WO2024082979A1 - 一种电解液及包括该电解液的电池 - Google Patents

一种电解液及包括该电解液的电池 Download PDF

Info

Publication number
WO2024082979A1
WO2024082979A1 PCT/CN2023/123415 CN2023123415W WO2024082979A1 WO 2024082979 A1 WO2024082979 A1 WO 2024082979A1 CN 2023123415 W CN2023123415 W CN 2023123415W WO 2024082979 A1 WO2024082979 A1 WO 2024082979A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
additive
electrolyte
alkyl
Prior art date
Application number
PCT/CN2023/123415
Other languages
English (en)
French (fr)
Inventor
王海
李素丽
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2024082979A1 publication Critical patent/WO2024082979A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure belongs to the technical field of batteries, and particularly relates to an electrolyte and a battery including the electrolyte.
  • Lithium-ion batteries are widely used in 3C digital products, power tools, electric vehicles, etc. due to their high operating voltage, high energy density, long life and environmental friendliness. Especially in the 3C digital field, the development trend of lighter and thinner mobile electronic devices such as smart phones and mobile power supplies in recent years has made lithium-ion batteries more and more popular.
  • Lithium-ion battery is a rechargeable battery that mainly relies on the movement of lithium ions between the positive electrode and the negative electrode to work.
  • Li + is embedded and deintercalated back and forth between the two electrodes: when charging, Li + is deintercalated from the positive electrode and embedded into the negative electrode through the electrolyte, and the negative electrode is in a lithium-rich state; the opposite is true during discharge.
  • the electrolyte plays an indispensable role and is known as the "blood" of lithium-ion batteries.
  • the most critical part of the electrolyte for lithium-ion batteries is additives, such as negative electrode film-forming additives, positive electrode film-forming additives, stabilizers, dehumidifiers and acid scavengers.
  • sulfur-containing additives have a certain effect on reducing battery impedance, thereby improving the high-temperature performance of the battery.
  • 1,3-Propane sultone (PS) and dithiothreitol (DTD) as representative additives containing sulfur elements, have the effect of reducing battery impedance.
  • PS 1,3-Propane sultone
  • DTD dithiothreitol
  • the EU has particularly strict control over the use of this additive.
  • the electrolyte is injected into the battery to make a product, the content of PS additives will be tested (Reach test).
  • dithiothreitol (DTD) has poor thermal stability.
  • the purpose of the present disclosure is to provide an electrolyte and a battery including the electrolyte.
  • the electrolyte of the present disclosure adds unsaturated cyclic compounds containing sulfonic acid groups and polynitrile compounds, which can significantly improve the high temperature performance of the battery.
  • An electrolyte comprises an organic solvent, an electrolyte lithium salt and a functional additive, wherein the functional additive comprises a first additive and a second additive; the first additive is selected from an unsaturated cyclic compound containing a sulfonic acid group, and the second additive is selected from a polynitrile compound.
  • the mass percentage of the first additive to the total mass of the electrolyte is 0.1wt% to 5.0wt%, for example, 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt%, 0.5wt%, 0.6wt%, 0.7wt%, 0.8wt%, 0.9wt%, 1wt%, 1.1wt%, 1.2wt%, 1.3wt%, 1.4wt%, 1.5wt%, 1.6wt%, 1.7wt%, 1.8wt%, 1.9wt%, 2wt%, 2.2wt%, 2.4wt%, 2.5wt%, 2.6wt%, 2.8wt%, 3wt%, 3.3wt%, 3.5wt%, 3.8wt%, 4wt%, 4.2wt%, 4.5wt%, 4.8wt% or 5wt%.
  • the mass of the second additive accounts for a percentage of 1wt% to 5.5wt% of the total mass of the electrolyte, for example, 1wt%, 1.1wt%, 1.2wt%, 1.3wt%, 1.4wt%, 1.5wt%, 1.6wt%, 1.7wt%, 1.8wt%, 1.9wt%, 2wt%, 2.2wt%, 2.4wt%, 2.5wt%, 2.6wt%, 2.8wt%, 3wt%, 3.3wt%, 3.5wt%, 3.8wt%, 4wt%, 4.2wt%, 4.5wt%, 4.8wt%, 5wt%, 5.2wt% or 5.5wt%.
  • the electrolyte satisfies the following relationship: 0.7 ⁇ 2A/(A+B) ⁇ 1
  • A is the percentage of the mass of the first additive to the total mass of the electrolyte
  • B is the percentage of the mass of the second additive to the total mass of the electrolyte
  • 2A/(A+B) is 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 or 1.
  • the first additive when 0.7 ⁇ 2A/(A+B) ⁇ 1, the first additive forms alkyl sulfonate lithium on the surface of the negative electrode, and the second additive forms a complex with cobalt ions on the surface of the positive electrode to form protection, and the two work synergistically to significantly improve the high temperature performance and safety performance of the battery at high temperatures; when 2A/(A+B) ⁇ 0.7, The alkyl sulfonate lithium formed by the first additive does not provide sufficient protection for the negative electrode, which will cause the battery performance to deteriorate in the later stage of the cycle. When 2A/(A+B)>1, the content of the first additive is too high, which has a greater impact on the negative electrode impedance and poor compatibility, leading to cycle degradation.
  • the first additive is selected from at least one of the compounds represented by formula (1):
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the same or different and are independently selected from hydrogen, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl; if substituted, the substituent is alkyl or halogen.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different and are independently selected from hydrogen, halogen, substituted or unsubstituted C 1-20 alkyl, substituted or unsubstituted C 2-20 alkenyl, substituted or unsubstituted C 2-20 alkynyl, substituted or unsubstituted C 3-20 cycloalkyl, substituted or unsubstituted C 6-20 aryl; if substituted, the substituent is C 1-20 alkyl or halogen.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different and are independently selected from hydrogen, halogen, substituted or unsubstituted C 1-12 alkyl, substituted or unsubstituted C 2-12 alkenyl, substituted or unsubstituted C 2-12 alkynyl, substituted or unsubstituted C 3-12 cycloalkyl, substituted or unsubstituted C 6-12 aryl; if substituted, the substituent is C 1-12 alkyl or halogen.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different and are independent of each other. is selected from hydrogen, halogen, substituted or unsubstituted C 1-6 alkyl, substituted or unsubstituted C 2-6 alkenyl, substituted or unsubstituted C 2-6 alkynyl, substituted or unsubstituted C 3-6 cycloalkyl, substituted or unsubstituted C 6-10 aryl; if substituted, the substituent is C 1-6 alkyl or halogen.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different, and are independently selected from hydrogen, halogen, substituted or unsubstituted C 1-3 alkyl, substituted or unsubstituted C 2-3 alkenyl, substituted or unsubstituted C 2-3 alkynyl, substituted or unsubstituted C 3-4 cycloalkyl, substituted or unsubstituted C 6-8 aryl; if substituted, the substituent is C 1-3 alkyl or halogen.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same or different and are independently selected from hydrogen, halogen, substituted or unsubstituted C 1-2 alkyl, substituted or unsubstituted C 2-3 alkenyl, substituted or unsubstituted phenyl; if substituted, the substituent is C 1-3 alkyl or halogen.
  • the first additive is selected from at least one of the compounds represented by formula (I) to formula (VIII):
  • the polynitrile compound is selected from one or more of a dinitrile compound, a trinitrile compound and a tetranitrile compound.
  • the polynitrile compound is selected from the dinitrile compound shown in formula II-1, At least one of the trinitrile compound represented by formula II-2 and the tetranitrile compound represented by formula II-3:
  • R 21 is a group with 1 to 10 carbon atoms and at least 2 substitution positions
  • R 22 is a group with 1 to 10 carbon atoms and at least 3 substitution positions
  • R 23 is a group with 1 to 10 carbon atoms and at least 4 substitution positions.
  • the group having 1-10 carbon atoms is selected from substituted or unsubstituted C 1-10 alkyl, substituted or unsubstituted C 1-10 alkoxy, substituted or unsubstituted C 2-10 alkenyl, substituted or unsubstituted C 1-10 alkyl- OC 1-10 alkyl, substituted or unsubstituted C 1-10 alkyl-C(O)-C 1-10 alkyl, substituted or unsubstituted C 4-10 heteroaryl, substituted or unsubstituted C 4-10 heterocyclyl , substituted or unsubstituted C 6-10 aryl , and the substituent is halogen, substituted or unsubstituted C 1-10 alkyl .
  • the dinitrile compound represented by formula II-1 is selected from at least one of the following compounds: succinonitrile, glutaronitrile, adiponitrile (ADN), decanedinitrile, azelaic acid dicyanobenzene, terephthalonitrile, pyridine-3,4-dinitrile, 2,5-dicyanopyridine, 2,2,3,3-tetrafluorosuccinonitrile, tetrafluoroterephthalonitrile, 4-tetrahydrothiopyranylmalononitrile, butylene dinitrile, ethylene glycol dipropionitrile ether and 1,4,5,6-tetrahydro-5,6-dioxy-2,3-pyrazine dicarbonitrile.
  • ADN adiponitrile
  • decanedinitrile azelaic acid dicyanobenzene
  • pyridine-3,4-dinitrile 2,5-dicyanopyridine
  • the trinitrile compound represented by formula II-2 is selected from at least one of the following compounds: 1,3,6-hexanetrinitrile (HTCN), 1,3,5-cyclohexanetrinitrile, 1,3,5-benzenetricyanide, 1,2,3-propanetricarbonitrile, and glyceroltrinitrile.
  • HTCN 1,3,6-hexanetrinitrile
  • 1,3,5-cyclohexanetrinitrile 1,3,5-benzenetricyanide
  • 1,2,3-propanetricarbonitrile 1,2,3-propanetricarbonitrile
  • glyceroltrinitrile 1,3,6-hexanetrinitrile
  • the tetranitrile compound represented by formula II-3 is selected from at least one of the following compounds: 1,1,3,3-propanetetracarbonitrile, 1,2,2,3-tetracyanopropane, 1,2,4,5-tetracyanobenzene, 2,3,5,6- Pyrazine tetracarbonitrile, 3-methyl-3-propyl-cyclopropane-1,1,2,2-tetracarbonitrile, 7,7,8,8-tetracyanoquinodimethane, tetracyanoethylene, 1,1,2,2,-tetra(ethoxycyano)ethane, 3-methyl-3-propyl-cyclopropane-1,1,2,2-tetracarbonitrile.
  • the first additive can be prepared by a method known in the art, or can be purchased through commercial channels.
  • the second additive can be prepared by a method known in the art, or can be purchased through commercial channels.
  • the electrolyte further includes a third additive
  • the third additive is selected from at least one of fluoroethylene carbonate, vinyl sulfate, 1,3-propylene sultone, lithium difluorooxalatoborate, lithium difluorophosphate, and lithium difluorobis(oxalatophosphate).
  • the introduction of the third additive can participate in the formation of the SEI film in the early stage of formation, play a role in protecting the negative electrode, and at the same time, it can continuously repair the damaged SEI film in the later stage of the cycle, thereby improving the electrochemical performance of the battery.
  • the added amount of the third additive is 10wt% to 15wt% of the total weight of the electrolyte, for example, 10wt%, 11wt%, 12wt%, 13wt%, 14wt% or 15wt%.
  • the electrolyte lithium salt is selected from one or more of lithium hexafluorophosphate (LiPF 6 ), lithium difluorophosphate (LiPO 2 F 2 ), lithium difluorooxalatoborate (LiDFOB), lithium bis(trifluoromethylsulfonyl imide), lithium difluorobis(oxalatophosphate), lithium tetrafluoroborate, lithium bis(oxalatoborate), lithium hexafluoroantimonate, lithium hexafluoroarsenate, lithium bis(trifluoromethylsulfonyl)imide, lithium bis(pentafluoroethylsulfonyl)imide, tris(trifluoromethylsulfonyl)methyl lithium or lithium bis(trifluoromethylsulfonyl)imide.
  • LiPF 6 lithium hexafluorophosphate
  • LiPO 2 F 2 lithium difluorooxalatoborate
  • the organic solvent is selected from carbonates and/or carboxylates
  • the carbonate is selected from one or more of the following fluorinated or unsubstituted solvents: ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate, diethyl carbonate (DEC), and ethyl methyl carbonate
  • the carboxylate is selected from one or more of the following fluorinated or unsubstituted solvents: propyl acetate, n-butyl acetate, isobutyl acetate, n-amyl acetate, isoamyl acetate, propyl propionate (PP), ethyl propionate (EP), methyl butyrate, and ethyl butyrate.
  • the electrolyte is used in a lithium ion battery.
  • the present disclosure also provides a battery, which includes the above-mentioned electrolyte.
  • the battery further includes a positive electrode sheet containing a positive electrode active material, a negative electrode sheet containing a negative electrode active material, and a separator.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer coated on one or both sides of the positive electrode current collector, and the positive electrode active material layer includes a positive electrode active material, a conductive agent and a binder.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer coated on one or both sides of the negative electrode current collector, and the negative electrode active material layer includes a negative electrode active material, a conductive agent and a binder.
  • the mass percentage of each component in the positive electrode active material layer is: 80-99.8wt% of positive electrode active material, 0.1-10wt% of conductive agent, and 0.1-10wt% of binder.
  • the mass percentage of each component in the positive electrode active material layer is: 90-99.6wt% of positive electrode active material, 0.2-5wt% of conductive agent, and 0.2-5wt% of binder.
  • the mass percentage of each component in the negative electrode active material layer is: 80-99.8wt% of negative electrode active material, 0.1-10wt% of conductive agent, and 0.1-10wt% of binder.
  • the mass percentage of each component in the negative electrode active material layer is: 90-99.6wt% of negative electrode active material, 0.2-5wt% of conductive agent, and 0.2-5wt% of binder.
  • the negative electrode active material is selected from at least one of artificial graphite, natural graphite, mesophase carbon microbeads, hard carbon, soft carbon, nano-silicon, silicon oxide, and silicon carbide.
  • the positive electrode active material is selected from one or more of transition metal lithium oxide, lithium iron phosphate, and lithium manganese oxide; the chemical formula of the transition metal lithium oxide is Li1 + xNiyCozM (1-yz) O2 , wherein -0.1 ⁇ x ⁇ 1; 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, and 0 ⁇ y+z ⁇ 1; wherein M is one or more of Mg, Zn, Ga, Ba, Al, Fe, Cr, Sn, V, Mn, Sc, Ti, Nb, Mo, and Zr.
  • the conductive agent is selected from at least one of conductive carbon black, acetylene black, Ketjen black, conductive graphite, conductive carbon fiber, carbon nanotubes, and metal powder.
  • the binder is selected from sodium carboxymethyl cellulose, styrene-butadiene latex, At least one of tetrafluoroethylene and polyethylene oxide.
  • the present disclosure provides an electrolyte and a lithium ion battery comprising the electrolyte.
  • the first additive in the electrolyte is an unsaturated cyclic compound containing a sulfonic acid group, wherein the sulfonic acid group can form alkyl sulfonate lithium RSO3Li on the surface of the negative electrode, thereby increasing the ionic conductivity of the SEI film. Meanwhile, the unsaturated bonds in the first additive can undergo polymerization reaction on the surface of the positive electrode to form a protective film, thereby reducing the oxidation rate of the electrolyte on the surface of the positive electrode and reducing self-discharge.
  • the nitrile functional group contained in the polynitrile compound is an electron-withdrawing group with a relatively high dipole moment, which has a relatively low binding energy with Co3 + and is more easily enriched and complexed on the surface of the positive electrode, thereby effectively inhibiting the dissolution of metal ions and further oxidative decomposition of the electrolyte.
  • the second additive can also form a polymeric network structure with the first additive, and act together on the surface of the positive electrode, thereby reducing side reactions of the positive electrode and the electrolyte.
  • the two can achieve the best protection effect, and the formed interface film can block the contact between the electrolyte and the positive and negative electrodes, prevent the electrolyte from being oxidized and decomposed to produce gas, and then prevent the battery from swelling and causing increased gas, reducing the risk of battery rupture, and ultimately achieving an effective barrier effect, significantly improving the safety performance of the battery.
  • the lithium ion batteries of Examples 1 to 14 and Comparative Examples 1 to 2 were prepared by the following steps:
  • the positive electrode active materials lithium cobalt oxide (LiCoO 2 ), polyvinylidene fluoride (PVDF), SP (super P) and carbon nanotubes (CNT) were mixed in a mass ratio of 96:2:1.5:0.5, and N-methylpyrrolidone was added. (NMP), stirring under the action of a vacuum mixer until the mixed system becomes a positive electrode active slurry with uniform fluidity; the positive electrode active slurry is evenly coated on both surfaces of the aluminum foil; the coated aluminum foil is dried, and then rolled and cut to obtain the required positive electrode sheet.
  • NMP N-methylpyrrolidone
  • the negative electrode active materials artificial graphite, silicon oxide, sodium carboxymethyl cellulose (CMC-Na), styrene-butadiene rubber, conductive carbon black (SP) and single-walled carbon nanotubes (SWCNTs) are mixed in a mass ratio of 79.5:15:2.5:1.5:1:0.5, deionized water is added, and the negative electrode active slurry is obtained under the action of a vacuum mixer; the negative electrode active slurry is evenly coated on both surfaces of the copper foil; the coated copper foil is dried at room temperature, and then transferred to an oven at 80°C for drying for 10 hours, and then cold pressed and cut to obtain the negative electrode sheet.
  • EC/PC/DEC/PP were mixed uniformly in a mass ratio of 10/20/10/60, and then 1 mol/L of fully dried lithium hexafluorophosphate (LiPF 6 ) was quickly added thereto and dissolved, and 10 wt % of fluoroethylene carbonate based on the total mass of the electrolyte, as well as the first additive (the compound represented by formula (II)) and the second additive (the same mass of ADN and HTCN) as shown in Table 1 were added and mixed uniformly to prepare the electrolyte.
  • LiPF 6 fully dried lithium hexafluorophosphate
  • the positive electrode sheet of step 1), the negative electrode sheet of step 2) and the separator are stacked in the order of positive electrode sheet, separator and negative electrode sheet, and then wound to obtain a battery cell; the battery cell is placed in an outer packaging aluminum foil, and the electrolyte of step 3) is injected into the outer packaging, and a lithium-ion battery is obtained after vacuum packaging, standing, forming, shaping, sorting and other processes.
  • the battery disclosed in the present invention has a charge and discharge range of 3.0-4.5V.
  • Example 14 referring to Example 1, an equal amount of a first additive (structured as shown in Formula V) is used to replace the first additive shown in Formula (II).
  • the lithium ion batteries obtained in the examples and comparative examples were subjected to the following performance tests:
  • the divided cells are charged and discharged for 800 cycles at 45°C at a rate of 1C within the charge and discharge cut-off voltage range.
  • the discharge capacity of the first week of the test is calculated as x1mAh
  • the discharge capacity of the Nth cycle is calculated as y1mAh.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种电解液及包括电解液的电池,电解液包括第一添加剂和第二添加剂,第一添加剂为含有磺酸基的不饱和环状化合物,磺酸基可以在负极表面形成烷基磺酸锂RSO 3Li,第二添加剂为多腈化合物,多腈化合物中含有的腈基官能团是具有较高偶极距的吸电子基团,其与Co 3+的结合能较低,更易在正极表面富集并进行络合,有效地抑制金属离子的溶解以及电解液的进一步氧化分解,第二添加剂还可以与第一添加剂形成聚合网状结构,第一添加剂和第二添加剂共同作用在正极表面,从而减少正极和电解液的副反应。当电解液的第一添加剂的含量A和第二添加剂的含量B满足关系式:0.7≤2A/(A+B)≤1时,二者能够达到最佳的保护效果,能够达到有效的阻隔作用,显著提升电池的安全性能。

Description

一种电解液及包括该电解液的电池 技术领域
本公开属于电池技术领域,具体涉及一种电解液及包括该电解液的电池。
背景技术
锂离子电池由于具有高工作电压、高能量密度、长寿命和环境友好等优点,被广泛应用于3C数码产品、电动工具、电动汽车等领域。尤其是在3C数码领域,近几年来移动电子设备如智能手机移动电源更轻、更薄的发展趋势使得锂离子电池越来越受欢迎。
锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解液嵌入负极,负极处于富锂状态;放电时则相反。电解液作为锂离子电池中几大主材之一,具有不可或缺的作用,被誉为锂离子电池的“血液”。然而,锂离子电池用电解液中最关键的部分是添加剂,如负极成膜添加剂、正极成膜添加剂、稳定剂、除水剂及除酸剂等。
一般来说,含硫类的添加剂对降低电池阻抗有一定作用,进而改善电池的高温性能。1,3‐丙烷磺酸内酯(PS)和硫酸乙烯酯(DTD)作为含硫元素的代表性添加剂,有降低电池阻抗的作用。但是由于PS添加剂具有致癌的危害,欧盟对该添加剂的使用管控特别严格,当电解液注入到电池中制作成产品后,会进行抽检测试PS添加剂的含量(Reach检测)。而硫酸乙烯酯(DTD)热稳定性差,若无稳定剂存在,会导致电解液酸值和色度劣化,从而影响电池高温性能。因此开发能够替代PS和DTD添加剂的新型低阻抗添加剂刻不容缓。
发明内容
为了解决PS和DTD使用受限的问题,本公开目的是提供一种电解液及包括该电解液的电池,本公开的电解液添加含有磺酸基的不饱和环状化合物和多腈化合物,其能显著提升电池的高温性能。
本公开目的是通过如下技术方案实现的:
一种电解液,所述电解液包括有机溶剂、电解质锂盐以及功能添加剂,所述功能添加剂包括第一添加剂和第二添加剂;所述第一添加剂选自含有磺酸基的不饱和环状化合物,所述第二添加剂选自多腈化合物。
根据本公开的实施方式,所述第一添加剂的质量占电解液总质量的百分含量为0.1wt%~5.0wt%,例如为0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1wt%、1.1wt%、1.2wt%、1.3wt%、1.4wt%、1.5wt%、1.6wt%、1.7wt%、1.8wt%、1.9wt%、2wt%、2.2wt%、2.4wt%、2.5wt%、2.6wt%、2.8wt%、3wt%、3.3wt%、3.5wt%、3.8wt%、4wt%、4.2wt%、4.5wt%、4.8wt%或5wt%。
根据本公开的实施方式,所述第二添加剂的质量占电解液总质量的百分含量为1wt%~5.5wt%,例如为1wt%、1.1wt%、1.2wt%、1.3wt%、1.4wt%、1.5wt%、1.6wt%、1.7wt%、1.8wt%、1.9wt%、2wt%、2.2wt%、2.4wt%、2.5wt%、2.6wt%、2.8wt%、3wt%、3.3wt%、3.5wt%、3.8wt%、4wt%、4.2wt%、4.5wt%、4.8wt%、5wt%、5.2wt%或5.5wt%。
根据本公开的实施方式,所述电解液满足如下关系式:
0.7≤2A/(A+B)≤1
其中,A为第一添加剂的质量占电解液总质量的百分含量,B为第二添加剂的质量占电解液总质量的百分含量。
根据本公开的实施方式,2A/(A+B)为0.7、0.75、0.8、0.85、0.9、0.95或1。
根据本公开的实施方式,当0.7≤2A/(A+B)≤1时,第一添加剂在负极表面形烷基磺酸锂,第二添加剂在正极表面和钴离子络合形成保护,二者协同作用,能够显著提升电池的高温性能和在高温下的安全性能;当2A/(A+B)<0.7时,由 于第一添加剂形成的烷基磺酸锂对负极保护不足,循环后期会导致电池性能恶化,当2A/(A+B)>1时,第一添加剂含量过多,对负极阻抗的影响较大,兼容性不好,导致循环劣化。
根据本公开的实施方式,所述含有磺酸基的不饱和环状化合物为含有磺酸基(-SO3-)和不饱和双键(-C=C-)的环状环合物,且磺酸基中的-S-O-键和不饱和双键相连,并参与成环。
根据本公开的实施方式,所述第一添加剂选自式(1)所示化合物中的至少一种:
所述通式(1)中,R1、R2、R3、R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的烷基、取代或未取代的烯基、取代或未取代的炔基、取代或未取代的环烷基、取代或未取代的芳基;若为取代时,取代基为烷基、卤素。
根据本公开的实施方式,R1、R2、R3、R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-20烷基、取代或未取代的C2-20烯基、取代或未取代的C2-20炔基、取代或未取代的C3-20环烷基、取代或未取代的C6-20芳基;若为取代时,取代基为C1-20烷基、卤素。
根据本公开的实施方式,R1、R2、R3、R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-12烷基、取代或未取代的C2-12烯基、取代或未取代的C2-12炔基、取代或未取代的C3-12环烷基、取代或未取代的C6-12芳基;若为取代时,取代基为C1-12烷基、卤素。
根据本公开的实施方式,R1、R2、R3、R4、R5、R6相同或不同,彼此独立 地选自氢、卤素、取代或未取代的C1-6烷基、取代或未取代的C2-6烯基、取代或未取代的C2-6炔基、取代或未取代的C3-6环烷基、取代或未取代的C6-10芳基;若为取代时,取代基为C1-6烷基、卤素。
根据本公开的实施方式,R1、R2、R3、R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-3烷基、取代或未取代的C2-3烯基、取代或未取代的C2-3炔基、取代或未取代的C3-4环烷基、取代或未取代的C6-8芳基;若为取代时,取代基为C1-3烷基、卤素。
根据本公开的实施方式,R1、R2、R3、R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-2烷基、取代或未取代的C2-3烯基、取代或未取代的苯基;若为取代时,取代基为C1-3烷基、卤素。
根据本公开的实施方式,所述第一添加剂选自式(I)-式(VIII)所示化合物中的至少一种:
根据本公开的实施方式,所述多腈化合物选自二腈化合物、三腈化合物和四腈化合物中的一种或多种。
根据本公开的实施方式,所述多腈化合物选自式II-1所示的二腈类化合物、 式II-2所示的三腈类化合物和式II-3所示的四腈类化合物中的至少一种:
其中,R21是至少具有2个取代位置的碳原子数为1-10的基团;R22是至少具有3个取代位置的碳原子数为1-10的基团;R23是至少具有4个取代位置的碳原子数为1-10的基团。
根据本公开的实施方式,所述碳原子数为1-10的基团选自取代或未取代的C1-10烷基、取代或未取代的C1-10烷氧基、取代或未取代的C2-10烯基、取代或未取代的C1-10烷基-O-C1-10烷基、取代或未取代的C1-10烷基-C(O)-C1-10烷基、取代或未取代的C4-10杂芳基、取代或未取代的C4-10杂环基、取代或未取代的C6-10芳基,取代基为卤素、取代或未取代的C1-10烷基。
根据本公开的实施方式,所述式II-1所示的二腈类化合物选自如下化合物中的至少一种:丁二腈、戊二腈、已二腈(ADN)、癸二腈、壬二腈、二氰基苯、对苯二腈、吡啶-3,4-二腈、2,5-二氰基吡啶、2,2,3,3‐四氟丁二腈、四氟对苯二腈、4‐四氢噻喃亚甲基丙二腈、反丁烯二腈、乙二醇双丙腈醚和1,4,5,6‐四氢‐5,6‐二氧‐2,3‐吡嗪二甲腈。
根据本公开的实施方式,所述式II-2所示的三腈类化合物选自如下化合物中的至少一种:1,3,6-己烷三腈(HTCN)、1,3,5-环己烷三腈、1,3,5-苯三氰、1,2,3-丙三甲腈、甘油三腈。
根据本公开的实施方式,所述式II-3所示的四腈类化合物选自如下化合物中的至少一种:1,1,3,3-丙四甲腈、1,2,2,3-四氰基丙烷、1,2,4,5-四氰基苯、2,3,5,6- 吡嗪四腈、3-甲基-3-丙基-环丙烷-1,1,2,2-四甲腈、7,7,8,8-四氰基对苯二醌二甲烷、四氰基乙烯、1,1,2,2,-四(乙氧基氰基)乙烷、3‐甲基‐3‐丙基‐环丙烷‐1,1,2,2‐四甲腈。
根据本公开的实施方式,所述第一添加剂可以采用本领域已知的方法制备得到,也可以通过商业途径购买获得。
根据本公开的实施方式,所述第二添加剂可以采用本领域已知的方法制备得到,也可以通过商业途径购买获得。
根据本公开的实施方式,所述电解液还包括第三添加剂,所述第三添加剂选自氟代碳酸乙烯酯、硫酸乙烯酯、1,3-丙烯磺酸内酯、二氟草酸硼酸锂、二氟磷酸锂、二氟二草酸磷酸锂中的至少一种。第三添加剂的引入可以在化成初期参与生成SEI膜,起到对负极保护的作用,同时其在循环后期还可以不断的对破损的SEI膜进行修复,从而提高电池的电化学性能。
根据本公开的实施方式,所述第三添加剂的加入量为所述电解液总重量的10wt%~15wt%,例如为10wt%、11wt%、12wt%、13wt%、14wt%或15wt%。
根据本公开的实施方式,所述电解质锂盐选自六氟磷酸锂(LiPF6)、二氟磷酸锂(LiPO2F2)、二氟草酸硼酸锂(LiDFOB)、双三氟甲基磺酰亚胺锂、二氟双草酸磷酸锂、四氟硼酸锂、双草酸硼酸锂、六氟锑酸锂、六氟砷酸锂、二(三氟甲基磺酰)亚胺锂、二(五氟乙基磺酰)亚胺锂、三(三氟甲基磺酰)甲基锂或二(三氟甲基磺酰)亚胺锂中的一种或两种以上。
根据本公开的实施方式,所述有机溶剂选自碳酸酯和/或羧酸酯,所述碳酸酯选自氟代或未取代的下述溶剂中的一种或几种:碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯、碳酸二乙酯(DEC)、碳酸甲乙酯;所述羧酸酯选自氟代或未取代的下述溶剂中的一种或几种:乙酸丙酯、乙酸正丁酯、乙酸异丁酯、乙酸正戊酯、乙酸异戊酯、丙酸丙酯(PP)、丙酸乙酯(EP)、丁酸甲酯、正丁酸乙酯。
根据本公开的实施方式,所述电解液用于锂离子电池。
本公开还提供一种电池,所述电池包括上述的电解液。
根据本公开的实施方式,所述电池还包括含有正极活性物质的正极片、含有负极活性物质的负极片、隔离膜。
根据本公开的实施方式,所述正极片包括正极集流体和涂覆在正极集流体一侧或两侧表面的正极活性物质层,所述正极活性物质层包括正极活性物质、导电剂和粘结剂。
根据本公开的实施方式,所述负极片包括负极集流体和涂覆在负极集流体一侧或两侧表面的负极活性物质层,所述负极活性物质层包括负极活性物质、导电剂和粘结剂。
根据本公开的实施方式,所述正极活性物质层中各组分的质量百分含量为:80~99.8wt%的正极活性物质、0.1~10wt%的导电剂、0.1~10wt%的粘结剂。
优选地,所述正极活性物质层中各组分的质量百分含量为:90~99.6wt%的正极活性物质、0.2~5wt%的导电剂、0.2~5wt%的粘结剂。
根据本公开的实施方式,所述负极活性物质层中各组分的质量百分含量为:80~99.8wt%的负极活性物质、0.1~10wt%的导电剂、0.1~10wt%的粘结剂。
优选地,所述负极活性物质层中各组分的质量百分含量为:90~99.6wt%的负极活性物质、0.2~5wt%的导电剂、0.2~5wt%的粘结剂。
根据本公开的实施方式,所述负极活性物质选自人造石墨、天然石墨、中间相碳微球、硬碳、软碳、纳米硅、硅氧化物、硅碳化物中的至少一种。
根据本公开的实施方式,所述正极活性材料选自过渡金属锂氧化物、磷酸铁锂、锰酸锂中的一种或几种;所述过渡金属锂氧化物的化学式为Li1+xNiyCozM(1-y-z)O2,其中,-0.1≤x≤1;0≤y≤1,0≤z≤1,且0≤y+z≤1;其中,M为Mg、Zn、Ga、Ba、Al、Fe、Cr、Sn、V、Mn、Sc、Ti、Nb、Mo、Zr中的一种或几种。
根据本公开的实施方式,所述导电剂选自导电炭黑、乙炔黑、科琴黑、导电石墨、导电碳纤维、碳纳米管、金属粉中的至少一种。
根据本公开的实施方式,所述粘结剂选自羧甲基纤维素钠、丁苯胶乳、聚 四氟乙烯、聚氧化乙烯中的至少一种。
本公开的有益效果:
本公开提供了一种电解液及包括该电解液的锂离子电池,所述电解液中的第一添加剂为含有磺酸基的不饱和环状化合物,其中的磺酸基可以在负极表面形成烷基磺酸锂RSO3Li,为SEI膜增加了离子导电性,同时第一添加剂中的不饱和键可以在正极表面发生聚合反应,形成一层保护膜,降低电解液在正极表面的氧化速率,减少自放电;多腈化合物中含有的腈基官能团是一种具有较高偶极距的吸电子基团,其与Co3+的结合能较低,更易在正极表面富集并进行络合,有效的抑制金属离子的溶解以及电解液的进一步氧化分解,所述第二添加剂还可以与第一添加剂形成聚合网状结构,共同作用在正极表面,从而减少正极和电解液的副反应。且当电解液的第一添加剂和第二添加剂的含量满足关系式:0.7≤2A/(A+B)≤1时,二者能够达到最佳的保护效果,形成的界面膜能够阻隔电解液和正负极界面接触,防止电解液被氧化分解产气,进而防止电池鼓胀导致气体增多,降低电池破裂的风险,最终能够达到有效的阻隔作用,显著提升电池的安全性能。
具体实施方式
下文将结合具体实施例对本公开做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本公开,而不应被解释为对本公开保护范围的限制。凡基于本公开上述内容所实现的技术均涵盖在本公开旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
实施例1~14对比例1~2的锂离子电池通过以下步骤制备得到:
1)正极片制备
将正极活性材料钴酸锂(LiCoO2)、聚偏氟乙烯(PVDF)、SP(super P)和碳纳米管(CNT)按照96:2:1.5:0.5的质量比进行混合,加入N-甲基吡咯烷酮 (NMP),在真空搅拌机作用下搅拌,直至混合体系成均一流动性的正极活性浆料;将正极活性浆料均匀涂覆于铝箔的两个表面;将涂覆好的铝箔烘干,然后经过辊压、分切得到所需的正极片。
2)负极片制备
将负极活性材料人造石墨、氧化亚硅、羧甲基纤维素钠(CMC-Na)、丁苯橡胶、导电炭黑(SP)和单壁碳纳米管(SWCNTs)按照质量比79.5:15:2.5:1.5:1:0.5进行混合,加入去离子水,在真空搅拌机作用下获得负极活性浆料;将负极活性浆料均匀涂覆在铜箔的两个表面;将涂覆好的铜箔在室温下晾干,随后转移至80℃烘箱干燥10h,然后经过冷压、分切得到负极片。
3)电解液的制备
在充满氩气的手套箱中(H2O<0.1ppm,O2<0.1ppm),将EC/PC/DEC/PP按照10/20/10/60的质量比混合均匀,然后往其中快速加入1mol/L的充分干燥的六氟磷酸锂(LiPF6),溶解后加入基于电解液总质量10wt%的氟代碳酸乙烯酯、以及如表1所示的第一添加剂(式(II)所示化合物)和第二添加剂(等质量的ADN和HTCN),混合均匀后制备得到所述电解液。
4)锂离子电池的制备
将步骤1)的正极片、步骤2)的负极片和隔离膜按照正极片、隔离膜和负极片的顺序层叠设置后,再进行卷绕得到电芯;将电芯置于外包装铝箔中,将步骤3)的电解液注入外包装中,经过真空封装、静置、化成、整形、分选等工序,获得锂离子电池。本公开电池充放电范围为3.0-4.5V。
实施例14,参照实施例1,以等量的第一添加剂(结构如式V所示)替代式(II)所示第一添加剂。
对实施例和对比例获得的锂离子电池分别进行如下性能测试:
1)45℃高温循环性能测试
将分容完的电芯在45℃下按照1C的倍率在充放电截止电压范围内进行充放电循环800周,测试第1周的放电容量计为x1mAh,第N圈的放电容量计为y1 mAh;第N周的容量除以第1周的容量,得到第N周的循环容量保持率R1=y1/x1。
2)85℃高温存储测试
先将化成分容后的电池静置10min,然后0.2C放3V,静置10min,再0.5C充满电,截止0.05C,静置10min。测试25±5℃测试满电状态电压、内阻、厚度,将电池满电置于85℃烤箱内8小时后,取出热态电池测试电压、内阻、厚度,并做容量保持和恢复测试。
3)安全性能测试:
将分容完的电芯0.5C充电至上限截至电压,恒压到0.05C,在环境温度25℃±5℃下,把完全充电的样品放在热冲击试验箱里,然后以15℃±2℃/min的速率升至140℃±2℃,并保持此温度42min后试验结束,观察电池是否起火、爆炸,如不起火,也不爆炸,安全性能表示为“安全”,用OK表示;如只起火,表示为“起火”,如只爆炸,表示为“爆炸”,如既有起火,又有爆炸,安全性能表示为“起火爆炸”,均用NG表示不通过测试。
表1实施例和对比例的锂离子电池中电解液添加剂的组成以及测试结果
由表1的结果可以看出,当第一添加剂的含量A和第二添加剂的含量B满足0.7≤2A/(A+B)≤1时,能够很好地发挥两种添加剂的协同作用,显著提升电池的高温性能和在高温下的安全性能。而当2A/(A+B)<0.7时,第一添加剂含量过少,对负极保护不足,导致电池的高温性能和在高温下的安全性能明显变差;而当2A/(A+B)>1时,第一添加剂含量过多,对负极阻抗的影响较大,兼容性不好,导致电池的高温性能和在高温下的安全性能明显变差。
而对比例1和2中不加入第一添加剂或不加入第二添加剂,导致电池的高温性能和在高温下的安全性能也明显变差,比所有实施例提供的电池性能都差。
以上,对本公开的实施方式进行了说明。但是,本公开不限定于上述实施方式。凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种电解液,其特征在于,所述电解液包括有机溶剂、电解质锂盐以及功能添加剂,所述功能添加剂包括第一添加剂和第二添加剂;所述第一添加剂选自含有磺酸基的不饱和环状化合物,所述第二添加剂选自多腈化合物。
  2. 根据权利要求1所述的电解液,其特征在于,所述第一添加剂的质量占电解液总质量的百分含量为0.1wt%~5.0wt%;
    和/或,所述第二添加剂的质量占电解液总质量的百分含量为1wt%~5.5wt%。
  3. 根据权利要求1或2所述的电解液,其特征在于,所述电解液满足如下关系式:
    0.7≤2A/(A+B)≤1
    其中,A为第一添加剂的质量占电解液总质量的百分含量,B为第二添加剂的质量占电解液总质量的百分含量。
  4. 根据权利要求1-3任一项所述的电解液,其特征在于,所述含有磺酸基的不饱和环状化合物为含有磺酸基(-SO3-)和不饱和双键(-C=C-)的环状环合物,且磺酸基中的-S-O-键和不饱和双键相连,并参与成环。
  5. 根据权利要求1-4任一项所述的电解液,其特征在于,所述第一添加剂选自式(1)所示化合物中的至少一种:
    所述通式(1)中,R1、R2、R3、R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的烷基、取代或未取代的烯基、取代或未取代的炔基、取代或未取代的环烷基、取代或未取代的芳基;若为取代时,取代基为烷基、 卤素。
  6. 根据权利要求5所述的电解液,其特征在于,R1、R2、R3、R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-20烷基、取代或未取代的C2-20烯基、取代或未取代的C2-20炔基、取代或未取代的C3-20环烷基、取代或未取代的C6-20芳基;若为取代时,取代基为C1-20烷基、卤素。
  7. 根据权利要求5或6所述的电解液,其特征在于,优选地,R1、R2、R3、R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-12烷基、取代或未取代的C2-12烯基、取代或未取代的C2-12炔基、取代或未取代的C3-12环烷基、取代或未取代的C6-12芳基;若为取代时,取代基为C1-12烷基、卤素;
    优选地,R1、R2、R3、R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-6烷基、取代或未取代的C2-6烯基、取代或未取代的C2-6炔基、取代或未取代的C3-6环烷基、取代或未取代的C6-10芳基;若为取代时,取代基为C1-6烷基、卤素。
  8. 根据权利要求5-7任一项所述的电解液,其特征在于,R1、R2、R3、R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-3烷基、取代或未取代的C2-3烯基、取代或未取代的C2-3炔基、取代或未取代的C3-4环烷基、取代或未取代的C6-8芳基;若为取代时,取代基为C1-3烷基、卤素;
    R1、R2、R3、R4、R5、R6相同或不同,彼此独立地选自氢、卤素、取代或未取代的C1-2烷基、取代或未取代的C2-3烯基、取代或未取代的苯基;若为取代时,取代基为C1-3烷基、卤素。
  9. 根据权利要求5-8任一项所述的电解液,其特征在于,所述第一添加剂选自式(I)-式(VIII)所示化合物中的至少一种:
  10. 根据权利要求1-9任一项所述的电解液,其特征在于,所述多腈化合物选自式II-1所示的二腈类化合物、式II-2所示的三腈类化合物和式II-3所示的四腈类化合物中的至少一种:
    其中,R21是至少具有2个取代位置的碳原子数为1-10的基团;R22是至少具有3个取代位置的碳原子数为1-10的基团;R23是至少具有4个取代位置的碳原子数为1-10的基团。
  11. 根据权利要求10所述的电解液,其特征在于,所述碳原子数为1-10的基团选自取代或未取代的C1-10烷基、取代或未取代的C1-10烷氧基、取代或未取代的C2-10烯基、取代或未取代的C1-10烷基-O-C1-10烷基、取代或未取代的C1-10烷基 -C(O)-C1-10烷基、取代或未取代的C4-10杂芳基、取代或未取代的C4-10杂环基、取代或未取代的C6-10芳基,取代基为卤素、取代或未取代的C1-10烷基。
  12. 根据权利要求10或11所述的电解液,其特征在于,所述式II-1所示的二腈类化合物选自如下化合物中的至少一种:丁二腈、戊二腈、已二腈、癸二腈、壬二腈、二氰基苯、对苯二腈、吡啶-3,4-二腈、2,5-二氰基吡啶、2,2,3,3‐四氟丁二腈、四氟对苯二腈、4‐四氢噻喃亚甲基丙二腈、反丁烯二腈、乙二醇双丙腈醚和1,4,5,6‐四氢‐5,6‐二氧‐2,3‐吡嗪二甲腈;
    和/或,所述式II-2所示的三腈类化合物选自如下化合物中的至少一种:1,3,6-己烷三腈、1,3,5-环己烷三腈、1,3,5-苯三氰、1,2,3-丙三甲腈、甘油三腈;
    和/或,所述式II-3所示的四腈类化合物选自如下化合物中的至少一种:1,1,3,3-丙四甲腈、1,2,2,3-四氰基丙烷、1,2,4,5-四氰基苯、2,3,5,6-吡嗪四腈、3-甲基-3-丙基-环丙烷-1,1,2,2-四甲腈、7,7,8,8-四氰基对苯二醌二甲烷、四氰基乙烯、1,1,2,2,-四(乙氧基氰基)乙烷、3‐甲基‐3‐丙基‐环丙烷‐1,1,2,2‐四甲腈。
  13. 根据权利要求1-12任一项所述的电解液,其特征在于,所述电解液还包括第三添加剂,所述第三添加剂选自氟代碳酸乙烯酯、硫酸乙烯酯、1,3-丙烯磺酸内酯、二氟草酸硼酸锂、二氟磷酸锂、二氟二草酸磷酸锂中的至少一种;
    优选地,所述第三添加剂的加入量为所述电解液总重量的10wt%~15wt%。
  14. 根据权利要求1-13任一项所述的电解液,其特征在于,所述电解质锂盐选自六氟磷酸锂、二氟磷酸锂、二氟草酸硼酸锂、双三氟甲基磺酰亚胺锂、二氟双草酸磷酸锂、四氟硼酸锂、双草酸硼酸锂、六氟锑酸锂、六氟砷酸锂、二(三氟甲基磺酰)亚胺锂、二(五氟乙基磺酰)亚胺锂、三(三氟甲基磺酰)甲基锂或二(三氟甲基磺酰)亚胺锂中的一种或两种以上;
    和/或,所述有机溶剂选自碳酸酯和/或羧酸酯,所述碳酸酯选自氟代或未取代的下述溶剂中的一种或几种:碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯;所述羧酸酯选自氟代或未取代的下述溶剂中的一种或几种:乙酸丙酯、乙酸正丁酯、乙酸异丁酯、乙酸正戊酯、乙酸异戊酯、丙酸丙 酯、丙酸乙酯、丁酸甲酯、正丁酸乙酯。
  15. 一种电池,所述电池包括权利要求1-14任一项所述的电解液。
PCT/CN2023/123415 2022-10-18 2023-10-08 一种电解液及包括该电解液的电池 WO2024082979A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211275776.5A CN115832433A (zh) 2022-10-18 2022-10-18 一种电解液及包括该电解液的电池
CN202211275776.5 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024082979A1 true WO2024082979A1 (zh) 2024-04-25

Family

ID=85524945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123415 WO2024082979A1 (zh) 2022-10-18 2023-10-08 一种电解液及包括该电解液的电池

Country Status (2)

Country Link
CN (1) CN115832433A (zh)
WO (1) WO2024082979A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115832433A (zh) * 2022-10-18 2023-03-21 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329528A (ja) * 2001-03-01 2002-11-15 Mitsui Chemicals Inc 非水電解液、それを用いた二次電池、および電解液用添加剤
KR20090039196A (ko) * 2007-10-17 2009-04-22 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 함유한 리튬이차전지
CN101853965A (zh) * 2009-04-01 2010-10-06 三星Sdi株式会社 用于可充电锂电池的电解液及可充电锂电池
CN102017270A (zh) * 2008-04-25 2011-04-13 株式会社Lg化学 锂二次电池用非水电解质溶液和含有该非水电解质溶液的锂二次电池
CN115832433A (zh) * 2022-10-18 2023-03-21 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329528A (ja) * 2001-03-01 2002-11-15 Mitsui Chemicals Inc 非水電解液、それを用いた二次電池、および電解液用添加剤
KR20090039196A (ko) * 2007-10-17 2009-04-22 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 함유한 리튬이차전지
CN102017270A (zh) * 2008-04-25 2011-04-13 株式会社Lg化学 锂二次电池用非水电解质溶液和含有该非水电解质溶液的锂二次电池
CN101853965A (zh) * 2009-04-01 2010-10-06 三星Sdi株式会社 用于可充电锂电池的电解液及可充电锂电池
CN115832433A (zh) * 2022-10-18 2023-03-21 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的电池

Also Published As

Publication number Publication date
CN115832433A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
JP5525599B2 (ja) 二次電池用非水電解質およびそれを用いた非水電解質二次電池
US20220109191A1 (en) Non-aqueous electrolyte for a lithium ion battery and lithium ion battery
CN109428078B (zh) 一种电池
CN110970662B (zh) 非水电解液及锂离子电池
CN110911748B (zh) 一种锂二次电池电解液和锂二次电池
WO2021238052A1 (zh) 一种锂离子二次电池的电解液及其应用
WO2024082979A1 (zh) 一种电解液及包括该电解液的电池
WO2024066447A1 (zh) 一种电解液和电池
WO2024078357A1 (zh) 一种电解液及包括该电解液的电池
CN109119599B (zh) 一种二次电池及其制备方法
WO2024099377A1 (zh) 一种电解液及包括该电解液的电池
CN110970664A (zh) 非水电解液及锂离子电池
CN112271335A (zh) 一种适用于高镍正极材料的锂离子电池的电解液和锂离子电池
WO2024041150A1 (zh) 一种电解液及包括该电解液的电池
CN109119631B (zh) 一种二次电池
WO2023216928A1 (zh) 一种电池
CN116130764A (zh) 一种电解液和电池
CN114520371B (zh) 一种非水电解液及包含其的锂离子电池
US11502300B1 (en) Secondary battery
CN110970660A (zh) 非水电解液及锂离子电池
CN110970663A (zh) 非水电解液及锂离子电池
CN110970659B (zh) 非水电解液及锂离子电池
CN109309230B (zh) 一种二次电池极片,其制备方法及使用该极片的二次电池
CN110970652A (zh) 非水电解液及锂离子电池
CN110970658B (zh) 锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878971

Country of ref document: EP

Kind code of ref document: A1