24 loaded in the ferrite core 30.
- the magnitude of the magnetization Mi is represented by the shade of color.
- Fig. 14 is a schematic diagram showing an example of an estimation result based on the conventional technology for comparison with the estimation result shown in Fig. 13.
- Fig. 14 shows the estimation result obtained by estimating the magnetization state of the permanent magnet 24 alone that is not loaded in the ferrite core 30, by omitting the ferrite core 30 shown in Fig. 11, using the conventional technology.
- Fig. 14 shows the magnetization distribution M of the permanent magnet 24 alone that is not loaded in the ferrite core 30.
- the magnitude of the magnetization M i is represented by the shade of color.
- Figure 14 shows the results of an estimation based on a numerical calculation method that can estimate the magnetization of a permanent magnet 24 that is placed in free space with no surrounding magnetic material.
- the numerical calculation method is based on the truncated singular value decomposition (TSVD) method.
- the estimation results using the magnetization estimation device 10 are generally consistent with the estimation results obtained based on the conventional technology.
- the magnetization estimation device 10 can accurately estimate the magnetization distribution M of the permanent magnet 24 even for a permanent magnet 24 loaded on a magnetic body such as a ferrite core 30, in the same way as the conventional technology using a single permanent magnet 24 disposed in free space.
- the magnetization estimation device 10 estimates the magnetization state of the permanent magnet 24 when the leakage flux occurs using a magnetization estimation algorithm based on the leakage flux of the permanent magnet 24 measured by the measurement unit 11. This allows the magnetization estimation device 10 to more specifically estimate the deterioration information of the permanent magnet 24, including demagnetization and damaged parts of the permanent magnet 24.
- the magnetization estimation device 10 can more specifically estimate the deterioration information of the permanent magnet 24 by comparing the estimated magnetization distribution M with the magnetization distribution of the permanent magnet 24 immediately after magnetization.
- the magnetization estimation device 10 can nondestructively estimate the magnetization state of the permanent magnet 24 based on the leakage flux from the permanent magnet 24 when the permanent magnet 24 is loaded into the IPMSM 20.
- the magnetization estimation device 10 can easily estimate the demagnetization and damaged parts of the permanent magnets 24 over time, and can contribute to realizing effective use of the permanent magnets 24.
- the magnetization estimation device 10 enables the maintenance management of the IPMSM 20 used in, for example, EVs, and can contribute to extending the life of the IPMSM 20 and the EV itself.
- the magnetization estimation device 10 can non-destructively detect a permanent magnet 24 that has experienced irreversible demagnetization, and can also prompt the user to perform maintenance such as removing the demagnetized permanent magnet 24 from the IPMSM 20, remagnetizing it, and reloading it into the IPMSM 20.
- the magnetization estimation device 10 can also encourage the user to perform maintenance such as removing the entire rotor including the rotor core 22, shaft 23, and permanent magnet 24 from the IPMSM 20, remagnetizing the entire rotor, and reloading it into the IPMSM 20. As a result, the magnetization estimation device 10 can prevent the depletion of rare metals due to the reuse of rare earths.
- the magnetization estimation device 10 can be applied not only to magnetization inspection after re-magnetization, but also to magnetization inspection after magnetization of the permanent magnets 24 during the manufacture of the IPMSM 20.
- the magnetization estimation device 10 can easily inspect the accuracy of magnetization even in such post-assembly magnetization after assembling the rotor including the permanent magnets 24 by estimating the magnetization state such as the magnetization distribution of the permanent magnets 24.
- the magnetization estimation device 10 can also estimate non-uniform points of magnetization distribution that may occur in the permanent magnets 24 during post-assembly magnetization.
- the magnetization estimation device 10 can also non-destructively and quickly estimate the magnetization quality of the permanent magnets 24 during post-assembly magnetization.
- the magnetization estimation device 10 estimates the magnetization state of the permanent magnet 24 by solving an optimization problem based on an objective function including the difference between the first magnetic flux density B l and the second magnetic flux density B i in a magnetization estimation algorithm. This allows the magnetization estimation device 10 to accurately estimate the magnetization state of the permanent magnet 24. For example, the magnetization estimation device 10 can accurately generate in a simulation a magnetization distribution that is close to the actual magnetization distribution of the permanent magnet 24 whose leakage magnetic flux has been measured by the measurement unit 11. As a result, the magnetization estimation device 10 can more accurately estimate the deterioration information of the permanent magnet 24.
- the magnetization estimation device 10 can generate a magnetization distribution in a simulation that is close to the actual magnetization distribution of the permanent magnet 24 by calculating the amount of correction of the magnetization distribution generated by simulation and updating the magnetization distribution in the magnetization estimation algorithm. As a result, the magnetization estimation device 10 can estimate the deterioration information of the permanent magnet 24 with higher accuracy.
- the magnetization estimation device 10 calculates the gradient ⁇ W of the objective function W and calculates the correction amount using an optimization method, thereby generating a magnetization distribution in a simulation that is close to the actual magnetization distribution of the permanent magnet 24. As a result, the magnetization estimation device 10 can estimate the deterioration information of the permanent magnet 24 with greater accuracy.
- the magnetization estimation device 10 uses a constraint function as a constraint condition while calculating the gradient ⁇ W of the objective function W by the adjoint variable method, thereby reducing the occurrence of non-physical solutions in the magnetization estimation algorithm. This allows the magnetization estimation device 10 to estimate the magnetization state of the permanent magnet 24 with high accuracy. As a result, the magnetization estimation device 10 can estimate the deterioration information of the permanent magnet 24 with higher accuracy.
- the constraint function is configured to convert variables into variables that comply with the constraint conditions, and to cause the converted variables to asymptotically approach a maximum value on one side of the axis of the pre-conversion variables, and to asymptotically approach a minimum value on the other side. This allows the magnetization estimation device 10 to obtain a solution that corresponds between a minimum value and a maximum value in the magnetization estimation algorithm, and to reduce the occurrence of non-physical solutions.
- the constraint function is configured so that the transformed variables change monotonically and continuously between a minimum value and a maximum value. This allows the magnetization estimation device 10 to continuously obtain corresponding solutions between minimum and maximum values in the magnetization estimation algorithm, thereby reducing the occurrence of non-physical solutions.
- the magnetization estimation device 10 is able to clearly define constraint conditions based on the sigmoid function by including a sigmoid function in the constraint function.
- the magnetization estimation device 10 terminates the magnetization estimation algorithm, and by repeating the magnetization estimation algorithm, a magnetization distribution that is close to the actual magnetization distribution of the permanent magnet 24 can ultimately be generated. As a result, the magnetization estimation device 10 can more accurately estimate the deterioration information of the permanent magnet 24.
- the magnetization estimation device 10 can realize a magnetization estimation method that takes magnetic nonlinearity into consideration by calculating the second magnetic flux density B i from the magnetization distribution generated by simulation through electromagnetic field analysis that takes magnetic nonlinearity into consideration.
- the stator and rotor of the IPMSM 20 almost always include an iron core having material nonlinearity.
- the magnetization estimation device 10 can estimate the magnetization state of the permanent magnet 24 by taking into consideration the magnetic nonlinearity of the iron core in such a magnetic circuit. Therefore, the magnetization estimation device 10 can also estimate the magnetization state of the permanent magnet 24 in a state in which the permanent magnet 24 is loaded in the IPMSM 20.
- the magnetization estimation device 10 can estimate the magnetization state of the permanent magnet 24 with high accuracy by using a method that uses a higher order of discretization used in electromagnetic field analysis, such as a method using higher order nodal elements and higher order edge elements in the finite element method, as well as an approximation method such as a homogenization method that can model the laminated electromagnetic steel sheets of the IPMSM 20 with high accuracy.
- a method that uses a higher order of discretization used in electromagnetic field analysis such as a method using higher order nodal elements and higher order edge elements in the finite element method, as well as an approximation method such as a homogenization method that can model the laminated electromagnetic steel sheets of the IPMSM 20 with high accuracy.
- the magnetization estimation device 10 can estimate the magnetization state of the permanent magnet 24 while taking into consideration the accuracy of the positioning control of the measurement module included in the measurement unit 11, errors in the main body, and the like . This allows the magnetization estimation device 10 to accurately estimate the magnetization state of the permanent magnet 24. As a result, the magnetization estimation device 10 can estimate the deterioration information of the permanent magnet 24 with higher accuracy.
- the magnetization estimation device 10 can also perform correction to satisfy the following formula 5 in order to remove measurement noise from the data of the first magnetic flux density B1 of the leakage magnetic flux measured by the measurement unit 11. This facilitates the magnetization estimation device 10 to estimate the physical magnetization distribution for the permanent magnet 24. (Equation 5)
- the magnetization estimation device 10 measures the leakage magnetic flux with the rotor loaded with the permanent magnets 24 stationary, and is thus able to measure the leakage magnetic flux with high accuracy using the measurement unit 11. This allows the magnetization estimation device 10 to accurately estimate the magnetization state of the permanent magnets 24. As a result, the magnetization estimation device 10 is able to more accurately estimate the deterioration information of the permanent magnets 24.
- the magnetization estimation device 10 outputs the estimation result of the magnetization state of the permanent magnet 24 obtained by the magnetization estimation algorithm through the output unit 13, and can easily visualize the magnetization distribution of the permanent magnet 24 without destroying the permanent magnet 24. This makes it easier to estimate the magnetization state of the permanent magnet 24 using the magnetization estimation device 10, and improves convenience for users who use the magnetization estimation device 10.
- the magnetization estimation device 10 is also able to accurately estimate local demagnetization and damage inside the permanent magnet 24.
- the shape, size, arrangement, orientation, and number of each of the above-mentioned components are not limited to the above description and the illustrations in the drawings.
- the shape, size, arrangement, orientation, and number of each of the components may be configured arbitrarily as long as the function can be realized.
- a general-purpose electronic device such as a smartphone or a computer can be configured to function as the magnetization estimation device 10 according to the embodiment described above.
- a program describing the processing content for realizing each function of the magnetization estimation device 10 according to the embodiment is stored in the memory of the electronic device, and the program is read and executed by the processor of the electronic device. Therefore, the disclosure according to one embodiment can also be realized as a program executable by a processor.
- the disclosure of one embodiment may also be realized as a non-transitory computer-readable medium storing a program executable by one or more processors to cause the magnetization estimation device 10 of the embodiment to execute each function. It should be understood that these are also included within the scope of the present disclosure.
- the magnetization estimation device 10 has been described as estimating the magnetization state of the permanent magnet 24 by solving an optimization problem based on an objective function including the difference between the first magnetic flux density and the second magnetic flux density in a magnetization estimation algorithm, but is not limited to this.
- the magnetization estimation device 10 may estimate the magnetization state of the permanent magnet 24 when the leakage magnetic flux measured by the measurement unit 11 occurs using any other magnetization estimation algorithm as long as it is possible to estimate the deterioration information of the permanent magnet 24 more specifically.
- the magnetization estimation device 10 has been described as calculating the amount of correction of the magnetization distribution generated by simulation in the magnetization estimation algorithm and updating the magnetization distribution, but this is not limited to the above.
- the magnetization estimation device 10 may update the magnetization distribution using any method in the other magnetization estimation algorithms described above.
- the magnetization estimation device 10 has been described as calculating the gradient of the objective function and calculating the correction amount using an optimization method, but this is not limited to this.
- the magnetization estimation device 10 may use an evolutionary algorithm such as a genetic algorithm instead of or in addition to a mathematical programming method that uses the gradient of the objective function, such as the quasi-Newton method, and may further use AI (Artificial Intelligence) technology using neural networks and deep learning.
- AI Artificial Intelligence
- the magnetization estimation device 10 calculates the gradient of the objective function by the adjoint variable method while using the constraint function in order to derive the physical magnetization distribution M that satisfies the constraint conditions, but this is not limited to the above.
- the magnetization estimation device 10 may calculate the gradient of the objective function based on any other method different from the adjoint variable method.
- the magnetization estimation device 10 may not even need to use constraint conditions in the magnetization estimation algorithm.
- the constraint function is described as being configured to convert a variable into a variable that conforms to a constraint condition, and to cause the converted variable to asymptotically approach a maximum value on one side of the axis of the variable before conversion, and to a minimum value on the other side of the axis of the variable before conversion, but is not limited to this.
- the constraint function may be any other function in which a maximum or minimum value is set at any point on the axis of the variable before conversion.
- the constraint function may be any other function in which at least one of a maximum value and a minimum value is not set.
- the constraint function is described as being configured so that the transformed variable changes monotonically and continuously between a minimum value and a maximum value, but this is not limited to the above.
- the constraint function does not have to change monotonically.
- the constraint function may change discontinuously rather than continuously.
- the constraint function is described as continuously and monotonically increasing as shown in FIG. 4, but is not limited to this.
- the constraint function may be continuously and monotonically decreasing.
- the constraint function is described as including a sigmoid function, but is not limited to this.
- the constraint function may include any other function that functions as a constraint condition.
- the magnetization estimation device 10 is described as calculating the second magnetic flux density from the magnetization distribution generated by simulation using electromagnetic field analysis that takes into account magnetic nonlinearity, but this is not limited to the above.
- the magnetization estimation device 10 may also calculate the second magnetic flux density from the magnetization distribution generated by simulation using any other analysis that does not take into account magnetic nonlinearity.
- the magnetization estimation device 10 is described as adding a predetermined relative error to the first magnetic flux density, but is not limited to this.
- the magnetization estimation device 10 does not need to perform such data processing.
- the magnetization estimation device 10 has been described as measuring the leakage magnetic flux while the rotor loaded with the permanent magnets 24 is stationary, but this is not limited thereto.
- the magnetization estimation device 10 may also measure the leakage magnetic flux while the rotor loaded with the permanent magnets 24 is moving.
- the magnetization estimation device 10 may also measure the leakage magnetic flux while the rotor is rotating at an extremely low speed, for example, 1 Hz or less. In this case, the magnetization estimation device 10 may take into account the magnetic hysteresis characteristics of the rotor core 22 and the stator core 21.
- the measuring unit 11 is described as being disposed directly above the permanent magnet 24 loaded on the rotor core 22, but this is not limited thereto.
- the measuring unit 11 may be embedded inside the rotor core 22 in the same manner as the permanent magnet 24.
- the measuring unit 11 may measure leakage magnetic flux generated from the permanent magnet 24 while embedded inside the rotor core 22.
- the permanent magnets 24 are described as being embedded inside the rotor core 22, but this is not limited to the above.
- the permanent magnets 24 may be embedded inside the stator core 21 instead of the rotor core 22.
- the armature windings 25 may be formed on the rotor core 22 instead of the stator core 21.
- the magnetization estimation device 10 has been described as estimating the magnetization state of the permanent magnets 24 of the IPMSM 20, but is not limited to this.
- the magnetization estimation device 10 may be used for any motor other than the IPMSM 20, such as a DC motor or a surface magnet motor.
- the magnetization estimation device 10 may be used in general electrical equipment equipped with a permanent magnet 24, such as an actuator.
- the permanent magnet 24 is described as including, for example, a neodymium magnet containing dysprosium, but is not limited thereto.
- the permanent magnet 24 may also include a samarium-cobalt magnet and a ferrite magnet.
- the magnetization estimation device 10 is applicable to various permanent magnets 24 loaded into various magnetic circuits, and has excellent generalization performance.
- a distribution diagram of the magnetization distribution M is illustrated as an example of the estimation result output to the output unit 13, but the display format of the estimation result output to the output unit 13 is not limited to this.
- the magnetization estimation device 10 may output the estimation result to the output unit 13 based on other display formats such as a graph and a table.
- the present disclosure is applicable to various fields such as electromagnetic engineering, electrical engineering, non-destructive testing, and environmental energy fields.
- the present disclosure is applicable to evaluating the validity of the magnetization distribution after magnetization in a state in which the permanent magnet 24 before magnetization is loaded in the magnetic circuit during the design process of the IPMSM 20.
- the present disclosure is applicable to evaluating the demagnetization of the permanent magnet 24 after a demagnetization test in the prototype stage of the IPMSM 20.
- the present disclosure is applicable to an inspection of the demagnetization over time of the permanent magnet 24 of the IPMSM 20 during vehicle inspection of an EV.
- the present disclosure is applicable to an inspection after removing the rotor or stator loaded with the permanent magnet 24 after the permanent magnet 24 of the IPMSM 20 has demagnetized over time and remagnetizing it.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
磁化推定装置10は、磁性体に装荷されている永久磁石24の磁化の状態を推定する。磁化推定装置10は、永久磁石24から生じる漏れ磁束を測定する測定部11と、測定部11により測定された漏れ磁束に基づき、磁化推定アルゴリズムを用いて漏れ磁束が生じるときの永久磁石24の磁化の状態を推定する制御部14と、を備える。
Description
本出願は、2022年10月11日に日本国に特許出願された特願2022-163595号及び2022年12月16日に日本国に特許出願された特願2022-201598号の優先権を主張するものであり、これらの出願の開示全体を、ここに参照のために取り込む。
本開示は、磁化推定装置、磁化推定方法、及びプログラムに関する。
従来、永久磁石の劣化を判定するための技術が知られている。例えば、特許文献1には、検査対象の電気機器から永久磁石を取り外すことなく、簡便な方法で永久磁石の劣化を判定することができる永久磁石の劣化判定方法が開示されている。
しかしながら、特許文献1に記載の従来技術では、永久磁石の性能劣化の有無を大まかに推定することはできるが、永久磁石の減磁及び破損箇所などを含む永久磁石の劣化情報をより具体的に推定することは困難であった。
本開示は、永久磁石の劣化情報をより具体的に推定することが可能な磁化推定装置、磁化推定方法、及びプログラムを提供することを目的とする。
本開示は、
(1)
磁性体に装荷されている永久磁石の磁化の状態を推定する磁化推定装置であって、
前記永久磁石から生じる漏れ磁束を測定する測定部と、
前記測定部により測定された前記漏れ磁束に基づき、磁化推定アルゴリズムを用いて前記漏れ磁束が生じるときの前記永久磁石の磁化の状態を推定する制御部と、
を備える、
磁化推定装置、
である。
(1)
磁性体に装荷されている永久磁石の磁化の状態を推定する磁化推定装置であって、
前記永久磁石から生じる漏れ磁束を測定する測定部と、
前記測定部により測定された前記漏れ磁束に基づき、磁化推定アルゴリズムを用いて前記漏れ磁束が生じるときの前記永久磁石の磁化の状態を推定する制御部と、
を備える、
磁化推定装置、
である。
(2)
上記(1)に記載の磁化推定装置では、
前記制御部は、前記磁化推定アルゴリズムにおいて、前記測定部により測定された前記漏れ磁束の第1磁束密度とシミュレーションにより生成された磁化分布に基づく漏れ磁束の第2磁束密度との間の差分を含む目的関数に基づく最適化問題を解くことで前記磁化の状態を推定してもよい。
上記(1)に記載の磁化推定装置では、
前記制御部は、前記磁化推定アルゴリズムにおいて、前記測定部により測定された前記漏れ磁束の第1磁束密度とシミュレーションにより生成された磁化分布に基づく漏れ磁束の第2磁束密度との間の差分を含む目的関数に基づく最適化問題を解くことで前記磁化の状態を推定してもよい。
(3)
上記(2)に記載の磁化推定装置では、
前記制御部は、前記磁化推定アルゴリズムにおいて、前記シミュレーションにより生成された前記磁化分布の修正量を算出し前記磁化分布を更新してもよい。
上記(2)に記載の磁化推定装置では、
前記制御部は、前記磁化推定アルゴリズムにおいて、前記シミュレーションにより生成された前記磁化分布の修正量を算出し前記磁化分布を更新してもよい。
(4)
上記(3)に記載の磁化推定装置では、
前記制御部は、前記目的関数の勾配を算出して最適化手法により前記修正量を算出してもよい。
上記(3)に記載の磁化推定装置では、
前記制御部は、前記目的関数の勾配を算出して最適化手法により前記修正量を算出してもよい。
(5)
上記(2)乃至(4)のいずれか1つに記載の磁化推定装置では、
前記制御部は、制約条件として制約関数を用いながら、前記目的関数の勾配を随伴変数法により算出してもよい。
上記(2)乃至(4)のいずれか1つに記載の磁化推定装置では、
前記制御部は、制約条件として制約関数を用いながら、前記目的関数の勾配を随伴変数法により算出してもよい。
(6)
上記(5)に記載の磁化推定装置では、
前記制約関数は、変数を前記制約条件に従う前記変数に変換し、変換前の前記変数の軸の一方側において変換後の前記変数が最大値に漸近し、他方側において変換後の前記変数が最小値に漸近するように構成されてもよい。
上記(5)に記載の磁化推定装置では、
前記制約関数は、変数を前記制約条件に従う前記変数に変換し、変換前の前記変数の軸の一方側において変換後の前記変数が最大値に漸近し、他方側において変換後の前記変数が最小値に漸近するように構成されてもよい。
(7)
上記(6)に記載の磁化推定装置では、
前記制約関数は、変換後の前記変数が前記最小値と前記最大値との間で単調に、かつ連続的に変化するように構成されてもよい。
上記(6)に記載の磁化推定装置では、
前記制約関数は、変換後の前記変数が前記最小値と前記最大値との間で単調に、かつ連続的に変化するように構成されてもよい。
(8)
上記(7)に記載の磁化推定装置では、
前記制約関数は、シグモイド関数を含んでもよい。
上記(7)に記載の磁化推定装置では、
前記制約関数は、シグモイド関数を含んでもよい。
(9)
上記(3)又は(4)に記載の磁化推定装置では、
前記制御部は、前記修正量が許容値以下になると、前記磁化推定アルゴリズムを終了させてもよい。
上記(3)又は(4)に記載の磁化推定装置では、
前記制御部は、前記修正量が許容値以下になると、前記磁化推定アルゴリズムを終了させてもよい。
(10)
上記(2)乃至(9)のいずれか1つに記載の磁化推定装置では、
前記制御部は、前記シミュレーションにより生成された磁化分布から磁気非線形性を考慮した電磁界解析により前記第2磁束密度を算出してもよい。
上記(2)乃至(9)のいずれか1つに記載の磁化推定装置では、
前記制御部は、前記シミュレーションにより生成された磁化分布から磁気非線形性を考慮した電磁界解析により前記第2磁束密度を算出してもよい。
(11)
上記(2)乃至(10)のいずれか1つに記載の磁化推定装置では、
前記制御部は、前記第1磁束密度に対して所定の相対誤差を付加してもよい。
上記(2)乃至(10)のいずれか1つに記載の磁化推定装置では、
前記制御部は、前記第1磁束密度に対して所定の相対誤差を付加してもよい。
(12)
上記(1)乃至(11)のいずれか1つに記載の磁化推定装置では、
前記測定部は、前記永久磁石が装荷されている回転子を静止させた状態で前記漏れ磁束を測定してもよい。
上記(1)乃至(11)のいずれか1つに記載の磁化推定装置では、
前記測定部は、前記永久磁石が装荷されている回転子を静止させた状態で前記漏れ磁束を測定してもよい。
本開示は、
(13)
磁性体に装荷されている永久磁石の磁化の状態を推定する磁化推定方法であって、
前記永久磁石から生じる漏れ磁束を測定することと、
測定された前記漏れ磁束に基づき、磁化推定アルゴリズムを用いて前記漏れ磁束が生じるときの前記永久磁石の磁化の状態を推定することと、
を含む、
磁化推定方法、
である。
(13)
磁性体に装荷されている永久磁石の磁化の状態を推定する磁化推定方法であって、
前記永久磁石から生じる漏れ磁束を測定することと、
測定された前記漏れ磁束に基づき、磁化推定アルゴリズムを用いて前記漏れ磁束が生じるときの前記永久磁石の磁化の状態を推定することと、
を含む、
磁化推定方法、
である。
本開示は、
(14)
磁性体に装荷されている永久磁石の磁化の状態を推定する磁化推定装置に、
前記永久磁石から生じる漏れ磁束を測定することと、
測定された前記漏れ磁束に基づき、磁化推定アルゴリズムを用いて前記漏れ磁束が生じるときの前記永久磁石の磁化の状態を推定することと、
を含む動作を実行させる、
プログラム、
である。
(14)
磁性体に装荷されている永久磁石の磁化の状態を推定する磁化推定装置に、
前記永久磁石から生じる漏れ磁束を測定することと、
測定された前記漏れ磁束に基づき、磁化推定アルゴリズムを用いて前記漏れ磁束が生じるときの前記永久磁石の磁化の状態を推定することと、
を含む動作を実行させる、
プログラム、
である。
本開示の一実施形態に係る磁化推定装置、磁化推定方法、及びプログラムによれば、永久磁石の劣化情報をより具体的に推定することが可能である。
従来技術の背景及び問題点についてより詳細に説明する。
例えば、EV(Electric Vehicle)などの駆動源である内部埋込式永久磁石同期モータ(IPMSM:Interior Permanent Magnet Synchronous Motor)では、永久磁石の磁化分布がトルクの特性及び効率に大きく影響を与える。近年、IPMSMの高速回転化に伴って、永久磁石に発生する渦電流損失が増大の一途をたどっている。これにより、不可逆減磁である、永久磁石の熱減磁に伴う経年劣化が懸念される。永久磁石の減磁は、IPMSMの効率低下を誘発し、EVの効率低下に直結する。
永久磁石に対する従来の磁化推定手法は、永久磁石を磁性体のない自由空間中に配置し、永久磁石の外側の測定点で測定された磁束密度B0から、例えば打切り特異値分解などの逆問題手法を用いて磁化分布Mを推定するものである。逆問題として解を求める場合、B0とMとの間に線形関係が必要となる。したがって、例えばIPMSMの回転子に永久磁石が装荷された場合、すなわち回転子及び固定子の各々の鉄芯の磁気非線形性を考慮する場合の磁化推定に、従来の磁化推定手法を応用することは困難であった。
加えて、漏れ磁束を活用した鋼構造物の非破壊欠陥探査手法は数多く提案されているが、永久磁石の磁化推定へ応用した事例は知られていない。
上記特許文献1に記載の従来技術では、永久磁石の劣化を推定するという点では本開示の目的と共通しているが、実際にモータを回転させて電機子電流の電流ベクトルから永久磁石の劣化が推定されている。当該従来技術は、後述するように漏れ磁束から永久磁石の磁化の状態を推定する本開示の技術と根本的に相違する。さらに、モータを回転させずに、回転状態を想定した電機子電流により磁石減磁が推定されるような従来技術も存在するが、上記の本開示の技術とは根本的に相違する。これらの従来技術では、永久磁石の性能劣化の有無を大まかに推定することはできるが、永久磁石の減磁及び破損箇所などを含む永久磁石の劣化情報をより具体的に推定することは困難であった。
本開示は、以上のような問題点を解決するために、永久磁石の劣化情報をより具体的に推定することが可能な磁化推定装置、磁化推定方法、及びプログラムを提供することを目的とする。本開示は、後述する永久磁石24がIPMSM20に装荷された状態で、永久磁石24からの漏れ磁束を活用して永久磁石24の磁化の状態を推定する点で新規である。以下では、添付図面を参照しながら本開示の一実施形態について主に説明する。
図1は、本開示の一実施形態に係る磁化推定装置10を含む磁化推定システム1の構成を示す構成図である。図1では、図2を参照しながら後述する出力部13についてはその図示を省略し、磁化推定装置10の構成の一部のみが示されている。図1を参照しながら、本開示の一実施形態に係る磁化推定装置10を含む磁化推定システム1の概要について主に説明する。磁化推定システム1は、磁化推定装置10に加えて、IPMSM20を有する。
IPMSM20は、固定されている円筒状の固定子鉄芯21を有する。IPMSM20は、固定子鉄芯21の内部に配置されている回転子鉄芯22を有する。IPMSM20は、回転子鉄芯22を貫通するように回転子鉄芯22に取り付けられているシャフト23を有する。IPMSM20は、回転子鉄芯22の内部に埋め込まれている永久磁石24を有する。永久磁石24は、例えばネオジム及びジスプロシウムなどのレアアースを含有する。IPMSM20は、固定子鉄芯21に形成されている電機子巻線25を有する。固定子は、固定子鉄芯21及び電機子巻線25により構成されている。回転子は、回転子鉄芯22、永久磁石24、及びシャフト23により構成されている。
永久磁石24は、磁性体に装荷されている。本開示において、「磁性体」は、軟磁性体及び硬磁性体を含む強磁性体、並びに常磁性体のいずれかを含む。軟磁性体は、例えば鉄芯を含む。硬磁性体は、例えば永久磁石を含む。常磁性体は、アルミニウム、銅、ガラス、及びダイヤモンドなどを含む。本開示の一実施形態に係る磁化推定システム1では、永久磁石24は、一例として、IPMSM20において、軟磁性体となる回転子鉄芯22に装荷されている。
IPMSM20では、回転子鉄芯22において4つの永久磁石24が回転中心を基準として、周方向に対し周期的に配置されている。IPMSM20は、例えば4極型のモータである。IPMSM20では、4つの永久磁石24の周囲を360°囲むように電機子巻線25が形成されている。IPMSM20では、シャフト23を有する回転子が固定子に対して回転する。
磁化推定装置10は、例えばIPMSM20の永久磁石24の磁化の状態を推定する。本開示において、「磁化の状態」は、例えば磁化分布、減磁の程度及び箇所、並びに破損箇所などを含む。磁化推定装置10は、例えば永久磁石24が装荷されているIPMSM20の回転子を静止させた状態で永久磁石24に対し所定の領域内に配置される。本開示において、「所定の領域」は、例えば、磁化推定装置10が永久磁石24からの漏れ磁束を閾値以上の精度で測定可能な領域を含む。一例として、磁化推定装置10は、永久磁石24の近辺、近傍、又は上方に配置される。例えば、磁化推定装置10は、永久磁石24の直上に配置される。磁化推定装置10は、永久磁石24からの漏れ磁束を測定することで、永久磁石24の磁化の状態を非破壊的に推定する。
永久磁石24が回転子鉄芯22に装荷されていることで、漏れ磁束は、非線形な磁化特性を有する磁気回路に起因するものとなる。磁化推定装置10は、従来技術と異なり、永久磁石24の磁化と磁気回路の漏れ磁束との関係が非線形となる場合を、磁化の状態を推定する対象とすることも可能である。
磁化推定装置10は、例えば永久磁石24が装荷されている回転子を静止させた状態で永久磁石24の直上に配置される測定部11を有する。測定部11は、永久磁石24からの漏れ磁束を測定する。測定部11は、永久磁石24から生じる漏れ磁束を測定可能な任意の測定モジュールを含む。例えば、測定部11は、ガウスメータ及びMI(Magneto-Impedance)センサなどの測定モジュールを含む。
図2は、図1の磁化推定装置10の概略構成を示すブロック図である。図1及び図2に示されるように、磁化推定装置10は、測定部11に加えて、記憶部12、出力部13、及び制御部14を有する。
記憶部12は、例えば半導体メモリ、磁気メモリ、又は光メモリなどであるが、これらに限定されない。記憶部12は、主記憶装置、補助記憶装置、又はキャッシュメモリとして機能する。記憶部12は、磁化推定装置10の動作に用いられる任意の情報を記憶する。記憶部12は、システムプログラム、アプリケーションプログラム、及び制御部14により算出される各種情報などを記憶する。
出力部13は、情報を出力してユーザに通知する1つ以上の出力インタフェースを含む。例えば、出力部13は、情報を映像で出力するディスプレイ、並びに情報を音声で出力するスピーカ、イヤホン、及びヘッドホンなどを含む。
制御部14は、1つ以上のプロセッサを含む。一実施形態において「プロセッサ」は、汎用のプロセッサ、又は特定の処理に特化した専用のプロセッサであるが、これらに限定されない。制御部14は、磁化推定装置10を構成する各構成部と通信可能に接続され、磁化推定装置10全体の動作を制御する。
制御部14は、測定部11により測定された、永久磁石24からの漏れ磁束に基づき、磁化推定アルゴリズムを用いて当該漏れ磁束が生じるときの永久磁石24の磁化の状態を推定する。制御部14は、当該磁化推定アルゴリズムの各ステップに対応した複数の機能ブロックを有する。
図3は、図2の制御部14の概略構成を主に示す機能ブロック図である。図3を参照しながら、上記磁化推定アルゴリズムの各ステップに対応した制御部14の機能ブロックについて主に説明する。
初めに、制御部14は、測定部11を制御しながら、IPMSM20の回転子鉄芯22に装荷されている永久磁石24から生じる漏れ磁束を測定する。これにより、測定部11により測定された当該漏れ磁束の第1磁束密度Blが得られる。第1磁束密度Blは、デカルト座標系における3つの軸にそれぞれ沿った3つの数値を含むベクトルである。第1磁束密度Blは、測定部11による永久磁石24上の測定点の数Nm分だけ得られる。測定部11による測定により、Nm個の第1磁束密度Blによる3Nm個の数値を含む数値データが得られる。
制御部14は、例えば第1磁束密度Blに対して所定の相対誤差を付加する。より具体的には、制御部14は、各測定点で得られた第1磁束密度Blに対して所定の相対誤差を付加する。すなわち、制御部14は、3Nm個の数値を含む数値データを加工する。所定の相対誤差は、各数値に対して10%以下、好ましくは7%以下、より好ましくは5%以下、さらに好ましくは3%以下の数値範囲に含まれる誤差を含む。
制御部14の磁化生成部141は、第1磁束密度Blが得られるときの永久磁石24の実際の磁化分布に対応する仮の磁化分布を初期分布としてシミュレーションにより生成する。仮の磁化分布は、極座標における動径座標及び2つの角度座標にそれぞれ対応する3つの数値を含むベクトルである磁化Mi(i=0)を、シミュレーションによる永久磁石24上のデータ点、すなわち永久磁石24の内部のセルの数Nc分だけ生成することで得られる。iは、シミュレーションにおける繰り返し番号である。なお、仮の磁化分布は、極座標に代えて、直交座標及び円柱座標などに基づいて表現されてもよい。
制御部14の電磁界算出部142は、磁化生成部141においてシミュレーションにより生成された仮の磁化分布から磁気非線形性を考慮した電磁界解析により、仮の磁化分布に基づく漏れ磁束の第2磁束密度Biを算出する。例えば、磁化Miと第2磁束密度Biとは、ビオサバール則により互いに関連付けられるが、鉄芯からの漏れ磁束を算出する場合、鉄芯の磁気非線形性を考慮できる電磁界解析手法として、有限要素法及び磁気モーメント法などが用いられる。第2磁束密度Biは、第1磁束密度Blに対応して、デカルト座標系における3つの軸にそれぞれ沿った3つの数値を含むベクトルである。第2磁束密度Biは、測定部11による永久磁石24上の測定点の数Nmに対応する数分だけ得られる。
例えば、第2磁束密度Biは、以下の非線形方程式に基づいて算出される。
(式1)
ここで、K(A)は磁気ベクトルポテンシャルAに依存した剛性行列であり、Fは永久磁石24の磁化Miに起因する右辺ベクトルである。
ここで、K(A)は磁気ベクトルポテンシャルAに依存した剛性行列であり、Fは永久磁石24の磁化Miに起因する右辺ベクトルである。
制御部14の目的関数算出部143は、測定部11により測定された漏れ磁束の第1磁束密度Blとシミュレーションにより生成された磁化分布に基づく漏れ磁束の第2磁束密度Biとの間の差分を含む目的関数を算出する。制御部14は、磁化推定アルゴリズムにおいて、算出された当該目的関数に基づく最適化問題を解くことで永久磁石24の磁化の状態を推定する。
制御部14は、磁化推定アルゴリズムにおいて、式3により算出された目的関数Wを最小化する最適化問題を解くことで永久磁石24の磁化の状態を推定する。このとき、制御部14の目的関数算出部143は、Nc個の磁化Miをまとめた磁化分布Mのベクトルの各要素について制約条件を課してもよい。制約条件は、物理的な磁化分布Mを導出するために設定されるものである。磁化分布Mは、極座標における動径座標及び2つの角度座標にそれぞれ対応する3つの数値に対して、シミュレーションによる永久磁石24上のデータ点の数Ncを乗算した3Nc個の数値を含むベクトルである。
例えば、磁化分布MにおけるNc個の動径座標に基づく要素のうち、j番目の要素をM(j)とする。磁化分布MにおけるNc個の角度座標θに基づく要素のうち、j番目の要素をθ(j)とする。磁化分布MにおけるNc個の角度座標φに基づく要素のうち、j番目の要素をφ(j)とする。このとき、以下のような制約条件が課されてもよい。
(式4)
MminはM(j)の最小値であり、MmaxはM(j)の最大値である。θminはθ(j)の最小値であり、θmaxはθ(j)の最大値である。φminはφ(j)の最小値であり、φmaxはφ(j)の最大値である。
MminはM(j)の最小値であり、MmaxはM(j)の最大値である。θminはθ(j)の最小値であり、θmaxはθ(j)の最大値である。φminはφ(j)の最小値であり、φmaxはφ(j)の最大値である。
加えて、制御部14の目的関数算出部143は、上記目的関数Wの勾配∇Wを算出する。制御部14の修正量算出部144は、目的関数算出部143により算出された勾配∇Wに基づいて、最適化手法により磁化分布Mの修正量を算出する。このような修正量は、勾配∇Wに基づいて算出される。例えば、制御部14の修正量算出部144は、最適化手法により磁化Miの修正量δMiを算出する。磁化分布Mが永久磁石24の実際の磁化分布に漸近する場合、目的関数Wが小さくなり、磁化分布Mの修正量も小さくなる。
制御部14の更新部145は、磁化生成部141においてシミュレーションにより生成された磁化分布Mに対し、修正量算出部144により算出された修正量に基づいて磁化分布Mを更新する。より具体的には、制御部14の更新部145は、磁化分布Mに対して勾配∇Wに基づき算出された修正量を足し合わせることで、磁化分布Mを更新する。例えば、制御部14の更新部145は、磁化Miを磁化Mi+1=Mi+δMiに更新する。
制御部14の収束判定部146は、修正量算出部144により算出された磁化分布Mの修正量が許容値以下になると、磁化推定アルゴリズムを終了させる。一方で、制御部14の収束判定部146は、修正量算出部144により算出された磁化分布Mの修正量が許容値よりも大きいと、磁化生成部141に移動して磁化推定アルゴリズムを繰り返す。例えば、制御部14の収束判定部146は、磁化Miの修正量δMiが許容量ε以下であり、max|δMi|≦εを満たすと、磁化推定アルゴリズムを終了させる。このとき、永久磁石24の実際の磁化分布に近い磁化分布Mが得られる。
制御部14は、磁化推定アルゴリズムを終了させると、磁化推定アルゴリズムにより得られた、永久磁石24の磁化の状態を推定した推定結果を出力部13により出力する。例えば、制御部14は、永久磁石24が着磁した直後の実際の磁化分布と磁化推定アルゴリズムにより推定された経年劣化後の磁化分布Mとを比較した分布図及びグラフ図などをディスプレイに表示する。
制御部14は、以上のような磁化推定アルゴリズムにおいて、測定部11による実測値とシミュレーション値との差分の計算値を示す式3に対して、随伴変数法を適用し、式4に示す制約条件を用いる。制御部14は、制約条件として制約関数を用いながら、目的関数Wの勾配∇Wを随伴変数法により算出する。このとき、制御部14は、以下で説明するとおり、一例として、制約条件をシグモイド関数で表現する。
図4は、図2の磁化推定装置10により実行される処理の一例を説明するためのグラフ図である。図4は、制約条件として用いられる制約関数の一例をグラフとして示す。本開示において、制約関数は、例えば、シグモイド関数を含む。図4を参照しながら、式4に示す制約条件の詳細を説明する。
図4に示されるように、制約関数は、変数を制約条件に従う変数に変換する。本開示において、「変数」は、磁化分布Mの、極座標における動径座標及び2つの角度座標の各々を含む。変数は、磁化分布Mにおける動径座標M、磁化分布Mにおける角度座標θ、及び磁化分布Mにおける角度座標φの各々を含む。図4では、一例として、磁化分布Mにおける角度座標θが変数として例示されている。このとき、変換前の変数をθ’とし、変換後の変数をθとする。図4を用いた制約関数に関する説明は、角度座標θに限定されず、動径座標M及び角度座標φに対しても同様に当てはまる。
制約関数は、変換前の変数θ’の軸の一方側において変換後の変数θが最大値θmaxに漸近し、他方側において変換後の変数θが最小値θminに漸近するように構成される。例えば、変数θは、変数θ’が正の方向に向けて無限に大きくなるに従って最大値θmaxに漸近する。変数θは、変数θ’が負の方向に向けて無限に小さくなるに従って最小値θminに漸近する。
制約関数は、変換後の変数θが最小値θminと最大値θmaxとの間で単調に、かつ連続的に変化するように構成される。例えば、変数θは、変数θ’の値が増大するに従って、最小値θminと最大値θmaxとの間で連続的に単調増加する。変曲点は、一例として変数θ’がゼロとなる位置にある。制約関数は、例えば、変曲点に対して点対称となる。
図5は、図2の磁化推定装置10により実行される磁化推定方法の一例を説明するためのフローチャートである。図5を参照しながら、図2の磁化推定装置10により実行される、永久磁石24の磁化の状態を推定する磁化推定方法の一例について主に説明する。
ステップS100では、磁化推定装置10の制御部14は、永久磁石24から生じる漏れ磁束、例えば第1磁束密度Blを測定部11により測定する。
ステップS101では、制御部14の磁化生成部141は、第1磁束密度Blが得られるときの永久磁石24の実際の磁化分布に対応する仮の磁化分布を初期分布としてシミュレーションにより生成する。
ステップS102では、制御部14の電磁界算出部142は、ステップS101において生成された仮の磁化分布から磁気非線形性を考慮した電磁界解析により、仮の磁化分布に基づく漏れ磁束の第2磁束密度Biを算出する。
ステップS103では、制御部14の目的関数算出部143は、ステップS100において測定された漏れ磁束の第1磁束密度BlとステップS101において生成された磁化分布に基づく漏れ磁束の第2磁束密度Biとの間の差分を含む目的関数Wを算出する。
ステップS104では、制御部14の目的関数算出部143は、ステップS103において算出された目的関数Wの勾配∇Wを算出する。
ステップS105では、制御部14の修正量算出部144は、ステップS104において算出された勾配∇Wに基づいて、最適化手法により磁化分布Mの修正量を算出する。
ステップS106では、制御部14の更新部145は、ステップS101においてシミュレーションにより生成された磁化分布Mに対し、ステップS105において算出された修正量に基づいて磁化分布Mを更新する。
ステップS107では、制御部14の収束判定部146は、ステップS105において算出された磁化分布Mの修正量が許容値以下になったか否かを判定する。制御部14は、修正量が許容値以下になったと判定すると、以上の各ステップを含む磁化推定アルゴリズムを終了させ、ステップS108の処理を実行する。制御部14は、修正量が許容値よりも大きいと判定すると、ステップS102に戻り、ステップS106において更新された磁化分布Mに基づき磁化推定アルゴリズムを繰り返す。
ステップS108では、制御部14は、ステップS107において磁化推定アルゴリズムを終了させると、磁化推定アルゴリズムにより得られた、永久磁石24の磁化の状態を推定した推定結果を出力部13により出力する。
永久磁石24の磁化の状態を磁化推定装置10が推定したときの結果の具体例について説明する。初めに、当該結果の第1例について説明する。
図6は、図2の出力部13に出力された推定結果の第1例を示す模式図である。図6の(a)は、着磁された直後の未使用状態での永久磁石24に対し磁化の状態を推定した推定結果を示す。図6の(b)は、IPMSM20などに使用されて経年劣化した後の永久磁石24に対し磁化の状態を推定した推定結果を示す。図6の(a)及び(b)のいずれも永久磁石24の磁化分布Mを示す。図6において色の濃淡により磁化Miの大きさを表している。色が濃いほど磁化Miの絶対値が大きく、色が薄いほど磁化Miの絶対値が小さい。
図6の(a)に示されるように、着磁された直後の未使用状態での永久磁石24に対して、均一な磁化分布Mが精度良く推定されている。このとき、永久磁石24の内部の各セルにおいて磁化Miの絶対値が大きく、互いに略同一となっている。図6の(b)に示されるように、IPMSM20などに使用されて経年劣化した後の永久磁石24に対し、不均一な磁化分布Mが精度良く推定されている。このとき、永久磁石24の中心部における各セルでは磁化Miの絶対値が比較的大きく維持されている一方で、その周辺部では減磁により磁化Miの絶対値が小さくなっている。
続いて、永久磁石24の磁化の状態を磁化推定装置10が推定したときの結果の第2例について説明する。
図7は、図2の磁化推定装置10による推定結果と対比される目標磁化分布を示す模式図である。図7の(a)は、図1のIPMSM20の回転子鉄芯22に装荷されている4つの永久磁石24を、その他の構成の図示を省略して仮想的に独立して斜め上方から見たときの図である。図7の(b)は、図7の(a)に示す4つの永久磁石24を上方から見たときの図である。図7の(a)及び(b)のいずれも永久磁石24の磁化分布Mを示す。図7において色の濃淡により磁化Miの大きさを表している。色が濃いほど磁化Miの絶対値が大きく、色が薄いほど磁化Miの絶対値が小さい。
図8は、図1のIPMSM20における測定領域及び漏れ磁束分布を示す模式図である。図8の(a)は、図1のIPMSM20の永久磁石24から生じる漏れ磁束を測定部11により測定するときの測定点の配置を示す。図8の(b)は、図8の(a)に示す各測定点において測定部11により測定される漏れ磁束の様子を示す。図8の(b)における漏れ磁束分布は、磁化推定アルゴリズムにおいて数値データとして用いられる、Nm個の第1磁束密度Blに対応する。図8の(b)において、色の濃淡により第1磁束密度Blの大きさを表している。図8の(b)において色が濃いほど第1磁束密度Blの絶対値が大きく、色が薄いほど第1磁束密度Blの絶対値が小さい。
図9は、図2の制御部14によるシミュレーションでの初期分布を示す模式図である。図9は、制御部14の磁化生成部141においてシミュレーションにより生成された仮の磁化分布の初期分布を示す。図9の(a)は、図7の(a)と対応し、同様の説明が当てはまる。図9の(b)は、図7の(b)と対応し、同様の説明が当てはまる。
図10は、図2の出力部13に出力された推定結果の第2例を示す模式図である。図10は、例えば、着磁された直後の未使用状態での永久磁石24に対し磁化の状態を推定した推定結果を示す。図10の(a)は、図7の(a)と対応し、同様の説明が当てはまる。図10の(b)は、図7の(b)と対応し、同様の説明が当てはまる。
磁化推定装置10は、図8に示されるような第1磁束密度Blに関する入力データを用いて、図9に示されるような初期分布に基づき永久磁石24の磁化の状態を図10に示すような結果として推定する。図7に示す目標磁化分布と図10に示す推定結果における磁化分布とは互いに良く類似している。したがって、磁化推定装置10は、永久磁石24の磁化分布Mを精度良く推定できている。
続いて、永久磁石24の磁化の状態を磁化推定装置10が推定したときの結果の第3例について説明する。
図11は、図2の磁化推定装置10を用いた磁化の状態の推定対象となる系の一例を示す模式図である。図12は、図11の破線囲み部を拡大した拡大図である。図11に示される系は、磁化推定装置10を用いて永久磁石24の磁化の状態を実際に推定するためのテストモデルである。上記の第2例では、磁化推定装置10は、図8に示されるような第1磁束密度Blに関する入力データを用いて、永久磁石24の磁化の状態を推定したが、実際の系を用いて測定部11により測定された漏れ磁束の第1磁束密度Blを用いても同様の推定処理を実行可能である。第3例では、実際の系を用いて測定部11により測定された実測値を用いたときでも、本願発明の原理が同様に実現されることを詳細に説明する。
図11において、逆C字の形状を有するフェライトコア30が系の全体に配置されている。フェライトコア30は、強磁性体のうち軟磁性体に相当する。永久磁石24は、フェライトコア30の一部の領域においてフェライトコア30により挟み込まれるように、フェライトコア30に装荷されている。このとき、図11の破線囲み部に示されるように、永久磁石24から漏れ磁束が生じている。永久磁石24から生じる漏れ磁束の分布は、磁化推定アルゴリズムにおいて実測値データとして用いられる、Nm個の第1磁束密度Blに対応する。図11及び図12において、色の濃淡により第1磁束密度Blの大きさを表している。
磁化推定装置10は、測定部11を用いながら、フェライトコア30に装荷されている永久磁石24からの漏れ磁束を測定する。磁化推定装置10は、測定部11により測定された漏れ磁束の第1磁束密度Blを用いて、図5に示すフローチャートに従い、永久磁石24の磁化の状態を推定する。
図13は、図2の出力部13に出力された推定結果の第3例を示す模式図である。図13は、フェライトコア30に装荷されている永久磁石24に対し磁化推定装置10を用いて磁化の状態を推定した推定結果を示す。図13は、フェライトコア30に装荷されている永久磁石24の磁化分布Mを示す。図13において色の濃淡により磁化Miの大きさを表している。
図14は、図13に示す推定結果と比較するための、従来技術に基づく推定結果の例を示す模式図である。図14は、図11に示されるフェライトコア30を省略して、フェライトコア30に装荷されていない永久磁石24単体に対して従来技術により磁化の状態を推定した推定結果を示す。図14は、フェライトコア30に装荷されていない永久磁石24単体の磁化分布Mを示す。図14において色の濃淡により磁化Miの大きさを表している。
図14は、周囲に磁性体が存在しない自由空間中に配置されている永久磁石24の磁化を推定できる数値計算手法に基づく推定結果を示す。当該数値計算手法は、打ち切り特異値分解法(TSVD(Truncated Singular Value Decomposition)法)に基づくものである。
図14に示される推定結果に対して図13に示される推定結果を比較すると、本開示の一実施形態に係る磁化推定装置10を用いた推定結果は、従来技術に基づいて得られた推定結果と概ね一致している。すなわち、磁化推定装置10は、フェライトコア30のような磁性体に装荷されている永久磁石24に対しても、自由空間中に配置されている永久磁石24単体を用いた従来技術と同様に、永久磁石24の磁化分布Mを精度良く推定できている。
以上のような一実施形態によれば、例えば図6に示されるように、永久磁石24の劣化情報をより具体的に推定することが可能である。磁化推定装置10は、測定部11により測定された永久磁石24の漏れ磁束に基づき、磁化推定アルゴリズムを用いて当該漏れ磁束が生じるときの永久磁石24の磁化の状態を推定する。これにより、磁化推定装置10は、永久磁石24の減磁及び破損箇所などを含む永久磁石24の劣化情報をより具体的に推定することが可能である。例えば、磁化推定装置10は、推定された磁化分布Mを着磁された直後の永久磁石24の磁化分布と比較することで、永久磁石24の劣化情報をより具体的に推定することが可能である。磁化推定装置10は、永久磁石24がIPMSM20に装荷された状態で、永久磁石24からの漏れ磁束に基づき、永久磁石24の磁化の状態を非破壊的に推定できる。
以上により、磁化推定装置10は、永久磁石24に関する経年的な減磁及び破損箇所などを容易に推定可能であり、永久磁石24の有効利用の実現に寄与することが可能である。結果として、磁化推定装置10は、例えばEVに用いられるようなIPMSM20の保守管理を可能とし、IPMSM20及びEV自体の長寿命化に寄与することができる。例えば、磁化推定装置10は、不可逆減磁が発生した永久磁石24を非破壊的に探知でき、減磁が発生している永久磁石24をIPMSM20から取り出し、再着磁してIPMSM20に再装荷するような保守管理をユーザに促すこともできる。
磁化推定装置10は、減磁が発生している永久磁石24のみをIPMSM20から取り出すことが容易でない場合であっても、回転子鉄芯22、シャフト23、及び永久磁石24を有する回転子全体をIPMSM20から取り出し、回転子全体で再着磁してIPMSM20に再装荷するような保守管理をユーザに促すこともできる。以上により、磁化推定装置10は、レアアースの再利用による稀少金属の枯渇を抑制可能である。
加えて、磁化推定装置10は、再着磁後の着磁検定にも応用可能であるだけでなく、IPMSM20の製造時における永久磁石24の着磁後の着磁検定にも応用可能である。磁化推定装置10は、永久磁石24を含めて回転子を組み立てた後のこのような組立後着磁についても、永久磁石24の磁化分布などの磁化の状態を推定することで、着磁の精度を容易に検定可能である。以上により、磁化推定装置10は、組立後着磁に永久磁石24において発生する可能性のある磁化分布の不均質な箇所も推定することができる。磁化推定装置10は、組立後着磁における永久磁石24の着磁品質を非破壊的に高速で推定することも可能である。
磁化推定装置10は、磁化推定アルゴリズムにおいて、第1磁束密度Blと第2磁束密度Biとの間の差分を含む目的関数に基づく最適化問題を解くことで永久磁石24の磁化の状態を推定する。これにより、磁化推定装置10は、永久磁石24の磁化の状態を精度良く推定することができる。例えば、磁化推定装置10は、測定部11により漏れ磁束が測定された永久磁石24の実際の磁化分布に近い磁化分布をシミュレーション上で精度良く生成することができる。結果として、磁化推定装置10は、永久磁石24の劣化情報をより精度良く推定することが可能である。
磁化推定装置10は、磁化推定アルゴリズムにおいて、シミュレーションにより生成された磁化分布の修正量を算出し磁化分布を更新することで、永久磁石24の実際の磁化分布に近い磁化分布をシミュレーション上で生成することができる。結果として、磁化推定装置10は、永久磁石24の劣化情報をより精度良く推定することが可能である。
磁化推定装置10は、目的関数Wの勾配∇Wを算出して最適化手法により修正量を算出することで、永久磁石24の実際の磁化分布に近い磁化分布をシミュレーション上で生成することができる。結果として、磁化推定装置10は、永久磁石24の劣化情報をより精度良く推定することが可能である。
磁化推定装置10は、制約条件として制約関数を用いながら、目的関数Wの勾配∇Wを随伴変数法により算出することで、磁化推定アルゴリズムにおける非物理的な解の発生を軽減可能である。これにより、磁化推定装置10は、永久磁石24の磁化の状態を高精度に推定できる。結果として、磁化推定装置10は、永久磁石24の劣化情報をより精度良く推定することが可能である。
制約関数は、変数を制約条件に従う変数に変換し、変換前の変数の軸の一方側において変換後の変数が最大値に漸近し、他方側において変換後の変数が最小値に漸近するように構成される。これにより、磁化推定装置10は、磁化推定アルゴリズムにおいて、最小値と最大値との間で対応する解を得ることができ、非物理的な解の発生を軽減可能である。
制約関数は、変換後の変数が最小値と最大値との間で単調に、かつ連続的に変化するように構成される。これにより、磁化推定装置10は、磁化推定アルゴリズムにおいて、最小値と最大値との間で対応する解を連続的に得ることができ、非物理的な解の発生を軽減可能である。
磁化推定装置10は、制約関数がシグモイド関数を含むことで、シグモイド関数に基づいて制約条件を明確に定めることが可能である。
磁化推定装置10は、修正量が許容値以下になると、磁化推定アルゴリズムを終了させることで、永久磁石24の実際の磁化分布に近い磁化分布を、磁化推定アルゴリズムの繰り返しにより最終的に生成することができる。結果として、磁化推定装置10は、永久磁石24の劣化情報をより精度良く推定することが可能である。
磁化推定装置10は、シミュレーションにより生成された磁化分布から磁気非線形性を考慮した電磁界解析により第2磁束密度Biを算出することで、磁気非線形性を考慮した磁化推定方法を実現可能である。通常、IPMSM20の固定子及び回転子などには、材料非線形性を有する鉄芯が包含されていることがほとんどである。磁化推定装置10は、このような磁気回路における鉄芯の磁気非線形性も考慮して永久磁石24の磁化の状態を推定可能である。したがって、磁化推定装置10は、永久磁石24がIPMSM20に装荷された状態で永久磁石24の磁化の状態を推定することも可能になる。
磁化推定装置10は、電磁界解析で使用する離散化次数の高次化、例えば有限要素法であれば高次節点要素及び高次辺要素などによる方法、並びにIPMSM20の積層電磁鋼板を高精度にモデリングできる均質化法などの近似手法を用いることで、永久磁石24の磁化の状態を高精度に推定できる。
磁化推定装置10は、第1磁束密度Blに対して所定の相対誤差を付加することで、測定部11に含まれる測定モジュールの位置決め制御の精度及び本体のエラーなどに起因する第1磁束密度Blの誤差を考慮しながら永久磁石24の磁化の状態を推定することができる。これにより、磁化推定装置10は、永久磁石24の磁化の状態を精度良く推定することができる。結果として、磁化推定装置10は、永久磁石24の劣化情報をより精度良く推定することが可能である。
磁化推定装置10は、測定部11により測定された漏れ磁束の第1磁束密度Blのデータから測定ノイズを除去するために、以下の式5を満足する補正を実施することも可能である。これにより、磁化推定装置10は、永久磁石24に対する物理的な磁化分布の推定を促進する。
(式5)
磁化推定装置10は、永久磁石24が装荷されている回転子を静止させた状態で漏れ磁束を測定することで、漏れ磁束を測定部11により精度良く測定することができる。これにより、磁化推定装置10は、永久磁石24の磁化の状態を精度良く推定することができる。結果として、磁化推定装置10は、永久磁石24の劣化情報をより精度良く推定することが可能である。
磁化推定装置10は、磁化推定アルゴリズムにより得られた、永久磁石24の磁化の状態を推定した推定結果を出力部13により出力することで、永久磁石24の磁化分布などを、永久磁石24を破壊することなく容易に可視化することができる。これにより、磁化推定装置10を用いた永久磁石24の磁化の状態の推定作業が容易となり、磁化推定装置10を用いるユーザの利便性が向上する。
例えば、永久磁石24の内部において、局所的に減磁及び破損などが存在する場合、制約関数として使用するシグモイド関数のゲインを大きくして健全部位と未着磁領域とを二値化する試みがあってもよいし、トポロジー最適化の分野で開発されているグレイスケールを除去できるペナルティ関数及びレベルセット法などが実装されてもよい。結果として、磁化推定装置10は、永久磁石24中の局所的な減磁及び破損などを精度良く推定することも可能である。
本開示を諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形及び改変を行うことが可能であることに注意されたい。したがって、これらの変形及び改変は本開示の範囲に含まれることに留意されたい。例えば、各構成又は各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成又はステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。
例えば、上述した各構成部の形状、大きさ、配置、向き、及び個数などは、上記の説明及び図面における図示の内容に限定されない。各構成部の形状、大きさ、配置、向き、及び個数などは、その機能を実現できるのであれば、任意に構成されてもよい。
例えば、スマートフォン又はコンピュータなどの汎用の電子機器を、上述した実施形態に係る磁化推定装置10として機能させる構成も可能である。具体的には、実施形態に係る磁化推定装置10の各機能を実現する処理内容を記述したプログラムを、電子機器のメモリに格納し、電子機器のプロセッサにより当該プログラムを読み出して実行させる。したがって、一実施形態に係る開示は、プロセッサが実行可能なプログラムとしても実現可能である。
又は、一実施形態に係る開示は、実施形態に係る磁化推定装置10などに各機能を実行させるために1つ又は複数のプロセッサにより実行可能なプログラムを記憶した非一時的なコンピュータ読取可能な媒体としても実現し得る。本開示の範囲には、これらも包含されると理解されたい。
上記実施形態では、磁化推定装置10は、磁化推定アルゴリズムにおいて、第1磁束密度と第2磁束密度との間の差分を含む目的関数に基づく最適化問題を解くことで永久磁石24の磁化の状態を推定すると説明したが、これに限定されない。磁化推定装置10は、永久磁石24の劣化情報をより具体的に推定することが可能であれば、任意の他の磁化推定アルゴリズムを用いて、測定部11により測定された漏れ磁束が生じるときの永久磁石24の磁化の状態を推定してもよい。
上記実施形態では、磁化推定装置10は、磁化推定アルゴリズムにおいて、シミュレーションにより生成された磁化分布の修正量を算出し磁化分布を更新すると説明したが、これに限定されない。磁化推定装置10は、上述した他の磁化推定アルゴリズムにおける任意の方法で、磁化分布を更新してもよい。
上記実施形態では、磁化推定装置10は、目的関数の勾配を算出して最適化手法により修正量を算出すると説明したが、これに限定されない。磁化推定装置10は、修正量の算出にあたり、準ニュートン法などの目的関数の勾配を使用する数理計画法に代えて、又は加えて、遺伝的アルゴリズムのような進化型アルゴリズムを用いてもよく、さらに、ニューラルネットワーク及びディープラーニングなどによるAI(Artificial Intelligence)技術を用いてもよい。
上記実施形態では、磁化推定装置10は、磁化Miを磁化Mi+1=Mi+δMiに更新すると説明したが、これに限定されない。磁化推定装置10は、磁化Miを磁化Mi+1=Mi+αδMiに更新してもよい。このとき、αは、ステップサイズであり、直線探索による適切な値で磁化Miを更新するためのものである。
上記実施形態では、磁化推定装置10は、制約条件を満たす物理的な磁化分布Mを導出するため、制約関数を用いながら、目的関数の勾配を随伴変数法により算出すると説明したが、これに限定されない。磁化推定装置10は、随伴変数法とは異なる任意の他の方法に基づいて、目的関数の勾配を算出してもよい。磁化推定装置10は、磁化推定アルゴリズムにおいて、制約条件をそもそも用いなくてもよい。
上記実施形態では、制約関数は、変数を制約条件に従う変数に変換し、変換前の変数の軸の一方側において変換後の変数が最大値に漸近し、他方側において変換後の変数が最小値に漸近するように構成されると説明したが、これに限定されない。制約関数は、変換前の変数の軸の任意の箇所で最大値又は最小値が設定されるような任意の他の関数であってもよい。制約関数は、最大値及び最小値の少なくとも一方が設定されていないような任意の他の関数であってもよい。
上記実施形態では、制約関数は、変換後の変数が最小値と最大値との間で単調に、かつ連続的に変化するように構成されると説明したが、これに限定されない。制約関数は、単調に変化しなくてもよい。制約関数は、連続的ではなく不連続的に変化してもよい。
上記実施形態では、制約関数は、図4に示されるように、連続的に単調増加すると説明したが、これに限定されない。制約関数は、連続的に単調減少してもよい。
上記実施形態では、制約関数は、シグモイド関数を含むと説明したが、これに限定されない。制約関数は、制約条件として機能する任意の他の関数を含んでもよい。
上記実施形態では、磁化推定装置10は、シミュレーションにより生成された磁化分布から磁気非線形性を考慮した電磁界解析により第2磁束密度を算出すると説明したが、これに限定されない。磁化推定装置10は、磁気非線形性を考慮しない任意の他の解析により、シミュレーションにより生成された磁化分布から第2磁束密度を算出してもよい。
上記実施形態では、磁化推定装置10は、第1磁束密度に対して所定の相対誤差を付加すると説明したが、これに限定されない。磁化推定装置10は、このようなデータ加工処理を実行しなくてもよい。
上記実施形態では、磁化推定装置10は、永久磁石24が装荷されている回転子を静止させた状態で漏れ磁束を測定すると説明したが、これに限定されない。磁化推定装置10は、永久磁石24が装荷されている回転子を動かした状態で漏れ磁束を測定してもよい。磁化推定装置10は、例えば1Hz以下の超低速で回転子が回転している状態で漏れ磁束を測定してもよい。このとき、磁化推定装置10は、回転子鉄芯22及び固定子鉄芯21の磁気ヒステリシス特性を考慮してもよい。
上記実施形態では、測定部11は、回転子鉄芯22に装荷されている永久磁石24の直上に配置されると説明したが、これに限定されない。測定部11は、永久磁石24と同様に回転子鉄芯22の内部に埋め込まれてもよい。測定部11は、回転子鉄芯22の内部に埋め込まれた状態で、永久磁石24から生じる漏れ磁束を測定してもよい。
上記実施形態では、永久磁石24は、回転子鉄芯22の内部に埋め込まれていると説明したが、これに限定されない。永久磁石24は、回転子鉄芯22ではなく固定子鉄芯21の内部に埋め込まれていてもよい。このとき、電機子巻線25は、固定子鉄芯21ではなく回転子鉄芯22に形成されていてもよい。
上記実施形態では、磁化推定装置10は、IPMSM20の永久磁石24の磁化の状態を推定すると説明したが、これに限定されない。磁化推定装置10は、例えば直流モータ及び表面磁石型モータなどのIPMSM20以外の任意のモータに対して用いられてもよい。磁化推定装置10は、アクチュエータなどの永久磁石24を装荷した電気機器全般に用いられてもよい。
上記実施形態では、永久磁石24は、例えばジスプロシウムを含有したネオジム磁石などを含むと説明したが、これに限定されない。永久磁石24は、サマリウムコバルト磁石及びフェライト磁石などを含んでもよい。磁化推定装置10は、様々な磁気回路に装荷される様々な永久磁石24に応用可能であり、汎化性能に優れている。
上記実施形態では、図6に示されるように、出力部13に出力された推定結果として磁化分布Mの分布図を例示したが、出力部13に出力される推定結果の表示形式はこれに限定されない。例えば、磁化推定装置10は、推定結果をグラフ及び表などの他の表示形式に基づいて出力部13に出力してもよい。
本開示は、電磁気工学、電気工学、非破壊検査、及び環境エネルギー分野などの様々な分野に応用可能である。例えば、本開示は、IPMSM20の設計工程において、磁気回路に着磁前の永久磁石24を装荷した状態で着磁した後の磁化分布の妥当性評価に応用可能である。例えば、本開示は、IPMSM20の試作段階における減磁試験後の永久磁石24の減磁評価に応用可能である。例えば、本開示は、EVの車検時におけるIPMSM20の永久磁石24の経年減磁検査に応用可能である。例えば、本開示は、IPMSM20の永久磁石24の経年減磁後に、永久磁石24が装荷された回転子又は固定子を取り出し、再着磁した後の検査に応用可能である。
1 磁化推定システム
10 磁化推定装置
11 測定部
12 記憶部
13 出力部
14 制御部
141 磁化生成部
142 電磁界算出部
143 目的関数算出部
144 修正量算出部
145 更新部
146 収束判定部
20 IPMSM
21 固定子鉄芯
22 回転子鉄芯
23 シャフト
24 永久磁石
25 電機子巻線
30 フェライトコア
10 磁化推定装置
11 測定部
12 記憶部
13 出力部
14 制御部
141 磁化生成部
142 電磁界算出部
143 目的関数算出部
144 修正量算出部
145 更新部
146 収束判定部
20 IPMSM
21 固定子鉄芯
22 回転子鉄芯
23 シャフト
24 永久磁石
25 電機子巻線
30 フェライトコア
Claims (14)
- 磁性体に装荷されている永久磁石の磁化の状態を推定する磁化推定装置であって、
前記永久磁石から生じる漏れ磁束を測定する測定部と、
前記測定部により測定された前記漏れ磁束に基づき、磁化推定アルゴリズムを用いて前記漏れ磁束が生じるときの前記永久磁石の磁化の状態を推定する制御部と、
を備える、
磁化推定装置。 - 請求項1に記載の磁化推定装置であって、
前記制御部は、前記磁化推定アルゴリズムにおいて、前記測定部により測定された前記漏れ磁束の第1磁束密度とシミュレーションにより生成された磁化分布に基づく漏れ磁束の第2磁束密度との間の差分を含む目的関数に基づく最適化問題を解くことで前記磁化の状態を推定する、
磁化推定装置。 - 請求項2に記載の磁化推定装置であって、
前記制御部は、前記磁化推定アルゴリズムにおいて、前記シミュレーションにより生成された前記磁化分布の修正量を算出し前記磁化分布を更新する、
磁化推定装置。 - 請求項3に記載の磁化推定装置であって、
前記制御部は、前記目的関数の勾配を算出して最適化手法により前記修正量を算出する、
磁化推定装置。 - 請求項2乃至4のいずれか1項に記載の磁化推定装置であって、
前記制御部は、制約条件として制約関数を用いながら、前記目的関数の勾配を随伴変数法により算出する、
磁化推定装置。 - 請求項5に記載の磁化推定装置であって、
前記制約関数は、変数を前記制約条件に従う前記変数に変換し、変換前の前記変数の軸の一方側において変換後の前記変数が最大値に漸近し、他方側において変換後の前記変数が最小値に漸近するように構成される、
磁化推定装置。 - 請求項6に記載の磁化推定装置であって、
前記制約関数は、変換後の前記変数が前記最小値と前記最大値との間で単調に、かつ連続的に変化するように構成される、
磁化推定装置。 - 請求項7に記載の磁化推定装置であって、
前記制約関数は、シグモイド関数を含む、
磁化推定装置。 - 請求項3又は4に記載の磁化推定装置であって、
前記制御部は、前記修正量が許容値以下になると、前記磁化推定アルゴリズムを終了させる、
磁化推定装置。 - 請求項2乃至4のいずれか1項に記載の磁化推定装置であって、
前記制御部は、前記シミュレーションにより生成された磁化分布から磁気非線形性を考慮した電磁界解析により前記第2磁束密度を算出する、
磁化推定装置。 - 請求項2乃至4のいずれか1項に記載の磁化推定装置であって、
前記制御部は、前記第1磁束密度に対して所定の相対誤差を付加する、
磁化推定装置。 - 請求項1乃至4のいずれか1項に記載の磁化推定装置であって、
前記測定部は、前記永久磁石が装荷されている回転子を静止させた状態で前記漏れ磁束を測定する、
磁化推定装置。 - 磁性体に装荷されている永久磁石の磁化の状態を推定する磁化推定方法であって、
前記永久磁石から生じる漏れ磁束を測定することと、
測定された前記漏れ磁束に基づき、磁化推定アルゴリズムを用いて前記漏れ磁束が生じるときの前記永久磁石の磁化の状態を推定することと、
を含む、
磁化推定方法。 - 磁性体に装荷されている永久磁石の磁化の状態を推定する磁化推定装置に、
前記永久磁石から生じる漏れ磁束を測定することと、
測定された前記漏れ磁束に基づき、磁化推定アルゴリズムを用いて前記漏れ磁束が生じるときの前記永久磁石の磁化の状態を推定することと、
を含む動作を実行させる、
プログラム。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022163595 | 2022-10-11 | ||
JP2022-163595 | 2022-10-11 | ||
JP2022201598 | 2022-12-16 | ||
JP2022-201598 | 2022-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024080260A1 true WO2024080260A1 (ja) | 2024-04-18 |
Family
ID=90669557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/036645 WO2024080260A1 (ja) | 2022-10-11 | 2023-10-06 | 磁化推定装置、磁化推定方法、及びプログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024080260A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010271178A (ja) * | 2009-05-21 | 2010-12-02 | Toyota Motor Corp | 磁石の磁化特定方法および保磁力特定方法 |
JP2012185155A (ja) * | 2011-02-14 | 2012-09-27 | Magcam Nv | 磁性システムを特徴付けるための装置および方法 |
JP2014119692A (ja) * | 2012-12-19 | 2014-06-30 | Konica Minolta Inc | 現像装置及び画像形成装置 |
CN105548922A (zh) * | 2015-12-15 | 2016-05-04 | 河海大学 | 一种精确测定取向硅钢片饱和磁化强度的方法 |
US20180095131A1 (en) * | 2016-10-05 | 2018-04-05 | Hyundai Motor Company | Method of diagnosing a magnetization fault of a permanent magnet motor |
US20210055359A1 (en) * | 2019-08-21 | 2021-02-25 | Roman Windl | Measurement of positions, mechanical displacements and rotations and stresses of bodies |
WO2022094453A1 (en) * | 2020-11-02 | 2022-05-05 | The Board Of Trustees Of The Leland Stanford Junior University | Color-routers for image sensing |
-
2023
- 2023-10-06 WO PCT/JP2023/036645 patent/WO2024080260A1/ja unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010271178A (ja) * | 2009-05-21 | 2010-12-02 | Toyota Motor Corp | 磁石の磁化特定方法および保磁力特定方法 |
JP2012185155A (ja) * | 2011-02-14 | 2012-09-27 | Magcam Nv | 磁性システムを特徴付けるための装置および方法 |
JP2014119692A (ja) * | 2012-12-19 | 2014-06-30 | Konica Minolta Inc | 現像装置及び画像形成装置 |
CN105548922A (zh) * | 2015-12-15 | 2016-05-04 | 河海大学 | 一种精确测定取向硅钢片饱和磁化强度的方法 |
US20180095131A1 (en) * | 2016-10-05 | 2018-04-05 | Hyundai Motor Company | Method of diagnosing a magnetization fault of a permanent magnet motor |
US20210055359A1 (en) * | 2019-08-21 | 2021-02-25 | Roman Windl | Measurement of positions, mechanical displacements and rotations and stresses of bodies |
WO2022094453A1 (en) * | 2020-11-02 | 2022-05-05 | The Board Of Trustees Of The Leland Stanford Junior University | Color-routers for image sensing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun et al. | Core losses analysis of a novel 16/10 segmented rotor switched reluctance BSG motor for HEVs using nonlinear lumped parameter equivalent circuit model | |
CN112257231B (zh) | 考虑硅钢片非线性特性的永磁电机解析方法、系统及应用 | |
Zhu et al. | Acoustic noise-based uniform permanent-magnet demagnetization detection in SPMSM for high-performance PMSM drive | |
JP6206608B1 (ja) | 電磁場解析装置、電磁場解析方法、およびプログラム | |
Lee et al. | Simultaneous design optimization of permanent magnet, coils, and ferromagnetic material in actuators | |
Farooq et al. | Analytical modeling approach to detect magnet defects in permanent-magnet brushless motors | |
Zhu et al. | Suppression of current quantization effects for precise current control of SPMSM using dithering techniques and Kalman filter | |
Vrijsen et al. | Prediction of magnetic hysteresis in the force of a prebiased e-core reluctance actuator | |
WO2024080260A1 (ja) | 磁化推定装置、磁化推定方法、及びプログラム | |
Pasqualotto et al. | A comprehensive approach to convolutional neural networks‐based condition monitoring of permanent magnet synchronous motor drives | |
López-Torres et al. | Development of a behavior maps tool to evaluate drive operational boundaries and optimization assessment of PMa-SynRMs | |
Santra et al. | Calculation of passive magnetic force in a radial magnetic bearing using general division approach | |
Arbenz et al. | Characterization of permanent magnet magnetization | |
Park et al. | Deep transfer learning-based sizing method of permanent magnet synchronous motors considering axial leakage flux | |
CN114580235A (zh) | 一种换流变压器振动缩比模型的设计方法 | |
Park et al. | Optimum design of sensorless-oriented IPMSM considering torque characteristics | |
Ciceo et al. | PMSM current shaping for minimum joule losses while reducing torque ripple and vibrations | |
Mohan Unniachanparambil et al. | Use of a scaling power law to incorporate asymmetrical minor loops in the inverse Jiles–Atherton model | |
Sakamoto et al. | Multi-Objective Motor Design Optimization with Physics-Assisted Neural Network Model | |
JP2000268061A (ja) | 電磁場解析方法およびその装置 | |
Maheshwari et al. | Modelling and State of Charge Estimation of Li-Ion Battery for Electric Vehicle | |
Sahu et al. | Quantification and propagation of uncertainty in the magnetic characteristic of steel and permanent magnets of a synchronous machine drive | |
Liu et al. | Interaction force analysis of transverse flux linear switched reluctance machine by Fourier projection method | |
Ehle et al. | Magnetic characterization of ferromagnetic shape memory components under defined mechanical loading | |
Okamoto et al. | Diagnosis method of magnetization distribution in permanent magnet using approximate function based on 1-D Fourier series expansion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23877264 Country of ref document: EP Kind code of ref document: A1 |