WO2024078357A1 - 一种电解液及包括该电解液的电池 - Google Patents

一种电解液及包括该电解液的电池 Download PDF

Info

Publication number
WO2024078357A1
WO2024078357A1 PCT/CN2023/122498 CN2023122498W WO2024078357A1 WO 2024078357 A1 WO2024078357 A1 WO 2024078357A1 CN 2023122498 W CN2023122498 W CN 2023122498W WO 2024078357 A1 WO2024078357 A1 WO 2024078357A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
additive
unsubstituted
alkyl
halogen
Prior art date
Application number
PCT/CN2023/122498
Other languages
English (en)
French (fr)
Inventor
王海
李素丽
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2024078357A1 publication Critical patent/WO2024078357A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives

Definitions

  • the present invention relates to an electrolyte and a battery comprising the electrolyte, and belongs to the technical field of lithium ion batteries.
  • Lithium-ion battery is a rechargeable battery that mainly relies on the movement of lithium ions between the positive and negative electrodes to work.
  • Li + is embedded and de-embedded back and forth between the two electrodes: when charging, Li + is de-embedded from the positive electrode and embedded into the negative electrode through the electrolyte, and the negative electrode is in a lithium-rich state; the opposite is true during discharge.
  • Due to the advantages of high specific energy, no memory effect, long cycle life, and low self-discharge, lithium-ion batteries are widely used in digital, energy storage, electric vehicles and other fields. With the improvement of people's living standards and the yearning for a better life, the upgrade of battery application scenarios has not only put forward requirements for battery energy density, but also put forward requirements for different operating temperature ranges.
  • the energy density of the battery can be increased by increasing the limiting voltage of the positive electrode material.
  • the limiting voltage of the positive electrode material continues to increase, the gram capacity of the electrode material gradually increases, the high temperature performance of the battery seriously deteriorates, and the long cycle life cannot be guaranteed.
  • high voltage >4.5V
  • the structure of the positive electrode material will be destroyed during long-term cyclic charge and discharge.
  • the release of active oxygen further accelerates the oxidative decomposition of the electrolyte, and the protective film on the surface of the negative electrode will continue to be damaged, eventually causing serious attenuation of the battery capacity.
  • the purpose of the present disclosure is to provide an electrolyte and a battery including the electrolyte, the use of which can enable the battery to have both high-temperature cycle performance and high-temperature storage performance while improving the safety performance of the battery.
  • An electrolyte comprises an organic solvent, a lithium salt and a functional additive, wherein the functional additive comprises a first additive, and the first additive is a sulfonyl fluoride compound containing an unsaturated bond.
  • the sulfonyl fluoride compound containing an unsaturated bond includes an unsaturated double bond and a sulfonyl fluoride group (—SO 2 —F).
  • the sulfonyl fluoride compound containing an unsaturated bond is a sulfonyl fluoride compound containing a fluorine-substituted unsaturated bond
  • the sulfonyl fluoride compound containing a fluorine-substituted unsaturated bond includes a fluorine-substituted unsaturated double bond (CF 2 ⁇ CF-) and a sulfonyl fluoride group (—SO 2 —F).
  • the first additive is selected from at least one of the compounds shown in Formula I:
  • R 4 , R 5 , and R 6 are the same or different and are independently selected from hydrogen, halogen, substituted or unsubstituted alkyl; if substituted, the substituent is halogen or alkyl;
  • R 2 and R 3 are the same or different and are independently selected from O or S;
  • R 2a , R 2b , R 2c , R 2d , R 3a , R 3b , R 3c , and R 3d are the same or different and are independently selected from hydrogen, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, and substituted or unsubstituted aryl; if substituted, the substituent is halogen or alkyl.
  • R 4 , R 5 , and R 6 are the same or different and are independently selected from hydrogen, halogen, and substituted or unsubstituted C 1-12 alkyl. If substituted, the substituent is halogen or C 1-12 alkyl.
  • R 4 , R 5 , and R 6 are the same or different and are independently selected from hydrogen, halogen, and substituted or unsubstituted C 1-6 alkyl. If substituted, the substituent is halogen or C 1-6 alkyl.
  • R 4 , R 5 , and R 6 are the same or different and are independently selected from hydrogen, fluorine, and substituted or unsubstituted C 1-3 alkyl. If substituted, the substituent is fluorine or C 1-3 alkyl.
  • R 4 , R 5 , and R 6 are the same and selected from fluorine.
  • R 2a , R 2b , R 2c , R 2d , R 3a , R 3b , R 3c , and R 3d are the same or different and are independently selected from hydrogen, halogen, substituted or unsubstituted C 1-12 alkyl, substituted or unsubstituted 3-12 membered cycloalkyl, or substituted or unsubstituted C 6-12 aryl; if substituted, the substituent is halogen or C 1-12 alkyl.
  • R 2a , R 2b , R 2c , R 2d , R 3a , R 3b , R 3c , and R 3d are the same or different and are independently selected from hydrogen, halogen, substituted or unsubstituted C 1-6 alkyl, substituted or unsubstituted 3-8 membered cycloalkyl, or substituted or unsubstituted C 6-10 aryl; if substituted, the substituent is halogen or C 1-6 alkyl.
  • R 2a , R 2b , R 2c , R 2d , R 3a , R 3b , R 3c , and R 3d are the same or different and are independently selected from hydrogen, halogen, substituted or unsubstituted C 1-3 alkyl, substituted or unsubstituted 3-6 membered cycloalkyl, or substituted or unsubstituted C 6-8 aryl; if substituted, the substituent is halogen or C 1-3 alkyl.
  • R 2a , R 2b , R 2c , R 2d , R 3a , R 3b , R 3c , and R 3d are the same and are selected from halogen.
  • the halogen includes one or more of fluorine, chlorine, bromine and iodine.
  • R 2a , R 2b , R 2c , R 2d , R 3a , R 3b , R 3c , and R 3d are the same and are selected from fluorine.
  • R 4 , R 5 , and R 6 are the same and selected from fluorine
  • R 2a , R 2b , R 2c , R 2d , R 3a , R 3b , R 3c , and R 3d are the same and selected from fluorine.
  • the number of halogens in the first additive is at least 4 (e.g., 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20).
  • the number of halogens in the first additive is at least 6.
  • the first additive can be prepared by a method known in the art, or can be purchased through commercial channels.
  • the first additive is selected from at least one of the compounds represented by formula (1) to formula (9):
  • the electrolyte further includes a second additive, and the second additive is selected from at least one of polynitrile compounds.
  • a polynitrile compound is introduced as the second additive, wherein the cyano group can fully complex the transition metal ions in the positive electrode active material, and together with the first additive, a protective layer is formed on the positive electrode side to prevent the transition metal ions in the positive electrode active material from dissolving, thereby improving the high temperature cycle performance and high temperature storage performance of the battery.
  • the polynitrile compound is selected from at least one of a dinitrile compound shown in formula II-1, a trinitrile compound shown in formula II-2, and a tetranitrile compound shown in formula II-3:
  • R 21 is a group with 1 to 10 carbon atoms and at least 2 substitution positions
  • R 22 is a group with 1 to 10 carbon atoms and at least 3 substitution positions
  • R 23 is a group with 1 to 10 carbon atoms and at least 4 substitution positions.
  • the group having 1-10 carbon atoms is selected from substituted or unsubstituted C 1-10 alkyl, substituted or unsubstituted C 1-10 alkoxy, substituted or unsubstituted C 2-10 alkenyl, substituted or unsubstituted C 1-10 alkyl-OC 1-10 alkyl, substituted or unsubstituted C 1-10 alkyl-C(O)-C 1-10 alkyl, substituted or unsubstituted C 4-10 heteroaryl, substituted or unsubstituted C 4-10 heterocyclyl, substituted or unsubstituted C 6-10 aryl, and the substituent is halogen, substituted or unsubstituted C 1-10 alkyl.
  • the dinitrile compound represented by formula II-1 is selected from at least one of the following compounds: succinonitrile, glutaronitrile, adiponitrile, sebacate, azelaic acid, dicyanobenzene, terephthalonitrile, pyridine-3,4-dinitrile, 2,5-dicyanopyridine, 2,2,3,3-tetrafluorosuccinonitrile, tetrafluoroterephthalonitrile, 4-tetrahydrothiopyranide propiononitrile, 3,3'-[1,2-ethanediylbis(oxy)]bispropiononitrile, trans-butene dinitrile, ethylene glycol bispropiononitrile ether and 1,4,5,6-tetrahydro-5,6-dioxy-2,3-pyrazine dicarbonitrile.
  • the trinitrile compound represented by formula II-2 is selected from at least one of the following compounds: 1,3,6-hexanetrinitrile, 1,3,5-cyclohexanetrinitrile, 1,3,5-benzenetricyanide, 1,2,3-propanetricarbonitrile, and glyceroltrinitrile.
  • the tetranitrile compound represented by formula II-3 is selected from at least one of the following compounds: 1,1,3,3-propanetetracarbonitrile, 1,2,2,3-tetracyanopropane, 1,2,4,5-tetracyanobenzene, 2,3,5,6-pyrazinetetracarbonitrile, 7,7,8,8-tetracyanoquinodimethane, tetracyanoethylene, 1,1,2,2,-tetra(ethoxycyano)ethane, and 3-methyl-3-propyl-cyclopropane-1,1,2,2-tetracarbonitrile.
  • the weight ratio of the first additive to the second additive is 1:(1-8) (eg, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8).
  • the weight ratio of the first additive to the second additive is 1:(3-5).
  • the electrolyte further includes a third additive, and the third additive is selected from at least one of fluorosulfonic acid imide salts.
  • the fluorosulfonic acid imide salt is introduced as the third additive on the basis of the first additive, which can act on the positive electrode to form a protective layer, thereby improving the high temperature cycle performance and high temperature storage performance of the battery.
  • the third additive is selected from at least one of the compounds represented by formula III:
  • R1 is selected from one of Li, Na, K, Rb, and Cs.
  • the third additive can be prepared by a method known in the art, or can be purchased through commercial channels.
  • the third additive is selected from at least one of the compounds represented by Formula III-1 to Formula III-5:
  • the weight ratio of the first additive to the third additive is 1:(0.5-4) (eg, 0.5:1, 1:1, 1:2, 1:3, 1:4).
  • the weight ratio of the first additive to the third additive is 1:(1-3).
  • the weight of the first additive, the weight of the second additive, and the weight of the third additive is 1:(1-8):(0.5-4).
  • the weight ratio of the first additive, the second additive, and the third additive is 1:(3-5):(1-3).
  • a polynitrile compound as the second additive and a fluorosulfonic acid imide salt as the third additive are introduced.
  • the first additive, the second additive and the third additive work together and are coated on the positive electrode interface surface to form a synergistic effect, which jointly prevents the electrolyte from entering the positive electrode active material layer to corrode the positive electrode active material, so that the battery has excellent high-temperature cycle performance and high-temperature storage performance.
  • the weight content of the first additive is 0.1wt% to 5wt%, for example, 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt%, 0.5wt%, 0.6wt%, 0.7wt%, 0.8wt%, 0.9wt%, 1wt%, 1.1wt%, 1.2wt%, 1.3wt%, 1.4wt%, 1.5wt%, 1.6wt%, 1.7wt%, 1.8wt%, 1.9wt%, 2wt%, 2.2wt%, 2.4wt%, 2.5wt%, 2.6wt%, 2.8wt%, 3wt%, 3.3wt%, 3.5wt%, 3.8wt%, 4wt%, 4.2wt%, 4.5wt%, 4.8wt% or 5wt%.
  • the weight content of the second additive is 1wt% to 5wt%, for example, 1wt%, 1.2wt%, 1.3wt%, 1.4wt%, 1.5wt%, 1.6wt%, 1.7wt%, 1.8wt%, 1.9wt%, 2wt%, 2.2wt%, 2.4wt%, 2.5wt%, 2.6wt%, 2.8wt%, 3wt%, 3.3wt%, 3.5wt%, 3.8wt%, 4wt%, 4.2wt%, 4.5wt%, 4.8wt% or 5wt%.
  • the weight content of the third additive is 1wt% to 5wt%, for example, 1wt%, 1.2wt%, 1.3wt%, 1.4wt%, 1.5wt%, 1.6wt%, 1.7wt%, 1.8wt%, 1.9wt%, 2wt%, 2.2wt%, 2.4wt%, 2.5wt%, 2.6wt%, 2.8wt%, 3wt%, 3.3wt%, 3.5wt%, 3.8wt%, 4wt%, 4.2wt%, 4.5wt%, 4.8wt% or 5wt%.
  • the electrolyte further includes a fourth additive, and the fourth additive is selected from at least one of fluoroethylene carbonate and 1,3-propane sultone.
  • the fourth additive can participate in the formation of the SEI film in the early stage of formation, play a role in protecting the negative electrode, and can also continuously repair the damaged SEI film in the later stage of the cycle, thereby improving the electrochemical performance of the battery.
  • the weight content of the fourth additive is 10 wt% to 15 wt%, for example, 10 wt%, 11 wt%, 12 wt%, 13 wt%, 14 wt% or 15 wt%.
  • the lithium salt is selected from one or more of lithium hexafluorophosphate (LiPF 6 ), lithium difluorophosphate (LiPO 2 F 2 ), lithium difluorooxalatoborate (LiDFOB), lithium bis(trifluoromethylsulfonyl imide), lithium difluorobis(oxalatophosphate), lithium tetrafluoroborate, lithium bis(oxalatoborate), lithium hexafluoroantimonate, lithium hexafluoroarsenate, lithium bis(trifluoromethylsulfonyl)imide, lithium bis(pentafluoroethylsulfonyl)imide, tris(trifluoromethylsulfonyl)methyllithium or lithium bis(trifluoromethylsulfonyl)imide.
  • LiPF 6 lithium hexafluorophosphate
  • LiPO 2 F 2 lithium difluorooxalatoborate
  • the weight content of the lithium salt is 12 wt%-17 wt%.
  • the organic solvent is selected from carbonates and/or carboxylates
  • the carbonates are selected from ethylene carbonate (EC) and/or one or more of the following fluorinated or unsubstituted solvents: propylene carbonate (PC), dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate
  • the carboxylates are selected from one or more of the following fluorinated or unsubstituted solvents: propyl acetate, n-butyl acetate, isobutyl acetate, n-amyl acetate, isoamyl acetate, propyl propionate (PP), ethyl propionate (EP), methyl butyrate, ethyl butyrate.
  • the weight content of the organic solvent is 60 wt %-75 wt %.
  • the electrolyte is used in a lithium-ion battery.
  • the present disclosure also provides a battery, which includes the above-mentioned electrolyte.
  • the battery further includes a positive electrode sheet containing a positive electrode active material, a negative electrode sheet containing a negative electrode active material, and a separator.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer coated on one side or both sides of the positive electrode current collector, wherein the positive electrode active material layer includes a positive electrode active material, a conductive agent and a binder.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer coated on one side or both sides of the negative electrode current collector, wherein the negative electrode active material layer includes a negative electrode active material, a conductive agent and a binder.
  • the mass percentage of each component in the positive electrode active material layer is: 80wt% to 99.8wt% (for example, 80wt%, 85wt%, 90wt%, 95wt%, 99.8wt%) of the positive electrode active material, 0.1wt% to 10wt% (for example, 0.1wt%, 0.5wt%, 1wt%, 3wt%, 5wt%, 7wt%, 10wt%) of the conductive agent, and 0.1wt% to 10wt% (for example, 0.1wt%, 0.5wt%, 1wt%, 3wt%, 5wt%, 7wt%, 10wt%) of the binder.
  • 80wt% to 99.8wt% for example, 80wt%, 85wt%, 90wt%, 95wt%, 99.8wt%
  • 0.1wt% to 10wt% for example, 0.1wt%, 0.5wt%, 1wt%, 3wt%,
  • the mass percentage of each component in the positive electrode active material layer is: 90wt% to 99.6wt% of positive electrode active material, 0.2wt% to 5wt% of conductive agent, and 0.2wt% to 5wt% of binder.
  • the mass percentage of each component in the negative electrode active material layer is: 80wt% to 99.8wt% (for example, 80wt%, 85wt%, 90wt%, 95wt%, 99.8wt%) of negative electrode active material, 0.1wt% to 10wt% (for example, 0.1wt%, 0.5wt%, 1wt%, 3wt%, 5wt%, 7wt%, 10wt%) of conductive agent, and 0.1wt% to 10wt% (for example, 0.1wt%, 0.5wt%, 1wt%, 3wt%, 5wt%, 7wt%, 10wt%) of binder.
  • 80wt% to 99.8wt% for example, 80wt%, 85wt%, 90wt%, 95wt%, 99.8wt%
  • 0.1wt% to 10wt% for example, 0.1wt%, 0.5wt%, 1wt%, 3wt%, 5wt
  • the mass percentage of each component in the negative electrode active material layer is: 90wt% to 99.6wt% of negative electrode active material, 0.2wt% to 5wt% of conductive agent, and 0.2wt% to 5wt% of binder.
  • the negative electrode active material is selected from at least one of artificial graphite, natural graphite, mesophase carbon microbeads, hard carbon, soft carbon, and silicon-based negative electrode active materials.
  • the positive electrode active material is selected from one or more of transition metal lithium oxide, lithium iron phosphate, lithium manganese oxide, and lithium iron manganese phosphate; the chemical formula of the transition metal lithium oxide is Li1 + xNiyCozM (1-yz) O2 , wherein -0.1 ⁇ x ⁇ 1; 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, and 0 ⁇ y+z ⁇ 1; wherein M is one or more of Mg, Zn, Ga, Ba, Al, Fe, Cr, Sn, V, Mn, Sc, Ti, Nb, Mo, and Zr.
  • the conductive agent is selected from one or more of conductive carbon black (SP), carbon nanotubes (CNTs) (eg, single-walled carbon nanotubes (SWCNTs)), graphene, and metal fibers.
  • SP conductive carbon black
  • CNTs carbon nanotubes
  • SWCNTs single-walled carbon nanotubes
  • the binder is selected from polyvinylidene fluoride (PVDF), styrene butadiene rubber and carboxymethyl One or more of sodium cellulose.
  • PVDF polyvinylidene fluoride
  • styrene butadiene rubber and carboxymethyl One or more of sodium cellulose.
  • the present disclosure provides an electrolyte and a battery comprising the electrolyte.
  • the electrolyte comprises an organic solvent, a lithium salt and a functional additive.
  • the first additive in the electrolyte is a sulfonyl fluoride compound containing an unsaturated bond, wherein the unsaturated double bond can undergo a polymerization reaction on the positive electrode surface to form a protective film, which can improve the oxidation resistance of the positive electrode electrolyte membrane (CEI membrane); the F-C-O structure or F-C-S- structure in the sulfonyl fluoride compound containing an unsaturated bond can improve the oxidation resistance of the electrolyte, and the substitution of fluorine atoms can further improve the oxidation resistance of the positive electrode electrolyte membrane (CEI membrane); the sulfonyl fluoride compound containing an unsaturated bond can form alkyl sulfonate lithium on the negative electrode side during the formation stage, increasing the ionic conduct
  • the lithium-ion battery of the present disclosure includes a negative electrode sheet, an electrolyte, a positive electrode sheet, a separator and an outer package.
  • the positive electrode sheet, the separator and the negative electrode sheet are stacked to obtain a battery cell, or the positive electrode sheet, the separator and the negative electrode sheet are stacked and then wound to obtain a battery cell, and the battery cell is placed in an outer package, and the electrolyte is injected into the outer package to obtain the lithium-ion battery of the present disclosure.
  • the lithium ion batteries of Examples 1 to 18 and Comparative Examples 1 to 7 are prepared by the following steps:
  • the positive electrode active materials lithium cobalt oxide (LiCoO 2 ), polyvinylidene fluoride (PVDF), SP (super P) and carbon nanotubes (CNT) are mixed in a mass ratio of 96:2:1.5:0.5, N-methylpyrrolidone (NMP) is added, and the mixture is stirred under the action of a vacuum mixer until the mixed system becomes a positive electrode active slurry with uniform fluidity; the positive electrode active slurry is evenly coated on both surfaces of an aluminum foil; the coated aluminum foil is dried, and then rolled and cut to obtain the desired positive electrode sheet.
  • NMP N-methylpyrrolidone
  • the negative electrode active materials artificial graphite, sodium carboxymethyl cellulose (CMC-Na), styrene-butadiene rubber, conductive carbon black (SP) and single-walled carbon nanotubes (SWCNTs) are mixed in a mass ratio of 94.5:2.5:1.5:1:0.5, deionized water is added, and the negative electrode active slurry is obtained under the action of a vacuum mixer; the negative electrode active slurry is evenly coated on both surfaces of the copper foil; the coated copper foil is dried at room temperature, and then transferred to an oven at 80°C for drying for 10 hours, and then cold pressed and cut to obtain the negative electrode sheet.
  • EC/PC/DEC/PP were mixed at a mass ratio of 10/10/20/60, and then 13wt% of fully dried lithium hexafluorophosphate (LiPF 6 ) based on the total mass of the electrolyte was quickly added thereto. After dissolution, 8wt% of fluoroethylene carbonate and 4wt% of 1,3-propane sultone based on the total mass of the electrolyte were added.
  • the first additive, the second additive (adiponitrile) and the third additive (the compound represented by formula III-1) are added and mixed evenly to prepare the electrolyte.
  • the positive electrode sheet of step 1), the negative electrode sheet of step 2) and the separator are stacked in the order of positive electrode sheet, separator and negative electrode sheet, and then wound to obtain a battery cell; the battery cell is placed in an outer packaging aluminum foil, and the electrolyte of step 3) is injected into the outer packaging, and a lithium-ion battery is obtained after vacuum packaging, standing, forming, shaping, sorting and other processes.
  • the battery disclosed in the present invention has a charge and discharge range of 3V to 4.5V.
  • the lithium ion batteries obtained in the examples and comparative examples were subjected to the following performance tests:
  • the divided cells were charged at a rate of 1C at 45°C to an upper limit voltage of 4.5V, and then discharged to 3V for 1000 cycles.
  • the discharge capacity of the first week was measured as x1mAh
  • the discharge capacity of the Nth cycle was measured as y1mAh.
  • the test results are shown in Tables 2 and 4.
  • the battery cell was charged at 0.5C to the upper cut-off voltage (4.5V), and the voltage was kept constant at 0.05C.
  • the fully charged sample was placed in a thermal shock test chamber at an ambient temperature of 25°C ⁇ 5°C, and then the temperature was raised to 140°C ⁇ 2°C at a rate of 15°C ⁇ 2°C/min and maintained at this temperature for 42 minutes before the test ended. The battery was observed to see if it caught fire.
  • the test results are shown in Tables 2 and 4.
  • the first additive can significantly improve the high temperature cycle performance, high temperature storage performance and safety performance of the battery, and the improvement effect of the first additive containing F substitution is more significant, but it is also related to the number of halogens, and too few halogens may also have a certain degree of degradation.
  • both the second additive and the third additive can improve the high temperature cycle performance and high temperature storage performance of the battery, among which the optimal amount of the second additive is 4wt%, and the optimal amount of the third additive is 2wt%; among which the safety performance is significantly improved when the amount of the third additive is ⁇ 2wt%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种电解液及包括该电解液的电池,电解液包括有机溶剂、锂盐以及功能添加剂。功能添加剂中的第一添加剂为含有不饱和键的磺酰氟类化合物,其不饱和双键可以在正极表面发生聚合反应形成保护膜,能够提升正极侧固态电解质膜的耐氧化性;氟原子的取代也能进一步提升正极侧固态电解质膜的耐氧化性;含有第一添加剂的电解液能够使得电池兼顾高温循环性能和高温存储性能的同时又能提高电池的安全性能。

Description

一种电解液及包括该电解液的电池 技术领域
本公开涉及一种电解液及包括该电解液的电池,属于锂离子电池技术领域。
发明背景
锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。由于锂离子电池具有高比能量、无记忆效应、循环寿命长、自放电小等优点,广泛应用于数码、储能、电动汽车等领域。随着人们生活水平的提高和对更美好生活的向往,对电池应用场景的升级,不光对电池能量密度也提出了需求,同时对不同使用温度范围也提出了要求。
通过提高正极材料的限制电压能够提高电池的能量密度,但是随着正极材料限制电压的不断提高,电极材料的克容量逐渐增加,电池的高温性能严重恶化,长循环寿命无法保证,尤其是在高电压(>4.5V)下,长期循环充放电过程中正极材料的结构会被破坏,同时活性氧的释放进一步加速电解液的氧化分解,负极表面的保护膜也会不断的破损,最终造成电池容量严重衰减。
同时,社会上关于锂离子电池电子设备起火爆炸的新闻也经常有报道,在提升能量密度和充电速度的同时,确保能够兼顾锂电池的安全性能,是非常重要的。
发明内容
为了解决现有高电压下锂离子电池中正极材料体积膨胀以及活性氧的释放持续氧化电解液的问题,本公开目的是提供一种电解液及包括该电解液的电池,所述电解液的使用能够使得电池兼顾高温循环性能和高温存储性能的同时又能提高电池的安全性能。
本公开目的是通过如下技术方案实现的:
一种电解液,所述电解液包括有机溶剂、锂盐以及功能添加剂,其中,所述功能添加剂包括第一添加剂,所述第一添加剂为含有不饱和键的磺酰氟类化合物。
在一实例中,所述含有不饱和键的磺酰氟类化合物包括不饱和双键和磺酰氟基(-SO2-F)。
在一实例中,所述含有不饱和键的磺酰氟类化合物为含有氟取代的不饱和键的磺酰氟类化合物,所述含有氟取代的不饱和键的磺酰氟类化合物包括氟取代的不饱和双键(CF2=CF-)和磺酰氟基(-SO2-F)。
在一实例中,所述第一添加剂选自式I所示化合物中的至少一种:
式I中,R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的烷基;若为取代时,取代基为卤素、烷基;
R2、R3相同或不同,彼此独立地选自O或S;
R2a、R2b、R2c、R2d、R3a、R3b、R3c、R3d相同或不同,彼此独立地选自氢、卤素、取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的芳基;若为取代时,取代基为卤素、烷基。
在一实例中,R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-12烷基;若为取代时,取代基为卤素、C1-12烷基。
在一实例中,R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-6烷基;若为取代时,取代基为卤素、C1-6烷基。
在一实例中,R4、R5、R6相同或不同,彼此独立地选自氢、氟、取代或未取代的C1-3烷基;若为取代时,取代基为氟、C1-3烷基。
在一实例中,R4、R5、R6相同,选自氟。
在一实例中,R2a、R2b、R2c、R2d、R3a、R3b、R3c、R3d相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-12烷基、取代或未取代的3-12元环烷基、取代或未取代的C6-12芳基;若为取代时,取代基为卤素、C1-12烷基。
在一实例中,R2a、R2b、R2c、R2d、R3a、R3b、R3c、R3d相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-6烷基、取代或未取代的3-8元环烷基、取代或未取代的C6-10芳基;若为取代时,取代基为卤素、C1-6烷基。
在一实例中,R2a、R2b、R2c、R2d、R3a、R3b、R3c、R3d相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-3烷基、取代或未取代的3-6元环烷基、取代或未取代的C6-8芳基;若为取代时,取代基为卤素、C1-3烷基。
在一实例中,R2a、R2b、R2c、R2d、R3a、R3b、R3c、R3d相同,选自卤素。
在一实例中,所述卤素包括氟、氯、溴和碘中的一种或多种。
在一实例中,R2a、R2b、R2c、R2d、R3a、R3b、R3c、R3d相同,选自氟。
在一实例中,R4、R5、R6相同,选自氟,且R2a、R2b、R2c、R2d、R3a、R3b、R3c、R3d相同,选自氟。
在一实例中,第一添加剂中卤素的个数至少为4(例如,4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20)。
在一实例中,第一添加剂中卤素的个数至少为6。
在一实例中,所述第一添加剂可以采用本领域已知的方法制备得到,也可以通过商业途径购买获得。
在一实例中,所述第一添加剂选自式(1)-式(9)所示的化合物中的至少一种:

在一实例中,所述电解液还包括第二添加剂,所述第二添加剂选自多腈化合物中的至少一种。在第一添加剂的基础上引入了作为第二添加剂的多腈类化合物,其中的氰基可以充分络合正极活性物质中的过渡金属离子,与第一添加剂共同在正极侧形成保护层,防止正极活性物质中的过渡金属离子溶出,提高了电池的高温循环性能和高温存储性能。
在一实例中,所述多腈化合物选自式II-1所示的二腈类化合物、式II-2所示的三腈类化合物和式II-3所示的四腈类化合物中的至少一种:

其中,R21是至少具有2个取代位置的碳原子数为1-10的基团;R22是至少具有3个取代位置的碳原子数为1-10的基团;R23是至少具有4个取代位置的碳原子数为1-10的基团。
在一实例中,所述碳原子数为1-10的基团选自取代或未取代的C1-10烷基、取代或未取代的C1-10烷氧基、取代或未取代的C2-10烯基、取代或未取代的C1-10烷基-O-C1-10烷基、取代或未取代的C1-10烷基-C(O)-C1-10烷基、取代或未取代的C4-10杂芳基、取代或未取代的C4-10杂环基、取代或未取代的C6-10芳基,取代基为卤素、取代或未取代的C1-10烷基。
在一实例中,所述式II-1所示的二腈类化合物选自如下化合物中的至少一种:丁二腈、戊二腈、己二腈、癸二腈、壬二腈、二氰基苯、对苯二腈、吡啶-3,4-二腈、2,5-二氰基吡啶、2,2,3,3-四氟丁二腈、四氟对苯二腈、4-四氢噻喃亚甲基丙二腈、3,3’-[1,2-乙二基双(氧基)]双丙腈、反丁烯二腈、乙二醇双丙腈醚和1,4,5,6-四氢-5,6-二氧-2,3-吡嗪二甲腈。
在一实例中,所述式II-2所示的三腈类化合物选自如下化合物中的至少一种:1,3,6-己烷三腈、1,3,5-环己烷三腈、1,3,5-苯三氰、1,2,3-丙三甲腈、甘油三腈。
在一实例中,所述式II-3所示的四腈类化合物选自如下化合物中的至少一种:1,1,3,3-丙四甲腈、1,2,2,3-四氰基丙烷、1,2,4,5-四氰基苯、2,3,5,6-吡嗪四腈、7,7,8,8-四氰基对苯二醌二甲烷、四氰基乙烯、1,1,2,2,-四(乙氧基氰基)乙烷、3-甲基-3-丙基-环丙烷-1,1,2,2-四甲腈。
在一实例中,所述第一添加剂的重量与所述第二添加剂的重量之比为1:(1-8)(例如,1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8)。
在一实例中,所述第一添加剂的重量与所述第二添加剂的重量之比为 1:(3-5)。
在一实例中,所述电解液还包括第三添加剂,所述第三添加剂选自氟磺酸亚胺盐中的至少一种。在第一添加剂的基础上引入了作为第三添加剂的氟磺酸亚胺盐,其能够作用于正极,形成保护层,提高了电池的高温循环性能和高温存储性能。
在一实例中,所述第三添加剂选自式III所示化合物中的至少一种:
式III中,R1选自Li、Na、K、Rb、Cs中的一种。
在一实例中,所述第三添加剂可以采用本领域已知的方法制备得到,也可以通过商业途径购买获得。
在一实例中,所述第三添加剂选自式III-1~式III-5所示的化合物中的至少一种:
在一实例中,所述第一添加剂的重量与所述第三添加剂的重量之比为1:(0.5-4)(例如,0.5:1、1:1、1:2、1:3、1:4)。
在一实例中,所述第一添加剂的重量与所述第三添加剂的重量之比为1:(1-3)。
在一实例中,所述第一添加剂的重量、所述第二添加剂的重量和所述第三 添加剂的重量之比为1:(1-8):(0.5-4)。
在一实例中,所述第一添加剂的重量、所述第二添加剂的重量和所述第三添加剂的重量之比为1:(3-5):(1-3)。
在第一添加剂的基础上引入了作为第二添加剂的多腈类化合物和作为第三添加剂的氟磺酸亚胺盐,通过第一添加剂、第二添加剂和第三添加剂共同作用并包覆在正极界面表面,形成协同作用,共同阻止电解液进入正极活性物质层腐蚀正极活性物质,使得电池具有优异的高温循环性能和高温存储性能。
在一实例中,以所述电解液总重量为基准,所述第一添加剂的重量含量为0.1wt%~5wt%,例如为0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1wt%、1.1wt%、1.2wt%、1.3wt%、1.4wt%、1.5wt%、1.6wt%、1.7wt%、1.8wt%、1.9wt%、2wt%、2.2wt%、2.4wt%、2.5wt%、2.6wt%、2.8wt%、3wt%、3.3wt%、3.5wt%、3.8wt%、4wt%、4.2wt%、4.5wt%、4.8wt%或5wt%。
在一实例中,以所述电解液总重量为基准,所述第二添加剂的重量含量为1wt%~5wt%,例如为1wt%、1.2wt%、1.3wt%、1.4wt%、1.5wt%、1.6wt%、1.7wt%、1.8wt%、1.9wt%、2wt%、2.2wt%、2.4wt%、2.5wt%、2.6wt%、2.8wt%、3wt%、3.3wt%、3.5wt%、3.8wt%、4wt%、4.2wt%、4.5wt%、4.8wt%或5wt%。
在一实例中,以所述电解液总重量为基准,所述第三添加剂的重量含量为1wt%~5wt%,例如为1wt%、1.2wt%、1.3wt%、1.4wt%、1.5wt%、1.6wt%、1.7wt%、1.8wt%、1.9wt%、2wt%、2.2wt%、2.4wt%、2.5wt%、2.6wt%、2.8wt%、3wt%、3.3wt%、3.5wt%、3.8wt%、4wt%、4.2wt%、4.5wt%、4.8wt%或5wt%。
在一实例中,所述电解液还包括第四添加剂,所述第四添加剂选自氟代碳酸乙烯酯和1,3-丙烷磺酸内酯中的至少一种。所述第四添加剂可以在化成初期参与生成SEI膜,起到对负极保护的作用,同时其在循环后期还可以不断的对破损的SEI膜进行修复,从而提高电池的电化学性能。
在一实例中,以所述电解液总重量为基准,所述第四添加剂的重量含量为 10wt%~15wt%,例如为10wt%、11wt%、12wt%、13wt%、14wt%或15wt%。
在一实例中,所述锂盐选自六氟磷酸锂(LiPF6)、二氟磷酸锂(LiPO2F2)、二氟草酸硼酸锂(LiDFOB)、双三氟甲基磺酰亚胺锂、二氟双草酸磷酸锂、四氟硼酸锂、双草酸硼酸锂、六氟锑酸锂、六氟砷酸锂、二(三氟甲基磺酰)亚胺锂、二(五氟乙基磺酰)亚胺锂、三(三氟甲基磺酰)甲基锂或二(三氟甲基磺酰)亚胺锂中的一种或两种以上。
在一实例中,以所述电解液总重量为基准,所述锂盐的重量含量为12wt%-17wt%。
在一实例中,所述有机溶剂选自碳酸酯和/或羧酸酯,所述碳酸酯选自碳酸乙烯酯(EC)和/或氟代或未取代的下述溶剂中的一种或几种:碳酸丙烯酯(PC)、碳酸二甲酯、碳酸二乙酯(DEC)、碳酸甲乙酯;所述羧酸酯选自氟代或未取代的下述溶剂中的一种或几种:乙酸丙酯、乙酸正丁酯、乙酸异丁酯、乙酸正戊酯、乙酸异戊酯、丙酸丙酯(PP)、丙酸乙酯(EP)、丁酸甲酯、正丁酸乙酯。
在一实例中,以所述电解液的总重量为基准,所述有机溶剂的重量含量为60wt%-75wt%。
在一实例中,所述电解液用于锂离子电池。
本公开还提供一种电池,所述电池包括上述的电解液。
在一实例中,所述电池还包括含有正极活性物质的正极片、含有负极活性物质的负极片、隔离膜。
在一实例中,所述正极片包括正极集流体和涂覆在正极集流体一侧或两侧表面的正极活性物质层,所述正极活性物质层包括正极活性物质、导电剂和粘结剂。
在一实例中,所述负极片包括负极集流体和涂覆在负极集流体一侧或两侧表面的负极活性物质层,所述负极活性物质层包括负极活性物质、导电剂和粘结剂。
在一实例中,所述正极活性物质层中各组分的质量百分含量为:80wt%~99.8wt%(例如,80wt%、85wt%、90wt%、95wt%、99.8wt%)的正极活性物质、0.1wt%~10wt%(例如,0.1wt%、0.5wt%、1wt%、3wt%、5wt%、7wt%、10wt%)的导电剂、0.1wt%~10wt%(例如,0.1wt%、0.5wt%、1wt%、3wt%、5wt%、7wt%、10wt%)的粘结剂。
优选地,所述正极活性物质层中各组分的质量百分含量为:90wt%~99.6wt%的正极活性物质、0.2wt%~5wt%的导电剂、0.2wt%~5wt%的粘结剂。
在一实例中,所述负极活性物质层中各组分的质量百分含量为:80wt%~99.8wt%(例如,80wt%、85wt%、90wt%、95wt%、99.8wt%)的负极活性物质、0.1wt%~10wt%(例如,0.1wt%、0.5wt%、1wt%、3wt%、5wt%、7wt%、10wt%)的导电剂、0.1wt%~10wt%(例如,0.1wt%、0.5wt%、1wt%、3wt%、5wt%、7wt%、10wt%)的粘结剂。
优选地,所述负极活性物质层中各组分的质量百分含量为:90wt%~99.6wt%的负极活性物质、0.2wt%~5wt%的导电剂、0.2wt%~5wt%的粘结剂。
在一实例中,所述负极活性物质选自人造石墨、天然石墨、中间相碳微球、硬碳、软碳、硅基负极活性材料中的至少一种。
在一实例中,所述正极活性材料选自过渡金属锂氧化物、磷酸铁锂、锰酸锂、磷酸锰铁锂中的一种或几种;所述过渡金属锂氧化物的化学式为Li1+xNiyCozM(1-y-z)O2,其中,-0.1≤x≤1;0≤y≤1,0≤z≤1,且0≤y+z≤1;其中,M为Mg、Zn、Ga、Ba、Al、Fe、Cr、Sn、V、Mn、Sc、Ti、Nb、Mo、Zr中的一种或几种。
在一实例中,所述导电剂选自导电炭黑(SP)、碳纳米管(CNT)(例如,单壁碳纳米管(SWCNTs))石墨烯和金属纤维中的一种或多种。
在一实例中,所述粘结剂选自聚偏氟乙烯(PVDF)、丁苯橡胶和羧甲基 纤维素钠中的一种或多种。
本公开的有益效果:
本公开提供了一种电解液及包括该电解液的电池,所述电解液包括有机溶剂、锂盐以及功能添加剂。所述电解液中的第一添加剂为含有不饱和键的磺酰氟类化合物,其中的不饱和双键可以在正极表面发生聚合反应形成保护膜,能够提升正极电解质膜(CEI膜)的耐氧化性;所述含有不饱和键的磺酰氟类化合物中的F-C-O结构或F-C-S-结构能够提升电解液的耐氧化性,同时氟原子的取代也能进一步提升正极电解质膜(CEI膜)的耐氧化性;所述含有不饱和键的磺酰氟类化合物在化成阶段可以在负极侧形成烷基磺酸锂,增加了SEI膜的离子导电性;极限工况下电池的温度可以达到130℃以上,即达到所述含有不饱和键的磺酰氟类化合物的聚合反应温度,含有不饱和键的磺酰氟类化合物单体会发生聚合反应形成聚合物,同时生成的聚合物在电极表面形成阻断层,从而使电池内阻迅速增大,减少电解液的进一步反应,明显减少和降低电池的产气和热量。因此,第一添加剂的使用能够提升电池的高温循环性能、高温存储性能以及安全性能。
具体实施方式
下文将结合具体实施例对本公开做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本公开,而不应被解释为对本公开保护范围的限制。凡基于本公开上述内容所实现的技术均涵盖在本公开旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
在本公开的描述中,需要说明的是,术语“第一”、“第二”、“第三”、“第四”等仅用于描述目的,而并非指示或暗示相对重要性。
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开的实施例,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实 施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
可以理解的是,本公开的锂离子电池包括负极片、电解液、正极片、隔离膜和外包装。将正极片、隔离膜和负极片层叠设置得到电芯或将正极片、隔离膜和负极片层叠设置后,再进行卷绕设置得到电芯,将电芯置于外包装中,向外包装中注入电解液可以得到本公开的锂离子电池。
实施例1~18及对比例1~7
实施例1~18及对比例1~7的锂离子电池通过以下步骤制备得到:
1)正极片制备
将正极活性材料钴酸锂(LiCoO2)、聚偏氟乙烯(PVDF)、SP(super P)和碳纳米管(CNT)按照96:2:1.5:0.5的质量比进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌,直至混合体系成均一流动性的正极活性浆料;将正极活性浆料均匀涂覆于铝箔的两个表面;将涂覆好的铝箔烘干,然后经过辊压、分切得到所需的正极片。
2)负极片制备
将负极活性材料人造石墨、羧甲基纤维素钠(CMC-Na)、丁苯橡胶、导电炭黑(SP)和单壁碳纳米管(SWCNTs)按照质量比94.5:2.5:1.5:1:0.5进行混合,加入去离子水,在真空搅拌机作用下获得负极活性浆料;将负极活性浆料均匀涂覆在铜箔的两个表面;将涂覆好的铜箔在室温下晾干,随后转移至80℃烘箱干燥10h,然后经过冷压、分切得到负极片。
3)电解液的制备
在充满氩气的手套箱中(H2O<0.1ppm,O2<0.1ppm),将EC/PC/DEC/PP按照10/10/20/60的质量比混合均匀,然后往其中快速加入基于电解液总质量13wt%的充分干燥的六氟磷酸锂(LiPF6),溶解后加入基于电解液总质量8wt%的氟代碳酸乙烯酯和4wt%的1,3-丙烷磺酸内酯,在按照表1和表3所示的添 加剂加入第一添加剂、第二添加剂(己二腈)和第三添加剂(式III-1所示化合物),混合均匀后制备得到所述电解液。
4)锂离子电池的制备
将步骤1)的正极片、步骤2)的负极片和隔离膜按照正极片、隔离膜和负极片的顺序层叠设置后,再进行卷绕得到电芯;将电芯置于外包装铝箔中,将步骤3)的电解液注入外包装中,经过真空封装、静置、化成、整形、分选等工序,获得锂离子电池。本公开电池充放电范围为3V~4.5V。
表1实施例和对比例的锂离子电池中电解液添加剂的组成
对实施例和对比例获得的锂离子电池分别进行如下性能测试:
1)45℃循环性能测试
将分容完的电芯在45℃下按照1C的倍率在充电至上限电压4.5V,然后放电至3V,进行充放电循环1000周,测试第1周的放电容量计为x1mAh,第N圈的放电容量计为y1mAh;第N周的容量除以第1周的容量,得到第N周的循环容量保持率R1=y1/x1,测试结果如表2和表4所示。
2)85℃高温存储测试
将分容完的电芯在常温下以0.5C电流充至4.5V,将满电电池置于85℃环境下6小时,热测厚度膨胀率,恢复室温后,以0.5C电流进行放电到3.0V,记录 放电容量,测试结果如表2和表4所示。
3)安全性能测试
将电芯0.5C充电至上限截至电压(4.5V),恒压到0.05C;在环境温度25℃±5℃下,把完全充电的样品放在热冲击试验箱里,然后以15℃±2℃/min的速率升至140℃±2℃,并保持此温度42min后试验结束,观察电池是否起火,测试结果如表2和表4所示。
表2实施例和对比例的锂离子电池的性能测试结果
从表2的实施例1~9以及对比例1的测试结果可以看出,第一添加剂对电池的高温循环性能、高温存储性能以及安全性能能够有着明显的提升,并且含有F取代的第一添加剂的提升效果更显著,但是也和卤素个数相关,过少的卤素可能也会有一定的劣化。而且第二添加剂和第三添加剂均能对电池的高温循环性能和高温存储性能有所改善,其中,第二添加剂的最佳用量是4wt%,第三添加剂的最佳用量是2wt%;其中第三添加剂的用量≥2wt%时安全性能改善较为显著。
表3实施例和对比例的锂离子电池中电解液添加剂的组成

表4实施例和对比例的锂离子电池的性能测试结果
从表4的实施例10~18的测试结果可以看出,第一添加剂、第二添加剂和第三添加剂共同作用时,对电池的高温循环性能、高温存储性能以及安全性能能够有着显著的提升,说明第一添加剂、第二添加剂和第三添加剂之间存在协同增效的作用。
以上,对本公开的实施方式进行了说明。但是,本公开不限定于上述实施方式。凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种电解液,其特征在于,所述电解液包括有机溶剂、锂盐以及功能添加剂,其中,所述功能添加剂包括第一添加剂,所述第一添加剂为含有不饱和键的磺酰氟类化合物。
  2. 根据权利要求1所述的电解液,其特征在于,所述含有不饱和键的磺酰氟类化合物为含有氟取代的不饱和键的磺酰氟类化合物,所述含有氟取代的不饱和键的磺酰氟类化合物包括氟取代的不饱和双键(CF2=CF-)和磺酰氟基(-SO2-F)。
  3. 根据权利要求1或2所述的电解液,其特征在于,所述第一添加剂选自式I所示化合物中的至少一种:
    式I中,R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的烷基;若为取代时,取代基为卤素、烷基;
    R2、R3相同或不同,彼此独立地选自O或S;
    R2a、R2b、R2c、R2d、R3a、R3b、R3c、R3d相同或不同,彼此独立地选自氢、卤素、取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的芳基;若为取代时,取代基为卤素、烷基。
  4. 根据权利要求1-3中任一项所述的电解液,其特征在于,R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-12烷基;若为取代时,取代基为卤素、C1-12烷基;
    优选地,R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-6烷基;若为取代时,取代基为卤素、C1-6烷基;
    优选地,R4、R5、R6相同或不同,彼此独立地选自氢、氟、取代或未取代的C1-3烷基;若为取代时,取代基为氟、C1-3烷基;
    优选地,R4、R5、R6相同,选自氟。
  5. 根据权利要求1-4中任一项所述的电解液,其特征在于,R2a、R2b、R2c、R2d、R3a、R3b、R3c、R3d相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-12烷基、取代或未取代的3-12元环烷基、取代或未取代的C6-12芳基;若为取代时,取代基为卤素、C1-12烷基;
    优选地,R2a、R2b、R2c、R2d、R3a、R3b、R3c、R3d相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-6烷基、取代或未取代的3-8元环烷基、取代或未取代的C6-10芳基;若为取代时,取代基为卤素、C1-6烷基;
    优选地,R2a、R2b、R2c、R2d、R3a、R3b、R3c、R3d相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-3烷基、取代或未取代的3-6元环烷基、取代或未取代的C6-8芳基;若为取代时,取代基为卤素、C1-3烷基;
    优选地,R2a、R2b、R2c、R2d、R3a、R3b、R3c、R3d相同,选自卤素;
    优选地,R2a、R2b、R2c、R2d、R3a、R3b、R3c、R3d相同,选自氟。
  6. 根据权利要求1-5中任一项所述的电解液,其特征在于,R4、R5、R6相同,选自氟,且R2a、R2b、R2c、R2d、R3a、R3b、R3c、R3d相同,选自氟;
    和/或,第一添加剂中卤素的个数至少为4,优选为至少为6。
  7. 根据权利要求1-6中任一项所述的电解液,其特征在于,所述电解液还包括第二添加剂,所述第二添加剂选自多腈化合物中的至少一种;
    和/或,所述多腈化合物选自式II-1所示的二腈类化合物、式II-2所示的三腈类化合物和式II-3所示的四腈类化合物中的至少一种:
    其中,R21是至少具有2个取代位置的碳原子数为1-10的基团;R22是至少具有3个取代位置的碳原子数为1-10的基团;R23是至少具有4个取代位置的碳原子数为1-10的基团。
  8. 根据权利要求7所述的电解液,其特征在于,所述碳原子数为1-10的基团选自取代或未取代的C1-10烷基、取代或未取代的C1-10烷氧基、取代或未取代的C2-10烯基、取代或未取代的C1-10烷基-O-C1-10烷基、取代或未取代的C1-10烷基-C(O)-C1-10烷基、取代或未取代的C4-10杂芳基、取代或未取代的C4-10杂环基、取代或未取代的C6-10芳基,取代基为卤素、取代或未取代的C1-10烷基;
    和/或,所述式II-1所示的二腈类化合物选自如下化合物中的至少一种:丁二腈、戊二腈、己二腈、癸二腈、壬二腈、二氰基苯、对苯二腈、吡啶-3,4-二腈、2,5-二氰基吡啶、2,2,3,3-四氟丁二腈、四氟对苯二腈、4-四氢噻喃亚甲基丙二腈、3,3’-[1,2-乙二基双(氧基)]双丙腈、反丁烯二腈、乙二醇双丙腈醚和1,4,5,6-四氢-5,6-二氧-2,3-吡嗪二甲腈;
    和/或,所述式II-2所示的三腈类化合物选自如下化合物中的至少一种:1,3,6-己烷三腈、1,3,5-环己烷三腈、1,3,5-苯三氰、1,2,3-丙三甲腈、甘油三腈;
    和/或,所述式II-3所示的四腈类化合物选自如下化合物中的至少一种:1,1,3,3-丙四甲腈、1,2,2,3-四氰基丙烷、1,2,4,5-四氰基苯、2,3,5,6-吡嗪四腈、7,7,8,8-四氰基对苯二醌二甲烷、四氰基乙烯、1,1,2,2,-四(乙氧基氰基)乙烷、3-甲基-3-丙基-环丙烷-1,1,2,2-四甲腈。
  9. 根据权利要求1-8中任一项所述的电解液,其特征在于,所述电解液还包括第三添加剂,所述第三添加剂选自氟磺酸亚胺盐中的至少一种。
  10. 根据权利要求9所述的电解液,其特征在于,所述第三添加剂选自式III所示化合物中的至少一种:
    式III中,R1选自Li、Na、K、Rb、Cs中的一种。
  11. 根据权利要求8或9所述的电解液,其特征在于,所述第三添加剂选自式III-1~式III-5所示的化合物中的至少一种:
  12. 根据权利要求1-11中任一项所述的电解液,其特征在于,所述电解液还包括第四添加剂,所述第四添加剂选自氟代碳酸乙烯酯和1,3-丙烷磺酸内酯中的至少一种。
  13. 根据权利要求12所述的电解液,其特征在于,以所述电解液的总重量为基准,所述第一添加剂的重量含量为0.1wt%~5wt%;
    和/或,以所述电解液的总重量为基准,所述第二添加剂的重量含量为1wt%~5wt%;
    和/或,以所述电解液的总重量为基准,所述第三添加剂的重量含量为1wt%~5wt%。
  14. 根据权利要求9-13中任一项所述的电解液,其特征在于,所述第一添加剂的重量与所述第二添加剂的重量之比为1:(1-8),优选为1:(3-5);
    和/或,所述第一添加剂的重量与所述第三添加剂的重量之比为1:(0.5-4),优选为1:(1-3);
    和/或,所述第一添加剂的重量、所述第二添加剂的重量和所述第三添加剂的重量之比为1:(1-8):(0.5-4),优选为1:(3-5):(1-3)。
  15. 一种电池,其特征在于,所述电池包括权利要求1-14任一项所述的电解液。
PCT/CN2023/122498 2022-10-09 2023-09-28 一种电解液及包括该电解液的电池 WO2024078357A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211229053.1A CN115441057A (zh) 2022-10-09 2022-10-09 一种电解液及包括该电解液的电池
CN202211229053.1 2022-10-09

Publications (1)

Publication Number Publication Date
WO2024078357A1 true WO2024078357A1 (zh) 2024-04-18

Family

ID=84250408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122498 WO2024078357A1 (zh) 2022-10-09 2023-09-28 一种电解液及包括该电解液的电池

Country Status (2)

Country Link
CN (1) CN115441057A (zh)
WO (1) WO2024078357A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115441057A (zh) * 2022-10-09 2022-12-06 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908642A (zh) * 2007-08-23 2010-12-08 索尼株式会社 电解液和电池
CN104823318A (zh) * 2012-12-06 2015-08-05 宇部兴产株式会社 非水电解液以及使用了非水电解液的蓄电设备
JP2016066481A (ja) * 2014-09-24 2016-04-28 三井化学株式会社 電池用非水電解液、及びリチウム二次電池
CN110870126A (zh) * 2017-08-03 2020-03-06 三星Sdi株式会社 用于锂电池的电解质和包括该电解质的锂电池
CN110931872A (zh) * 2019-12-11 2020-03-27 多氟多新能源科技有限公司 一种锂离子电池电解液添加剂及锂离子电池电解液
CN110998957A (zh) * 2017-08-24 2020-04-10 三井化学株式会社 电池用非水电解液及锂二次电池
DE102018217758A1 (de) * 2018-10-17 2020-04-23 Robert Bosch Gmbh Polymerelektrolytzusammensetzung umfassend fluorhaltiges Additiv, sowie dessen Verwendung
CN111370766A (zh) * 2020-03-24 2020-07-03 青岛滨海学院 一种含-s-f基团化合物的电解液及其电化学装置
CN115312860A (zh) * 2022-08-12 2022-11-08 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的电池
CN115441057A (zh) * 2022-10-09 2022-12-06 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的电池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908642A (zh) * 2007-08-23 2010-12-08 索尼株式会社 电解液和电池
CN104823318A (zh) * 2012-12-06 2015-08-05 宇部兴产株式会社 非水电解液以及使用了非水电解液的蓄电设备
JP2016066481A (ja) * 2014-09-24 2016-04-28 三井化学株式会社 電池用非水電解液、及びリチウム二次電池
CN110870126A (zh) * 2017-08-03 2020-03-06 三星Sdi株式会社 用于锂电池的电解质和包括该电解质的锂电池
CN110998957A (zh) * 2017-08-24 2020-04-10 三井化学株式会社 电池用非水电解液及锂二次电池
DE102018217758A1 (de) * 2018-10-17 2020-04-23 Robert Bosch Gmbh Polymerelektrolytzusammensetzung umfassend fluorhaltiges Additiv, sowie dessen Verwendung
CN110931872A (zh) * 2019-12-11 2020-03-27 多氟多新能源科技有限公司 一种锂离子电池电解液添加剂及锂离子电池电解液
CN111370766A (zh) * 2020-03-24 2020-07-03 青岛滨海学院 一种含-s-f基团化合物的电解液及其电化学装置
CN115312860A (zh) * 2022-08-12 2022-11-08 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的电池
CN115441057A (zh) * 2022-10-09 2022-12-06 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的电池

Also Published As

Publication number Publication date
CN115441057A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2023040082A1 (zh) 一种锂离子电池非水电解液及其应用
CN110931868B (zh) 一种非水电解液及含有该电解液的锂离子电池
US12107228B2 (en) Non-aqueous electrolyte for a lithium ion battery and lithium ion battery
WO2023087937A1 (zh) 一种电化学装置及电子装置
CN109119631B (zh) 一种二次电池
WO2023241428A1 (zh) 一种锂离子电池
CN114520371B (zh) 一种非水电解液及包含其的锂离子电池
CN110970662B (zh) 非水电解液及锂离子电池
WO2024078357A1 (zh) 一种电解液及包括该电解液的电池
WO2024066447A1 (zh) 一种电解液和电池
KR20230035681A (ko) 전기화학 디바이스 및 전자 디바이스
CN116130764A (zh) 一种电解液和电池
WO2024082979A1 (zh) 一种电解液及包括该电解液的电池
WO2024099377A1 (zh) 一种电解液及包括该电解液的电池
WO2024041150A1 (zh) 一种电解液及包括该电解液的电池
WO2024032190A1 (zh) 一种隔膜及包括该隔膜的电池
CN116960459A (zh) 一种电解液及包括该电解液的电池
WO2023216928A1 (zh) 一种电池
US11502300B1 (en) Secondary battery
CN115528307A (zh) 一种电解液及包括该电解液的电池
CN110970660A (zh) 非水电解液及锂离子电池
CN114583241B (zh) 锂离子电池
CN117673467A (zh) 一种电解液及包括该电解液的电池
WO2024197646A1 (zh) 一种电化学装置及电子装置
WO2024212693A1 (zh) 一种高电压锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876560

Country of ref document: EP

Kind code of ref document: A1