WO2024078323A1 - 一种混合动力装置及混合动力系统 - Google Patents

一种混合动力装置及混合动力系统 Download PDF

Info

Publication number
WO2024078323A1
WO2024078323A1 PCT/CN2023/121444 CN2023121444W WO2024078323A1 WO 2024078323 A1 WO2024078323 A1 WO 2024078323A1 CN 2023121444 W CN2023121444 W CN 2023121444W WO 2024078323 A1 WO2024078323 A1 WO 2024078323A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
power
generator
terminal
hybrid power
Prior art date
Application number
PCT/CN2023/121444
Other languages
English (en)
French (fr)
Inventor
谢志清
满兴家
叶年业
李坚
吕俊成
Original Assignee
上汽通用五菱汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上汽通用五菱汽车股份有限公司 filed Critical 上汽通用五菱汽车股份有限公司
Publication of WO2024078323A1 publication Critical patent/WO2024078323A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to the field of hybrid vehicles, and in particular to a hybrid power device and a hybrid power system.
  • Hybrid power is a combination of traditional fuel power and pure electric power.
  • the hybrid power device combines the engine and the electric motor together. Therefore, hybrid power has the advantages of long cruising range of traditional fuel vehicles and fast power response and green low consumption of electric vehicles.
  • Existing hybrid powertrains have different systems and structures such as planetary gears, concentric shafts, parallel shafts, and different technical routes such as HEV and PHEV.
  • the existing technology has the following shortcomings: the planetary gear or concentric shaft system has a complex structure, is difficult to manufacture, complex to control, and has high cost; the power of the HEV power battery of about 1.3Kwh is too small, and the power generation system needs to provide a higher charging power; PHEV uses a large-capacity power battery, which will lead to excessive costs; at the same time, the connection method between the battery pack pole and the wire of the hybrid vehicle in the existing technology adopts a threaded connection, which is easy to loosen and fall off during the driving of the vehicle, resulting in a sudden loss of power in the vehicle, and the disassembly and assembly are cumbersome when replacing the battery.
  • the technical problem to be solved by the present invention is that the planetary gear or concentric shaft system has a complex structure, is difficult to manufacture, complex to control, and has a high cost; at the same time, in the prior art, the connection between the battery pack pole and the wire of the hybrid vehicle adopts a threaded connection, which is easy to loosen and fall off during the driving of the vehicle, causing the vehicle to suddenly lose power, and the disassembly and assembly are cumbersome when replacing the battery.
  • a hybrid power device comprises:
  • a hybrid powertrain comprising an engine, a shock absorber connected to the engine, a coupler connected to the shock absorber, a generator connected to the coupler, and a drive motor connected to the generator;
  • a power battery storing energy of the generator and the drive motor
  • the motor controller receives energy from the generator, drive motor, and power battery and distributes it.
  • the hybrid power device and hybrid power system of the present invention also includes low-voltage electrical appliances and high-voltage electrical appliances, and the low-voltage electrical appliances and high-voltage electrical appliances are connected to the motor controller. connect;
  • the hybrid power device and hybrid power system of the present invention further comprises a connecting assembly, the connecting assembly comprises a terminal head connected to the terminal post, a wire hole is provided in the terminal head, a conductive block is provided in the wire hole, the conductive block is connected to a wire, and the wire is introduced into the wire hole from the outside; a first spring is provided between the conductive block and an end of the wire hole away from the terminal post;
  • a guide groove is axially arranged on the side surface of one end of the wire hole close to the terminal, and a radial slide groove is arranged on one end of the guide groove located in the wire hole;
  • a through groove is radially penetrated at the end of the copper column, two sliders are symmetrically arranged in the through groove, a limiting groove is arranged in the through groove, a stopper is arranged on the part of the slider located in the limiting groove, and a second spring is arranged between the two stoppers;
  • An annular groove is arranged at one end of the terminal head close to the copper column, and the annular groove intersects with the slide groove;
  • a moving block is arranged in the slide groove, and a slope is arranged at one end of the moving block located in the annular groove;
  • the side of the slide slot is provided with a long slot
  • the side of the moving block is provided with a convex block located in the long slot
  • a third spring is provided between the convex block and one end of the long slot close to the center of the wire hole
  • the distance between the end face of the terminal head and the end face of the annular groove is greater than the axial length of the guide groove
  • the outer periphery of the terminal is provided with an annular groove
  • the outer sleeve of the terminal is provided with a reset ring
  • the reset ring is provided with a limiting boss embedded in the annular groove
  • a fourth spring is provided between the limiting boss and an end surface of the annular groove away from the terminal head;
  • the terminal head is provided with a U-shaped groove, both ends of the U-shaped groove are arranged radially along the terminal head, the middle section of the U-shaped groove extends axially along the terminal head, one end opening of the U-shaped groove intersects with the annular groove, and the other end opening of the U-shaped groove passes through to the outside of the terminal head, a U-shaped rod is arranged in the U-shaped groove, and a fifth spring is arranged between the part of the U-shaped rod located in the middle section of the U-shaped groove and the end face of the U-shaped groove close to the center of the terminal head.
  • the technical problems to be solved by the present invention also include that the power of the HEV power battery of about .K in the prior art is too small, and the power generation system needs to provide a higher charging power; the PHEV uses a large-capacity power battery, which will lead to excessively high costs.
  • a hybrid power system the power source of the hybrid power device includes the following modes: simultaneous power supply from the engine and the generator, power supply from the power battery alone, and power supply from the braking energy recovery of the drive motor.
  • the power source is a power battery
  • the following energy conversion and transmission paths are included:
  • the power source is the braking energy recovery of the drive motor
  • the following energy conversion and transmission paths are included:
  • the hybrid power system includes the following modes: pure electric mode, series mode, parallel mode, brake energy recovery mode, and extended mode.
  • the series mode includes: series power generation, series charging, series driving, and series power assist.
  • the parallel mode includes: parallel driving, parallel charging, and parallel assist.
  • the extended modes include: pure electric drive, series drive, series power generation, series power assist, and brake energy recovery.
  • the beneficial effects of the present invention are as follows: by adopting a large-capacity, high-discharge power power battery to achieve a discharge power of 70Kw, and superimposing a system power generation power of 70Kw, the power requirement of the drive motor of 130Kw is met, thereby achieving the optimal matching of the system performance; the design of a split hybrid power device is realized, and a frame-shaped closed reinforced structure is adopted.
  • the overall technical solution is simple and reliable, while meeting the high reliability of the system, the overall cost of the system is reduced, and the difficulty and cost of after-sales maintenance can be effectively reduced.
  • the hybrid power system designed by this patent realizes the flexible application of energy conversion and transmission paths through the reasonable design and matching of the power battery system and the motor controller, and at the same time realizes the optimal design of energy matching; the poles of the power battery are connected to the wires using connecting components, and the connection is stable and not easy to fall off, and installation and disassembly are Convenient.
  • FIG1 is a schematic diagram of a hybrid power device according to an embodiment of the present invention.
  • FIG2 is a schematic diagram of a hybrid power device according to an embodiment of the present invention, in which electric power comes from an engine + a generator;
  • FIG3 is a schematic diagram showing a hybrid power device according to an embodiment of the present invention, in which power is derived from a power battery;
  • FIG4 is a schematic diagram of a hybrid power device according to an embodiment of the present invention, in which electric power is derived from braking energy recovery of a driving motor;
  • FIG5 is a schematic structural diagram of a hybrid power assembly in a hybrid power device according to an embodiment of the present invention.
  • FIG6 is an exploded schematic diagram of a hybrid power assembly in a hybrid power device according to an embodiment of the present invention.
  • FIG7 is a schematic diagram of a pure electric mode energy transfer path in a hybrid power system according to an embodiment of the present invention.
  • FIGS. 8 and 9 are schematic diagrams of energy transfer paths in a series mode in a hybrid power system according to an embodiment of the present invention.
  • FIGS. 10 and 11 are schematic diagrams of energy transfer paths in a parallel mode in a hybrid power system according to an embodiment of the present invention.
  • FIG12 is a schematic diagram of a series structure and energy transfer path in a hybrid power system according to an embodiment of the present invention.
  • FIG13 is a schematic diagram of an energy transfer path in a braking energy recovery mode in a hybrid power system according to an embodiment of the present invention.
  • FIG14 is a schematic diagram of a speed ratio scheme in a hybrid power system according to an embodiment of the present invention.
  • FIG15 is a schematic diagram of a power battery in a hybrid power device according to an embodiment of the present invention.
  • FIG16 is a schematic diagram of a power battery and a connection assembly in a hybrid power device according to an embodiment of the present invention.
  • FIG17 is a schematic diagram of a power battery and a connection assembly in a hybrid power device according to an embodiment of the present invention.
  • FIG18 is a cross-sectional schematic diagram of the hybrid power device of FIG17 according to an embodiment of the present invention.
  • FIG19 is a schematic diagram of a hybrid power device according to an embodiment of the present invention when a power battery is separated from a connection assembly;
  • FIG. 20 is a cross-sectional schematic diagram of the hybrid power device of FIG. 19 according to an embodiment of the present invention.
  • one embodiment or “embodiment” as used herein refers to a specific feature, structure, or characteristic that may be included in at least one implementation of the present invention.
  • the term “in one embodiment” that appears in different places in this specification does not necessarily refer to the same embodiment, nor does it refer to a separate or selective embodiment that is mutually exclusive with other embodiments.
  • the present embodiment provides a hybrid power device, including a hybrid power assembly 100 , including an engine 101 , a shock absorber 102 connected to the engine 101 , a coupler 103 connected to the shock absorber 102 , a generator 104 connected to the coupler 103 , and a drive motor 105 connected to the generator 104 ;
  • the power battery adopts 1.8Kwh or 2.1Kwh power type battery, 35C discharge rate, which can provide peak power of 70Kw;
  • the motor controller 300 receives energy from the generator 104, the drive motor 105, and the power battery 200 and distributes power.
  • the motor controller is an integrated dual-motor controller that integrates the functions of the generator controller, the drive motor controller, and the distribution box to achieve the conversion and transmission of electrical energy.
  • low-voltage electrical appliances and high-voltage electrical appliances are also included, and both low-voltage electrical appliances and high-voltage electrical appliances are connected to the motor controller 300.
  • the engine 101 is provided with a starter motor 101a, and the coupler 103 is connected to a clutch controller 106.
  • the energy conversion and transmission path includes:
  • Generator ⁇ motor controller ⁇ high-voltage electrical appliances, such as high-voltage air conditioners (path a2);
  • the energy conversion and transmission path includes:
  • Power battery ⁇ motor controller ⁇ high-voltage electrical appliances (path b1);
  • the energy conversion and transmission path is drive motor ⁇ motor controller ⁇ power battery (path c, d); the above energy sources and outputs can be superimposed according to different scenarios.
  • a fixed bracket 107 is provided between the generator 104 and the drive motor 105; the structure is strengthened and the system mode is improved. After adding the fixed bracket, the system mode is improved by about 30%; the fixed bracket is a two-section structure, and the outer ends of the two sections of the bracket are respectively connected to the generator and the drive motor, and the inner ends of the two sections of the bracket are fastened by bolts, so that the hybrid powertrain as a whole forms a frame-shaped closed-loop structure, and the frame-shaped closed-loop structure improves the overall reliability of the hybrid powertrain.
  • the hybrid powertrain is split, and each sub-component of the hybrid powertrain is an independent assembly, which is physically integrated by bolt connection and adding a sealing structure.
  • the vibration damper of the hybrid powertrain of the new technology can adopt a torsional vibration damper and a dual-mass flywheel, etc.
  • the use of a torsional vibration damper has good reliability.
  • the hybrid powertrain of the new technology is equipped with an engine starter motor, which can start at low voltage and provide backup power for engine starting in extreme cold and other scenarios, thus improving system reliability.
  • the engine is a hybrid-specific engine that adopts the Atkinson cycle, with high thermal efficiency and the best high-efficiency zone.
  • the calibration of the high-efficiency zone has good hybrid applicability and can achieve the best fuel economy.
  • the coupler has three open end faces, which are respectively connected to the engine, generator and drive motor.
  • the coupler of the present invention adopts a six-parallel-axis structure.
  • the application of the new six-parallel-axis structure technology can reduce the axial size of the coupler and make the structure more compact.
  • the coupler of the new technology is equipped with a clutch system.
  • the clutch system adopts a tooth-embedded structure.
  • the clutch system of the tooth-embedded structure has high control accuracy and high transmission efficiency.
  • the slip-grinding clutch system is a traditional hydraulic type. When the clutch system of the tooth-embedded structure is adopted, the clutch is controlled by an independent control unit. When the slip-grinding clutch is adopted, the clutch is controlled by the vehicle controller.
  • the power source of the hybrid power device includes the following modes: the engine 101 and the generator 104 supply power simultaneously, the power battery 200 supplies power alone, and the driving motor 105 supplies power through braking energy recovery.
  • the energy conversion and transmission paths include the following:
  • the power source is the power battery 200
  • the following energy conversion and transmission paths are included:
  • the power source is the braking energy recovery of the drive motor 105
  • the following energy conversion and transmission paths are included:
  • the hybrid power system includes the following modes: the series-parallel function is realized through the gear shaft system of the coupler, which can realize pure electric mode, series mode, parallel mode, brake energy recovery mode, and extended mode.
  • the energy transfer path in pure electric mode is: power battery-motor controller-drive motor-wheel.
  • the coupler can achieve the expansion of the architecture of the hybrid power device by eliminating the clutch system, from a series-parallel structure to a series structure. After the expansion to the series structure, the system has no parallel function, that is, it can only achieve pure electric drive, series drive, series power generation, series power assistance, brake energy recovery, etc.
  • the energy transmission path is the motor controller 300-drive motor 105-wheel.
  • the series modes include: series power generation, series charging, series driving, and series assist.
  • the generator 104 when the energy transfer path of the series mode is series power generation (path e), the generator 104 generates electricity to the motor controller 300; when the energy transfer path of the series mode is series charging (path e1), it is from the motor controller 300 to the power battery 200; when the energy transfer path of the series mode is series drive (path e2), the motor controller 300 drives the drive motor 105, and the drive motor 105 drives the wheels; when the energy transfer path of the series mode is series assist (path e3), the power battery 200 is to the motor controller 300, and then to the drive motor 105.
  • path e1 when the energy transfer path of the series mode is series charging (path e1), it is from the motor controller 300 to the power battery 200; when the energy transfer path of the series mode is series drive (path e2), the motor controller 300 drives the drive motor 105, and the drive motor 105 drives the wheels; when the energy transfer path of the series mode is series assist (path e3), the power battery 200 is to the motor controller 300, and then to the drive motor
  • the parallel mode includes: parallel drive, parallel charging, and parallel power assist.
  • the parallel mode when the energy transfer path is parallel drive (path g), the engine 101 partially drives the wheels directly. If the engine 101 has excess power, that is, parallel charging, the engine 101 drives the generator 104, and the generator 104 charges the power battery 200; if the engine 101 is insufficiently powered, the power battery 200 discharges to allow the drive motor 105 to drive the drive wheels, that is, parallel power assist (path h).
  • the extended modes include: pure electric drive, series drive, series power generation, series power assist, and brake energy recovery.
  • the pure electric drive is powered by the power battery 200 alone, and the energy transfer path is power battery 200-motor controller 300-drive motor 105-wheel (path i); the energy transfer path of the series drive is generator 104-motor controller 300-drive motor 105-wheel; when the pure electric drive is combined with the series drive in the extended mode, it is a series power assist; in addition, when the wheel is braked, referring to Figures 12 and 13, the energy of the wheel is recovered to the power battery 200 through the drive motor 105 and the motor controller 300 (path j).
  • the hybrid system achieves comprehensive optimization of power, economy and system NVH through the optimized design of speed ratio.
  • the speed ratio scheme is shown in the figure, the power generation speed ratio is G1, the engine direct drive speed ratio is G2*G3, and the drive motor drive speed ratio is G4*G5;
  • the speed ratio scheme of the present invention is: Scheme 1: power generation speed ratio 0.392, engine direct drive speed ratio 3.128, drive motor drive speed ratio 10.128; Scheme 2: power generation speed ratio 0.344, engine direct drive speed ratio 3.106, drive motor drive speed ratio 10.459, the matching engine maximum speed is 5600rpm, the generator and drive motor maximum speed is 12000rpm; through the optimization design of the speed ratio, the actual operating speed of the engine is optimized to about (4100 ⁇ 4700) rpm, the system can provide about 70Kw of charging power while achieving the improvement of system NVH performance.
  • a third embodiment of the present invention is shown. This embodiment is based on the previous embodiment, and is different from the previous embodiment in that: this embodiment provides a power battery in a hybrid power device,
  • the power battery 200 is provided with a pole 201 , which is the positive and negative poles of the power battery 200 .
  • the pole 201 is connected to a terminal 202 , which is an insulator.
  • a copper column 203 is embedded in the terminal 202 , and one end of the copper column 203 is electrically connected to the pole 201 .
  • the connecting component 400 includes a terminal head 401 connected to the terminal post 202, the terminal head 401 is formed as a rotating body, and a through wire hole 401a is provided in the terminal head 401, and a conductive block 402 is provided in the wire hole 401a, the conductive block 402 is a conductor, the conductive block 402 is connected to the wire, and the wire is introduced into the wire hole 401a from the outside; a first spring 403 is provided between the conductive block 402 and the end of the wire hole 401a away from the terminal post 202; when the terminal head 401 is connected to the copper column 203, under the action of the first spring 403, the connection between the conductive block 402 in the terminal head 401 and the copper column 203 is made more stable.
  • a guide groove 401b is axially arranged on the side surface of one end of the wire hole 401a close to the terminal 202, and two guide grooves 401b are symmetrically arranged.
  • a radial slide groove 401c is arranged at one end of the guide groove 401b located in the wire hole 401a;
  • a radially penetrating through groove 203a is arranged at the end of the copper column 203, and two sliders 204 are symmetrically arranged in the through groove 203a, and a limiting groove 203b is arranged in the through groove 203a, and a stopper 204a is arranged on the part of the slider 204 located in the limiting groove 203b, and a second spring 205 is arranged between the two stoppers 204a; at the same time, a chamfer is arranged at the end of the guide groove 401b to form an inclined surface to facilitate the slider 204 to slide in. Under the action of the second spring 205, the two sliders 204 are
  • An annular groove 401d is provided at one end of the terminal 401 close to the copper column 203, and the annular groove 401d intersects with the slide groove 401c; a moving block 404 is provided in the slide groove 401c, and the moving block 404 slides in the slide groove 401c, and a slope 404a is provided at one end of the moving block 404 located in the annular groove 401d; a long groove 401e is provided on the side of the slide groove 401c, A protrusion 404b located in the long groove 401e is arranged on the side of the moving block 404, and a third spring 405 is arranged between the protrusion 404b and one end of the long groove 401e close to the center of the wire hole 401a; therefore, under the action of the third spring 405, one end of the moving block 404 with the slope 404a is embedded in the annular groove 401d.
  • the distance between the end face of the terminal head 401 and the end face of the annular groove 401d is greater than the axial length of the guide groove 401b.
  • the outer periphery of the terminal 202 is provided with an annular groove 202a
  • the outer cover of the terminal 202 is provided with a reset ring 206
  • the reset ring 206 is provided with a limiting boss 206a embedded in the annular groove 202a
  • a fourth spring 207 is provided between the limiting boss 206a and an end face of the annular groove 202a away from the terminal head 401; under the action of the fourth spring 207, the reset ring 206 is located near the terminal head 401, that is, the fourth spring 207 is in an extended state.
  • the reset ring 206 can be embedded in the annular groove 401d, and contact with the slope 404a to push the moving block 404 to move toward the axis.
  • the moving block 404 moves, the moving block 404 pushes the slider 204 to make it fall off from the slide groove 401c, thereby separating the wire from the battery.
  • the terminal head 401 is provided with a U-shaped groove 401f, the U-shaped groove 401f is U-shaped, the two ends of the U-shaped groove 401f are arranged radially along the terminal head 401, the middle section of the U-shaped groove 401f extends axially along the terminal head 401, one end opening of the U-shaped groove 401f intersects with the annular groove 401d, and the other end opening of the U-shaped groove 401f passes through to the outside of the terminal head 401, and a U-shaped rod 406 is arranged in the U-shaped groove 401f, and a fifth spring 407 is arranged between the part of the U-shaped rod 406 located in the middle section of the U-shaped groove 401f and the end face of the U-shaped groove 401f close to the center of the terminal head 401.
  • one end of the U-shaped rod 406 located at the annular groove 401d extends into the annular groove 401d, so when operating the terminal head 401 to connect the terminal post 202, one end of the U-shaped rod 406 will push the reset ring 206 to prevent it from completely entering the annular groove 401d, so that the reset ring 206 will not contact the slope 404a, and then the slider 204 will be embedded in the slide groove 401c to complete the connection of the wires.
  • the other end of the U-shaped rod 406 is pressed to shrink the U-shaped rod 406 into the U-shaped groove 401f.
  • the reset ring 206 is not restricted and enters the annular groove 401d under the action of the spring, and contacts the slope 404a to push the moving block 404 to move toward the axis.
  • the moving block 404 moves, the moving block 404 pushes the slider 204 to make it fall off the slide groove 401c, thereby separating the wire from the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种混合动力装置及混合动力系统,包括发动机(101)、与发动机(101)连接的减震器(102)、与减震器(102)连接的耦合器(103)、与耦合器(103)连接的发电机(104),与发电机(104)连接的驱动电机(105);动力电池(200),存储发电机(104)、驱动电机(105)的能量;电机控制器(300),接收发电机(104)、驱动电机(105)、动力电池(200)的能量并配电;通过采用大容量高放电功率的动力电池实现70Kw的放电功率,叠加70Kw的系统发电功率,满足驱动电机130Kw的功率需求,从而实现系统效能的最优化匹配;动力电池(200)的极柱(201)采用连接组件(400)与导线进行连接,连接稳固不易脱落,且安装和拆卸方便快捷。

Description

一种混合动力装置及混合动力系统 技术领域
本发明涉及混动汽车领域,尤其是一种混合动力装置及混合动力系统。
背景技术
混合动力是传统燃油动力与纯电动的结合体,混合动力装置将发动机与电动机结合到一起,因此混合动力兼具传统燃油汽车的长续航里程及电动汽车的快速动力响应及绿色低耗的优点。现有混合动力总成有行星排、同心轴、平行轴等不同系统及结构,同时存在HEV、PHEV等不同技术路线。现有技术存在如下不足之处:行星排或同心轴系统结构复杂,制造难度大,控制复杂,成本高;1.3Kwh左右的HEV动力电池功率过小,需发电系统提供更高的充电功率;PHEV采用大容量的动力电池,将导致成本过高;同时,现有技术中混动车型的电池包极柱与导线的连接方式采用螺纹连接,在车辆行驶过程中易松动和脱落导致车辆突然失电,且更换电池时拆装繁琐。
发明内容
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例,在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。
鉴于上述和/或现有技术中所存在的问题,提出了本发明。
因此,本发明所要解决的技术问题是行星排或同心轴系统结构复杂,制造难度大,控制复杂,成本高;同时,现有技术中混动车型的电池包极柱与导线的连接方式采用螺纹连接,在车辆行驶过程中易松动和脱落导致车辆突然失电,且更换电池时拆装繁琐。
为解决上述技术问题,本发明提供如下技术方案:一种混合动力装置包括,
混合动力总成,包括发动机、与所述发动机连接的减震器、与减震器连接的耦合器、与耦合器连接的发电机,与发电机连接的驱动电机;
动力电池,存储所述发电机、驱动电机的能量;
电机控制器,接收发电机、驱动电机、动力电池的能量并配电。
作为本发明所述混合动力装置及混合动力系统的一种优选方案,其中:还包括低压用电器、高压用电器,所述低压用电器、高压用电器均与电机控制器 连接;
作为本发明所述混合动力装置及混合动力系统的一种优选方案,其中:还包括连接组件,所述连接组件包括与所述接线柱连接的接线头,所述接线头内设置有贯穿的导线孔,所述导线孔内设置有导电块,所述导电块连接导线,所述导线从外部引入导线孔内;所述导电块与导线孔远离接线柱的一端之间设置第一弹簧;
所述导线孔靠近接线柱的一端侧面沿轴向设置有导向槽,导向槽位于导线孔内的一端设置有沿径向的滑槽;所述铜柱端部设置有沿径向贯穿的通槽,所述通槽内对称设置有两个滑块,所述通槽内设置有限位槽,所述滑块位于限位槽的部分设置有挡块,两个所述挡块之间设置有第二弹簧;
所述接线头靠近铜柱的一端设置环形槽,所述环形槽与滑槽相贯;
所述滑槽内设置有移动块,所述移动块位于环形槽内的一端设置有坡面;
所述滑槽侧面设置有长槽,所述移动块侧面设置有位于长槽内的凸块,所述凸块与长槽靠近导线孔中心的一端之间设置有第三弹簧;
所述接线头端面与环形槽端面之间的距离大于所述导向槽的轴向长度;
所述接线柱外周设置有环形凹槽,所述接线柱外套设有复位圈,所述复位圈设置有嵌入环形凹槽内的限位凸台,所述限位凸台与环形凹槽远离接线头的一端面之间设置有第四弹簧;
所述接线头设置有U型槽,所述U型槽两端沿接线头径向设置,U型槽的中间段沿接线头轴向延伸,所述U型槽一端开口与环形槽相贯,U型槽另一端开口贯穿至接线头外部,所述U型槽内设置有U形杆,所述U形杆位于U型槽中间段的部分与U型槽靠近接线头中心的端面之间设置有第五弹簧。
其中,本发明要解决的技术问题还包括现有技术中.K左右的HEV动力电池功率过小,需发电系统提供更高的充电功率;PHEV采用大容量的动力电池,将导致成本过高。
为解决上述技术问题,本发明提供如下技术方案:一种混合动力系统:所述混合动力装置电力来源包括如下模式:发动机与发电机同时供电,动力电池单独供电,以及驱动电机的制动能量回收供电。
作为本发明所述混合动力系统的一种优选方案,其中:所述电力来源为发动机与发电机同时供电时,包括如下能量的变换与传输路径:
发电机至电机控制器至驱动电机;
发电机至电机控制器至动力电池;
发电机至电机控制器至DCDC至低压用电器;
发电机至电机控制器至高压用电器。
作为本发明所述混合动力系统的一种优选方案,其中:所述电力来源为动力电池时,包括如下能量的变换与传输路径:
动力电池至电机控制器至发电机;
动力电池至电机控制器至驱动电机;
动力电池至电机控制器至DCDC至低压用电器;
动力电池至电机控制器至高压用电器。
作为本发明所述混合动力系统的一种优选方案,其中:所述电力来源为驱动电机的制动能量回收时,包括如下能量的变换与传输路径:
驱动电机至电机控制器至动力电池。
作为本发明所述混合动力系统的一种优选方案,其中:所述混合动力系统包括如下模式:纯电模式,串联模式,并联模式,制动能量回收模式,拓展模式。
作为本发明所述混合动力系统的一种优选方案,其中:所述串联模式包括:串联发电,串联充电,串联驱动,串联助力。
作为本发明所述混合动力系统的一种优选方案,其中:所述并联模式包括:并联驱动,并联充电,并联助力。
作为本发明所述混合动力系统的一种优选方案,其中:所述拓展模式包括:纯电驱动,串联驱动,串联发电,串联助力,制动能量回收。
本发明的有益效果:通过采用大容量高放电功率的动力电池实现70Kw的放电功率,叠加70Kw的系统发电功率,满足驱动电机130Kw的功率需求,从而实现系统效能的最优化匹配;实现了分体式混合动力装置的设计,同时采用框形封闭式加强结构,总体技术方案简单可靠,在满足系统高可靠性的同时,降低系统总体成本,并可有效降低售后维修保养难度及维修成本。本专利设计的混合动力系统通过对动力电池系统及电机控制器等的合理设计匹配,实现了能量的变换与传输路径的灵活应用,同时实现了能量匹配的最优化设计;动力电池的极柱采用连接组件与导线进行连接,连接稳固不易脱落,且安装和拆卸 方便快捷。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为本发明提供的一种实施例所述的混合动力装置的示意图;
图2为本发明提供的一种实施例所述的混合动力装置中电力来源于发动机+发电机的示意图;
图3为本发明提供的一种实施例所述的混合动力装置中电力来源于动力电池示意图;
图4为本发明提供的一种实施例所述的混合动力装置中电力来源于驱动电机的制动能量回收的示意图;
图5为本发明提供的一种实施例所述的混合动力装置中混合动力总成的结构示意图;
图6为本发明提供的一种实施例所述的混合动力装置中混合动力总成的爆炸示意图;
图7为本发明提供的一种实施例所述的混合动力系统中纯电模式能量传递路径示意图;
图8、9为本发明提供的一种实施例所述的混合动力系统中串联模式能量传递路径示意图;
图10、11为本发明提供的一种实施例所述的混合动力系统中并联模式能量传递路径示意图;
图12为本发明提供的一种实施例所述的混合动力系统中拓展为串联结构与能量传递路径示意图;
图13为本发明提供的一种实施例所述的混合动力系统中制动能量回收模式能量传递路径示意图;
图14为本发明提供的一种实施例所述的混合动力系统中速比方案示意图;
图15为本发明提供的一种实施例所述的混合动力装置中动力电池的示意图;
图16为本发明提供的一种实施例所述的混合动力装置中动力电池与连接组件的示意图;
图17为本发明提供的一种实施例所述的混合动力装置中动力电池与连接组件连接时的示意图;
图18为本发明提供的一种实施例所述的混合动力装置中图17的剖面示意图;
图19为本发明提供的一种实施例所述的混合动力装置中动力电池与连接组件分离时的示意图;
图20为本发明提供的一种实施例所述的混合动力装置中图19的剖面示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
再其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
实施例1
参照图1~6,本实施例提供了一种混合动力装置,包括混合动力总成100,包括发动机101、与发动机101连接的减震器102、与减震器102连接的耦合器103、与耦合器103连接的发电机104,与发电机104连接的驱动电机105;
还包括动力电池200,存储发电机104、驱动电机105的能量。
其中,动力电池采用1.8Kwh或2.1Kwh的功率型电池,35C放电倍率,可提供峰值功率达70Kw;
其中电机控制器300,接收发电机104、驱动电机105、动力电池200的能量并配电。电机控制器为集成式双电机控制器,集成了发电机控制器、驱动电机控制器及配电盒的功能,实现电气能源的变换与传输。
进一步的,还包括低压用电器、高压用电器,低压用电器、高压用电器均与电机控制器300连接。发动机101设置有启动电机101a,耦合器103连接有有离合控制器106。
本实施例中,参照图2,电力来源于发动机+发电机时,能量的变换与传输路径包括:
发电机→电机控制器→驱动电机(路径a1);
发电机→电机控制器→动力电池(路径a3);
发电机→电机控制器→DCDC→低压用电器(路径a4);
发电机→电机控制器→高压用电器,如高压空调(路径a2);
参照图3,电力来源于动力电池时,能量的变换与传输路径包括:
动力电池→电机控制器→发电机(路径b3);
动力电池→电机控制器→驱动电机(路径b2);
动力电池→电机控制器→DCDC→低压用电器(路径b4);
动力电池→电机控制器→高压用电器(路径b1);
参照图4,电力来源于驱动电机的制动能量回收时,能量的变换与传输路径为驱动电机→电机控制器→动力电池(路径c、d);以上能量来源及输出可根据不同场景进行叠加。
进一步的,参照图5~6,发电机104、驱动电机105之间设置有固定支架107;实现结构加强并提升系统模态,添加固定支架后系统模态提升约30%;固定支架为两段式结构,两段支架的外端分别连接发电机与驱动电机,两段支架的内端通过螺栓紧固,从而将混合动力总成整体形成框形闭环结构,框形闭环结构提高了混合动力总成整体可靠性。
应当说明的是,混合动力总成为分体式的,混合动力总成各子部件均为独立总成,通过螺栓连接并添加密封结构实现物理集成。新技术的混合动力总成的减振器可采用扭转减振器及双质量飞轮等,采用扭转减振器具有良好的可靠 性并降低成本;一般混合动力装置的发动机由发电器拖动起动,新技术的混合动力总成带有发动机起动电机,可低压启动,在极寒等场景下为发动机起动提供备份动力,提高系统可靠性;发动机为采用阿特金森循环的混合动力专用发动机,具有高热效率及最优高效区。高效区的标定具有良好的混动适用性,可实现最佳的燃油经济性,耦合器具备3个开口端面,分别与发动机、发电机及驱动电机接合。
本发明的耦合器采用六平行轴结构,六平行轴结构新技术的应用可减小耦合器的轴向尺寸,结构更为紧凑。新技术的耦合器带有离合器系统,离合器系统采用牙嵌式结构,牙嵌式结构的离合器系统控制精度高,传动效率高;滑磨式离合器系统为传统液压式;采用牙嵌式结构的离合器系统时离合器由独立控制单元进行控制;采用滑磨式离合器时离合器由整车控制器进行控制。
实施例2
参照图1~6,为本发明第二个实施例,该实施例基于上一个实施例,且与上一个实施例不同的是:本实施例提供了一种混合动力系统,其中
混合动力装置电力来源包括如下模式:发动机101与发电机104同时供电,动力电池200单独供电,以及驱动电机105的制动能量回收供电。
电力来源为发动机101与发电机104同时供电时,包括如下能量的变换与传输路径:
发电机至电机控制器至驱动电机;
发电机至电机控制器至动力电池;
发电机至电机控制器至DCDC至低压用电器;
发电机至电机控制器至高压用电器。
电力来源为动力电池200时,包括如下能量的变换与传输路径:
动力电池至电机控制器至发电机;
动力电池至电机控制器至驱动电机;
动力电池至电机控制器至DCDC至低压用电器;
动力电池至电机控制器至高压用电器。
电力来源为驱动电机105的制动能量回收时,包括如下能量的变换与传输路径:
驱动电机至电机控制器至动力电池。
混合动力系统包括如下模式:通过耦合器的齿轴系统实现串并联功能,可实现纯电模式,串联模式,并联模式,制动能量回收模式,拓展模式。
参照图7,为纯电模式能量传递路径:动力电池-电机控制器-驱动电机-车轮。
本实施例中,耦合器通过取消离合器系统,可实现混合动力装置的架构拓展,由串并联结构拓展为串联结构。拓展为串联结构之后系统无并联功能,即仅能实现纯电驱动、串联驱动、串联发电、串联助力、制动能量回收等。
其中纯电模式下,只有动力电池200进行供电,能量传输路径为电机控制器300-驱动电机105-车轮。
串联模式包括:串联发电,串联充电,串联驱动,串联助力。
参照图8、9其中串联模式的能量传递路径为串联发电时(路径e),发电机104发电至电机控制器300;串联模式的能量传递路径为串联充电时(路径e1)为电机控制器300至动力电池200;串联模式的能量传递路径为串联驱动(路径e2)时为电机控制器300驱动驱动电机105,驱动电机105驱动车轮;串联模式的能量传递路径为串联助力(路径e3)时,动力电池200至电机控制器300,然后至驱动电机105。
参照图10、11,并联模式包括:并联驱动,并联充电,并联助力。其中并联模式下能量传递路径为并联驱动(路径g)时,发动机101部分直接驱动车轮,若发动机101有多余的动力即并联充电,发动机101驱动发电机104,发电机104给动力电池200充电;若发动机101动力不足,则动力电池200放电使驱动电机105驱动驱动车轮,即并联助力(路径h)。
参照图12,拓展模式包括:纯电驱动,串联驱动,串联发电,串联助力,制动能量回收。其中纯电驱动为动力电池200单独供电,能量传递路径为动力电池200-电机控制器300-驱动电机105-车轮(路径i);串联驱动的能量传递路径为发电机104-电机控制器300-驱动电机105-车轮;当拓展模式中纯电驱动与串联驱动结合时,为串联助力;此外当对车轮进行制动时,参照图12、13,车轮的能量通过驱动电机105、电机控制器300回收至动力电池200(路径j)。
进一步的,参照图14,混合动力系统通过速比的优化设计实现动力性、经济性及系统NVH的综合优化。速比方案如图所示,发电速比为G1,发动机直驱速比为G2*G3,驱动电机驱动速比为G4*G5;
本发明的速比方案为:方案一发电速比0.392、发动机直驱速比3.128、驱动电机驱动速比10.128;方案二发电速比0.344、发动机直驱速比3.106、驱动电机驱动速比10.459,匹配的发动机最高转速为5600rpm,发电机及驱动电机最高转速为12000rpm;通过速比的优化设计将发动机的实际运行转速优化至约(4100~4700)rpm,系统可在提供约70Kw的充电功率的同时,实现系统NVH性能的提升。
实施例3
参照图15~20,为本发明第三个实施例,该实施例基于上一个实施例,且与上一个实施例不同的是:本实施例提供了一种混合动力装置中的动力电池,
其中动力电池200设置有极柱201,极柱201为动力电池200的正负极,极柱201连接有接线柱202,接线柱202为绝缘体,接线柱202内嵌有铜柱203,铜柱203一端与极柱201电性连接。
还包括连接组件400,连接组件400与车辆用电设备的导线连接,其中连接组件400包括与接线柱202连接的接线头401,接线头401为回转体形成,接线头401内设置有贯穿的导线孔401a,导线孔401a内设置有导电块402,导电块402为导体,导电块402连接导线,导线从外部引入导线孔401a内;导电块402与导线孔401a远离接线柱202的一端之间设置第一弹簧403;当接线头401与铜柱203连接时,在第一弹簧403的作用下,使接线头401内的导电块402与铜柱203连接更加稳固。
进一步的,导线孔401a靠近接线柱202的一端侧面沿轴向设置有导向槽401b,导向槽401b对称设置有两个,导向槽401b位于导线孔401a内的一端设置有沿径向的滑槽401c;铜柱203端部设置有沿径向贯穿的通槽203a,通槽203a内对称设置有两个滑块204,通槽203a内设置有限位槽203b,滑块204位于限位槽203b的部分设置有挡块204a,两个挡块204a之间设置有第二弹簧205;同时,导向槽401b的端部设置倒角形成斜面,便于滑块204滑入,在第二弹簧205的作用下,两个滑块204嵌入滑槽401c内,此时导电块402与铜柱203连接。
接线头401靠近铜柱203的一端设置环形槽401d,环形槽401d与滑槽401c相贯;滑槽401c内设置有移动块404,移动块404在滑槽401c内滑动,移动块404位于环形槽401d内的一端设置有坡面404a;滑槽401c侧面设置有长槽401e, 移动块404侧面设置有位于长槽401e内的凸块404b,凸块404b与长槽401e靠近导线孔401a中心的一端之间设置有第三弹簧405;因此在第三弹簧405的作用下,移动块404设置有坡面404a的一端嵌入环形槽401d内。
应当说明的是,接线头401端面与环形槽401d端面之间的距离大于导向槽401b的轴向长度。
进一步的,接线柱202外周设置有环形凹槽202a,接线柱202外套设有复位圈206,复位圈206设置有嵌入环形凹槽202a内的限位凸台206a,限位凸台206a与环形凹槽202a远离接线头401的一端面之间设置有第四弹簧207;在第四弹簧207的作用下,复位圈206处在靠近接线头401的位置,即第四弹簧207处在伸展状态。当接线柱202与接线头401连接时,复位圈206能够嵌入环形槽401d内,并与坡面404a接触推动移动块404使其向轴心处移动,当移动块404移动时,移动块404推动滑块204使其从滑槽401c脱落,进而将导线与电池分离。
其中,接线头401设置有U型槽401f,U型槽401f为U型,U型槽401f两端沿接线头401径向设置,U型槽401f的中间段沿接线头401轴向延伸,U型槽401f一端开口与环形槽401d相贯,U型槽401f另一端开口贯穿至接线头401外部,U型槽401f内设置有U形杆406,U形杆406位于U型槽401f中间段的部分与U型槽401f靠近接线头401中心的端面之间设置有第五弹簧407。因此在第五弹簧407的作用下,U形杆406位于环形槽401d位置的一端伸入环形槽401d内,所以在操作接线头401连接接线柱202时,U形杆406的一端会推动复位圈206不让其完全进入到环形槽401d内,这样复位圈206便不会与坡面404a接触,进而使滑块204嵌入滑槽401c内,完成导线的连接。
本实施例中,当需要拆除导线时,按下U形杆406的另一端,使U形杆406收缩至U型槽401f内,复位圈206不被限制便在弹簧的作用下进入环形槽401d内,并与坡面404a接触推动移动块404使其向轴心处移动,当移动块404移动时,移动块404推动滑块204使其从滑槽401c脱落,进而将导线与电池分离。
应理解的是,在任何实际实施方式的开发过程中,如在任何工程或设计项目中,可做出大量的具体实施方式决定。这样的开发努力可能是复杂的且耗时的,但对于那些得益于此公开内容的普通技术人员来说,不需要过多实验,所 述开发努力将是一个设计、制造和生产的常规工作。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种混合动力装置,其特征在于:包括,
    混合动力总成(100),包括发动机(101)、与所述发动机(101)连接的减震器(102)、与减震器(102)连接的耦合器(103)、与耦合器(103)连接的发电机(104),与发电机(104)连接的驱动电机(105);
    动力电池(200),存储所述发电机(104)、驱动电机(105)的能量;
    电机控制器(300),接收发电机(104)、驱动电机(105)、动力电池(200)的能量并配电;
    动力电池(200)设置有极柱(201),极柱(201)为动力电池(200)的正负极,极柱(201)连接有接线柱(202),接线柱(202)为绝缘体,接线柱(202)内嵌有铜柱(203),铜柱(203)一端与极柱(201)电性连接;
    还包括连接组件(400),连接组件(400)与车辆用电设备的导线连接,其中连接组件(400)包括与接线柱(202)连接的接线头(401),接线头(401)为回转体,接线头(401)内设置有贯穿的导线孔(401a),导线孔(401a)内设置有导电块(402),导电块(402)为导体,导电块(402)连接导线,导线从外部引入导线孔(401a)内;导电块(402)与导线孔(401a)远离接线柱(202)的一端之间设置第一弹簧(403);
    导线孔(401a)靠近接线柱(202)的一端侧面沿轴向设置有导向槽(401b),导向槽(401b)对称设置有两个,导向槽(401b)位于导线孔(401a)内的一端设置有沿径向的滑槽(401c);铜柱(203)端部设置有沿径向贯穿的通槽(203a),通槽(203a)内对称设置有两个滑块(204),通槽(203a)内设置有限位槽(203b),滑块(204)位于限位槽(203b)的部分设置有挡块(204a),两个挡块(204a)之间设置有第二弹簧(205);同时,导向槽(401b)的端部设置倒角形成斜面,便于滑块(204)滑入,在第二弹簧(205)的作用下,两个滑块(204)嵌入滑槽(401c)内,此时导电块(402)与铜柱(203)连接;
    接线头(401)靠近铜柱(203)的一端设置环形槽(401d),环形槽(401d)与滑槽(401c)相贯;滑槽(401c)内设置有移动块(404),移动块(404)在滑槽(401c)内滑动,移动块(404)位于环形槽(401d)内的一端设置有坡面(404a);滑槽(401c)侧面设置有长槽(401e),移动块(404)侧面设置有位于长槽(401e)内的凸块(404b),凸块(404b)与长槽(401e)靠近导线孔(401a)中心的一端之间设置有第三弹簧(405);
    接线头(401)端面与环形槽(401d)端面之间的距离大于导向槽(401b)的轴向长度;
    接线柱(202)外周设置有环形凹槽(202a),接线柱(202)外套设有复位圈(206),复位圈(206)设置有嵌入环形凹槽(202a)内的限位凸台(206a),限位凸台(206a)与环形凹槽(202a)远离接线头(401)的一端面之间设置有第四弹簧(207);在第四弹簧(207)的 作用下,复位圈(206)处在靠近接线头(401)的位置,即第四弹簧(207)处在伸展状态;当接线柱(202)与接线头(401)连接时,复位圈(206)能够嵌入环形槽(401d)内,并与坡面(404a)接触推动移动块(404)使其向轴心处移动,当移动块(404)移动时,移动块(404)推动滑块(204)使其从滑槽(401c)脱落,进而将导线与电池分离;
    接线头(401)设置有U型槽(401f),U型槽(401f)为U型,U型槽(401f)两端沿接线头(401)径向设置,U型槽(401f)的中间段沿接线头(401)轴向延伸,U型槽(401f)一端开口与环形槽(401d)相贯,U型槽(401f)另一端开口贯穿至接线头(401)外部,U型槽(401f)内设置有U形杆(406),U形杆(406)位于U型槽(401f)中间段的部分与U型槽(401f)靠近接线头(401)中心的端面之间设置有第五弹簧(407);因此在第五弹簧(407)的作用下,U形杆(406)位于环形槽(401d)位置的一端伸入环形槽(401d)内,在操作接线头(401)连接接线柱(202)时,U形杆(406)的一端会推动复位圈(206)不让其完全进入到环形槽(401d)内,这样复位圈(206)便不会与坡面(404a)接触,进而使滑块(204)嵌入滑槽(401c)内,完成导线的连接。
  2. 根据权利要求1所述的混合动力装置,其特征在于:还包括低压用电器、高压用电器,所述低压用电器、高压用电器均与电机控制器(300)连接;所述发动机(101)设置有启动电机(101a),所述耦合器(103)连接有有离合控制器(106);所述发电机(104)、驱动电机(105)之间设置有固定支架(107)。
  3. 一种混合动力系统,其特征在于:包括如权利要求2所述的混合动力装置,所述混合动力装置电力来源包括如下模式:发动机(101)与发电机(104)同时供电,动力电池(200)单独供电,以及驱动电机(105)的制动能量回收供电。
  4. 根据权利要求3所述的混合动力系统,其特征在于:所述电力来源为发动机(101)与发电机(104)同时供电时,包括如下能量的变换与传输路径:
    发电机至电机控制器至驱动电机;
    发电机至电机控制器至动力电池;
    发电机至电机控制器至DCDC至低压用电器;
    发电机至电机控制器至高压用电器。
  5. 根据权利要求4所述的混合动力系统,其特征在于:所述电力来源为动力电池(200)时,包括如下能量的变换与传输路径:
    动力电池至电机控制器至发电机;
    动力电池至电机控制器至驱动电机;
    动力电池至电机控制器至DCDC至低压用电器;
    动力电池至电机控制器至高压用电器。
  6. 根据权利要求5所述的混合动力系统,其特征在于:所述电力来源为驱动电机(105)的制动能量回收时,包括如下能量的变换与传输路径:
    驱动电机至电机控制器至动力电池。
  7. 根据权利要求6所述的混合动力系统,其特征在于:所述混合动力系统包括如下模式:纯电模式,串联模式,并联模式,制动能量回收模式,拓展模式。
  8. 根据权利要求7所述的混合动力系统,其特征在于:所述串联模式包括:串联发电,串联充电,串联驱动,串联助力。
  9. 根据权利要求8所述的混合动力系统,其特征在于:所述并联模式包括:并联驱动,并联充电,并联助力。
  10. 根据权利要求7~9任一所述的混合动力系统,其特征在于:所述拓展模式包括:纯电驱动,串联驱动,串联发电,串联助力,制动能量回收。
PCT/CN2023/121444 2022-10-11 2023-09-26 一种混合动力装置及混合动力系统 WO2024078323A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211241192.6A CN115782554B (zh) 2022-10-11 2022-10-11 一种混合动力装置及混合动力系统
CN202211241192.6 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024078323A1 true WO2024078323A1 (zh) 2024-04-18

Family

ID=85432825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121444 WO2024078323A1 (zh) 2022-10-11 2023-09-26 一种混合动力装置及混合动力系统

Country Status (2)

Country Link
CN (1) CN115782554B (zh)
WO (1) WO2024078323A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115782554B (zh) * 2022-10-11 2023-08-29 上汽通用五菱汽车股份有限公司 一种混合动力装置及混合动力系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019024675A1 (zh) * 2017-07-31 2019-02-07 上海蔚来汽车有限公司 插接件、动力电池及新能源车辆
CN209282491U (zh) * 2019-01-30 2019-08-20 胡文林 一种具有防脱落的连接器
JP2021051998A (ja) * 2019-09-20 2021-04-01 タイコエレクトロニクス フランス エスアーエス 締結装置
CN214254906U (zh) * 2020-12-22 2021-09-21 晶学金属有限公司 一种高耐寒航空航天用动力电池组高速连接器
CN113829864A (zh) * 2021-03-02 2021-12-24 比亚迪股份有限公司 混合动力系统、混合动力车辆及其控制方法、整车控制器
WO2022135097A1 (zh) * 2020-12-25 2022-06-30 中国第一汽车股份有限公司 双电机车辆控制方法、装置、设备及存储介质
CN216942663U (zh) * 2022-01-17 2022-07-12 北京汽车股份有限公司 一种两挡专用混合动力变速器及汽车
CN115782554A (zh) * 2022-10-11 2023-03-14 上汽通用五菱汽车股份有限公司 一种混合动力装置及混合动力系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9702008D0 (en) * 1997-01-31 1997-03-19 Lucas Ind Plc Connector for battery terminal post
JP3826575B2 (ja) * 1998-07-29 2006-09-27 マツダ株式会社 ハイブリッド車両の電気モータ配設構造
JP2001177913A (ja) * 1999-12-15 2001-06-29 Takayuki Miyao エンジン・電池ハイブリッド駆動方法
JP3677733B2 (ja) * 2000-04-06 2005-08-03 ジヤトコ株式会社 パラレルハイブリッド車両
JP3862175B2 (ja) * 2003-07-29 2006-12-27 株式会社デンソー 車両用変速装置
CN101786412A (zh) * 2009-12-31 2010-07-28 江苏常隆客车有限公司 同时控制混合动力汽车电机和dc-dc电源的控制系统
JP5372086B2 (ja) * 2011-08-31 2013-12-18 本田技研工業株式会社 車両の制御装置
JP5720893B2 (ja) * 2011-09-01 2015-05-20 三菱自動車工業株式会社 ハイブリット車両の制御装置
CN103802836B (zh) * 2014-01-26 2016-08-17 上汽通用五菱汽车股份有限公司 一种混合动力汽车控制方法
US10259448B2 (en) * 2016-08-17 2019-04-16 GM Global Technology Operations LLC Hybrid vehicle propulsion systems and methods
JP6992074B2 (ja) * 2017-01-23 2022-02-03 シャンハイ ディェンバー ニュー エナジー テクノロジー カンパニー リミテッド 弾性ポール、コンポーネント、高電圧アセンブリ、電気コネクタ及びバッテリ充電ボード
CN109119792B (zh) * 2017-06-23 2020-07-17 上海电巴新能源科技有限公司 电连接装置
CN108382186B (zh) * 2018-02-09 2020-09-22 浙江吉利控股集团有限公司 混联式混合动力系统及车辆工作模式决策方法
CN209159403U (zh) * 2018-10-31 2019-07-26 比亚迪股份有限公司 混合动力驱动系统及车辆
DE102019205050A1 (de) * 2019-04-09 2020-10-15 Audi Ag Buchsenvorrichtung zum berührsicheren elektrischen Kontaktieren einer korrespondierenden Steckervorrichtung, Steckervorrichtung und Batteriemodul für eine Hochvoltbatterie
CN111114283A (zh) * 2019-12-09 2020-05-08 同济大学 一种结合套式组合构型混合动力系统
DE102020208181A1 (de) * 2020-06-30 2021-12-30 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Hybridfahrzeugs während einer Sonderbetriebsfahrt, Steuergerät und Hybridfahrzeug
CN214689007U (zh) * 2021-03-02 2021-11-12 比亚迪股份有限公司 混合动力系统及混合动力车辆
CN215042038U (zh) * 2021-04-01 2021-12-07 麦格纳动力总成(江西)有限公司 一种混合动力驱动系统及汽车
CN216750483U (zh) * 2021-10-22 2022-06-14 扬州隆源电器有限公司 一种用于接触电气部件的电气接头
CN114914729A (zh) * 2022-05-11 2022-08-16 华能八〇三热电有限公司 一种电焊机的接线装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019024675A1 (zh) * 2017-07-31 2019-02-07 上海蔚来汽车有限公司 插接件、动力电池及新能源车辆
CN209282491U (zh) * 2019-01-30 2019-08-20 胡文林 一种具有防脱落的连接器
JP2021051998A (ja) * 2019-09-20 2021-04-01 タイコエレクトロニクス フランス エスアーエス 締結装置
CN214254906U (zh) * 2020-12-22 2021-09-21 晶学金属有限公司 一种高耐寒航空航天用动力电池组高速连接器
WO2022135097A1 (zh) * 2020-12-25 2022-06-30 中国第一汽车股份有限公司 双电机车辆控制方法、装置、设备及存储介质
CN113829864A (zh) * 2021-03-02 2021-12-24 比亚迪股份有限公司 混合动力系统、混合动力车辆及其控制方法、整车控制器
CN216942663U (zh) * 2022-01-17 2022-07-12 北京汽车股份有限公司 一种两挡专用混合动力变速器及汽车
CN115782554A (zh) * 2022-10-11 2023-03-14 上汽通用五菱汽车股份有限公司 一种混合动力装置及混合动力系统

Also Published As

Publication number Publication date
CN115782554B (zh) 2023-08-29
CN115782554A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2024078323A1 (zh) 一种混合动力装置及混合动力系统
US8829722B2 (en) Apparatus and method for rapidly charging an electric vehicle
JP6130634B2 (ja) 電気車両を充電するための装置および方法
US8602144B2 (en) Direct electrical connection for multi-motor hybrid drive system
CN105034830B (zh) 用于对电动车辆充电的设备和方法
CN104648173B (zh) 电动汽车驱动装置
CN101801708B (zh) 车辆的控制装置及控制方法
US9935471B2 (en) Drive apparatus and transporter
CN104742721B (zh) 一种采用双离合器的混合动力系统及其实现方法
WO2017091918A1 (zh) 单极直流电磁传动机及其应用系统
CN102130626A (zh) 改进的具有集成电池充电器的可变电压转换器
CN103204056A (zh) 混合动力驱动总成
KR20130132687A (ko) 이중 모드 배터리
JP2011500418A (ja) ハイブリッド伝動機構
Guarnieri When cars went electric, part 2 [historical]
Cui et al. Overview of multi-machine drive systems for electric and hybrid electric vehicles
CN108437827A (zh) 一种纯电动动力系统
CN109228893A (zh) 一种锂电池和超级电容混合储能的能源分配系统及其方法
CN100450813C (zh) 电动汽车用对称分布电源及电机驱动系统
CN110620021A (zh) 接触器总成和接触器转换方法
KR100862435B1 (ko) 하이브리드 전기자동차의 듀얼모드 동력전달장치
KR101786338B1 (ko) 하이브리드 차량용 동력 전달 시스템
US11458849B2 (en) Charging input selector systems for electrified vehicles
KR101242838B1 (ko) 하이브리드 전기자동차의 듀얼모드 동력전달장치
CN111114283A (zh) 一种结合套式组合构型混合动力系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876527

Country of ref document: EP

Kind code of ref document: A1