WO2024078290A1 - 容器取还装置及搬运机器人 - Google Patents

容器取还装置及搬运机器人 Download PDF

Info

Publication number
WO2024078290A1
WO2024078290A1 PCT/CN2023/120306 CN2023120306W WO2024078290A1 WO 2024078290 A1 WO2024078290 A1 WO 2024078290A1 CN 2023120306 W CN2023120306 W CN 2023120306W WO 2024078290 A1 WO2024078290 A1 WO 2024078290A1
Authority
WO
WIPO (PCT)
Prior art keywords
telescopic
telescopic fork
fork
supporting member
assembly
Prior art date
Application number
PCT/CN2023/120306
Other languages
English (en)
French (fr)
Inventor
李晓伟
肖玉辉
袁延凯
Original Assignee
北京极智嘉科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222701519.5U external-priority patent/CN218840608U/zh
Priority claimed from CN202222869701.1U external-priority patent/CN218620168U/zh
Application filed by 北京极智嘉科技股份有限公司 filed Critical 北京极智嘉科技股份有限公司
Publication of WO2024078290A1 publication Critical patent/WO2024078290A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks

Definitions

  • the present disclosure relates to the technical field of intelligent storage equipment, and in particular to a container retrieval device and a transport robot.
  • a follower pallet is generally designed in the telescopic fork assembly to extend the follower pallet to receive the small boxes and prevent them from falling during the process of picking up and returning the boxes.
  • the design requirement of the follower pallet is to extend and retract itself during the process of the telescopic fork picking up and returning the boxes.
  • a separate and complex control unit is generally not designed to control the corresponding actions. Instead, a tension spring is simply installed as the power for the follower pallet to extend, and the retraction of the follower pallet is completed by the retraction of the telescopic fork.
  • the present application provides a container retrieval device and a transport robot, comprising:
  • a telescopic fork disposed on the base
  • a telescopic driving assembly disposed on the base, configured to drive the telescopic fork to telescope along a first direction;
  • a support follower assembly is provided on the base, and the support follower assembly extends and retracts following the extension and retraction of the telescopic fork, and the support follower assembly has a retracted state accommodated on the base and an extended state extending forward relative to the base; a locking assembly is provided on the telescopic fork, and the locking assembly maintains the support follower assembly in the retracted state by limiting the extension and retraction of the telescopic fork, and the telescopic drive assembly can drive the telescopic fork to break away from the restriction of the locking assembly, so that the telescopic fork and the support follower assembly can extend and retract.
  • FIG1 is a schematic diagram showing a process of a transport robot retrieving and returning a container according to an embodiment of the present application
  • FIG2 is a schematic diagram of a transport robot according to an embodiment of the present application.
  • FIG3 is a schematic diagram of a container retrieval device provided in an embodiment of the present application from one viewing angle
  • FIG4 is a schematic diagram of another viewing angle of FIG3 ;
  • FIG5 is a cross-sectional schematic diagram of a telescopic fork provided in an embodiment of the present application.
  • FIG6 shows an enlarged view of portion C of FIG5 ;
  • FIG. 7 is a schematic diagram showing the cooperation between the first matching piece and the second matching piece provided in an embodiment of the present application.
  • FIG8 is a front view schematic diagram of a first matching member provided in an embodiment of the present application.
  • FIG9 is a side view schematic diagram of a first matching member provided in an embodiment of the present application.
  • FIG10 is a cross-sectional view taken along the line D-D of FIG9 ;
  • FIG11 is a schematic diagram of a container retrieval device proposed in an embodiment of the present application.
  • FIG12 is a top view of FIG11 with the telescopic drive assembly omitted;
  • FIG13 is a bottom view of the container retrieval device of FIG11 omitting the base and the first drive assembly;
  • FIG. 14 is a schematic diagram of the assembly of the rotating mechanism proposed in the embodiment of the present application.
  • FIG. 15 is a schematic diagram showing the assembly of the container retrieving device and the rotating mechanism provided in an embodiment of the present application.
  • the reference numerals are as follows: 1. Container; 2. Shelf; 100, container retrieval device; 110, base; 120, telescopic fork; 121, fixed fork plate; 122, first-stage telescopic fork plate; 123, second-stage telescopic fork plate; 125, fixed push plate; 126, rotating push plate; 127, first telescopic fork; 128, second telescopic fork; 129, telescopic guide rail; 130, telescopic drive assembly; 131, first motor; 132, first transmission shaft; 133, driving pulley; 134, telescopic synchronous belt; 140, locking assembly; 141, first matching piece; 1411, elastic telescopic piece; 1412, mounting seat; 1413, swing arm; 1414, compression spring; 1415, roller; 1 42.
  • second matching member 1421. groove; 1422. guide block; 1423. guide surface; 143. adjusting member; 1431. nut; 1432. stud; 1433. operating end; 150. bearing member; 151. second position-limiting member; 152. first supporting member; 153. second supporting member; 154. guide portion; 155. sliding portion; 156. first position-limiting member; 160. tension spring; 170. guide rail; 180. first driving assembly; 181. second motor; 182. second synchronous belt; 183. second driving pulley; 184. second driven pulley; 191. first connecting rod assembly; 192.
  • second connecting rod assembly 200, chassis assembly; 300, temporary storage assembly; 400, lifting mechanism; 410, mounting base; 500, rotating mechanism; 510, rotating drive motor; 520, rotating drive pulley; 530, rotating synchronous belt; 540, fixed support pulley; A. First direction; B. Second direction; E. Swinging direction.
  • first, second, third, etc. can be used in the text to describe multiple elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms can only be used to distinguish an element, component, region, layer or section from another region, layer or section. Unless the context clearly indicates, terms such as “first”, “second” and other numerical terms do not imply order or sequence when used in the text. Therefore, the first element, component, region, layer or section discussed below can be referred to as the second element, component, region, layer or section without departing from the teaching of the example embodiments.
  • spatial relative terms may be used herein to describe the relationship of one element or feature relative to another element or feature as shown in the figure, such as “inside”, “outside”, “inner side”, “outer side”, “below”, “below”, “above”, “above”, etc.
  • Such spatial relative terms are intended to include different orientations of the device in use or operation in addition to the orientation depicted in the figure. For example, if the device in the figure is turned over, then the elements described as “below other elements or features” or “below other elements or features” will subsequently be oriented as “above other elements or features" or “above other elements or features”. Therefore, the example term “below" can include both upper and lower orientations.
  • the device can be oriented otherwise (rotated 90 degrees or in other directions) and the spatial relative descriptors used in the text are interpreted accordingly.
  • the telescopic fork when the follower pallet is in the retracted state, the telescopic fork is also in the retracted state, and the retracted fork can limit the follower pallet from extending under the action of the tension spring, that is, under normal working conditions, the follower pallet will be limited by the position of the telescopic fork and can only follow the telescopic action of the telescopic fork.
  • the handling robot when the handling robot is powered off, the telescopic fork usually loses the braking force to maintain the retracted state. At this time, the follower pallet may extend under the action of the tension spring, and the extended part of the follower pallet is easy to injure people and objects.
  • some handling robots use a brake motor as the telescopic drive power of the telescopic fork.
  • the brake motor keeps the telescopic fork in the retracted state, thereby providing a locking force for the follower pallet to prevent the follower pallet from popping out.
  • this solution will affect the flexibility of maintenance personnel when repairing the telescopic fork. For example, the brake needs to be released to pull out the telescopic fork for maintenance inspection.
  • this embodiment provides a container retrieval device 100, including a base 110, a telescopic fork 120, a telescopic drive assembly 130, a supporting follower assembly and a locking assembly 140.
  • the telescopic fork 120 is disposed on the base 110
  • the telescopic drive assembly 130 is arranged on the base 110, and is used to drive the telescopic fork 120 to extend and retract.
  • the support follower assembly is arranged on the base 110, and the support follower assembly extends and retracts following the extension and retraction of the telescopic fork 120, and the support follower assembly has a retracted state accommodated on the base and an extended state extending forward relative to the base.
  • the locking assembly 140 is arranged on the telescopic fork 120, and the locking assembly 140 limits the extension and retraction of the telescopic fork 120 so that the support follower assembly maintains the retracted state, and the telescopic drive assembly 130 can drive the telescopic fork 120 to break away from the restriction of the locking assembly 140, so that the telescopic fork 120 and the support follower assembly extend and retract.
  • the support follower assembly includes a bearing member 150 and a driving member.
  • the bearing member 150 When the telescopic fork 120 is extended, the bearing member 150 is extended forward under the action of the driving member.
  • the bearing member 150 When the telescopic fork 120 is retracted, the bearing member 150 is driven to reset backward.
  • the locking assembly 140 is arranged on the telescopic fork 120. When the telescopic fork 120 is in a retracted state, the locking assembly 140 can limit the telescopic fork 120 from extending and retracting.
  • the telescopic driving assembly 130 can drive the telescopic fork 120 to break away from the restriction of the locking assembly 140, so that the telescopic fork 120 can extend and retract.
  • the telescopic driving assembly 130 can drive the telescopic fork 120 to break away from the restriction of the locking assembly 140, so that the telescopic fork 120 and the supporting follower assembly can be extended and retracted, so that the telescopic fork 120 and the supporting follower assembly can be normally extended and retracted under the action of the telescopic driving assembly 130.
  • the bearing member 150 follows the extension and retraction of the telescopic fork 120. Specifically, when the telescopic fork 120 is extended, the bearing member 150 is extended forward under the action of the driving member, and when the telescopic fork 120 is retracted, the bearing member 150 is driven to reset backward.
  • the locking assembly 140 can provide a locking force to keep the telescopic fork 120 in a retracted state, so that the telescopic fork 120 cannot be extended under the action of the locking assembly 140, and accordingly, the support member 150 cannot be extended forward under the action of the driving member.
  • the support member 150 can still maintain a retracted state to prevent the extension of the support member 150 from causing damage to personnel or surrounding equipment.
  • the locking assembly 140 is arranged on the telescopic fork 120, which has high flexibility when repairing the telescopic fork 120.
  • the container retrieval device 100 of this embodiment can be applied to a handling device such as a handling robot.
  • the container 1 retrieved by the container 1 retrieval device 100 can be a cargo box, a material box, a packaging box or goods.
  • the base 110 is a mounting base of the container retrieving device 100, and the telescopic driving assembly 130, the telescopic fork 120 and the supporting follower assembly are directly or indirectly mounted on the base 110.
  • the base 110 can be a plate-like structure or a frame structure.
  • the telescopic fork 120 is a component used to complete the retrieval of the container 1.
  • the telescopic fork 120 includes two, and the two telescopic forks 120 are arranged at intervals in a direction perpendicular to the telescopic direction of the telescopic fork 120.
  • the sequential arrangement direction of the two telescopic forks 120 is defined as the second direction B, and the telescopic direction of the telescopic fork 120 is defined as the first direction A.
  • the second direction B and the first direction A are two mutually perpendicular directions on the horizontal plane; the two telescopic forks 120 are respectively defined as the first telescopic fork 127 and the second telescopic fork 128.
  • the first telescopic fork 127 and the second telescopic fork 128 are arranged at intervals in the second direction B.
  • the first telescopic fork 127 and the second telescopic fork 128 are telescoped to transport the container 1 to the carrier 150, or to remove the container 1 from the carrier 150.
  • the process of transporting the container 1 to the carrier 150 can be considered as the process of taking the container 1
  • the process of removing the container 1 from the carrier 150 can be considered as the process of returning the container 1.
  • the first telescopic fork 127 and the second telescopic fork 128 each include two push plates and at least two fork plates.
  • the at least two fork plates are sequentially arranged along a direction perpendicular to the first direction A, i.e., the second direction B.
  • Each fork plate extends along the first direction A, i.e., the first direction A.
  • Two adjacent fork plates of the at least two fork plates are slidably connected so that the telescopic fork 120 can be telescoped.
  • one of the at least two fork plates of the same telescopic fork 120 is fixedly arranged, and the other fork plates are telescopic fork plates.
  • the fork plate of the at least two fork plates located at one end perpendicular to the telescopic direction is a fixed fork plate 121.
  • the fork plate of the first telescopic fork 127 away from the second telescopic fork 128 is a fixed fork plate 121
  • the fork plate of the second telescopic fork 128 away from the first telescopic fork 127 is a fixed fork plate 121.
  • the two fixed fork plates 121 are respectively located at the outermost sides of the container retrieving device 100.
  • the first telescopic fork 127 and the second telescopic fork 128 include two fork plates
  • the two fork plates are respectively a fixed fork plate 121 and a first-stage telescopic fork plate
  • the first-stage telescopic fork plate can be slidably arranged on the fixed fork plate 121 along the first direction A, and the push plate is arranged on the first-stage telescopic fork plate
  • the first telescopic fork 127 and the second telescopic fork 128 include three or more fork plates
  • the first telescopic fork 127 and the second telescopic fork 128 both include a fixed fork plate 121 and a multi-stage telescopic fork plate, wherein the fixed fork plate 121 and the multi-stage telescopic fork plate are arranged in sequence, the first-stage telescopic fork plate 122 can slide relative to the fixed fork plate 121 along the first direction A, the telescopic fork plate of the
  • the following is a specific structure of the telescopic fork 120.
  • the first telescopic fork 127 and the second telescopic fork 128 are two-stage telescopic structures.
  • the first telescopic fork 127 and the second telescopic fork 128 have the same structure.
  • the first telescopic fork 127 is taken as an example to describe the structure in detail.
  • the two-stage telescopic fork plate is respectively a first-stage telescopic fork plate 122 and a second-stage telescopic fork plate 123.
  • the first-stage telescopic fork plate 122 is arranged on the fixed fork plate 121 and can slide relative to the fixed fork plate 121 along the first direction A.
  • the second-stage telescopic fork plate 123 is arranged on the first-stage telescopic fork plate 122 and can telescope relative to the first-stage telescopic fork plate 122 along the first direction A.
  • telescopic guide rails 129 are arranged between the fixed fork plate 121 and the first-stage telescopic fork plate 122 and between the first-stage telescopic fork plate 122 and the second-stage telescopic fork plate.
  • the telescopic guide rails 129 extend along the first direction A to guide the telescopic movement of the first-stage telescopic fork plate 122 and the second-stage telescopic fork plate 123 along the first direction A.
  • the second-stage telescopic fork plate 123 is provided with a fixed push plate 125 and a rotating push plate 126, wherein the rotating push plate 126 is arranged at the front end, and the fixed push plate 125 is arranged at the rear end, wherein the fixed push plate 125 is used to push the container 1 outwards when returning the container 1, and the rotating push plate 126 is used to push the container 1 inwards when taking the container 1 from the shelf 2 (the shelf 2 of the storage system) or the temporary storage position (generally the temporary storage position on the handling robot).
  • the rotating push plate 126 can rotate around the first direction A to present two states, vertical and horizontal. In the vertical state, the second-stage telescopic fork plate 123 is not protruded, and the telescopic fork 120 can be extended to embrace the container 1. In the horizontal state, it can contact with the container 1 to give the container 1 a thrust.
  • the first telescopic fork 127 and the second telescopic fork 128 can respectively use independent power sources and transmission structures to realize their respective telescopic drives; the first telescopic fork 127 and the second telescopic fork 128 can also use a common power source and transmission structure to realize telescopic drive.
  • the specific power source can be a motor.
  • the transmission structure between the first-level telescopic fork plate 122 and the fixed fork plate 121 can be realized by a chain with a sprocket, a gear with a rack, a screw with a nut, etc.
  • the movement of the second-level and above fork plates can be realized by a pulley set.
  • the first telescopic fork 127 and the second telescopic fork 128 usually need to be telescopic synchronously. In order to achieve the synchronous telescopic movement of the two, it is preferred to select a telescopic drive assembly 130 that uses the same power source for the two.
  • the telescopic drive assembly 130 includes a first motor 131, a first transmission shaft 132 and two sets of transmission components.
  • the telescopic drive assembly 130 includes a first motor 131, a first transmission shaft 132 and two driving pulleys 133.
  • the first motor 131 is connected to the first transmission shaft 132, and the first transmission shaft 132 extends along the second direction B.
  • the two driving pulleys 133 are both sleeved on the first transmission shaft 132.
  • the two driving pulleys 133 can move along the axial direction of the first transmission shaft 132 respectively, and the driving pulleys 133 and the first transmission shaft 132 are relatively fixed in the circumferential direction; the telescopic drive pulley of the first telescopic fork 127 is connected to one of the two driving pulleys 133, and the telescopic drive pulley of the second telescopic fork 128 is connected to the other of the two driving pulleys 133.
  • the active pulley 133 can be fixedly connected to the telescopic driving pulley by means of an integrated structure, welding or screw connection.
  • the first transmission shaft 132 can be a spline shaft, and the driving pulley 133 is a spline nut matched with the spline shaft.
  • the driving pulley 133 can also be a sliding key or a long guide key, and the first transmission shaft 132 is a guide shaft matched with the sliding key or the long guide key.
  • the driving pulley 133 can move along the axial direction of the first transmission shaft 132 and can be relatively fixed in the circumferential direction of the first transmission shaft 132, so that the driving pulley 133 can always maintain torque transmission with the first transmission shaft 132 during the movement of the first telescopic fork 127 and the second telescopic fork 128 along the second direction B.
  • the first motor 131 transmits the torque to the first transmission shaft 132, and the first transmission shaft 132 then transmits the torque to the telescopic driving pulley connected to the driving pulley 133, so as to complete the telescopic power transmission of the first telescopic fork 127 and the second telescopic fork 128 at any width.
  • the two groups of transmission components include a driving pulley 133 and a driven pulley, which are arranged in sequence along the first direction A and are set on the fixed fork plate 121.
  • a telescopic synchronous belt 134 is connected between the driving pulley 133 and the driven pulley.
  • the driving pulley 133 is connected to the first transmission shaft 132.
  • the first-stage telescopic fork plate 122 is connected to the telescopic synchronous belt 134.
  • the first motor 131 rotates to drive the first transmission shaft 132 to rotate, thereby driving the two driving pulleys 133 to rotate.
  • Each driving pulley 133 drives the corresponding telescopic synchronous belt 134 to rotate, thereby realizing the telescopic movement of the first-stage telescopic fork plate 122 along the first direction A.
  • a pulley and a transmission belt are provided on the first-stage telescopic fork plate 122.
  • One end of the transmission belt is connected to the fixed fork plate 121, and the other end is connected to the second-stage telescopic fork plate 123 after passing the pulley.
  • the driving pulley 133 rotates to drive the telescopic synchronous belt 134 to move.
  • the first-stage telescopic fork plate 122 is telescoped along the first direction A, and the pulley on the first-stage telescopic fork plate 122 moves along the first direction A together.
  • the transmission belt wound around the pulley drives the second-stage telescopic fork plate 123 to telescope along the first direction A at a speed twice the moving speed of the first-stage telescopic fork plate 122.
  • the container 1 In the process of returning the container 1, the container 1 is on the carrier 150, the fixed push plate 125 contacts the container 1, and the first telescopic fork 127 and the second telescopic fork 128 are controlled to extend forward along the first direction A, so that the container 1 can be pushed out of the carrier 150 and placed on the temporary storage position of the handling robot or the shelf 2 of the storage system.
  • container 1 In the process of taking container 1, container 1 is on shelf 2 or temporary storage position, and when the rotating push plate 126 is in a vertical state, the first telescopic fork 127 and the second telescopic fork 128 are extended forward along the first direction A and embrace container 1, and then the rotating push plate 126 is controlled to be in a horizontal state, and the rotating push plate 126 acts on container 1, controlling the first telescopic fork 127 and the second telescopic fork 128 to extend forward along the first direction A and embrace container 1. The retracted fork 128 retracts, and the rotating push plate 126 pushes the container 1 onto the carrier 150 .
  • the switching of the rotating push plate 126 between the horizontal state and the vertical state can be achieved by the motor and the transmission member.
  • the driving pulley 133 controls the forward and reverse rotation of the first telescopic fork 127 and the second telescopic fork 128 by forward or reverse rotation.
  • the supporting member 150 of this embodiment may be a tray structure or a hollow rod structure, which is used to support the container 1 .
  • a gap may be formed between the shelf 2 and the supporting follower assembly.
  • the supporting follower assembly of the present application can also be extended and retracted along the first direction A to avoid the problem of small boxes falling and getting stuck due to the gap between the handling robot and the shelf 2.
  • the carrier 150 may include a first supporting member 152 and a second supporting member 153, the first supporting member 152 and the second supporting member 153 respectively include a guide portion 154 and a sliding portion 155, the guide portion 154 and the sliding portion 155 both extend along the first direction A, the sliding portion 155 is disposed on the guide portion 154, and the sliding portion 155 can slide on the guide portion 154 along the first direction A.
  • the container retrieving device further includes a driving member, the driving member is disposed on the base 110 and connected to the sliding portion 155, and the driving member is used to drive the sliding portion 155 to extend forward along the first direction A.
  • Moving forward along the first direction A means that the sliding portion 155 moves away from the base 110 , and correspondingly, moving backward along the first direction A means that the sliding portion 155 moves toward the base 110 .
  • the driving member is used to drive the carrier 150 to move forward, and the driving member can be an elastic structure such as a tension spring 160, a compression spring, a gas spring, a rubber elastic belt, etc., or can be a controllable mechanism with linear driving capability such as an electromagnet, an electric push rod, a motor and a synchronous belt. It should be noted that the driving force provided by the driving member to the carrier 150 should be less than the resistance of the locking assembly 140 to the telescopic fork 120, so that when the telescopic fork 120 is in a retracted state, the locking assembly 140 can limit the extension and retraction of the telescopic fork 120.
  • the driving member is a tension spring 160
  • the number of the tension spring 160 is at least one.
  • the tension spring 160 is arranged along the first direction A, one end of the tension spring 160 is fixedly connected to the base 110, and the other end is fixedly connected to the supporting member 150.
  • the tension spring 160 applies a pulling force forward along the first direction A to the supporting member 150, so that when the telescopic fork 120 is extended, the supporting member 150 also extends forward.
  • the driving member is a spring 160 and the sliding portion 155 can be connected in a manner as shown in Fig. 11 and Fig. 12, the sliding portion 155 of the first supporting member 152 and the sliding portion 155 of the second supporting member 153 are respectively connected to a tension spring 160, one end of any tension spring 160 is fixed on the base 110, and the other end is fixed on the sliding portion 155.
  • the tension spring 160 can generate a tensile force so that the sliding portion 155 of the first supporting member 152 and the sliding portion 155 of the second supporting member 153 have the ability to extend forward.
  • a first limiting portion may be provided on the base 110, and a second limiting portion may be provided on the supporting member 150, the first limiting portion is provided on the front side of the extension path of the second limiting portion along the sliding portion 155, and the second limiting portion can abut against the first limiting portion to limit the maximum travel of the supporting member 150 extending forward along the first direction A.
  • a first limit member is fixed on the telescopic fork 120, a second limit member 151 is arranged at the rear end of the carrier 150, and the first limit member is arranged at the front end of the second limit member 151.
  • the first limit member abuts against the second limit member 151 to drive the carrier 150 to reset backward.
  • the second limiting portion can also be correspondingly arranged on the first supporting member 152 and the second supporting member 153.
  • the first limiting portion can be arranged on the front side of the second limiting portion along the extension path of the sliding portion 155, and the second limiting portion can abut against the first limiting portion to limit the maximum travel of the sliding portion 155 extending forward in the first direction A.
  • the second limiting parts are respectively arranged on the sliding part 155 of the first supporting member 152 and the sliding part 155 of the second supporting member 153, and the first limiting parts are respectively arranged on the corresponding base 110 corresponding to the two second limiting parts.
  • the second driving component such as the tension spring 160
  • the second limiting part can abut against the rear side of the first limiting part, so that the first limiting part stops the second limiting part at the front side of the second limiting part, so that the first supporting member 152 and the second supporting member 153 cannot continue to move forward.
  • the fixed push plate 125 on the rear side of the first telescopic fork 127 and the second telescopic fork 128 are connected to each other.
  • the fixed push plates 125 at the rear side of the retracting forks 128 respectively form first limit members, and the rear end of the carrier 150 has a second limit member 151 vertically arranged.
  • the fixed push plates 125 are arranged at the front side of the second limit member 151.
  • the fixed push plates 125 can synchronously push the second limit member 151 to make the carrier 150 retract synchronously; when the first telescopic fork 127 and the second telescopic fork 128 extend along the first direction A, the carrier 150 extends forward under the action of a driving member such as a tension spring 160.
  • the retraction of the fixed push plate 125 of the first telescopic fork 127 and the fixed push plate 125 of the second telescopic fork 128 drives the carrier 150 to retract.
  • This design ensures that after the container 1 completely falls on the carrier 150, the carrier 150 and the container 1 retract synchronously, thereby ensuring that no matter how big or small the container 1 is, it will not be stuck or fall due to the gap.
  • first supporting member 152 and the second supporting member 153 can be linked when the first telescopic fork 127 and the second telescopic fork 128 are extended and retracted along the first direction A.
  • a first limiting member 156 is provided above the sliding portion 155
  • a second limiting member 151 is provided on the first supporting member 152 and the second supporting member 153, and the first limiting member 156 abuts against the second limiting member 151; when the first telescopic fork 127 and/or the second telescopic fork 128 retracts along the first direction A, the first limiting member 156 moves synchronously and pushes the second limiting member 151 to retract the sliding portion 155 of the first supporting member 152 and the sliding portion 155 of the second supporting member 153.
  • the fixed push plate 125 at the rear side of the first telescopic fork 127 and the fixed push plate 125 at the rear side of the second telescopic fork 128 respectively form a first stopper 156
  • the sliding portion 155 of the first supporting member 152 and the sliding portion 155 of the second supporting member 153 respectively have a vertically arranged second stopper 156.
  • the fixed push plate 125 is arranged at the front side of the corresponding second stopper 151, the second stopper 151 of the first supporting member 152 abuts against the fixed push plate 125 of the first telescopic fork 127, and the second stopper 156 of the second supporting member 153 abuts against the fixed push plate 125 of the second telescopic fork 128.
  • the fixed push plate 125 can synchronously push the sliding portion 155 of the first supporting member 152 and the sliding portion 155 of the second supporting member 153 to retract; when the first telescopic fork 127 and the second telescopic fork 128 extend along the first direction A, under the action of driving members such as the tension spring 160, the sliding portion 155 of the first supporting member 152 and the sliding portion 155 of the second supporting member 153 extend forward.
  • the retraction of the fixed push plate 125 of the first telescopic fork 127 and the fixed push plate 125 of the second telescopic fork 128 drives the first supporting member 152 and the second supporting member 153 to retract.
  • This design ensures that after the container 1 completely falls on the supporting follower assembly, the supporting follower assembly and the container 1 retract synchronously, thereby ensuring that no matter how big or small the container 1 is, it will not be stuck or fall due to the gap.
  • the fixed push plate 125 always acts as a limiting component for the second limiting member 151, so that when the telescopic fork 120 is not extended, the carrier 150 cannot be extended forward.
  • the driving member made of an elastic structure such as the tension spring 160 is in a compressed and force-storing state, giving the carrier 150 a continuous forward thrust, but due to the limiting of the second limiting member 151 by the fixed push plate 125, the carrier 150 cannot be extended forward by the tension spring 160.
  • the locking assembly 140 of this embodiment can be disposed on one of the first telescopic fork 127 and the second telescopic fork 128, or can be disposed on each of the first telescopic fork 127 and the second telescopic fork 128.
  • the locking assembly 140 can be disposed between two adjacent fork plates of the first telescopic fork 127 or the second telescopic fork 128 along the second direction B.
  • the locking assembly 140 is disposed between the fixed fork plate 121 and the telescopic fork plate adjacent to the fixed fork plate 121.
  • the telescopic fork plate adjacent to the fixed fork plate 121 refers to the telescopic fork plate adjacent to the fixed fork plate 121 along the second direction B, that is, the first-stage telescopic fork plate 122.
  • the locking assembly 140 is described in detail below.
  • the locking assembly 140 includes a first mating piece 141 and a second mating piece 142, one of which is disposed on the fixed fork plate 121, and the other is disposed on the first-stage telescopic fork plate 122.
  • the first mating piece 141 has an elastic telescopic piece 1411
  • the second mating piece 142 is provided with a groove 1421.
  • one of the fixed fork plate 121 and the first-stage telescopic fork plate 122 that is provided with the second matching piece 142 is defined as the second one, and the other is defined as the first one.
  • the groove 1421 can be directly provided on the second one, or can be provided on the guide block 1422.
  • the second matching piece 142 includes a guide block 1422, the guide block 1422 is fixed to a side of the second one facing the first one, and the groove 1421 is provided on the side of the guide block 1422 facing the first one.
  • the second one is the first-stage telescopic fork plate 122
  • the first one is Fixed fork plate 121.
  • the first matching member 141 is mounted on the fixed fork plate 121
  • the elastic telescopic member 1411 is arranged on the side of the first matching member 141 facing the first-stage telescopic fork plate 122
  • the guide block 1422 is arranged on the side of the first-stage telescopic fork plate 122 facing the fixed fork plate 121
  • the groove 1421 is arranged on the side of the guide block 1422 facing the first-stage telescopic fork plate 122.
  • the guide block 1422 moves along the first direction A relative to the first matching member 141, forcing the elastic telescopic member 1411 to retract and move out of the groove 1421, and the elastic telescopic member 1411 and the groove 1421 are unlocked.
  • the groove 1421 is provided on the guide block 1422, and the guide block 1422 is provided on the side of the second object facing the first object (in this embodiment, the second object is the first-stage telescopic fork plate 122, and the first object is the fixed fork plate 121), so that the guide block 1422 protrudes from the surface of the second object.
  • the telescopic fork 120 is telescoped to the point where the elastic telescopic member 1411 and the guide block 1422 are misaligned, the elastic telescopic member 1411 is opposite to the side of the second object.
  • the resistance between the elastic telescopic member 1411 and the second object is smaller.
  • the telescopic fork 120 is basically not subject to the resistance of the elastic telescopic member 1411, thereby avoiding the problem of excessive continuous telescopic resistance.
  • the guide block 1422 is provided with a guide surface 1423 at the front end of the groove 1421, and the guide surface 1423 is arranged facing the first party.
  • the guide surface 1423 is gradually arranged close to the second party, and the front end of the guide surface 1423 is flush with the side of the second party facing the first party.
  • the front and rear are defined based on the telescopic action of the telescopic fork 120 .
  • the direction when the telescopic fork 120 is extended is the front direction
  • the direction when the telescopic fork 120 is retracted is the rear direction.
  • the setting of the guide surface 1423 can make the elastic telescopic member 1411 gradually fall into the side of the second, i.e., the first-stage telescopic fork 120, so that the resistance of the elastic telescopic member 1411 affecting the telescopic fork 120 changes more slowly, which is conducive to the smooth telescopic fork 120.
  • the elastic telescopic member 1411 can be an elastic member such as a rubber block, or a member having elasticity by means of an elastic mechanism such as a spring.
  • an elastic mechanism such as a spring.
  • a spring is provided on the second matching member 142, and the spring supports the elastic telescopic member 1411.
  • the elastic telescopic member 1411 can retract under the action of an external force by compressing the spring 1414. After the external force is reduced or withdrawn, the spring makes the elastic telescopic member 1411 extend again.
  • the first matching member 141 adopts a roller plunger
  • the roller 1415 of the roller plunger has elasticity under the action of the internal structure of the roller plunger
  • the roller 1415 is also the elastic telescopic member 1411.
  • the first matching member 141 may also be provided with an adjusting member 143 , which is connected to the elastic and telescopic member 1411 and is used to adjust the elastic force of the elastic and telescopic member 1411 .
  • the adjusting member 143 has an operating end 1433.
  • the first matching member 141 may be disposed on the fixed fork plate 121 (that is, the first one is the fixed fork plate 121), and the corresponding second matching member 142 is disposed on the first-stage telescopic fork plate 122.
  • the operating end 1433 of the adjusting member 143 is disposed toward a side of the fixed fork plate 121 away from the first-stage telescopic fork plate 122, that is, the operating end 1433 is disposed toward the outer side of the fixed fork plate 121.
  • the elastic force of the elastic stretch member 1411 refers to the force applied by the elastic stretch member 1411 to the groove 1421 when the elastic stretch member 1411 is in the groove 1421 .
  • the adjusting member 143 can achieve the purpose of adjusting the elastic force of the rubber block by changing the position of the rubber block.
  • the protrusion of the rubber block facing the groove 1421 can be enlarged, so that when the rubber block abuts against the groove 1421, the pressing force of the rubber block on the groove 1421 is increased; conversely, the protrusion of the rubber block facing the groove 1421 is reduced, so that when the rubber block abuts against the groove 1421, the pressing force of the rubber block on the groove 1421 is reduced.
  • the elastic force of the elastic telescopic part 1411 can be adjusted by adjusting the length of the spring.
  • the spring is a compression spring 1414
  • the end of the spring away from the elastic telescopic part 1411 can be moved closer to the elastic telescopic part 1411, so that the length of the spring is further shortened, and the elastic force provided by the spring to the elastic telescopic part 1411 is increased; conversely, the end of the spring away from the elastic telescopic part 1411 is moved closer to the elastic telescopic part 1411, so that the length of the spring is further lengthened, and the elastic force provided by the spring to the elastic telescopic part 1411 is reduced.
  • the locking assembly 140 can be adaptively adjusted according to the force of the driving member, that is, the tension spring 160 on the bearing member 150.
  • the elastic force of the elastic member 1411 is increased to avoid forcing the locking assembly 140 to be unlocked under the action of the tension spring 160, causing the bearing member 150 to extend forward.
  • the locking assembly 140 can be applied to tension springs 160 with different tensions, and the application range is relatively wide. when assembling the device, even if the tension value of the tension spring 160 is less consistent, the same type of locking assembly 140 may be used.
  • the elastic telescopic member 1411 can be configured to roll, and when the telescopic drive assembly 130 drives the telescopic fork 120 to telescope, the elastic telescopic member 1411 can roll on the guide block 1422 to enter or slide out of the groove 1421 to reduce the resistance between the elastic telescopic member 1411 and the guide block 1422.
  • the first matching member 141 can be a roller plunger with an elastic force adjustment mechanism, and the elastic force adjustment mechanism forms an adjustment member 143.
  • the adjustment member 143 can be arranged on a side of the fixed fork plate 121 away from the movable fork plate, that is, arranged on the outside of the fixed fork plate 121, so that it is convenient for operators to adjust the adjustment member 143.
  • the roller plunger as the first matching member 141 can be a longitudinal bracket type roller plunger or a hinged roller plunger.
  • the roller 1415 of the longitudinal bracket type roller plunger is retracted in a linear form, and the roller 1415 of the hinged roller plunger is retracted in a rotating form. This embodiment is described with reference to a hinged roller plunger.
  • the roller plunger includes a mounting seat 1412, a swing arm 1413, a compression spring 1414 and a roller 1415.
  • the first end of the swing arm 1413 is hinged to the mounting seat 1412, and the second end of the swing arm 1413 is connected to the roller 1415, wherein the roller 1415 is rotatably arranged on the swing arm 1413, and the two ends of the compression spring 1414 are respectively connected to the mounting seat 1412 and the swing arm 1413, and the compression spring 1414 applies an elastic force to the swing arm 1413 in the direction of the second mating piece 142.
  • the swing arm 1413 Under the action of the compression spring 1414 and external force, the swing arm 1413 can swing around the first end and drive the roller 1415 to extend or retract.
  • the external force generally comes from the roller 1415 , that is, the roller 1415 is acted upon by the second matching member 142 and transmits the acted upon to the swing arm 1413 .
  • the roller 1415 moves out of the groove 1421, and the roller 1415 is continuously subjected to the pressure of the second matching piece 142, and the pressure forces the roller 1415 and the swing arm 1413 to swing away from the second matching piece 142, that is, with reference to Figure 10, the swing arm 1413 carries the roller 1415 to swing to the left along the swing direction E, and the roller 1415 retracts;
  • the first-stage telescopic fork plate 122 is retracted relative to the fixed fork plate 121, the roller 1415 moves into the groove 1421, and under the action of the elastic force of the compression spring 1414, the roller 1415 and the swing arm 1413 move toward the direction close to the second matching piece 142, that is, with reference to Figure 10, the swing arm
  • articulated roller plunger adopts hinge point rotation motion to minimize the space size and facilitate design and installation.
  • an adjustment member 143 may also be provided.
  • the adjustment member 143 includes a stud 1432 and a nut 1431.
  • the mounting seat 1412 is generally arranged in a groove shape, and the stud 1432 is on a side wall of the mounting seat 1412.
  • the stud 1432 is screwed to the mounting seat 1412, and the end of the stud 1432 passing through is screwed to the nut 1431, and the end of the stud 1432 on the inner side of the mounting seat 1412 is connected to the compression spring 1414.
  • the stud 1432 can be moved along the length direction of the stud 1432, thereby changing the length of the compression spring 1414, and achieving the effect of adjusting the elastic force of the compression spring 1414.
  • FIG. 10 only adaptively shows the swing principle of the roller plunger, and the compression spring, the adjustment member and the hinge member at the first end of the swing arm are not shown.
  • the handling robot is also called a material box robot, which plays an important role in the warehouse logistics system.
  • the traditional material box robot has the defect of a single box picking model, which directly affects the operation efficiency of the warehouse robot and the storage density and utilization rate of the warehouse.
  • the spacing between the first telescopic fork 127 and the second telescopic fork 128 in the related art cannot be adjusted, and there is a problem of a single box picking model and low picking efficiency.
  • the container retrieving device in this example further includes an adjusting mechanism, which is connected to one or both of the first telescopic fork 127 and the second telescopic fork 128, and is used to adjust the spacing distance between the first telescopic fork 127 and the second telescopic fork 128 along the second direction B.
  • the supporting follower assembly is used to carry the container 1, and includes a first supporting member 152 and a second supporting member 153 sequentially arranged along the second direction B, and the position of the first supporting member 152 and/or the second supporting member 153 in the second direction B is adjustable.
  • the adjusting mechanism and the first telescopic fork 127 and the second telescopic fork 128 are directly or indirectly mounted on the base 110.
  • the adjustment mechanism can be installed above the base 110.
  • the function of the adjustment mechanism is to adjust the distance between the left and right telescopic forks to adapt to the width of different containers 1.
  • the adjustment mechanism can adjust the distance between the first telescopic fork 127 and the second telescopic fork 128 along the second direction B by adjusting the position of the first telescopic fork 127 along the second direction B; it can also adjust the distance between the first telescopic fork 127 and the second telescopic fork 128 along the second direction B by adjusting the position of the second telescopic fork 128 along the second direction B; it can also adjust the distance between the first telescopic fork 127 and the second telescopic fork 128 along the second direction B by adjusting both the position of the first telescopic fork 127 and the position of the second telescopic fork 128 along the second direction B.
  • a regulating mechanism is specifically introduced below.
  • the adjustment mechanism may include two groups of first drive assemblies 180, wherein one group of first drive assemblies 180 is connected to the first telescopic fork 127 to drive the first telescopic fork 127 to move along the second direction B, and the other group of first drive assemblies 180 is connected to the second telescopic fork 128 to drive the second telescopic fork 128 to move along the second direction B. In this manner, the first telescopic fork 127 and the second telescopic fork 128 may be driven separately.
  • the adjustment mechanism includes a set of first drive assemblies 180, and the first drive assemblies 180 are connected to at least one of the first telescopic fork 127 and the second telescopic fork 128 to drive the first telescopic fork 127 and the second telescopic fork 128 to move relative to each other along the second direction B.
  • the first drive assembly 180 When the first drive assembly 180 is connected to one of the first telescopic fork 127 and the second telescopic fork 128, the first drive assembly 180 adjusts the spacing distance between the first telescopic fork 127 and the second telescopic fork 128 along the second direction B by driving the first telescopic fork 127 or the second telescopic fork 128; when the first drive assembly 180 is connected to the first telescopic fork 127 and the second telescopic fork 128, the spacing distance between the first telescopic fork 127 and the second telescopic fork 128 along the second direction B is adjusted by driving the first telescopic fork 127 and the second telescopic fork 128 to move synchronously toward or away from each other.
  • the first driving assembly 180 includes a power device and a transmission member, the power device is connected to the input end of the transmission member, and the output end of the transmission member is connected to the first telescopic fork 127 and/or the second telescopic fork 128.
  • the transmission member can be a ball screw member, a synchronous belt member, a chain member, a connecting rod member, etc.
  • This embodiment provides a specific structure for driving the first telescopic fork 127 and the second telescopic fork 128 to move synchronously through a group of first drive components 180.
  • the number of the first drive components 180 is one group, and the first drive component 180 includes a second motor 181, a second synchronous belt 182, a second driving pulley 183 and a second driven pulley 184.
  • the second motor 181 is connected to the second driving pulley 183, and the second synchronous belt 182 is wound around the second driving pulley 183 and the second driven pulley 184; the second synchronous belt 182 has a first part and a second part, and the first part and the second part are respectively arranged on both sides of the second driving pulley 183.
  • the first telescopic fork 127 is connected to the first part
  • the second telescopic fork 128 is connected to the second part.
  • the second motor 181 rotates and drives the second driving pulley 183 to drive the first part and the second part to move, so that the first telescopic fork 127 and the second telescopic fork 128 move synchronously toward or away from each other along the second direction B.
  • the second driving pulley 183 is fixed on the output shaft of the second motor 181 and rotates with the output shaft of the second motor 181.
  • the second driven pulley 184 is fixed on the base 110 and retains the freedom of the second driven pulley 184 to rotate around its own axis.
  • the second synchronous belt 182 passes around the second driving pulley 183 and the second driven pulley 184 respectively. At the same time, the upper and lower sides of the second synchronous belt 182 form a first part and a second part respectively.
  • the first part is connected to the fixed fork plate 121 of the first telescopic fork 127
  • the second part is connected to the fixed fork plate 121 of the second telescopic fork 128 to ensure the consistency of the movement of the first telescopic fork 127 and the second telescopic fork 128.
  • the second motor 181 rotates, the first telescopic fork 127 and the second telescopic fork 128 are driven to move towards or in the opposite direction.
  • a guide rail 170 may also be provided on the base 110.
  • the number of the guide rail 170 is at least one.
  • the guide rail 170 extends along the second direction B. The first telescopic fork 127 and/or the second telescopic fork 128 slides with the guide rail 170 through the first sliding fitting portion.
  • At least two guide rails 170 may be arranged at intervals along the first direction A.
  • the first sliding fitting portion may be fixedly connected to the fixed fork plate 121 of the corresponding first telescopic fork 127 or second telescopic fork 128.
  • the receiving assembly of the container retrieving and returning device of this embodiment is installed on the base 110.
  • One of the first supporting member 152 and the second supporting member 153 may be adjustable in position in the second direction B, or both may be adjustable in position in the second direction B.
  • the adjustment of the positions of the first supporting member 152 and the second supporting member 153 in the second direction B may be achieved by providing an independent driving mechanism, or by linkage under the action of relative movement of the first telescopic fork 127 and the second telescopic fork 128.
  • the first supporting member 152 is connected to the first telescopic fork 127 or the second telescopic fork 128, so that the first supporting member 152 can move along the second direction B following the relative movement of the first telescopic fork 127 and the second telescopic fork 128 along the second direction B.
  • the first supporting member 152 can be connected to any one of the first telescopic fork 127 and the second telescopic fork 128.
  • the first supporting member 152 is connected to the one that can move along the second direction B.
  • the second supporting member 153 is connected to the first telescopic fork 127 or the second telescopic fork 128, so that the second supporting member 153 can follow the relative movement of the first telescopic fork 127 and the second telescopic fork 128 along the second direction B and move along the second direction B.
  • the second supporting member 153 can be connected to any one of the first telescopic fork 127 and the second telescopic fork 128.
  • the second supporting member 153 is connected to the one that can move along the second direction B.
  • the first supporting member 152 and the second supporting member 153 are located between the first telescopic fork 127 and the second telescopic fork 128, and the first supporting member 152 is located on a side of the second supporting member 153 close to the first telescopic fork 127; the first telescopic fork 127 is connected to the first supporting member 152, and the first supporting member 152 can move in the second direction B following the first telescopic fork 127; the second supporting member 153 is connected to the second telescopic fork 128, and the second supporting member 153 can move in the second direction B following the second telescopic fork 128.
  • the container retrieval device further includes a first connecting rod assembly 191 and a second connecting rod assembly 192 .
  • the first telescopic fork 127 is connected to the first supporting member 152 via the first connecting rod assembly 191
  • the second telescopic fork 128 is connected to the second supporting member 153 via the second connecting rod assembly 192 .
  • first connecting rod assembly 191 and the second connecting rod assembly 192 that are close to each other can be hingedly connected, so that the first supporting member 152 and the second supporting member 153 have better linkage.
  • first link assembly 191 and the second link assembly 192 each include a plurality of link pairs, the two links in each link pair are cross-hinged, the plurality of link pairs are sequentially arranged along the second direction B, and one link in one link pair is hinged to one link in an adjacent link pair, and the other link in one link pair is hinged to the other link in an adjacent link pair.
  • the link pair in the first link assembly 191 away from the second link assembly 192 is connected to the first telescopic fork 127
  • the link pair in the second link assembly 192 away from the first link assembly 191 is connected to the second telescopic fork 128, and the two links of the link pairs in the first link assembly 191 and the second link assembly 192 that are close to each other are hingedly connected one by one.
  • the hinged positions of the two connecting rods of one connecting rod pair in the first connecting rod assembly 191 are connected to the first supporting member 152
  • the hinged positions of the two connecting rods of one connecting rod pair in the second connecting rod assembly 192 are connected to the second supporting member 153 .
  • the first connecting rod assembly 191 and the second connecting rod assembly 192 respectively include two pairs of connecting rod pairs.
  • the first supporting member 152 and the second supporting member 153 are placed on the guide rail 170, and the first supporting member 152 and the second supporting member 153 are slidably matched with the guide rail 170 through the second sliding matching portion.
  • the first supporting member 152 and the second supporting member 153 only retain the degree of freedom along the guide rail 170, that is, the second direction B.
  • the movement of the first supporting member 152 and the second supporting member 153 in the second direction B is driven by the rhombus structure formed by the connecting rod pairs.
  • one end of the two links of a pair of link pairs of the first link assembly 191 is hinged and fixed on the fixed fork plate 121 of the first telescopic fork 127, the middle parts of the two links of the other pair of link pairs are hinged, and the hinge position is fixed on the first supporting member 152, and the links of the two pairs of link pairs of the first link assembly 191 are hinged correspondingly;
  • one end of the two links of a pair of link pairs of the second link assembly 192 is hinged and fixed on the fixed fork plate 121 of the second telescopic fork 128, the middle parts of the two links of the other pair of link pairs are hinged, and the hinge position is fixed on the second supporting member 153, and the links of the two pairs of link pairs of the second link assembly 192 are hinged correspondingly;
  • the links of the link pairs of the first link assembly 191 and the second link assembly 192 that are close to each other are hinged correspondingly, and finally form a continuous diamond structure as shown in Figure 13.
  • both the first supporting member 152 and the second supporting member 153 include the guide portion 154 and the sliding portion 155
  • the guide portion 154 is slidably disposed on the guide rail 170 through the second sliding fitting portion.
  • the first connecting rod assembly 191 can be connected to the guide portion 154 of the first supporting rod to realize the linkage of the first supporting rod with the first telescopic fork 127 along the second direction B
  • the second connecting rod assembly 192 can be connected to the guide portion 154 of the second supporting rod to realize the linkage of the second supporting rod with the second telescopic fork 128 along the second direction B.
  • the first supporting member 152 and the second supporting member 153 of the container retrieving device of this embodiment may be a rod-shaped structure.
  • the first supporting member 152 and the second supporting member 153 each include at least one supporting rod, and the supporting rod extends along the first direction A.
  • the supporting rod may be a rod formed by the cooperation of the guide portion 154 and the sliding portion 155 .
  • the first supporting member 152 and the second supporting member 153 may each be a supporting rod, or may be two or more supporting rods sequentially arranged along the first direction A with or without intervals.
  • first supporting member 152 and the second supporting member 153 may also be plate-shaped or comb-shaped, and side wings may be added on both sides of the supporting rod to increase the bearing area.
  • the supporting follower assembly may also include a third supporting member, which may be arranged between the first supporting member 152 and the second supporting member 153, and the position of the third supporting member along the second direction B is not adjustable.
  • the spacing distance between the first telescopic fork 127 and the second telescopic fork 128 along the second direction B can be adjusted according to the width of the container 1, thereby expanding the range of container 1 models applicable to the container retrieving device; and increasing A supporting follower assembly is added.
  • the supporting follower assembly will automatically extend forward to fill the gap between the container retrieval and return device and the shelf 2 to ensure that there will be no box jamming during the process of retrieving and returning boxes; the distance between the first supporting member 152 and the second supporting member 153 can be coupled with the distance between the first telescopic fork 127 and the second telescopic fork 128 along the second direction B to ensure the combined force of the distance between the first supporting member 152 and the second supporting member 153, thereby reducing the probability of failure of the container retrieval and return device to retrieve the container 1, and greatly improving the work efficiency of the handling robot using the container retrieval and return device.
  • the present embodiment further provides a handling robot, comprising a chassis assembly 200, a lifting mechanism 400 and a container retrieving device.
  • the lifting mechanism 400 is disposed on the chassis assembly 200, the container retrieving device is connected to the lifting mechanism 400, and can be lifted and lowered in a vertical direction under the action of the lifting mechanism 400, and the container retrieving device is the container retrieving device provided in the present embodiment.
  • the chassis assembly 200 includes a chassis and a travel drive assembly.
  • the travel drive assembly includes a travel motor, a travel drive wheel and a travel universal wheel.
  • the number of travel drive wheels can be two, and the number of travel universal wheels can be two or more.
  • the travel drive wheel can be arranged in the middle of the front and rear, with left and right differential speeds, or in the middle of the left and right, with front and rear idler wheels, and other arrangements.
  • the travel universal wheel only plays a supporting role, and its relative arrangement position is relatively arbitrary. It can be directly placed under the chassis, or it can form a wheel set and be hinged under the chassis.
  • the lifting mechanism 400 includes a column guide assembly and a lifting drive assembly, wherein the column guide assembly is fixed on the chassis and can be composed of one, two or more columns, and has a guiding effect on the vertical movement of the lifting drive assembly.
  • the lifting drive assembly is a component arranged on the column guide assembly and can move in the vertical direction. There are many implementation methods, specifically, it can be a motor with a transmission belt assembly or a motor with a chain assembly, etc.
  • the function of the lifting drive assembly is to carry the container retrieval device and the container 1 up and down.
  • the end of the lifting drive assembly can be connected to a mounting base 410, and the base 110 of the container retrieval device is arranged on the mounting base 410.
  • the mounting base 410 can move in the vertical direction under the action of the lifting drive assembly, thereby driving the container retrieval device to move in the vertical direction.
  • the handling robot of this embodiment may also include a rotating mechanism 500, which is a key component connecting the lifting mechanism 400 and the container retrieving device. Its function is to make the container retrieving device perform a rotational movement relative to the lifting mechanism 400, and its rotation range can be 220 degrees. Its movement can be achieved through a transmission method such as a synchronous belt and a gear set.
  • the rotating mechanism 500 the container retrieving device can adjust the direction of the telescopic fork assembly, so that the container 1 in different directions can be retrieved.
  • the base 110 is installed on the mounting base 410 connected to the end of the lifting drive assembly, and only the base 110 is free to rotate in the vertical direction, ensuring that the container retrieval device can rotate relative to the lifting mechanism 400 around a vertical axis.
  • the rotating mechanism 500 includes a rotating drive motor 510, a rotating drive pulley 520, a rotating synchronous belt 530, and a fixed support pulley 540.
  • the fixed support pulley 540 is mounted on the mounting base 410
  • the rotating drive pulley 520 is mounted on the output end of the rotating drive motor 510, and can rotate along with the output shaft of the rotating drive motor 510
  • the rotating drive motor 510 is fixed on the base 110
  • the rotating synchronous belt 530 connects the rotating drive pulley 520 and the fixed support pulley 540.
  • the rotating drive pulley 520 rotates while performing a circular motion around the fixed support pulley 540, thereby driving the base 110 to rotate around the axis of the fixed support pulley 540.
  • the handling robot of this embodiment can also have a temporary storage location component 300, which is fixed to the column guide component, and the temporary storage location component 300 forms a temporary storage location for loading one or more material boxes, so that the handling robot can transport multiple containers 1 at one time.
  • the specific structure of the temporary storage location component 300 can be in various forms such as plate, comb, rod, belt, etc.
  • the handling robot of this embodiment at least has the beneficial effects of the container retrieving and returning device proposed in this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

一种容器取还装置及搬运机器人,涉及仓储物流技术领域,该容器取还装置(100)包括基座(110)及设置在基座上的伸缩叉(120)、伸缩驱动组件(130)和承托随动组件,伸缩叉上设置有锁止组件(140),锁止组件通过限制伸缩叉伸缩使承托随动组件维持缩回状态,伸缩驱动组件能够驱动伸缩叉脱离锁止组件的限制,使伸缩叉和承托随动组件伸缩;锁止组件能够限制伸缩叉伸缩,在伸缩驱动组件失去动力后,锁止组件能够提供锁止力,使伸缩叉维持收缩状态,使得伸缩叉和承托随动组件不能向前伸出,在搬运机器人断电后,承托随动组件依然能够维持缩回状态,避免承托随动组件对人员或周边设备造成损伤。

Description

容器取还装置及搬运机器人
本申请要求在2022年10月28日提交中国专利局、申请号为202222869701.1的优先权;在2022年10月13日提交中国专利局、申请号为202222701519.5的优先权;其全部内容通过引用结合在本申请中。
技术领域
本公开涉及智能仓储设备技术领域,尤其是涉及一种容器取还装置及搬运机器人。
背景技术
在仓储物流系统中,搬运机器人的伸缩叉在取还小规格料箱时,为防止小料箱掉落至货架与伸缩叉之间的缝隙中,一般会在伸缩叉组件中设计有随动托盘,用于在取、还箱的过程中,将随动托盘伸出以接取小料箱,防止掉落。随动托盘的设计需求是在伸缩叉取还箱过程中进行自身的伸出和收回动作,为降低成本,一般不会设计单独且复杂的控制单元进行相应动作的控制,而是通过简单加装一根拉簧,作为随动托盘伸出的动力,而随动托盘的收回则通过伸缩叉的收回随动完成。
发明内容
本申请实施例提供一种容器取还装置及搬运机器人,包括
基座;
伸缩叉,设置于所述基座上;
伸缩驱动组件,设置于所述基座上,被配置为驱动所述伸缩叉沿第一方向伸缩;
承托随动组件,设置于所述基座上,所述承托随动组件跟随所述伸缩叉的伸缩而伸缩,且所述承托随动组件具有收容于所述基座上的缩回状态和相对所述基座向前伸出的伸出状态;锁止组件,设置于所述伸缩叉上,所述锁止组件通过限制所述伸缩叉伸缩使所述承托随动组件维持缩回状态,所述伸缩驱动组件能够驱动所述伸缩叉脱离所述锁止组件的限制,使所述伸缩叉和所述承托随动组件伸缩。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1所示的是本申请实施例提出的搬运机器人取还容器过程的示意图;
图2所示的是本申请实施例提出的搬运机器人的示意图;
图3所示的是本申请实施例提供的容器取还装置一个视角的示意图;
图4所示的是图3的另一个视角的示意图;
图5所示的本申请实施例提供的伸缩叉的剖视示意图;
图6所示的是图5的C部放大图;
图7所示的是本申请实施例提供的第一配合件和第二配合件配合的示意图;
图8所示的是本申请实施例提供的第一配合件的主视示意图;
图9所示的本申请实施例提供的第一配合件的侧视示意图;
图10所示的是图9的D-D剖视图;
图11所示的是本申请实施例提出的容器取还装置的示意图;
图12所示的是图11省略伸缩驱动组件的俯视示意图;
图13所示的是图11的容器取还装置省略基座及第一驱动组件的仰视图;
图14所示的是本申请实施例提出的旋转机构的装配示意图;
图15所示的是本申请实施例提供的容器取还装置与旋转机构的装配示意图;
附图标记如下:
1、容器;2、货架;
100、容器取还装置;110、基座;120、伸缩叉;121、固定叉板;122、第一级伸缩叉板;123、第
二级伸缩叉板;125、固定推板;126、旋转推板;127、第一伸缩叉;128、第二伸缩叉;129、伸缩导轨;130、伸缩驱动组件;131、第一电机;132、第一传动轴;133、主动带轮;134、伸缩同步带;140、锁止组件;141、第一配合件;1411、弹性伸缩件;1412、安装座;1413、摆动臂;1414、压簧;1415、滚轮;142、第二配合件;1421、凹槽;1422、导向块;1423、导向面;143、调节件;1431、螺母;1432、螺柱;1433、操作端;150、承载件;151、第二限位件;152、第一承托件;153、第二承托件;154、导向部;155、滑动部;156、第一限位件;160、拉簧;170、导向轨;180、第一驱动组件;181、第二电机;182、第二同步带;183、第二驱动带轮;184、第二从动带轮;191、第一连杆组件;192、第二连杆组件;
200、底盘组件;300、暂存货位组件;400、升降机构;410、安装底座;500、旋转机构;510、旋
转驱动电机;520、旋转驱动带轮;530、旋转同步带;540、固定支撑带轮;
A、第一方向;B、第二方向;E、摆动方向。
具体实施方式
下面将参照附图更详细地描述本申请实施例的示例性实施方式。虽然附图中显示了本申请实施例的示例性实施方式,然而应当理解,可以以各种形式实现本申请实施例而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本申请实施例,并且能够将本申请实施例的范围完整的传达给本领域的技术人员。
应理解的是,文中使用的术语仅出于描述特定示例实施方式的目的,而无意于进行限制。除非上下文另外明确地指出,否则如文中使用的单数形式“一”、“一个”以及“所述”也可以表示包括复数形式。术语“包括”、“包含”、“含有”以及“具有”是包含性的,并且因此指明所陈述的特征、步骤、操作、元件和/或部件的存在,但并不排除存在或者添加一个或多个其它特征、步骤、操作、元件、部件、和/或它们的组合。文中描述的方法步骤、过程、以及操作不解释为必须要求它们以所描述或说明的特定顺序执行,除非明确指出执行顺序。还应当理解,可以使用另外或者替代的步骤。
尽管可以在文中使用术语第一、第二、第三等来描述多个元件、部件、区域、层和/或部段,但是,这些元件、部件、区域、层和/或部段不应被这些术语所限制。这些术语可以仅用来将一个元件、部件、区域、层或部段与另一区域、层或部段区分开。除非上下文明确地指出,否则诸如“第一”、“第二”之类的术语以及其它数字术语在文中使用时并不暗示顺序或者次序。因此,以下讨论的第一元件、部件、区域、层或部段在不脱离示例实施方式的教导的情况下可以被称作第二元件、部件、区域、层或部段。
为了便于描述,可以在文中使用空间相对关系术语来描述如图中示出的一个元件或者特征相对于另一元件或者特征的关系,这些相对关系术语例如为“内部”、“外部”、“内侧”、“外侧”、“下面”、“下方”、“上面”、“上方”等。这种空间相对关系术语意于包括除图中描绘的方位之外的在使用或者操作中装置的不同方位。例如,如果在图中的装置翻转,那么描述为“在其它元件或者特征下面”或者“在其它元件或者特征下方”的元件将随后定向为“在其它元件或者特征上面”或者“在其它元件或者特征上方”。因此,示例术语“在……下方”可以包括在上和在下的方位。装置可以另外定向(旋转90度或者在其它方向)并且文中使用的空间相对关系描述符相应地进行解释。
上述设计方式中,在随动托盘处于收回状态时,伸缩叉也处于收回状态,且收缩叉能够限制随动托盘在拉簧的作用下伸出,也即在正常工况下,随动托盘会受限于伸缩叉的位置,并仅能跟随伸缩叉的伸缩动作而随动。但是当搬运机器人断电后,伸缩叉通常会失去保持收回状态的制动力,此时,随动托盘可能在拉簧的作用力下伸出,随动托盘的伸出部分容易伤人伤物。目前为了避免该种情况,部分搬运机器人中采用抱闸电机作为伸缩叉的伸缩驱动动力器,这样在搬运机器人断电后,由抱闸电机使伸缩叉维持缩回状态,进而提供随动托盘的锁止力,阻挡随动托盘弹出,但是此方案又会影响维修人员在检修伸缩叉时的灵活性,例如需要解除抱闸才能拉出伸缩叉,进行维修检查。
基于上述存在的问题,参照图1至图10所示,本实施例提供一种容器取还装置100,包括基座110、伸缩叉120、伸缩驱动组件130、承托随动组件和锁止组件140。伸缩叉120设置于基座 110上,伸缩驱动组件130设置于基座110上,用于驱动伸缩叉120伸缩。承托随动组件设置于基座110上,承托随动组件跟随伸缩叉120的伸缩而伸缩,且承托随动组件具有收容于基座上的缩回状态和相对基座向前伸出的伸出状态。锁止组件140设置于伸缩叉120上,锁止组件140通过限制伸缩叉120伸缩使承托随动组件维持缩回状态,伸缩驱动组件130能够驱动伸缩叉120脱离锁止组件140的限制,使伸缩叉120和承托随动组件伸缩。
在一种实现方式中,承托随动组件包括承载件150和驱动件,伸缩叉120伸出时,承载件150在驱动件的作用下向前伸出。伸缩叉120回缩时,带动承载件150向后复位。锁止组件140设置于伸缩叉120上,在伸缩叉120处于收缩状态时,锁止组件140能够限制伸缩叉120伸缩,伸缩驱动组件130能够驱动伸缩叉120脱离锁止组件140的限制,使伸缩叉120伸缩。
根据本实施例容器取还装置100,伸缩驱动组件130能够驱动伸缩叉120脱离锁止组件140的限制,使伸缩叉120和承托随动组件伸缩,使得伸缩叉120和承托随动组件能够在伸缩驱动组件130的作用下正常伸缩。承载件150跟随伸缩叉120的伸缩而随动,具体的,伸缩叉120伸出时,承载件150在驱动件的作用下向前伸出,伸缩叉120回缩时,带动承载件150向后复位。在伸缩驱动组件130失去动力后,锁止组件140能够提供锁止力,使伸缩叉120维持收缩状态,这样伸缩叉120在锁止组件140的作用下不能伸出,相应的,承载件150也不能在驱动件的作用下向前伸出,在搬运机器人断电后,承载件150依然能够维持缩回状态,避免承载件150伸出对人员或周边设备造成损伤;同时,锁止组件140设置在伸缩叉120上,在检修伸缩叉120时,灵活性较高。
本实施例容器取还装置100可以应用于搬运机器人等搬运设备上。容器1取还装置100取还的容器1可以是货箱、料箱、包装箱或货品等。
基座110为容器取还装置100的安装基体,伸缩驱动组件130、伸缩叉120和承托随动组件均直接或间接安装在基座110上。基座110的结构形式上可以展现为一块板状结构也可以展现为框架结构。
伸缩叉120是用于完成对容器1取还的构件。通常伸缩叉120包括两个,两个伸缩叉120沿垂直于伸缩叉120伸缩方向的方向间隔设置。为了便于描述将两个伸缩叉120的依次布置方向定义为第二方向B,将伸缩叉120的伸缩方向定义为第一方向A,通常在搬运机器人处于使用状态时,第二方向B和第一方向A是水平面上的两个相互垂直的方向;两个伸缩叉120分别定义为第一伸缩叉127和第二伸缩叉128。第一伸缩叉127和第二伸缩叉128沿第二方向B间隔相对设置,第一伸缩和第二伸缩叉128通过伸缩,以将容器1搬运至承载件150上,或将容器1从承载件150上移出。其中,将容器1搬运至承载件150的过程可认为是取容器1过程,将容器1从承载件150上移出的过程可认为是还容器1过程。
其中,第一伸缩叉127和第二伸缩叉128均包括两块推板和至少两块叉板,至少两块叉板沿垂直于第一方向A的方向,也即第二方向B依次设置,每块叉板沿第一方向A,也即第一方向A延伸,至少两块叉板中相邻的两叉板滑动连接,以使伸缩叉120能够伸缩。通常,同一个伸缩叉120的至少两块叉板中有一块叉板固定设置,其他叉板为伸缩叉板,在本实施例中,至少两块叉板中位于垂直于伸缩方向一端的叉板为固定叉板121,具体而言,第一伸缩叉127的远离第二伸缩叉128的叉板为固定叉板121,第二伸缩叉128远离第一伸缩叉127的叉板为固定叉板121。换句话说,两个固定叉板121分别位于容器取还装置100相对的最外侧。
在第一伸缩叉127和第二伸缩叉128包括两块叉板时,两块叉板分别为固定叉板121和一级伸缩叉板,一级伸缩叉板可沿第一方向A滑动地设置于固定叉板121上,推板设置于一级伸缩叉板上;在第一伸缩叉127和第二伸缩叉128包括三块或更多块叉板时,第一伸缩叉127和第二伸缩叉128均包括固定叉板121和多级伸缩叉板,其中固定叉板121、多级伸缩叉板依次设置,第一级伸缩叉板122能够相对固定叉板121沿第一方向A滑动,相邻级的伸缩叉板中的下一级的伸缩叉板能够相对上一级的伸缩叉板沿第一方向A滑动,推板设置于末级伸缩叉板上。参照图11所示,相邻的叉板之间可由具有导向作用的伸缩导轨129连接。
下面给出一种伸缩叉120的具体结构,第一伸缩叉127和第二伸缩叉128为二级伸缩结构。第一伸缩叉127和第二伸缩叉128的结构相同,下面以第一伸缩叉127为例进行结构的具体说明。
如图5和图11所示,两级伸缩叉板分别为第一级伸缩叉板122和第二级伸缩叉板123,第一级伸缩叉板122设置于固定叉板121上并能够相对固定叉板121沿第一方向A滑动,第二级伸缩叉板123设置于第一级伸缩叉板122上并能够相对第一级伸缩叉板122沿第一方向A伸缩。其中,固定叉板121与第一级伸缩叉板122之间和第一级伸缩叉板122与第二及伸缩叉板之间均设置有伸缩导轨129,伸缩导轨129沿第一方向A延伸,以导向第一级伸缩叉板122和第二级伸缩叉板123沿第一方向A的伸缩。第二级伸缩叉板123上装有固定推板125和旋转推板126,旋转推板126设置于前端,固定推板125设置于后端,其中,固定推板125用于在还容器1过程中向外推容器1,旋转推板126用于从货架2(仓储系统的货架2)或暂存位(一般是搬运机器人上的暂存位)上取容器1时向内推容器1,旋转推板126可以绕第一方向A旋转呈竖直和水平两种状态,竖直状态时不凸出第二级伸缩叉板123,可将伸缩叉120伸出并环抱容器1,水平状态时则可以与容器1接触,给容器1一个推力。
第一伸缩叉127和第二伸缩叉128可分别采用独立的动力源配合传动结构实现各自的伸缩驱动;第一伸缩叉127和第二伸缩叉128也可共同动力源配合传动结构实现伸缩驱动。具体的动力源可以是电机。第一级伸缩叉板122与固定叉板121之间的传动结构可以是链条配合链轮、齿轮配合齿条、丝杠配合丝母等机构实现,二级及以上叉板的运动可运用滑轮组实现。
需要注意的是,第一伸缩叉127和第二伸缩叉128通常需要同步伸缩,为了实现两者的同步伸缩,优选选用两者采用同一动力源的伸缩驱动组件130。在一种实现方式中,参照图4所示,伸缩驱动组件130包括第一电机131、第一传动轴132和两组传动构件,伸缩驱动组件130包括第一电机131、第一传动轴132和两主动带轮133,第一电机131与第一传动轴132连接,第一传动轴132沿第二方向B延伸,两主动带轮133均套设于第一传动轴132上,两主动带轮133分别能够沿第一传动轴132的轴向移动且主动带轮133与第一传动轴132在周向上相对固定;第一伸缩叉127的伸缩驱动带轮与两主动带轮133中的其中一个连接,第二伸缩叉128的伸缩驱动带轮与两主动带轮133中的另一个连接。
其中,主动带轮133可与伸缩驱动带轮通过一体构造、焊接或螺接等方式固定连接。
具体的,第一传动轴132可以为花键轴,主动带轮133为与花键轴相配合的花键母。主动带轮133也可以是滑动键或者长导向键,第一传动轴132为与滑动键或长导向键配合的导向轴。
主动带轮133可以沿第一传动轴132的轴向移动,并能够在第一传动轴132的周向相对固定,从而在第一伸缩叉127和第二伸缩叉128沿第二方向B移动的过程中,主动带轮133能够始终保持与第一传动轴132的扭矩传递。第一电机131将扭矩传递至第一传动轴132,第一传动轴132再将扭矩传递至与主动带轮133连接的伸缩驱动带轮上,以完成第一伸缩叉127和第二伸缩叉128在任意宽度下的伸缩动力传递。
其中一组传动构件与第一伸缩叉127连接,另一组传动构件与第二伸缩叉128连接。其中,两组传动构件均包括主动带轮133和从动带轮,主动带轮133和从动带轮沿第一方向A依次布置并设置于固定叉板121上,主动带轮133和从动带轮之间连接有伸缩同步带134,主动带轮133与第一传动轴132连接,第一级伸缩叉板122与伸缩同步带134连接,第一电机131转动驱动第一传动轴132转动,从而驱动两个主动带轮133转动,每个主动带轮133通过驱动对应的伸缩同步带134转动,从而实现第一级伸缩叉板122沿第一方向A的伸缩。第一级伸缩叉板122上设置有滑轮和传动带,传动带的一端与固定叉板121连接,另一端绕过滑轮后与第二级伸缩叉板123连接。
主动带轮133转动带动伸缩同步带134移动,在伸缩同步带134的作用下,第一级伸缩叉板122沿第一方向A伸缩,第一级伸缩叉板122上的滑轮一并沿第一方向A移动,绕设在滑轮上的传动带带动第二级伸缩叉板123以第一级伸缩叉板122移动速度的两倍速度沿第一方向A伸缩。在还容器1过程中,容器1处于承载件150上,固定推板125与容器1接触,控制第一伸缩叉127和第二伸缩叉128沿第一方向A向前伸出,可将容器1推出承载件150并放置到搬运机器人的暂存位或仓储系统的货架2上。在取容器1过程中,容器1处于货架2或暂存位上,旋转推板126处于竖直状态时,将第一伸缩叉127和第二伸缩叉128沿第一方向A向前伸出,并环抱容器1,然后控制旋转推板126至水平状态,旋转推板126作用于容器1,控制第一伸缩叉127和第二伸 缩叉128回缩,旋转推板126推动容器1至承载件150上。
需要说明的是,旋转推板126在水平状态和竖直状态的切换可通过电机配合传动构件实现。主动带轮133通过正转或反转控制第一伸缩叉127和第二伸缩叉128的正转和反转。
本实施例的承载件150可以是托盘结构,也可以是镂空的杆状结构,其用于承托容器1。
容器取还装置在与货架2之间交互容器1时,货架2可能与承托随动组件之间形成间隙,对于小容器1而言,在取还容器1过程中,容易导致容器1在重力作用下卡在间隙处或存在从间隙处掉落风险。为了解决该问题,本申请的承托随动组件还能够沿第一方向A伸缩,以避免搬运机器人与货架2间隙带来的小箱子掉落与被卡的问题。
具体的,承载件150可以包括第一承托件152和第二承托件153,第一承托件152和第二承托件153分别包括导向部154和滑动部155,导向部154和滑动部155均沿所述第一方向A延伸,滑动部155设置于导向部154上,且滑动部155能够在导向部154上沿第一方向A滑动。容器取还装置还包括驱动件,驱动件设置于基座110上,并与滑动部155连接,驱动件用于驱动滑动部155沿第一方向A向前伸出。
沿第一方向A向前指的是滑动部155向远离基座110的方向移动,相对应的,滑动部155向靠近基座110的方向移动为向后。
驱动件用于驱动承载件150向前移动,驱动件可以是拉簧160、压簧、气体弹簧、橡胶弹性带等弹性结构,也可以是电磁铁、电动推杆、电机配合同步带等能具有直线驱动能力的可控制机构。需要注意的是,驱动件向承载件150提供的驱动力应当小于锁止组件140对伸缩叉120的阻力,以使伸缩叉120处于收缩状态时,锁止组件140能够限制伸缩叉120的伸缩。
在一个具体实施例中,驱动件为拉簧160,拉簧160的数量为至少一根,拉簧160沿第一方向A布置,拉簧160的一端与基座110固定连接,另一端与承载件150固定连接,拉簧160向承载件150施加沿第一方向A向前的拉力,以在伸缩叉120伸出时,承载件150也向前伸出。
当然,驱动件为弹簧160与滑动部155的连接方式可以为,参照图11和图12所示,第一承托件152的滑动部155和第二承托件153的滑动部155分别连接一个拉簧160,任意一根拉簧160的一端固定于基座110上,另一端固定于滑动部155上。拉簧160能够产生拉力使得第一承托件152的滑动部155和第二承托件153的滑动部155具有向前伸出的能力。
需要说明的是,采用拉簧160等弹性结构作为驱动件时,应当保证承载件150移动至最大行程时,依然能够对承载件150施加向前的作用力,以使承载件150能够在最大行程处稳定设置。
进一步地,基座110上还可设置有第一限位部,承载件150上设置第二限位部,第一限位部设置于第二限位部沿滑动部155伸出路径的前侧,且第二限位部能够与第一限位部抵接,以限制承载件150沿第一方向A向前伸出的最大行程。
为了实现伸缩叉120与承载件150的联动,伸缩叉120上固定有第一限位件,承载件150的后端设置有第二限位件151,第一限位件设置于第二限位件151的前端,在伸缩叉120回缩时,第一限位件与第二限位件151抵接,以带动承载件150向后复位。
当然,第二限位部也可以对应设置在第一承托件152和第二承托件153上,具体可以为,第一限位部设置于第二限位部沿滑动部155伸出路径的前侧,且第二限位部能够与第一限位部抵接,以限制滑动部155第一方向A向前伸出的最大行程。
需要说明的是,第一承托件152的滑动部155和第二承托件153的滑动部155上分别设置第二限位部,相应的基座110上对应两个第二限位部分别设置有第一限位部。在拉簧160等第二驱动组件的作用下,第一承托件152的滑动部155和第二承托件153的滑动部155向前伸出时,第二限位部可抵接于第一限位部的后侧,这样第一限位部在第二限位部的前侧止挡第二限位部,从而使得第一承托件152和第二承托件153无法继续向前移动。
需要说明的是,采用拉簧160等弹性结构作为驱动件时,应当保证第一承托件152的滑动部155和第二承托件153的滑动部155移动至最大行程时,依然能够对第一承托件152的滑动部155和第二承托件153的滑动部155施加向前的作用力,以使第一承托件152和第二承托件153能够在最大行程处稳定设置。
在一种实现方式中,参照图3和图4所示,第一伸缩叉127的后侧的固定推板125和第二伸 缩叉128的后侧的固定推板125分别形成第一限位件,承载件150的后端具有竖直设置的第二限位件151。固定推板125设置于第二限位件151的前侧。在第一伸缩叉127和第二伸缩叉128沿第一方向A回缩时,固定推板125可同步推动第二限位件151,使承载件150同步回缩;在第一伸缩叉127和第二伸缩叉128沿第一方向A伸出时,在拉簧160等驱动件的作用下,承载件150向前伸出。
通过第一伸缩叉127的固定推板125和第二伸缩叉128的固定推板125的缩回动作带动承载件150缩回,这种设计可以保证容器1完全落在承载件150上后,承载件150与容器1同步缩回,从而保证不论容器1大小,都不会因间隙被卡住或掉落。
进一步地,第一承托件152和第二承托件153可在第一伸缩叉127和第二伸缩叉128沿第一方向A伸缩时联动。具体的,滑动部155的上方设置有第一限位件156,第一承托件152和第二承托件153上设置有第二限位件151,第一限位件156与第二限位件151抵接;在第一伸缩叉127和/或第二伸缩叉128沿第一方向A回缩时,第一限位件156同步移动并推动第二限位件151使第一承托件152的滑动部155和第二承托件153的滑动部155回缩。
参照图11和图12所示,具体的可以是第一伸缩叉127的后侧的固定推板125和第二伸缩叉128的后侧的固定推板125分别形成第一限位件156,第一承托件152的滑动部155和第二承托件153的滑动部155上分别具有竖直设置的第二限位件156。固定推板125设置于对应的第二限位件151的前侧,第一承托件152的第二限位件151与第一伸缩叉127的固定推板125抵接,第二承托件153的第二限位件156与第二伸缩叉128的固定推板125抵接。这样,在第一伸缩叉127和第二伸缩叉128沿第一方向A回缩时,固定推板125可同步推动第一承托件152的滑动部155和第二承托件153的滑动部155回缩;在第一伸缩叉127和第二伸缩叉128沿第一方向A伸出时,在拉簧160等驱动件的作用下,第一承托件152的滑动部155和第二承托件153的滑动部155向前伸出。
通过第一伸缩叉127的固定推板125和第二伸缩叉128的固定推板125的缩回动作带动第一承托件152和第二承托件153缩回,这种设计可以保证容器1完全落在承托随动组件上后,承托随动组件与容器1同步缩回,从而保证不论容器1大小,都不会因间隙被卡住或掉落。
需要注意的是,在第一伸缩叉127和第二伸缩叉128处于收缩状态时,固定推板125始终对第二限位件151起到限位组件,使得在伸缩叉120未伸出时,承载件150无法向前伸出。换句话说,拉簧160等弹性结构制成的驱动件处于压缩蓄力状态,给与承载件150持续性向前的推力,但是由于固定推板125对第二限位件151的限位,从而使得承载件150无法通过拉簧160向前伸出。
本实施例的锁止组件140可以设置于第一伸缩叉127和第二伸缩叉128中的其中一个上,也可以在第一伸缩叉127和第二伸缩叉128上分别设置锁止组件140。锁止组件140可以设置于第一伸缩叉127或第二伸缩叉128沿第二方向B相邻的两块叉板之间。
参照图5和图6所示,在一种实现方式中,锁止组件140设置于固定叉板121和与固定叉板121相邻的伸缩叉板之间。其中,与固定叉板121相邻的伸缩叉板指的是沿第二方向B与固定叉板121相邻的伸缩叉板,也即第一级伸缩叉板122。
下面具体介绍一种锁止组件140。
参照图5至图10所示,锁止组件140包括第一配合件141和第二配合件142,第一配合件141和第二配合件142两者中的其中一者设置于固定叉板121上,另一者设置于第一级伸缩叉板122上。第一配合件141具有弹性伸缩件1411,第二配合件142上设置有凹槽1421,伸缩叉120处于收缩状态时,弹性伸缩件1411伸出并锁止于凹槽1421内,伸缩驱动组件130驱动伸缩叉120时,弹性伸缩件1411滑出凹槽1421并回缩。
为了便于描述,将固定叉板121和第一级伸缩叉板122两者中设置有第二配合件142的一者定义为第二者,另一者定义为第一者。凹槽1421可以直接设置于第二者上,也可以设置在导向块1422。在一种实现方式中,第二配合件142包括导向块1422,所述导向块1422固定于所述第二者面向第一者的一侧,凹槽1421设置于所述导向块1422面向第一者的侧面上。
具体而言,参照图5和图6所示,在本实施例中,第二者为第一级伸缩叉板122,第一者为 固定叉板121。第一配合件141安装于固定叉板121上,弹性伸缩件1411设置于第一配合件141面向第一级伸缩叉板122的一侧,导向块1422设置于第一级伸缩叉板122面向固定叉板121的一侧,凹槽1421设置于导向块1422面向第一级伸缩叉板122的一侧上。第一级伸缩叉板122在伸缩驱动组件130的作用下向前移动时,导向块1422相对第一配合件141沿第一方向A移动,迫使弹性伸缩件1411回缩并从凹槽1421内移出,弹性伸缩件1411与凹槽1421解除锁止。
可以理解的是,凹槽1421设置于导向块1422,且导向块1422设置于第二者面向第一者(在本实施例中第二者为第一级伸缩叉板122,第一者为固定叉板121)的侧面上,这样导向块1422凸出于第二者的表面。在伸缩叉120伸缩至弹性伸缩件1411与导向块1422错位时,弹性伸缩件1411与第二者的侧面相对,由于第二者的侧面与第一者之间的间距相对于导向块1422与第一者之间的间距较大,弹性伸缩件1411与第二者之间的阻力较小。这样在伸缩叉120伸缩时,仅仅是伸缩叉120伸出的前期或者缩回的后期需要克服较大的弹性伸缩件1411与导向块1422之间的阻力,伸出的后期以及缩回的前期,伸缩叉120基本不受到弹性伸缩件1411的阻力,避免了伸缩阻力持续过大的问题。
继续参照图6和图7所示,进一步地,导向块1422在所述凹槽1421的前端设置有导向面1423,所述导向面1423面向所述第一者设置,沿从后往前的方向,所述导向面1423逐渐靠近所述第二者设置,且所述导向面1423的前端与所述第二者面向所述第一者的侧面平齐。
其中,前和后是以伸缩叉120的伸缩动作进行的定义,在第一方向A上,伸缩叉120伸出时的方向为前,缩回复位时的方向为后。
导向面1423的设置,可以使弹性伸缩件1411逐渐落入第二者也即第一级伸缩叉120的侧面上,这样弹性伸缩件1411影响伸缩叉120伸缩的阻力变化较为平缓,有利于伸缩叉120的平稳伸缩。
本实施例的,弹性伸缩件1411可以是橡胶块等弹性件,也可以是依靠弹簧等弹性机构具有弹性的构件。依靠弹簧等弹性机构具有弹性的构件有多种,例如,第二配合件142上设置有弹簧,弹簧对弹性伸缩件1411起到支撑作用,弹性伸缩件1411可以在外力的作用下,压簧1414而回缩,在外力减小或撤消后,弹簧又使弹性伸缩件1411伸出。具体的,在本实施例中,第一配合件141采用滚轮柱塞,滚轮柱塞的滚轮1415在滚轮柱塞的内部结构的作用下具有伸缩性,滚轮1415也即是弹性伸缩件1411。
进一步地,第一配合件141还可设置有调节件143,调节件143与弹性伸缩件1411连接,用于调节弹性伸缩件1411的弹力。
通常调节件143具有操作端1433,为了便于调节件143的调节操作,参照图5和图6所示,可将第一配合件141设置于固定叉板121(也即第一者是固定叉板121)上,相应的第二配合件142设置于第一级伸缩叉板122上,调节件143的操作端1433朝向固定叉板121背离第一级伸缩叉板122的一侧设置,也即操作端1433朝向固定叉板121的外侧设置。
可以理解的是,弹性伸缩件1411的弹力指的是弹性伸缩件1411处于凹槽1421内时,弹性伸缩件1411向凹槽1421施加的作用力。
针对于橡胶块形式的弹性伸缩件1411,调节件143可以通过改变橡胶块的位置而达到调节橡胶块弹力的目的,例如,可以将橡胶块面向凹槽1421的凸出部增大,这样橡胶块在抵接于凹槽1421内时,橡胶块对凹槽1421的压紧力增大;反之,将橡胶块面向凹槽1421的凸出部减小,这样橡胶块抵接于凹槽1421内时,橡胶块对凹槽1421的压紧力减小。针对于依靠弹簧等弹性机构具有弹性的构件,可以通过调节弹簧的长短来调节弹性伸缩件1411的弹力,例如,弹簧为压簧1414,可以将弹簧远离弹性伸缩件1411的一端靠近弹性伸缩件1411移动,这样弹簧的长度进一步缩短,弹簧对弹性伸缩件1411提供的弹力增大;反之,将弹簧远离弹性伸缩件1411的一端靠近弹性伸缩件1411移动,这样弹簧的长度进一步拉长,弹簧对弹性伸缩件1411提供弹力减小。
通过设置调节件143调节弹性伸缩件1411的弹力,使得锁止组件140可以根据驱动件也即拉簧160对承载件150的作用力而进行适应性调节。在选用的拉簧160对承载件150的作用力较大时,将弹性伸缩件1411的弹力调大,以避免在拉簧160的作用下,迫使锁止组件140解除锁止,而导致承载件150向前伸出。这样,锁止组件140可以适用于不同拉力的拉簧160,适用范围较 广;在装置组装时,即使拉簧160的拉力值一致性较差,也可采用相同类型的锁止组件140。
在一种实现方式中,弹性伸缩件1411可滚动设置,在所述伸缩驱动组件130驱动所述伸缩叉120伸缩时,所述弹性伸缩件1411能够在所述导向块1422上滚动,以进入或滑出所述凹槽1421,以降低弹性伸缩件1411与导向块1422之间的阻力。
在本实施例中,第一配合件141可采用自身带有弹力调节机构的滚轮柱塞,其弹力调节机构形成调节件143。在实际布置时,可将调节件143布置于固定叉板121远离活动叉板的一侧,也即设置于固定叉板121的外侧,这样可以方便操作人员对调节件143进行调节操作。
作为第一配合件141的滚轮柱塞可以是纵向支架型的滚轮柱塞,也可以是铰接形式的滚轮柱塞。其中,纵向支架型的滚轮柱塞的滚轮1415是以直线形式进行伸缩,铰接形式的滚轮柱塞的滚轮1415是以转动的形式进行伸缩。本实施例以铰接形式的滚轮柱塞展开介绍。
参照图10所示,滚轮柱塞包括安装座1412、摆动臂1413、压簧1414和滚轮1415,摆动臂1413的第一端与安装座1412铰接,摆动臂1413的第二端与滚轮1415连接,其中滚轮1415可滚动的设置于摆动臂1413上,压簧1414的两端分别与安装座1412和摆动臂1413连接,压簧1414向摆动臂1413施加朝向第二配合件142方向的弹力,摆动臂1413能够在压簧1414和外力的作用下,绕第一端摆动并带动所述滚轮1415伸出或回缩。
其中,外力一般是来自于滚轮1415,也即滚轮1415受到第二配合件142的作用力,并将该作用力传递给摆动臂1413。在第一级伸缩叉板122相对固定叉板121伸出时,滚轮1415从凹槽1421内移出的过程中,滚轮1415持续受到第二配合件142的压力,该压力迫使滚轮1415和摆动臂1413向背离第二配合件142的方向摆动,也即参照图10,摆动臂1413携带滚轮1415沿摆动方向E向左摆动,滚轮1415回缩;在第一级伸缩叉板122相对固定叉板121回缩时,滚轮1415向凹槽1421内移动,在压簧1414弹力的作用下,滚轮1415和摆动臂1413向靠近第二配合件142的方向移动,也即参照图10,摆动臂1413携带滚轮1415沿摆动方向E向右摆动,滚轮1415伸出至凹槽1421内。
可以理解的是,铰接形式的滚轮柱塞采用铰点回转运动,最大程度的减小空间尺寸,便于设计安装。
针对于铰接形式的滚轮柱塞,也可设置调节件143。在一种实现方式中,调节件143包括螺柱1432和螺母1431。安装座1412大致呈槽状设置,螺柱1432在安装座1412的一侧侧壁上,螺柱1432与安装座1412螺接,且螺柱1432穿出的一端与螺母1431螺接,螺柱1432在安装座1412内侧的一端与压簧1414连接。通过旋转螺柱1432,可以使螺柱1432沿螺柱1432的长度方向移动,从而改变压簧1414的长度,达到调节压簧1414弹力的作用。
需要说明的是,图10中仅仅是适应性的表示了滚轮柱塞的摆动原理,压簧、调节件及摆动臂的第一端的铰接件等均未显示。
搬运机器人也称为料箱机器人,其在仓储物流系统中扮演着重要角色。仓库商品种类繁多,料箱型号大小不一,传统的料箱机器人存在取箱型号单一的缺陷,这一缺陷直接影响着仓储机器人的作业效率和仓库的存储密度与利用率。换句话说,相关技术中的第一伸缩叉127和第二伸缩叉128之间的间距不能调节,存在取箱型号单一、取货效率低的问题。
参照图11至图13所示,在本申请的另外一些实施例中,本示例中的容器取还装置还包括调节机构,调节机构与第一伸缩叉127和第二伸缩叉128两者中的一者或两者连接,用于调整第一伸缩叉127和第二伸缩叉128沿第二方向B的间隔距离。承托随动组件用于承载容器1,包括沿第二方向B依次设置的第一承托件152和第二承托件153,第一承托件152和/或第二承托件153在第二方向B上的位置可调。调节机构以及第一伸缩叉127和第二伸缩叉128都将直接或间接安装在基座110上。
调节机构可安装于基座110上方,调节机构的作用是调节左右两个伸缩叉距离,以适应不同容器1的宽度。调节机构可以通过调节第一伸缩叉127沿第二方向B的位置,而调整第一伸缩叉127与第二伸缩叉128沿第二方向B的间隔距离;也可以是通过调节第二伸缩叉128沿第二方向B的位置,而调整第一伸缩叉127与第二伸缩叉128沿第二方向B的间隔距离;也可以是既调节第一伸缩叉127沿第二方向B的位置,又调节第二伸缩叉128沿第二方向B的位置,而调整第一伸 缩叉127与第二伸缩叉128沿第二方向B的间隔距离。
下面具体介绍一种调节机构。
在一种实现方式中,调节机构可以包括两组第一驱动组件180,其中一组第一驱动组件180与第一伸缩叉127连接,以驱动第一伸缩叉127沿第二方向B移动,另一组第一驱动组件180与第二伸缩叉128连接,以驱动第二伸缩叉128沿第二方向B移动。这种方式下,第一伸缩叉127和第二伸缩叉128可以分别驱动。
在另一种实现方式中,调节机构包括一组第一驱动组件180,第一驱动组件180与第一伸缩叉127和第二伸缩叉128两者中至少一者连接,以驱动第一伸缩叉127与第二伸缩叉128沿第二方向B相对移动。在第一驱动组件180与第一伸缩叉127和第二伸缩叉128两者中的一者连接时,第一驱动组件180通过驱动第一伸缩叉127或第二伸缩叉128而调整第一伸缩叉127与第二伸缩叉128沿第二方向B的间隔距离;第一驱动组件180与第一伸缩叉127和第二伸缩叉128连接时,通过驱动两者同步相向或向背运动,而调整第一伸缩叉127与第二伸缩叉128沿第二方向B的间隔距离。
具体的,第一驱动组件180包括动力器和传动构件,动力器与传动构件的输入端连接,传动构件的输出端与第一伸缩叉127和/或第二伸缩叉128连接。传动构件可以是滚珠丝杠构件、同步带构件、链条构件或连杆构件等。
本实施例给出一种通过一组第一驱动组件180驱动第一伸缩叉127和第二伸缩叉128同步移动的具体结构。参照图3、图4和图5所示,第一驱动组件180的数量为一组,第一驱动组件180包括第二电机181、第二同步带182、第二驱动带轮183和第二从动带轮184,第二电机181与第二驱动带轮183连接,第二同步带182绕设在第二驱动带轮183和第二从动带轮184上;第二同步带182具有第一部分和第二部分,第一部分与第二部分分别设置于第二驱动带轮183的两侧,第一伸缩叉127与第一部分连接,第二伸缩叉128与第二部分连接。第二电机181转动驱动第二驱动带轮183带动第一部分和第二部分移动,以使第一伸缩叉127和第二伸缩叉128同步相向或相背沿第二方向B移动。
其中,第二驱动带轮183固定在第二电机181的输出轴上,随第二电机181的输出轴转动,第二从动带轮184固定在基座110上,且保留第二从动带轮184绕自身轴线旋转的自由度。第二同步带182分别绕过第二驱动带轮183和第二从动带轮184,同时第二同步带182上下两边分别形成第一部分和第二部分,第一部分与第一伸缩叉127的固定叉板121连接,第二部分与第二伸缩叉128的固定叉板121连接,以确保第一伸缩叉127和第二伸缩叉128运动的一致性,随着第二电机181的转动带动第一伸缩叉127和第二伸缩叉128做相向或反向运动。
为保证第一伸缩叉127和第二伸缩叉128运动轨迹的正确,基座110上还可设置有导向轨170,导向轨170的数量至少为一根,导向轨170沿第二方向B延伸,第一伸缩叉127和/或第二伸缩叉128通过第一滑动配合部与导向轨170滑动配合。
其中,为了确保第一伸缩叉127和第二伸缩叉128沿第一方向A的任意位置均具有较好的同步性,导向轨170可沿第一方向A至少间隔设置两根导向轨170。第一滑动配合部可与对应的第一伸缩叉127或第二伸缩叉128的固定叉板121固定连接。
本实施例容器取还装置的承接组件安装在基座110上,第一承托件152和第二承托件153两者中,可以是其中一者在第二方向B上的位置可调,也可以是两者在第二方向B上的位置均可调。第一承托件152和第二承托件153在第二方向B上的位置的调整可通过设置独立的驱动机构实现,也可在第一伸缩叉127和第二伸缩叉128相对移动的作用下联动。
在一种实现方式中,第一承托件152与第一伸缩叉127或第二伸缩叉128连接,以使第一承托件152能够跟随第一伸缩叉127和第二伸缩叉128沿第二方向B的相对移动而沿第二方向B移动。其中,在第一伸缩叉127和第二伸缩叉128同步沿第二方向B移动时,第一承托件152可与第一伸缩叉127和第二伸缩叉128两者中的任意一者连接,在第一伸缩叉127和第二伸缩叉128两者中仅有一个能够沿第二方向B移动时,第一承托件152与能够沿第二方向B移动的一者连接。
在另一种实现方式中,第二承托件153与第一伸缩叉127或第二伸缩叉128连接,以使第二承托件153能够跟随第一伸缩叉127和第二伸缩叉128沿第二方向B的相对移动而沿第二方向B 移动。其中,在第一伸缩叉127和第二伸缩叉128同步沿第二方向B移动时,第二承托件153可与第一伸缩叉127和第二伸缩叉128两者中的任意一者连接,在第一伸缩叉127和第二伸缩叉128两者中仅有一个能够沿第二方向B移动时,第二承托件153与能够沿第二方向B移动的一者连接。
参照图11、图12和图13所示,在又一种实现方式中,第一承托件152和第二承托件153位于第一伸缩叉127和第二伸缩叉128之间,且第一承托件152位于第二承托件153靠近第一伸缩叉127的一侧;第一伸缩叉127与第一承托件152连接,第一承托件152能够跟随第一伸缩叉127在第二方向B上移动;第二承托件153与第二伸缩叉128连接,第二承托件153能够跟随第二伸缩叉128在第二方向B上移动。
下面针对该种实现方式,给出一种具体结构形式。
参照图12和图13所示,容器取还装置还包括第一连杆组件191和第二连杆组件192,第一伸缩叉127通过第一连杆组件191与第一承托件152连接,第二伸缩叉128通过第二连杆组件192与第二承托件153连接。
其中,第一连杆组件191和第二连杆组件192相互靠近的一端可以铰接连接,以使第一承托件152和第二承托件153具有较好的联动性。
具体的,第一连杆组件191和第二连杆组件192均包括多对连杆对,每对连杆对中的两根连杆交叉铰接,多对连杆对沿第二方向B依次设置,且其中一对连杆对中的一根连杆与相邻的连杆对中的其中一根连杆铰接,其中一对连杆对中的另一根连杆与相邻连杆对中的另一根连杆铰接。第一连杆组件191中的远离第二连杆组件192的连杆对与第一伸缩叉127连接,第二连杆组件192中的远离第一连杆组件191的连杆对与第二伸缩叉128连接,第一连杆组件191中与第二连杆组件192中相互靠近的连杆对的两根连杆一一对应铰接连接。第一连杆组件191中其中一对连杆对的两根连杆的铰接位置与第一承托件152连接,第二连杆组件192中其中一对连杆对的两根连杆的铰接位置与第二承托件153连接。
在一个更为具体的实施例中,第一连杆组件191和第二连杆组件192分别包括两对连杆对。其中,第一承托件152和第二承托件153置于导向轨170之上,第一承托件152和第二承托件153通过第二滑动配合部与导向轨170滑动配合,第一承托件152和第二承托件153仅保留沿导向轨170也即第二方向B的自由度。参照图13所示,第一承托件152和第二承托件153在第二方向B上的运动分别由连杆对构成的菱形结构来驱动。其中,第一连杆组件191的一对连杆对的两根连杆的一端铰接,并固定在第一伸缩叉127的固定叉板121上,另一对连杆对的两根连杆的中部铰接,且铰接位置固定在第一承托件152上,第一连杆组件191的两对连杆对的连杆对应铰接;第二连杆组件192的一对连杆对的两根连杆的一端铰接,并固定在第二伸缩叉128的固定叉板121上,另一对连杆对的两根连杆的中部铰接,且铰接位置固定在第二承托件153上,第二连杆组件192的两对连杆对的连杆对应铰接;第一连杆组件191和第二连杆组件192相互靠近的连杆对的连杆对应铰接,最终构成如图13所示的连续菱形结构。
需要注意的是,在第一承托件152和第二承托件153均包括导向部154和滑动部155时,导向部154通过第二滑动配合部可滑动的设置于导向轨170上。第一连杆组件191可与第一承托杆的导向部154连接,以实现第一承托杆随第一伸缩叉127沿第二方向B的联动,第二连杆组件192可与第二承托杆的导向部154连接,以实现第二承托杆随第二伸缩叉128沿第二方向B的联动。
本实施例容器取还装置的第一承托件152和第二承托件153可以是杆状结构,具体的第一承托件152和第二承托件153均包括至少一根承托杆,承托杆沿第一方向A延伸。具体的,承托杆可以是导向部154和滑动部155配合形成的杆。
其中,第一承托件152和第二承托件153均可以是一根承托杆,也可以是沿第一方向A依次间隔或不间隔设置的两根或更多根承托杆。
需要说明的是,第一承托件152和第二承托件153也可是板状或梳齿形,也可以在承托杆的两侧增加侧翼,以增大承载面积。承托随动组件还可包括第三承托件,第三承托件可设置于第一承托件152和第二承托件153之间,第三承托件沿第二方向B的位置不可调。
本实施例容器取还装置,第一伸缩叉127和第二伸缩叉128沿第二方向B(也即宽度方向)的间隔距离可以根据容器1的宽度调整,从而扩大了容器取还装置适用的容器1型号范围;且增 加了承托随动组件,取还箱过程中时,承托随动组件会自动向前伸出,补全取还容器装置与货架2的间隙,以保证取还箱过程中不会出现卡箱子的问题;第一承托件152和第二承托件153的间距可与第一伸缩叉127和第二伸缩叉128沿第二方向B的间距耦合,保证第一承托件152和第二承托件153的间距合力,从而减少了取还容器装置取还容器1失败的概率,大幅提高了应用该取还容器装置的搬运机器人的工作效率。
本实施例还提供一种搬运机器人,包括底盘组件200、升降机构400和容器取还装置。升降机构400设置在底盘组件200上,容器取还装置与升降机构400连接,并能够在升降机构400的作用下沿竖直方向升降,容器取还装置为本实施例提供的容器取还装置。
其中,底盘组件200包括底盘和行走驱动组件,行走驱动组件包括行走电机、行走驱动轮和行走万向轮,行走驱动轮的数量可以是两个,行走万向轮的数量可以设置两个或两个以上。其中,行走驱动轮可以是前后居中,左右差速布置的方式,也可以是左右居中,前后惰轮布置等多种布置方案。行走万向轮仅起到支撑的作用其相对布置位置较为随意,可直接置于底盘的下方,也可形成轮组,铰接于底盘下方。
参照图14和图15所示,升降机构400包括立柱导向组件和升降驱动组件,其中立柱导向组件固定在底盘上,可以由一根、两根或者多跟立柱组成,对升降驱动组件进行竖直方向的运动存在导向作用。升降驱动组件是布置于立柱导向组件之上的可以在竖直方向运动的部件,其实现方式较多,具体可以是电机配合传动带组件或电机配合链条组件的方式等等。升降驱动组件的作用是载着容器取还装置及容器1上下运动,升降驱动组件的末端可连接有安装底座410,容器取还装置的基座110设置于安装底座410上,安装底座410可在升降驱动组件的作用下沿竖直方向移动,从而带动容器取还装置沿竖直方向移动。
进一步地,本实施例搬运机器人还可包括旋转机构500,旋转机构500为连接升降机构400与容器取还装置的关键部件,其作用在于容器取还装置相对升降机构400进行旋转运动,其旋转范围可为220度,其运动实现方式可以通过同步带,齿轮组等传动方式实现。通过旋转机构500,容器取还装置可以调整伸缩叉组件的朝向,从而可对不同方向的容器1进行取还。
在一种具体的实现方式中,基座110安装在升降驱动组件的末端连接的安装底座410上,且仅保留基座110绕竖直方向的旋转自由,保证容器取还装置能够相对升降机构400绕某一竖直轴线做旋转运动。
在一种实现方式中,参照图14和图15所示,旋转机构500包括旋转驱动电机510、旋转驱动带轮520、旋转同步带530、固定支撑带轮540组成。其中,固定支撑带轮540装配在安装底座410上,旋转驱动带轮520装配在旋转驱动电机510的输出端,可随旋转驱动电机510的输出轴做旋转运动,旋转驱动电机510则固定在基座110上,旋转同步带530连接旋转驱动带轮520和固定支撑带轮540,在旋转驱动电机510的作用下,旋转驱动带轮520在自转的同时围绕固定支撑带轮540做圆周运动,进而带动基座110绕固定支撑带轮540的轴线旋转。
进一步地,本实施例搬运机器人还可暂存货位组件300,暂存货位组件300固定于立柱导向组件,暂存货位组件300形成暂存位,用于装载一个或多个料箱,便于搬运机器人一次性运输多个容器1。其暂存货位组件300的具体结构可以是板状、梳齿状、杆状、带状等多种形式。
本实施例搬运机器人至少具有本实施例提出的容器取还装置的有益效果。
以上所述,仅为本申请实施例较佳的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。以上所述,仅为本申请实施例较佳的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (37)

  1. 一种容器取还装置,包括:
    基座;
    伸缩叉,设置于所述基座上;
    伸缩驱动组件,设置于所述基座上,被配置为驱动所述伸缩叉沿第一方向伸缩;
    承托随动组件,设置于所述基座上,所述承托随动组件跟随所述伸缩叉的伸缩而伸缩,且所述承托随动组件具有收容于所述基座上的缩回状态和相对所述基座向前伸出的伸出状态;锁止组件,设置于所述伸缩叉上,所述锁止组件通过限制所述伸缩叉伸缩使所述承托随动组件维持缩回状态,所述伸缩驱动组件能够驱动所述伸缩叉脱离所述锁止组件的限制,使所述伸缩叉和所述承托随动组件伸缩。
  2. 根据权利要求1所述的容器取还装置,其中,所述伸缩叉包括沿第二方向依次设置的至少两块叉板,每块所述叉板沿所述第一方向延伸,所述至少两块叉板中相邻的两叉板滑动连接,以使所述伸缩叉能够沿所述第一方向伸缩;
    所述第二方向垂直于所述第一方向;
    所述锁止组件设置于所述至少两块叉板中的其中两相邻叉板之间。
  3. 根据权利要求2所述的容器取还装置,其中,所述至少两块叉板中位于所述第二方向一端的叉板为固定叉板,其他叉板为伸缩叉板,所述固定叉板固定于所述基座上,所述伸缩叉板滑动设置于所述固定叉板上,所述伸缩叉板中与所述固定叉板相邻的伸缩叉板为第一级伸缩叉板,所述锁止组件设置于与所述固定叉板与所述第一级伸缩叉板之间。
  4. 根据权利要求3所述的容器取还装置,其中,所述锁止组件包括第一配合件和第二配合件,所述第一配合件和所述第二配合件两者中的其中一者设置于所述固定叉板上,另一者设置于所述第一级伸缩叉板上;
    所述第一配合件具有弹性伸缩件,所述第二配合件上设置有凹槽,所述伸缩叉处于收缩状态时,所述弹性伸缩件伸出并锁止于所述凹槽内,所述伸缩驱动组件驱动所述伸缩叉时,所述弹性伸缩件滑出所述凹槽并回缩。
  5. 根据权利要求4所述的容器取还装置,其中,所述第一配合件还设置有调节件,所述调节件与所述弹性伸缩件连接,被配置为调节所述弹性伸缩件的弹力。
  6. 根据权利要求5所述的容器取还装置,其中,所述第一配合件设置于所述固定叉板上,所述第二配合件设置于所述第一级伸缩叉板上;
    所述调节件具有操作端,所述操作端朝向所述固定叉板背离所述第一级伸缩叉板的一侧设置。
  7. 根据权利要求4所述的容器取还装置,其中,所述固定叉板和所述第一级伸缩叉板两者中的一者为第一者,所述固定叉板和所述第一级伸缩叉板两者中的另一者为第二者,所述第一配合件设置在所述第一者上,所述第二配合件设置在所述第二者上;
    所述第二配合件包括导向块,所述导向块固定于所述第二者面向第一者的一侧,所述凹槽设置于所述导向块面向所述第一者的侧面上。
  8. 根据权利要求7所述的容器取还装置,其中,所述导向块在所述凹槽的前端设置有导向面,所述导向面面向所述第一者设置,沿从后往前的方向,所述导向面逐渐靠近所述第二者设置,且所述导向面的前端与所述第二者面向所述第一者的侧面平齐。
  9. 根据权利要求7所述的容器取还装置,其中,所述弹性伸缩件可滚动设置,在所述伸缩驱动组件驱动所述伸缩叉伸缩时,所述弹性伸缩件能够在所述导向块上滚动,以进入或滑出所述凹槽。
  10. 根据权利要求4-9任一项所述的容器取还装置,其中,所述第一配合件为滚轮柱塞,所述滚轮柱塞的滚轮形成所述弹性伸缩件。
  11. 根据权利要求10所述的容器取还装置,其中,所述滚轮柱塞还包括安装座、摆动臂和压簧,所述摆动臂的第一端与所述安装座铰接,所述摆动臂的第二端与所述滚轮连接,所述压簧的两端分别与所述安装座和所述摆动臂连接,所述压簧向所述摆动臂施加朝向所述第二配合件方向的弹力,所述摆动臂能够在所述压簧和外力的作用下,绕所述第一端摆动并带动所述滚轮伸出或 回缩。
  12. 根据权利要求1-9任一项所述的容器取还装置,其中,所述伸缩叉的数量为两个,两个所述伸缩叉沿与所述第一方向垂直的第二方向间隔设置,两个所述伸缩叉中至少其中一个设置有所述锁止组件。
  13. 根据权利要求1所述的容器取还装置,其中,所述承托随动组件包括承载件和驱动件,所述驱动件与所述承载件连接,所述伸缩叉伸出时,所述承载件在所述驱动件的作用下向前伸出;所述伸缩叉回缩时,带动所述承载件向后复位。
  14. 根据权利要求13所述的容器取还装置,其中,所述驱动件包括拉簧,所述拉簧的一端与所述基座连接,所述拉簧的另一端与所述承载件连接,所述拉簧向所述承载件施加向前的拉力。
  15. 根据权利要求13所述的容器取还装置,其中,所述容器取还装置包括沿第二方向间隔设置的第一伸缩叉和第二伸缩叉,所述第一伸缩叉和所述第二伸缩叉分别沿第一方向伸缩;所述容器取还装置还包括调节机构,所述调节机构设置于所述基座上,所述调节机构与所述第一伸缩叉和所述第二伸缩叉两者中的一者或两者连接,被配置为调整所述第一伸缩叉与所述第二伸缩叉之间沿所述第二方向的间隔距离;
    所述承载件包括沿所述第二方向依次设置的第一承托件和第二承托件,所述第一承托件和/或所述第二承托件在所述第二方向上的位置可调。
  16. 根据权利要求15所述的容器取还装置,其中,所述调节机构包括两组第一驱动组件,其中一组所述第一驱动组件与所述第一伸缩叉连接,以驱动所述第一伸缩叉沿第二方向移动,另一组所述第一驱动组件与所述第二伸缩叉连接,以驱动所述第二伸缩叉沿第二方向移动;或
    所述调节机构包括一组第一驱动组件,所述第一驱动组件与所述第一伸缩叉和所述第二伸缩叉两者中至少一者连接,以驱动所述第一伸缩叉与所述第二伸缩叉沿第二方向相对移动。
  17. 根据权利要求16所述的容器取还装置,其中,所述第一驱动组件包括动力器和传动构件,所述动力器与所述传动构件的输入端连接,所述传动构件的输出端与所述第一伸缩叉和/或所述第二伸缩叉连接;
    所述传动构件包括滚珠丝杠构件、同步带构件、链条构件或连杆构件。
  18. 根据权利要求16所述的容器取还装置,其中,所述第一驱动组件的数量为一组,所述第一驱动组件包括第一电机、第一伸缩同步带、第一驱动带轮和第一从动带轮,所述第一电机与所述第一驱动带轮连接,所述第一伸缩同步带绕设在所述第一驱动带轮和所述第一从动带轮上;
    所述第一伸缩同步带具有第一部分和第二部分,所述第一部分与所述第二部分分别设置于所述第一驱动带轮的两侧,所述第一伸缩叉与所述第一部分连接,所述第二伸缩叉与所述第二部分连接;
    所述第一电机转动驱动第一驱动带轮带动所述第一部分和所述第二部分移动,以使所述第一伸缩叉和所述第二伸缩叉同步相向或相背沿所述第二方向移动。
  19. 根据权利要求15所述的容器取还装置,其中,所述第一伸缩叉和所述第二伸缩叉两者中能够沿所述第二方向移动的一者与所述第一承托件连接,以使所述第一承托件与所述第一伸缩叉或所述第二伸缩叉沿所述第二方向联动;
    和/或
    所述第一伸缩叉和所述第二伸缩叉两者中能够沿所述第二方向移动的一者与所述第二承托件连接,以使所述第二承托件与所述第一伸缩叉或所述第二伸缩叉沿所述第二方向联动。
  20. 根据权利要求19所述的容器取还装置,其中,所述第一承托件和所述第二承托件位于所述第一伸缩叉和所述第二伸缩叉之间,且所述第一承托件位于所述第二承托件靠近所述第一伸缩叉的一侧;
    所述第一伸缩叉与所述第一承托件连接,以使所述第一承托件与所述第一伸缩叉在第二方向上联动,所述第二承托件与所述第二伸缩叉连接,以使所述第二承托件与所述第二伸缩叉在所述第二方向上联动。
  21. 根据权利要求20所述的容器取还装置,其中,所述容器取还装置还包括第一连杆组件和第二连杆组件,所述第一伸缩叉通过所述第一连杆组件与所述第一承托件连接,所述第二伸缩叉 通过所述第二连杆组件与所述第二承托件连接。
  22. 根据权利要求21所述的容器取还装置,其中,所述第一连杆组件和所述第二连杆组件相互靠近的一端铰接连接,以使所述第一承托件和所述第二承托件联动。
  23. 根据权利要求22所述的容器取还装置,其中,所述第一连杆组件和第二连杆组件均包括多对连杆对,每对所述连杆对中的两根所述连杆交叉铰接,所述多对连杆对沿所述第二方向依次设置,且其中一对所述连杆对中的一根连杆与相邻的所述连杆对中的其中一根连杆铰接,其中一对所述连杆对中的另一根连杆与相邻所述连杆对中的另一根连杆铰接;
    所述第一连杆组件中的远离所述第二连杆组件的连杆对与所述第一伸缩叉连接,所述第二连杆组件中的远离所述第一连杆组件的连杆对与所述第二伸缩叉连接,所述第一连杆组件中与所述第二连杆组件中相互靠近的所述连杆对的两根连杆一一对应铰接;
    所述第一连杆组件中其中一对所述连杆对的两根所述连杆的铰接位置与所述第一承托件连接,第二连杆组件中其中一对所述连杆对的两根所述连杆的铰接位置与所述第二承托件连接。
  24. 根据权利要求15所述的容器取还装置,其中,所述第一承托件和所述第二承托件分别包括导向部和滑动部,所述导向部和所述滑动部均沿所述第一方向延伸,所述滑动部设置于所述导向部上,且所述滑动部能够在所述导向部上沿所述第一方向滑动;
    所述驱动件设置于所述基座上,并与所述滑动部连接,所述驱动件被配置为驱动所述滑动部沿所述第一方向向前伸出。
  25. 根据权利要求24所述的容器取还装置,其中,所述伸缩叉上固定有第一限位件,所述承载件的后端设置有第二限位件,所述第一限位件设置于所述第二限位件的前端;
    在所述伸缩叉回缩时,所述第一限位件与所述第二限位件抵接,以带动所述承载件向后复位。
  26. 根据权利要求25所述的容器取还装置,其中,所述第二限位件设置于所述滑动部上,所述第一限位件设置于所述第二限位件沿所述滑动部的伸出路径的前侧,且所述第一限位件能够与所述第二限位件抵接;
    在所述伸缩叉沿所述第一方向回缩时,所述第一限位件同步移动并推动所述第二限位件使所述滑动部向后回缩。
  27. 根据权利要求25所述的容器取还装置,其中,所述基座上设置有第一限位部,所述滑动部上设置有第二限位部,所述第一限位部设置于所述第二限位部沿所述滑动部伸出路径的前侧,且所述第一限位部能够与所述第一限位部抵接,以限制所述滑动部沿所述第一方向向前伸出的最大行程。
  28. 根据权利要求15所述的容器取还装置,其中,所述基座上设置有至少一根导向轨,所述导向轨沿所述第二方向延伸,所述第一伸缩叉和/或所述第二伸缩叉通过第一滑动配合部与所述导向轨滑动配合,所述第一承托件和/或所述第二承托件通过第二滑动配合部与所述导向轨滑动配合。
  29. 根据权利要求15所述的容器取还装置,其中,所述第一承托件和所述第二承托件均包括至少一根承托杆,所述承托杆沿所述第一方向延伸。
  30. 根据权利要求15所述的容器取还装置,其特征在于,所述伸缩驱动组件与所述第一伸缩叉和所述第二伸缩叉连接,被配置为驱动所述第一伸缩叉和所述第二伸缩叉沿所述第一方向伸缩。
  31. 根据权利要求30所述的容器取还装置,其中,所述第一伸缩叉上和所述第二伸缩叉上分别设置有伸缩驱动带轮;
    所述伸缩驱动组件包括伸缩驱动电机、伸缩传动轴和两伸缩传动件,所述伸缩驱动电机与所述伸缩传动轴连接,所述伸缩传动轴沿所述第二方向延伸,两所述伸缩传动件均套设于所述伸缩传动轴上,两所述伸缩传动件分别能够沿所述伸缩传动轴的轴向移动,且所述伸缩传动件与所述伸缩传动轴在周向上相对固定;
    所述第一伸缩叉的伸缩驱动带轮与两所述伸缩传动件中的其中一个连接,所述第二伸缩叉的伸缩驱动带轮与两所述伸缩传动件中的另一个连接。
  32. 一种容器取还装置,包括:
    基座;
    伸缩叉组件,设置于所述基座上,所述伸缩叉组件包括沿第二方向间隔设置的第一伸缩叉和 第二伸缩叉,所述第一伸缩叉和所述第二伸缩叉分别沿第一方向伸缩,所述第二方向垂直于所述第一方向;
    调节机构,设置于所述基座上,所述调节机构与所述第一伸缩叉和所述第二伸缩叉两者中的一者或两者连接,被配置为调整所述第一伸缩叉与所述第二伸缩叉之间沿所述第二方向的间隔距离;
    承托随动组件,设置于所述基座上,包括沿所述第二方向依次设置的第一承托件和第二承托件,所述第一承托件和/或所述第二承托件在所述第二方向上的位置可调。
  33. 根据权利要求32所述的容器取还装置,其中,所述调节机构包括两组第一驱动组件,其中一组所述第一驱动组件与所述第一伸缩叉连接,以驱动所述第一伸缩叉沿第二方向移动,另一组所述第一驱动组件与所述第二伸缩叉连接,以驱动所述第二伸缩叉沿第二方向移动;或
    所述调节机构包括一组第一驱动组件,所述第一驱动组件与所述第一伸缩叉和所述第二伸缩叉两者中至少一者连接,以驱动所述第一伸缩叉与所述第二伸缩叉沿第二方向相对移动。
  34. 根据权利要求32所述的容器取还装置,其中,所述第一伸缩叉和所述第二伸缩叉两者中能够沿所述第二方向移动的一者与所述第一承托件连接,以使所述第一承托件与所述第一伸缩叉或所述第二伸缩叉沿所述第二方向联动;
    和/或
    所述第一伸缩叉和所述第二伸缩叉两者中能够沿所述第二方向移动的一者与所述第二承托件连接,以使所述第二承托件与所述第一伸缩叉或所述第二伸缩叉沿所述第二方向联动。
  35. 根据权利要求34所述的容器取还装置,其中,所述第一承托件和所述第二承托件位于所述第一伸缩叉和所述第二伸缩叉之间,且所述第一承托件位于所述第二承托件靠近所述第一伸缩叉的一侧;
    所述第一伸缩叉与所述第一承托件连接,以使所述第一承托件与所述第一伸缩叉在第二方向上联动,所述第二承托件与所述第二伸缩叉连接,以使所述第二承托件与所述第二伸缩叉在所述第二方向上联动。
  36. 一种搬运机器人,包括:
    底盘组件;
    升降机构,设置在所述底盘组件上;
    容器取还装置,与所述升降机构连接,并能够在所述升降机构的作用下沿竖直方向升降,所述容器取还装置为权利要求1-31任一项所述的容器取还装置。
  37. 根据权利要求36所述的搬运机器人,其中,所述搬运机器人还包括旋转机构,所述旋转机构与所述容器取还装置连接,被配置为驱动所述容器取还装置绕竖直轴线转动。
PCT/CN2023/120306 2022-10-13 2023-09-21 容器取还装置及搬运机器人 WO2024078290A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202222701519.5 2022-10-13
CN202222701519.5U CN218840608U (zh) 2022-10-13 2022-10-13 容器取还装置及搬运机器人
CN202222869701.1 2022-10-28
CN202222869701.1U CN218620168U (zh) 2022-10-28 2022-10-28 容器取还装置及搬运机器人

Publications (1)

Publication Number Publication Date
WO2024078290A1 true WO2024078290A1 (zh) 2024-04-18

Family

ID=90668712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120306 WO2024078290A1 (zh) 2022-10-13 2023-09-21 容器取还装置及搬运机器人

Country Status (1)

Country Link
WO (1) WO2024078290A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214651096U (zh) * 2021-01-28 2021-11-09 北京极智嘉科技股份有限公司 一种货箱搬运系统和机器人
CN215158008U (zh) * 2021-07-01 2021-12-14 深圳市海柔创新科技有限公司 货叉组件、搬运机器人及仓储系统
CN215796164U (zh) * 2021-07-01 2022-02-11 深圳市海柔创新科技有限公司 货叉组件、搬运机器人和仓储系统
CN216582519U (zh) * 2021-10-26 2022-05-24 北京极智嘉科技股份有限公司 一种取容器装置、搬运机器人及仓储物流系统
CN218620168U (zh) * 2022-10-28 2023-03-14 北京极智嘉科技股份有限公司 容器取还装置及搬运机器人
CN218840608U (zh) * 2022-10-13 2023-04-11 北京极智嘉科技股份有限公司 容器取还装置及搬运机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214651096U (zh) * 2021-01-28 2021-11-09 北京极智嘉科技股份有限公司 一种货箱搬运系统和机器人
CN215158008U (zh) * 2021-07-01 2021-12-14 深圳市海柔创新科技有限公司 货叉组件、搬运机器人及仓储系统
CN215796164U (zh) * 2021-07-01 2022-02-11 深圳市海柔创新科技有限公司 货叉组件、搬运机器人和仓储系统
CN216582519U (zh) * 2021-10-26 2022-05-24 北京极智嘉科技股份有限公司 一种取容器装置、搬运机器人及仓储物流系统
CN218840608U (zh) * 2022-10-13 2023-04-11 北京极智嘉科技股份有限公司 容器取还装置及搬运机器人
CN218620168U (zh) * 2022-10-28 2023-03-14 北京极智嘉科技股份有限公司 容器取还装置及搬运机器人

Similar Documents

Publication Publication Date Title
WO2020156393A1 (zh) 一种搬运机器人及其货叉组件
JP5402233B2 (ja) ロボット及び物品搬送システム
EP3943416A1 (en) Goods shelf shuttle and goods shelf system
US7393176B2 (en) Handling unit for palletizing
US20210292110A1 (en) Loading and unloading equipment and package loading and unloading system
CN110642192B (zh) 双向伸缩升降rgv货叉
CN111017796A (zh) 一种基于剪式升降的智能图书架书籍抓取装置
JP2022553560A (ja) 伸縮装置及び搬送ロボット
WO2021254082A1 (zh) 线切割装置及硅棒加工设备
WO2024078290A1 (zh) 容器取还装置及搬运机器人
CN110963218B (zh) 一种方便货物入库的货物架
JPH0948507A (ja) 自動倉庫における移動台車の搬出入装置
CN218840608U (zh) 容器取还装置及搬运机器人
WO2024104165A1 (zh) 一种多联升降装置及搬运机器人
CN218620168U (zh) 容器取还装置及搬运机器人
TWM655716U (zh) 容器取還裝置及搬運機器人
CN211003081U (zh) 自动叠篮装置及自动叠篮流水线
US11718473B1 (en) Fork and carrying robot
CN109436659B (zh) 一种物流传送阻挡装置
CN111923035A (zh) 一种码垛机械臂及其使用方法
JPH06345214A (ja) 移載装置
CN115043193B (zh) 一种推倒运送机器人
CN217350549U (zh) 一种自适应运动导向误差的升降式agv
CN110775509A (zh) 一种具有自动调整功能的变胞抓取机构
CN110654769A (zh) 自动叠篮装置及自动叠篮流水线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876495

Country of ref document: EP

Kind code of ref document: A1