WO2024076153A1 - N-(4-플루오로페닐)말레이미드를 포함하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 - Google Patents

N-(4-플루오로페닐)말레이미드를 포함하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2024076153A1
WO2024076153A1 PCT/KR2023/015262 KR2023015262W WO2024076153A1 WO 2024076153 A1 WO2024076153 A1 WO 2024076153A1 KR 2023015262 W KR2023015262 W KR 2023015262W WO 2024076153 A1 WO2024076153 A1 WO 2024076153A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
secondary battery
lithium secondary
fpmi
carbonate
Prior art date
Application number
PCT/KR2023/015262
Other languages
English (en)
French (fr)
Inventor
임태은
전예진
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Publication of WO2024076153A1 publication Critical patent/WO2024076153A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte solution for a lithium secondary battery containing N-(4-fluorophenyl)maleimide and a lithium secondary battery containing the same, specifically, N-(4-fluorophenyl)maleimide (N-(
  • the invention relates to an electrolyte solution for a lithium secondary battery, characterized in that it contains a 4-fluorophenyl)maleimide (FPMI) additive, a solvent, and a lithium salt, and a lithium secondary battery containing the same.
  • FPMI 4-fluorophenyl)maleimide
  • a lithium-ion battery is a device that can store and consume energy by repeatedly charging and discharging. LIB is receiving a lot of attention in the industry because it can serve as the main power source of EVs, enabling a global EV market to grow exponentially.
  • Ni- rich layered oxide LiNi Therefore, the specific capacity of NMC material can be increased by increasing Ni in the NMC structure.
  • Ni 4+ species the charging product of Ni-rich NMC materials, are unstable and are easily reduced to Ni 2+ species within the cell.
  • Ni 4+ species receive electrons from the electrolyte at the electrode interface and continuously decompose the electrolyte within the cell.
  • fluoride F - , a decomposition adduct of the electrolyte
  • F - a decomposition adduct of the electrolyte
  • This parasitic reaction is also a response to exposure to new surfaces, which accelerates the ongoing electrolyte breakdown within the cell.
  • all these advanced electrode materials generally suffer from low interfacial stability, which is a major bottleneck limiting their widespread use in high energy density-based LIBs.
  • the present invention relates to an electrolyte solution for a lithium secondary battery containing N-(4-fluorophenyl)maleimide and a lithium secondary battery containing the same, specifically, N-(4-fluorophenyl)maleimide (N-(
  • the invention relates to an electrolyte solution for a lithium secondary battery, characterized in that it contains a 4-fluorophenyl)maleimide (FPMI) additive, a solvent, and a lithium salt, and a lithium secondary battery containing the same.
  • FPMI 4-fluorophenyl)maleimide
  • the present invention proposes the incorporation of N-(4-fluorophenyl)maleimide (FPMI) as an electrolyte additive that can simultaneously improve the surface stability of the Ni-rich NMC anode and SiO x cathode. .
  • FPMI N-(4-fluorophenyl)maleimide
  • electrolyte additives can create a cathode-electrolyte interphase (CEI) layer on the anode or a solid electrolyte interphase (SEI) layer on the cathode.
  • CEI cathode-electrolyte interphase
  • SEI solid electrolyte interphase
  • These layers can be considered task-specific surface layers with electronic insulating and ion conducting properties.
  • the intrinsic behavior of the electrolyte means that electrolyte decomposition at the interface can be efficiently managed.
  • the present invention proposes an FPMI additive (composed of maleimide and fluorinated functional groups) to promote the simultaneous formation of a maleimide-based CEI layer and a LiF-based SEI layer.
  • FPMI oxidation in the charging step promotes the formation of maleimide-functionalized partial negative charges on the developing CEI layer on the Ni-rich NMC anode. It is advantageous not only for suppressing electrolyte decomposition but also for increasing Li + movement between electrodes.
  • electrochemical reduction of the FPMI additive can improve the lifespan of the cell by forming a LiF-based SEI layer on the SiO x cathode.
  • LiF has high mechanical strength and can effectively prevent decomposition and micronization of SiO x anode material caused by severe volume expansion and detachment within the cell.
  • the present invention evaluated the effect of the inclusion of FPMI additives on the Ni-rich NMC anode and SiO x cathode, and explained the role of the FPMI additive using ex-situ analysis of recovered cells.
  • an electrolyte solution for a lithium secondary battery containing an N-(4-fluorophenyl)maleimide (FPMI) additive, a solvent, and a lithium salt is provided.
  • FPMI N-(4-fluorophenyl)maleimide
  • the N-(4-fluorophenyl)maleimide (FPMI) additive is characterized in that it contains a fluoro functional group (F-) and a maleimide functional group.
  • the additive is characterized in that it contains 0.5% by weight or more and 5.0% by weight or less based on the weight of the electrolyte.
  • the solvent is dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylene carbonate (EC), vinyl It is characterized in that it includes one or more selected from the group consisting of lene carbonate (VC), vinyl ethylene carbonate (VEC), propylene carbonate (PC), and butylene carbonate (BC), but is not limited thereto.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • MPC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • MEC methylethyl carbonate
  • EC ethylene carbonate
  • vinyl characterized in that it includes one or more selected from the group consisting of lene carbonate (VC), vinyl ethylene carbonate (VEC), propylene carbonate (PC), and butylene
  • the solvent preferably contains ethylene carbonate (EC):ethyl methyl carbonate (EMC) in a ratio of 1:2 (v/v%).
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li(CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , LiCl and LiI It may be at least one selected from the group consisting of, but is not limited thereto.
  • the lithium salt concentration is characterized as having a concentration of 0.01 to 2M.
  • an anode disposed between the positive electrode and the negative electrode, wherein the electrolyte layer includes the electrolyte solution described above.
  • the anode is LNMC (LiNi 0.83 Co 0.10 Mn 0.07 O 2 ) and the cathode is SiO x (0 ⁇ x ⁇ 1).
  • N-(4-fluorophenyl)maleimide N-( 4-fluorophenyl)maleimide (FPMI) was used.
  • Electrochemical reduction and oxidation of FPMI additives promote the formation of SEI layer and CEI layer on SiO x cathode and Ni-rich NMC anode, respectively.
  • the addition of FPMI also significantly increases the cycling retention rate because the FPMI-derived SEI and CEI layers effectively inhibit electrolyte decomposition during cycling, thereby improving the lifetime of the cell.
  • the cell containing the standard electrolyte showed a continuous decrease in capacity as the cycle progressed, and only 69.4% of the capacity was maintained even after 100 cycles.
  • Figure 1 is (a) a schematic diagram showing the role of N-(4-fluorophenyl)maleimide) (FPMI) additive on the surface of LNMC anode and SiO x cathode, (b) molecular structure of FPMI additive and use of FPMI A diagram showing the strategy, and (c) the ionic conductivity of the standard electrolyte, 0.5 FPMI, and 5.0 FPMI added electrolytes.
  • FPMI N-(4-fluorophenyl)maleimide
  • Figure 2 shows (a) cycling retention and (b) rate capacity of SiO x /LNMC811 full cells at 25 °C, and (c) cycling retention and (d) rate capacity of SiO Electrode recovery and reassembly: Graph showing the potential profiles of (e) LNMC half-cell and (f) SiO x half-cell at 0.1 C, second cycle.
  • Figure 3 shows cross-sectional SEM images of SiO , XPS spectra for (e) standard electrolyte and (f) SiO x cathode cycled with 5.0 FPMI; Represents C1s, F1s and N1s elements.
  • Figure 4 shows SEM images and EDS of LNMC anodes cycled with (a) standard electrolyte and (b) 5.0 FPMI after 100 cycles, and XPS spectra for LNMC anodes cycled with (c) standard electrolyte and (d) 5.0 FPMI. ; Represents C1s, F1s and N1s elements.
  • the LNMC (LiNi 0.83 Co 0.10 Mn 0.07 O 2 , L&F material) anode was prepared as follows. 1.8 g of LNMC cathode material was stirred with 0.1 g of poly(vinylidene fluoride) (Kureha) and 0.1 g of carbon-conducting agent (Super-P) and then mixed with 1.8 mL of N-methylpyrrolidone (Pyrrolidone). Mixed and mechanically stirred for 1 hour. The obtained slurry was cast on an Al current collector.
  • the LNMC anode was dried in a vacuum oven at 120°C for 12 hours before use.
  • the SiO The resulting slurry was coated on a Cu current collector.
  • the SiO x cathode was dried in a vacuum oven at 110°C for 11 hours before use.
  • the electrolyte was prepared as follows.
  • the composition of the standard electrolyte is a mixture of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) in a 1:2 volume ratio and 1.0 M LiPF 6 (donghwa electrolyte).
  • the FPMI (Sigma-Aldrich) additive was added to the standard electrolyte solution in various amounts (0.5 wt%: 0.5 FPMI, 5.0 wt%: 5.0 FPMI). After preparing each electrolyte solution, the ionic conductivity at room temperature was measured using a conductivity meter (CM-41X, TOADKK).
  • the lifespan of the battery was evaluated by assembling a coin full cell with an LNMC anode, SiO x cathode, separator, and each electrolyte. Afterwards, the battery was charged and discharged in the range of 3.0 to 4.2 V (vs Li/Li + ) at a rate of 0.1 C (formation step, 2 cycles) and 1.0 C (cycling step, 100 cycles).
  • the battery When cycling was completed, the battery was disassembled and the LNMC anode and SiO x cathode were recovered in an Ar-filled glove box. For the recovery test, a half cell was assembled for each electrode using pure Li metal, a separator, and a standard electrolyte solution, and the specific capacity of the recovered electrode was confirmed.
  • each cycled electrode was analyzed by field emission scanning electron microscopy (FE-SEM, JSM-7001F, JEOL), and the chemical composition of each electrode was analyzed by X-ray photoelectron spectroscopy (XPS, PHI 5000 Versa Probe, ULVAC-PHI). was analyzed.
  • FE-SEM field emission scanning electron microscopy
  • JSM-7001F JSM-7001F
  • JEOL X-ray photoelectron spectroscopy
  • Figures 1A and 1B show the expected effects of FPMI additives on the cell and its molecular structure. Since the FPMI additive contains dual functionalized functional groups (F and maleimide moieties), the electrochemical reaction (reduction and oxidation) forms an F-based SEI layer and a maleimide-based CEI layer on the surfaces of the SiO x cathode and LNMC anode, respectively. can do.
  • F and maleimide moieties dual functionalized functional groups
  • the electrochemical reaction (reduction and oxidation) forms an F-based SEI layer and a maleimide-based CEI layer on the surfaces of the SiO x cathode and LNMC anode, respectively. can do.
  • the ionic conductivity measurements were 8.12 mS cm -1 for the standard electrolyte solution, 7.65 mS cm -1 and 6.38 mS cm -1 for the electrolyte solution containing 0.5 FPMI and 5.0 FPMI, respectively.
  • Figure 2a shows the cycling preservation state of LNMC/SiO x full cells at room temperature with and without FPMI additive.
  • the cell containing the standard electrolyte showed a continuous decrease in capacity as the cycle progressed, and only 69.4% of the capacity was maintained even after 100 cycles.
  • the cell containing the standard electrolyte solution showed a retention rate of 65.8%, which was found to reflect the occurrence of undesirable interfacial reactions within the cell.
  • Rate performance at high temperatures also confirmed that cells without FPMI additives continued to experience a sharp decrease in retention rate as C-rate increased due to acceleration of undesirable reactions, especially at high temperatures.
  • the cell containing 5.0 FPMI showed a 34.2% higher capacity retention rate than the cell without FPMI additive (standard electrolyte: 32.3%, 5.0 FPMI: 66.5%) at 10.0 C.
  • the recovered LNMC anode controlled by the standard electrolyte provided only a specific capacity of 147.6 mAh g -1 and showed a large undifferentiation evident in the potential profile.
  • the pure LNMC anode typically has a specific capacity of 202.0 mAh g -1 in the initial cycle, indicating that significant deformation of the LNMC anode cycled in the absence of FPMI additive occurred during cycling.
  • the recovered LNMC anode using 5.0 FPMI additive showed a specific capacity of 181.0 mAh g -1 with less micronization behavior, resulting in less deformation of the LNMC anode.
  • the SEM image shown at the top also revealed the presence of many by-products due to the decomposition of the electrolyte accumulated on the SiO x cathode surface, making it difficult to distinguish the boundaries of SiO x particles in the cathode cycle without FPMI additive.
  • the decomposed C1s peak appeared larger in the cell cycle without using the FPMI additive, indicating that less electrolyte decomposition occurred in the presence of the FPMI additive.
  • the recovered SiO It can be seen that the configured SEI layer can be formed.
  • the F1s spectrum showed resolved peaks related to Li x PO y F z (686.5 eV) in the form of PF (687.5 eV) and Li x PF y (688.4 eV) for both SiO
  • the recovered SiO x cathode that was cycled showed lower intensity peaks, which was consistent with the C1s XPS results.
  • electrochemical reduction of FPMI additives can promote the formation of LiF- and maleimide-functionalized SEI layers on the SiO x cathode.
  • the LNMC anode cycled without using FPMI additives had a large number of decomposed additives accumulated on the surface, making grain boundary discrimination of primary particles difficult.
  • EDS analysis showed that the intensity of the F element in the LNMC anode without FPMI additive was higher than in the case with FPMI additive, which showed that more electrolyte decomposition occurred in the absence of FPMI additive.
  • the recovered LNMC anode with FPMI additive had a cleaner surface, showing that undesirable parasitic reactions within the cell were suppressed.
  • the F1s spectrum also showed peaks related to electrolyte decomposition , such as Li It showed lower intensity, which was consistent with the C1s XPS results.
  • peaks related to electrolyte decomposition such as Li It showed lower intensity, which was consistent with the C1s XPS results.
  • a dual-functional FPMI additive as an electrolyte additive for LNMC/SiO x full cells that simultaneously improves the interfacial stability of the cathode and anode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명에서는 Ni-rich NCM 양극재료의 계면 안정성을 향상시키기 위한 기능성 첨가제 수단인 N-(4-플루오로페닐)말레이미드(N-(4-fluorophenyl)maleimide, FPMI)를 제공한다. 본 발명은 N-(4-플루오로페닐)말레이미드를 포함하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지에 관한 것으로, 구체적으로는 N-(4-플루오로페닐)말레이미드(N-(4-fluorophenyl)maleimide, FPMI) 첨가제, 용매 및 리튬염을 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지를 제공한다. FPMI는 전기화학적 산화반응 및 환원반응을 통해 양극-전해질 중간상(CEI) 층 및 고체 전해질 중간상(SEI) 층을 형성할 수 있으며, 이는 셀 내 전해질 분해를 억제한다.

Description

N-(4-플루오로페닐)말레이미드를 포함하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
본 발명은 N-(4-플루오로페닐)말레이미드를 포함하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지에 관한 것으로, 구체적으로는 N-(4-플루오로페닐)말레이미드(N-(4-fluorophenyl)maleimide, FPMI) 첨가제, 용매 및 리튬염을 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지에 관한 발명이다.
리튬 이온 배터리(Lithium-ion Battery, LIB)는 충방전을 반복하여 에너지를 저장하고 소비할 수 있는 장치이다. LIB는 EV의 주 동력원으로 작용할 수 있어 기하급수적으로 성장하는 글로벌 EV 시장을 가능케 하기 때문에 업계에서 많은 관심을 받고 있다.
따라서, 일반적으로 전체 에너지 밀도가 EV의 주행 마일리지를 결정하기 때문에 전체 에너지 밀도를 증가시키기 위한 수많은 연구가 수행되고 있다. 이와 관련하여, 리튬 코발트 산화물(양극), 흑연(음극) 등 기존의 전극 재료를 대체하기 위해 높은 비용량을 제공하는 첨단 전극 재료가 많이 개발되고 있다.
하나의 두각을 나타내는 차세대 양극 재료는 Ni-rich 층상 산화물(LiNixCoyMnzO2, NMC)로서, 이는 60% 이상의 Ni로 구성되어 있으며, Ni은 Co에 비해 상대적으로 전기화학적 전위가 낮기 때문에 NMC 구조에서 Ni를 증가시킴으로써 NMC 재료의 비용량을 증가시킬 수 있다.
그러나, Ni-rich NMC 물질의 충전 생성물인 Ni4+ 종은 불안정하고 셀 내에서 Ni2+ 종으로 쉽게 환원된다. 이러한 환원 단계에서 Ni4+ 종은 전극 계면에서 전해액으로부터 전자를 받아 셀 내에서 전해액을 지속적으로 분해한다.
이러한 분해 반응이 일어나면 플루오라이드(F-, 전해액의 분해 부가물)가 NMC 구조 내의 금속 성분과 반응하여 금속 성분의 전해액으로의 비가역적인 용출을 유발한다. 그 결과, 용출된 MFx 복합체가 음극의 계면 상에 환원되어 음극의 저항을 크게 증가시키고 최종적으로 사이클링 성능의 저하를 유발할 수 있다.
이러한 NMC의 한계는 SiOx와 같은 진보된 음극 재료에 상당한 관심을 끌고 있다. SiOx 음극재는 충방전 과정에서 합금화 메커니즘에 의한 반응을 거치기 때문에 상용화된 음극재인 흑연 음극에 비해 상대적으로 큰 비용량을 갖는다. 그럼에도 불구하고, SiOx 음극 재료의 미분화와 더불어 음극의 급격한 변형을 수반하는 심각한 부피 팽창 및 탈리(extraction)의 발생으로 인해 여전히 셀에서의 수명 불량에 시달리고 있다. 이러한 변화는 사이클링 보존의 빠른 붕괴를 야기한다.
이러한 기생 반응은 새로운 표면에의 노출에 대한 반응이기도 하며, 이는 셀 내에서 지속적인 전해질 분해를 가속화한다. 특히, 이러한 모든 진보된 전극 재료는 일반적으로 낮은 계면 안정성으로 인해 어려움을 겪으며, 이는 고에너지 밀도 기반 LIB에서 이들의 광범위한 사용을 제한하는 주요 병목 현상이다.
SiOx 음극과 Ni-rich NMC 양극에 의해 제조된 고에너지-밀도 전지는 전기자동차로의 적용을 확장하기 위한 실용적인 방법으로 여겨지지만, 이러한 개선된 전극 소재는 낮은 장기 사이클링 특성으로 어려움을 겪고 있다.
본 발명은 N-(4-플루오로페닐)말레이미드를 포함하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지에 관한 것으로, 구체적으로는 N-(4-플루오로페닐)말레이미드(N-(4-fluorophenyl)maleimide, FPMI) 첨가제, 용매 및 리튬염을 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지에 관한 발명이다.
상기의 문제점을 해결하기 위하여 본 발명에서는 Ni-rich NMC 양극 및 SiOx 음극의 표면 안정성을 동시에 향상시킬 수 있는 전해액 첨가제로서 N-(4-플루오로페닐)말레이미드(FPMI)의 혼입을 제안한다.
전해액 첨가제는 자체 전기화학적 반응도에 따라 양극에 양극-전해질 중간상(Cathode-Electrolyte Interphases, CEI) 층을 생성하거나 음극에 고체 전해질 중간상(Solid Electrolyte Interphases, SEI) 층을 생성할 수 있다.
이러한 층들은 전자 절연 및 이온 전도 특성을 갖는 작업별 표면층으로 간주될 수 있다. 전해액의 본질적인 거동은 계면에서의 전해액 분해가 효율적으로 관리될 수 있음을 의미한다.
본 발명에서는 말레이미드계 CEI 층과 LiF계 SEI 층의 동시 형성을 촉진하기 위한 FPMI 첨가제(말레이미드와 플루오르화 작용기로 구성)를 제안한다.
상세하게는, 충전 단계에서의 FPMI 산화는 Ni-rich NMC 양극에서 발달하는 CEI 층 상에 말레이미드-기능화된 부분 음전하의 형성을 촉진한다. 전해액 분해 억제뿐만 아니라 전극 간의 Li+ 이동을 증가시키는 데에도 유리하다.
또, FPMI 첨가제의 전기화학적 환원은 SiOx 음극에 LiF계 SEI 층을 형성하여 셀의 수명을 향상시킬 수 있다. LiF는 기계적 강도가 높아 셀 내에서 심한 부피 팽창 및 탈리로 인해 발생하는 SiOx 음극재의 분해 및 미분화를 효과적으로 방지할 수 있다.
본 발명에서는 이러한 고려사항에 기초하여 FPMI 첨가제의 포함이 Ni-rich NMC 양극 및 SiOx 음극에 미치는 영향을 평가하고, 회수된 셀의 ex-situ 분석을 이용하여 FPMI 첨가제의 역할을 설명하였다.
본 발명의 일 실시형태에 따르면, N-(4-플루오로페닐)말레이미드(N-(4-fluorophenyl)maleimide, FPMI) 첨가제, 용매 및 리튬염을 포함하는 리튬 이차전지용 전해액을 제공한다.
상기 N-(4-플루오로페닐)말레이미드(N-(4-fluorophenyl)maleimide, FPMI) 첨가제는 플루오로 작용기(F-) 및 말레이미드 작용기(Maleimide functional group)를 포함하는 것을 특징으로 한다.
상기 N-(4-플루오로페닐)말레이미드(N-(4-fluorophenyl)maleimide, FPMI) 첨가제는 전기화학적 환원에 의해 LiF 및 N-C=O 작용기를 형성하며, 전기화학적 산화에 의해 N-C=O 작용기를 형성하는 것을 특징으로 한다.
상기 첨가제는 전해액 중량대비 0.5 중량% 이상 5.0 중량% 이하를 함유하는 것을 특징으로 한다.
상기 용매는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC) 에틸렌 카보네이트(EC), 비닐렌 카보네이트(VC), 비닐 에틸렌 카보네이트(VEC), 프로필렌 카보네이트(PC) 및 부틸렌 카보네이트(BC)로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 하며, 이에 제한되는 것은 아니다.
상기 용매는 EC(ethylene carbonate):EMC(ethyl methyl carbonate)가 1:2(v/v%)로 포함되는 것이 바람직하다.
상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO4, LiAlCl4, LiCl 및 LiI로 이루어진 군에서 선택되는 적어도 하나일 수 있으나, 이에 제한되지 않는다.
상기 리튬염 농도는 0.01 ∼ 2M 농도를 갖는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 양극; 음극; 및 상기 양극과 음극 사이에 배치되는 전해질 층을 포함하며, 상기 전해질 층은 상기 기술된 전해액을 포함하는 리튬 이차전지를 특징으로 한다.
상기 양극은 LNMC(LiNi0.83Co0.10Mn0.07O2)이고 상기 음극은 SiOx (0〈 x ≤1)인 것을 특징으로 한다.
상기 음극과 전해질층 사이에는 고체 전해질 중간상(Solid Electrolyte Interphases, SEI) 층이 형성되며, 상기 고체 전해질 중간상(Solid Electrolyte Interphases, SEI) 층은 N-C=O 작용기 및 LiF 작용기를 포함하는 것을 특징으로 한다.
상기 양극과 전해질층 사이에는 양극-전해질 중간상(Cathode-Electrolyte Interphase, CEI) 층이 형성되며, 상기 양극-전해질 중간상(CEI) 층은 N-C=O 작용기를 포함하는 것을 특징으로 한다.
본 발명에서는 고체 전해질 중간상(SEI) 층 또는 양극-전해질 중간상(CEI) 층의 형성을 통해 각 전극의 계면 강화를 동시에 향상시키는 전해액 첨가제로 N-(4-플루오로페닐)말레이미드(N-(4-fluorophenyl)maleimide, FPMI)를 사용하였다.
FPMI 첨가제의 전기화학적 환원 및 산화는 SiOx 음극 및 Ni-rich NMC 양극에 각각 SEI 층 및 CEI 층의 형성을 촉진한다. FPMI의 첨가는 또한 FPMI 유래 SEI 및 CEI 층이 사이클링 시 전해액 분해를 효과적으로 억제하여 셀의 수명을 향상시키기 때문에 사이클링 유지율을 상당히 증가시킨다.
추가적인 분광 분석 결과, 각 전극에 발달된 SEI 층 및 CEI 층은 셀 내 전이금속 용출과 함께 전해액 분해와 같은 기생 반응을 효과적으로 방지하여 셀의 표면 안정성도 향상시킨다는 것을 알 수 있다.
FPMI 첨가제의 전기화학적 환원은 LiF 및 N-C=O 작용기를 형성하며, 이들은 SiOx 음극의 SEI 층에 포함된다.
FPMI의 전기화학적 산화는 또한 LNMC 양극의 CEI 층에 포함된 N-C=O 작용기를 생성한다.
SEM과 XPS에 의한 추가 현장 분석 결과, 5.0 FPMI 전해질로 사이클링된 전극에 대한 분석 결과 전극재 미분화가 적고, 회수된 LNMC와 SiOx 전극 모두에 대해 전해액 분해가 훨씬 적게 발생하였다.
이러한 결과는 FPMI 첨가제가 간단한 전기화학적 반응에 의해 작업별 기능화된 계면층을 동시에 생성하므로 LNMC/ SiOx 풀셀의 수명을 크게 향상시킨다는 결론을 뒷받침한다.
구체적으로, 표준 전해액을 포함하는 셀은 사이클이 진행됨에 따라 용량이 지속적으로 감소하는 것을 보였으며, 100 사이클 후에도 용량이 69.4%만 유지되었다.
이와는 대조적으로, FPMI 첨가제를 사용하여 사이클링된 LNMC/SiOx 풀셀의 경우 사이클링 유지율이 더 높았다: 0.5 FPMI로 사이클링된 셀은 87.3%의 사이클링 유지율을 보였으며, 5.0 FPMI로 사이클링된 셀의 경우 92.9%로 증가했다.
도 1은 (a) LNMC 양극 및 SiOx 음극 표면에 N-(4-플루오로페닐)말레이미드)(FPMI) 첨가제의 역할을 나타내는 모식도, (b) FPMI 첨가제의 분자 구조 및 FPMI의 사용에 대한 전략, 및 (c) 표준 전해질, 0.5 FPMI 및 5.0 FPMI 첨가 전해질의 이온 전도도를 나타내는 도면이다.
도 2는 25 ℃에서 SiOx/LNMC811 풀셀의 (a) 사이클링 보존 및 (b) 속도 용량, (c) 45 ℃에서 SiOx/LNMC811 풀셀의 (c) 사이클링 보존 및 (d) 속도 용량, 열화된 전극 회수 및 재조립: 0.1 C, 두 번째 사이클에서의 (e) LNMC 하프셀 및 (f) SiOx 하프셀의 전위 프로파일을 나타내는 그래프이다.
도 3은 (a) 표준 전해액 및 (b) 5.0 FPMI으로 사이클링한 SiOx 음극의 단면 SEM 이미지, 100 사이클링 후 (c) 표준 전해액 및 (d) 5.0 FPMI로 사이클링한 SiOx 음극의 단면 SEM 이미지 및 EDS, (e) 표준 전해액과 (f) 5.0 FPMI로 사이클링한 SiOx 음극에 대한 XPS 스펙트럼; C1s, F1s 및 N1s 원소를 나타낸다.
도 4는 100 사이클 후 (a) 표준 전해액과 (b) 5.0 FPMI로 사이클링한 LNMC 양극의 SEM 이미지와 EDS, (c) 표준 전해액 및 (d) 5.0 FPMI를 사용하여 사이클링된 LNMC 양극에 대한 XPS 스펙트럼; C1s, F1s 및 N1s 원소를 나타낸다.
이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 예로 한정되는 것은 아니다.
실험
LNMC(LiNi0.83Co0.10Mn0.07O2, L&F 소재) 양극을 다음과 같이 제조하였다. 1.8 g의 LNMC 양극재료를 0.1 g의 폴리(비닐리덴플루오라이드)(쿠레하)와 0.1 g의 탄소-전도제(슈퍼-P)로 교반한 후 1.8 mL의 N-메틸피롤리돈(Pyrrolidone)에 혼합하여 1시간동안 기계적으로 교반하였다. 얻어진 슬러리를 Al 집전체에 캐스팅하였다. 상기 LNMC 양극은 진공 오븐에서 120 ℃, 12시간 동안 건조시킨 후 사용하였다. SiOx 음극은 1.2 g SiOx(대주), 0.15 g 폴리(아크릴산)(Sigma-Aldrich), 및 0.15 g 도전성 탄소(슈퍼-P)를 증류수에 30분 동안 분산하여 제조하였다. 생성된 슬러리를 Cu 집전체 상에 코팅하였다. 상기 SiOx 음극은 진공 오븐에서 110 ℃, 11시간 동안 건조시킨 후 사용하였다.
전해질은 다음과 같이 제조하였다. 상기 표준 전해액의 조성은 에틸렌 카보네이트(EC)와 에틸메틸 카보네이트(EMC)를 1:2 부피비로, 1.0 M LiPF6(동화 전해액)의 혼합물이다. 상기 FPMI(Sigma-Aldrich) 첨가제를 표준 전해액에 다양한 양(0.5 중량%: 0.5 FPMI, 5.0 중량%: 5.0 FPMI)으로 첨가하였다. 각 전해액의 제조 후 전도도계(CM-41X, TOADKK)로 상온에서의 이온전도도를 측정하였다.
전지의 수명은 코인 풀셀을 LNMC 양극, SiOx 음극, 분리막 및 각 전해액으로 조립하여 평가하였다. 그 후, 전지를 0.1 C(포메이션 단계, 2 사이클)와 1.0 C(사이클링 단계, 100 사이클)의 속도로 3.0~4.2 V(vs Li/Li+)의 범위로 충방전하였다.
사이클링이 완료되면, 전지를 분해하여 Ar이 채워진 글로브 박스 내에서 LNMC 양극과 SiOx 음극을 회수하였다. 회수 시험을 위하여 각 전극을 순수한 Li 금속, 분리막 및 표준 전해액을 사용하여 하프 셀을 조립하여 회수된 전극의 비용량을 확인하였다.
회수된 LNMC 양극으로 조립된 셀은 3.0~4.3 V(vs.Li/Li+)에서 충방전을 실시하고 회수된 SiOx 음극으로 조립된 셀은 1.5~0.005 V(vs.Li/Li+)에서 충방전을 실시하였다.
사이클링된 각 전극의 표면 거동은 전계방출 주사전자현미경(FE-SEM, JSM-7001F, JEOL)으로 분석하였고, 각 전극의 화학적 조성은 X선 광전자 분광법(XPS, PHI 5000 Versa Probe, ULVAC-PHI)으로 분석하였다.
결과 및 토의
도 1a 및 도 1b는 FPMI 첨가제가 셀 및 그 분자 구조에 미치는 기대 효과를 나타낸다. 상기 FPMI 첨가제는 이중 기능화 작용기(F 및 말레이미드 모이어티)를 포함하므로, 전기화학적 반응(환원 및 산화)은 SiOx 음극 및 LNMC 양극의 표면에 각각 F계 SEI 층과 말레이미드계 CEI 층을 형성할 수 있다.
이러한 SEI 층 및 CEI 층은 SiOx 음극 및 LNMC 양극의 안정한 장기 보존을 위해 필수적으로 존재하므로, FPMI 첨가제의 사용은 구성된 셀의 사이클링 보존을 증가시키는데 도움이 될 것으로 기대되었다.
이온전도도 측정값(도 1c)은 표준 전해액의 경우 8.12 mS cm-1, 0.5 FPMI 함유 전해액과 5.0 FPMI 함유 전해액의 경우 각각 7.65 mS cm-1, 6.38 mS cm-1이었다.
FPMI 함량이 증가하면 이온전도도가 감소하는 것으로 나타났으나, LIB에 사용하기에 충분한 이온전도도를 나타낸다.
도 2a는 FPMI 첨가제를 사용한 경우와 사용하지 않은 경우 상온에서 LNMC/SiOx 풀셀의 사이클링 보존 상태를 보여준다.
표준 전해액을 포함하는 셀은 사이클이 진행됨에 따라 용량이 지속적으로 감소하는 것을 보였으며, 100 사이클 후에도 용량이 69.4%만 유지되었다.
이와는 대조적으로, FPMI 첨가제를 사용하여 사이클링된 LNMC/SiOx 풀셀의 경우 사이클링 유지율이 더 높았다: 0.5 FPMI로 사이클링된 셀은 87.3%의 사이클링 유지율을 보였으며, 5.0 FPMI로 사이클링된 셀의 경우 92.9%로 증가했다.
상온에서의 C-rate 성능(도 2b)은 표준 전해액 대비 0.5 FPMI 전해액으로 사이클링할 경우 더 향상되었다. 느린 속도(0.2 C 미만)에서 표준 FPMI 전해질과 5.0 FPMI 전해질의 유지율은 유사하였으나, 0.5 C를 초과하면 유의미한 차이가 나타났다.
5.0 FPMI 전해액으로 2.0 C에서 사이클링한 셀은 FPMI 첨가제를 사용하지 않은 셀(표준 전해액: 62.0%, 5.0 FPMI: 67.4%)보다 5.4% 더 높은 유지율을 나타내었다.
이는 FPMI 첨가제를 사용하면 LNMC/SiOx 전극 재료로 구성된 셀의 사이클링 거동이 개선됨을 나타낸다.
고온에서도 유사한 전기화학적 거동이 관찰되었다(도 2c 및 2d). 고온에서의 사이클링은 전해액 분해와 같은 기생반응을 가속화시켜 상온에서의 사이클링에 비해 전체적인 유지율이 낮게 나타났다.
상세하게는, 표준 전해액을 포함하는 셀은 65.8%의 유지율을 보였으며, 이는 셀 내에서 바람직하지 않은 계면 반응의 발생을 반영하고 있음을 알 수 있었다.
반대로 5.0 FPMI를 사용한 사이클링된 셀은 83.1%의 유지율이 관찰됨에 따라 100 사이클 후에 명백히 향상된 유지율을 보였다. 이는 FPMI 첨가제를 사용하지 않은 셀로 사이클링된 경우보다 거의 17.3% 높은 비율이다.
고온에서의 속도 성능 또한 FPMI 첨가제가 없는 셀은 특히 고온에서 바람직하지 않은 반응의 가속화로 인해 C-rate가 증가함에 따라 지속적으로 급격한 유지율 감소를 겪었음을 확인하였다. 이에 비하여 5.0 FPMI를 포함하는 셀은 10.0 C에서 FPMI 첨가제를 사용하지 않은 셀(표준 전해액: 32.3%, 5.0 FPMI: 66.5%)보다 34.2% 높은 용량 유지율을 보였다.
사이클링에서 FPMI 첨가제의 구체적인 역할은 사이클링된 LNMC/SiOx 전극(고온, 100사이클)을 회수하고, 전해액에 의한 변형 정도를 확인하기 위해 순수한 Li 금속, 분리막, 전해질로 하프 셀을 재조립하여 확인하였다(도 2e 및 2f).
LNMC 양극의 경우, 표준 전해질에 의해 제어된 회수된 LNMC 양극은 147.6 mAh g-1의 비용량만을 제공하였으며, 전위 프로파일에서 분명한 큰 미분화를 보였다. 순수한 LNMC 양극은 일반적으로 초기 사이클에서 202.0 mAh g-1의 비용량을 가지며, 이는 사이클링 시 FPMI 첨가제가 없는 상태에서 사이클링된 LNMC 양극의 심각한 변형이 발생했음을 나타낸다.
이에 비하여 5.0 FPMI 첨가제를 사용한 회수된 LNMC 양극은 미분화 거동이 적은 181.0 mAh g-1의 비용량을 나타내어 LNMC 양극의 변형이 적었다.
SiOx 음극의 경우, FPMI 첨가제를 사용하지 않고 회수된 SiOx 음극을 포함하는 셀은 1245.1 mAh g-1의 비용량을 보였으며, FPMI 첨가제를 사용한 SiOx 음극을 포함하는 셀은 1435.5 mAh g-1의 비용량을 나타내었다.
이러한 결과는 FPMI 첨가제가 각 전극의 계면에서 발생하는 바람직하지 않은 반응을 억제하여 LNMC/ SiOx 전극의 큰 변형을 억제하였음을 나타낸다.
회수된 SiOx 음극의 구조를 SEM으로 분석하여 FPMI 첨가제의 효과를 검증하였다(도 3a-3d).
단면 SEM 이미지는 FPMI 첨가제가 없는 SiOx 음극의 두께(25.0 μm)가 크게 증가한 반면 5.0 FPMI를 사용한 사이클은 15.0 μm 두께까지만 증가하는 데 그쳤다. 사이클링 후 SiOx 음극의 큰 팽창은 SiOx 물질의 미분화에 따라 두께 증가가 수반되기 때문에 SiOx 음극의 심각한 변형의 증거를 나타내는 것으로 생각된다.
상단에서 보여지는 SEM 이미지에서도 SiOx 음극 표면에 축적된 전해액 분해로 인한 많은 부산물의 존재가 밝혀져, FPMI 첨가제가 없는 음극 사이클에서 SiOx 입자의 경계를 구별하기 어렵게 되었다.
그러나 5.0 FPMI 첨가제를 사용한 SiOx 음극에서는 표면 변형이 적고 전해액 분해가 적음을 확인할 수 있었다. EDS 분석 결과, 회수된 SiOx 음극에서 FPMI 첨가제가 없는 것보다 상대적으로 더 많은 양의 Ni 및 F 종을 지지하는 흥미로운 분광학적 증거가 밝혀졌으며, 이는 Ni- 및 F- 함유 SEI 층이 SiOx 음극에 형성되었음을 시사한다.
XPS 결과는 SiOx 음극 상의 SEI 층의 발생을 시사한다(도 3e 및 3f).
C1s 스펙트럼은 일반적으로 C-C(285.0 eV), C-O(286.7 eV), C=O(288.1 eV), RCOOR(290.0 eV)를 나타냈다. 특히, C-O, C=O, RCOOR는 전해액 분해의 증거로 여겨진다.
분석 결과, 분해된 C1s 피크는 FPMI 첨가제를 사용하지 않은 셀 사이클에서 더 크게 나타났으며, 이는 FPMI 첨가제의 존재 하에서 전해액 분해가 덜 발생했음을 나타낸다.
5.0 FPMI 첨가제로 사이클링된 회수된 SiOx 음극에서는 287.7 eV에서 N-C=O와 관련된 고유 C1s 피크가 나타났으며(이 피크는 N1s에서 400.5 eV에서도 관찰됨) FPMI의 전기화학적 환원이 N-C=O 작용기로 구성된 SEI 층을 형성할 수 있음을 알 수 있다.
F1s 스펙트럼은 두 SiOx 음극 모두에서 P-F(687.5 eV)와 LixPFy(688.4 eV)의 형태로 LixPOyFz(686.5 eV)와 관련된 분해된 피크를 보여주었지만, 5.0 FPMI 첨가제를 사용하여 사이클링된 회수된 SiOx 음극은 더 낮은 강도의 피크를 보였으며, 이는 C1s XPS 결과와 일치했다.
또, 5.0 FPMI 첨가제를 사용한 SiOx 음극에서 LiF의 강도(685.3 eV)가 더 높았는데, 이는 FPMI의 전기화학적 환원에 의해 사이클링 유지율이 크게 향상되는 LiF계 SEI 층도 생성될 수 있기 때문이다.
이에 따라, FPMI 첨가제의 전기화학적 환원은 SiOx 음극 상에 LiF- 및 말레이미드-기능화된 SEI층의 형성을 촉진시킬 수 있다.
회수된 LNMC 양극은 SEM 분석에서 유사한 거동을 보였다(도 4a 및 4b).
FPMI 첨가제를 사용하지 않고 사이클링된 LNMC 양극은 표면에 다수의 분해된 첨가제가 축적되어 1차 입자의 입계 판별이 잘 이루어지지 않았다. EDS 분석은 FPMI 첨가제가 없는 LNMC 양극에서 F 원소에 대한 강도가 FPMI 첨가제를 첨가한 경우보다 높게 나타났으며, 이는 FPMI 첨가제가 없는 경우 더 많은 전해액 분해가 일어나는 것을 알 수 있었다.
반면, FPMI 첨가제를 첨가한 회수된 LNMC 양극은 표면이 더 깨끗하여 셀 내에서 바람직하지 않은 기생 반응이 억제되었음을 알 수 있었다.
회수된 LNMC 양극에 대한 XPS 분석 또한 이러한 바람직하지 않은 반응의 억제를 지지하였다(도 4c 및 4d).
전해액 분해와 관련된 일반적인 C1s 피크는 두 전극 모두에서 발견되었지만, FPMI 첨가제를 사용하여 사이클링된 회수된 LNMC 양극의 경우 피크가 훨씬 덜 강렬했다.
F1s 스펙트럼은 또한 LixPOyFz (686.5 eV), P-F (687.5 eV), LixPFy (688.4 eV)와 같은 전해액 분해와 관련된 피크를 보여주었으나, 이는 FPMI 첨가제를 사용한 회수된 LNMC 양극에서 더 낮은 강도를 나타내는 것으로서, C1s XPS 결과와 일치하였다. 흥미롭게도, FPMI 첨가제를 사용한 LNMC 양극만 C1s 및 N1s 스펙트럼에서 N-C=O 피크를 보였다. 이러한 피크는 FPMI 첨가제의 분자 구조에서 유래하였으며, 그 존재는 FPMI 첨가제를 사용한 LNMC 양극에 대한 EDS 결과와 잘 일치하였다.
종합하면, 이것들은 FPMI 첨가제의 전기화학적 산화로 인하여 N-C=O 화학 모이어티(작용기)가 LNMC 양극의 기능화된 CEI 층에 포함됨을 강하게 나타낸다. 이는 전해질의 분해를 억제할 것으로 예상된다.
이러한 ex-situ 분석 결과는 FPMI 첨가제에 의한 전기화학적 반응이 SiOx 음극의 표면에 LiF 및 N-C=O 작용기를 포함하는 SEI층을 동시에 형성할 수 있고, LNMC 양극의 표면에 N-C=O 작용기를 포함하는 CEI층을 형성할 수 있다는 결론으로 이어진다.
결론
본 발명에서는 음극과 양극의 계면 안정성을 동시에 향상시키는 LNMC/SiOx 풀셀용 전해액 첨가제로서 이중 기능성 FPMI 첨가제를 제안한다. FPMI 첨가제의 전기화학적 환원은 LiF 및 N-C=O 작용기를 형성하며, 이들은 SiOx 음극의 SEI 층에 포함된다. FPMI의 전기화학적 산화는 또한 LNMC 양극의 CEI 층에 포함된 N-C=O 작용기를 생성한다. SEM과 XPS에 의한 추가 현장 분석 결과, 5.0 FPMI 전해질로 사이클링된 전극에 대한 전극재 미분화가 적고, 회수된 LNMC와 SiOx 전극 모두에 대해 전해액 분해가 훨씬 적게 발생하였다.
이러한 결과는 FPMI 첨가제가 간단한 전기화학적 반응에 의해 작업별 기능화된 계면층을 동시에 생성하므로 LNMC/ SiOx 풀셀의 수명을 크게 향상시킨다는 결론을 뒷받침한다.
사사(Acknowledgment)
본 결과물은 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 대학중점연구소지원사업의 결과이다(과제번호 2017R1A6A1A06015181)
본 결과물은 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 기본연구과제사업의 결과이다(과제번호 2022R1F1A1069039)
이상에서 설명한 본 발명은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 여러 가지 치환, 변경이 가능하므로 전술한 실시예에 한정되는 것은 아니다.

Claims (12)

  1. N-(4-플루오로페닐)말레이미드(N-(4-fluorophenyl)maleimide, FPMI) 첨가제, 용매 및 리튬염을 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액.
  2. 제1항에 있어서,
    상기 N-(4-플루오로페닐)말레이미드(N-(4-fluorophenyl)maleimide, FPMI) 첨가제는 플루오로 작용기(F-) 및 말레이미드 작용기(Maleimide functional group)를 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액.
  3. 제1항에 있어서,
    상기 N-(4-플루오로페닐)말레이미드(N-(4-fluorophenyl)maleimide, FPMI) 첨가제는 전기화학적 환원에 의해 LiF 및 N-C=O 작용기를 형성하며, 전기화학적 산화에 의해 N-C=O 작용기를 형성하는 것을 특징으로 하는 리튬 이차전지용 전해액.
  4. 제1항에 있어서,
    상기 첨가제는 전해액 중량대비 0.5 중량% 이상 5.0 중량% 이하를 함유하는 것을 특징으로 하는 리튬 이차전지용 전해액.
  5. 제 1 항에 있어서,
    상기 용매는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC) 에틸렌 카보네이트(EC), 비닐렌 카보네이트(VC), 비닐 에틸렌 카보네이트(VEC), 프로필렌 카보네이트(PC) 및 부틸렌 카보네이트(BC)로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액.
  6. 제5항에 있어서,
    상기 용매는 EC(ethylene carbonate):EMC(ethyl methyl carbonate)가 1:2(v/v%)로 포함된 것을 특징으로 하는 리튬 이차전지용 전해액.
  7. 제1항에 있어서,
    상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO4, LiAlCl4, LiCl 및 LiI로 이루어진 군에서 선택되는 적어도 하나인 것을 특징으로 하는 리튬 이차전지용 전해액.
  8. 제1항에 있어서, 
    상기 리튬염 농도는 0.01 ∼ 2M 농도를 갖는 것을 특징으로 하는 리튬이차 전지용 전해액.
  9. 양극; 음극; 및 상기 양극과 음극 사이에 배치되는 전해질층을 포함하며,
    상기 전해질층은 제1항 내지 제8항 중 어느 한 항에 따른 전해액을 포함하는 것을 특징으로 하는 리튬 이차전지.
  10. 제9항에 있어서,
    상기 양극은 LNMC(LiNi0.83Co0.10Mn0.07O2)이고 상기 음극은 SiOx (0〈 x ≤1)인 것을 특징으로 하는 리튬 이차전지.
  11. 제9항에 있어서,
    상기 음극과 전해질층 사이에는 고체 전해질 중간상(Solid Electrolyte Interphases, SEI) 층이 형성되며, 상기 고체 전해질 중간상(Solid Electrolyte Interphases, SEI) 층은 N-C=O 작용기 및 LiF 작용기를 포함하는 것을 특징으로 하는 리튬 이차전지.
  12. 제9항에 있어서,
    상기 양극과 전해질층 사이에는 양극-전해질 중간상(Cathode-Electrolyte Interphase, CEI) 층이 형성되며, 상기 양극-전해질 중간상(CEI) 층은 N-C=O 작용기를 포함하는 것을 특징으로 하는 리튬 이차전지.
PCT/KR2023/015262 2022-10-05 2023-10-04 N-(4-플루오로페닐)말레이미드를 포함하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 WO2024076153A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220126911A KR20240047642A (ko) 2022-10-05 2022-10-05 N-(4-플루오로페닐)말레이미드를 포함하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR10-2022-0126911 2022-10-05

Publications (1)

Publication Number Publication Date
WO2024076153A1 true WO2024076153A1 (ko) 2024-04-11

Family

ID=90608357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015262 WO2024076153A1 (ko) 2022-10-05 2023-10-04 N-(4-플루오로페닐)말레이미드를 포함하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Country Status (2)

Country Link
KR (1) KR20240047642A (ko)
WO (1) WO2024076153A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508924B1 (ko) * 2003-07-01 2005-08-17 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN101212065A (zh) * 2006-12-30 2008-07-02 财团法人工业技术研究院 含马来酰亚胺添加剂的非水电解液及包含它的碱金属族二次电池
US20160111754A1 (en) * 2013-07-12 2016-04-21 Jiangsu Huadong Institute Of Li-Ion Battery Co. Ltd. Electrolyte additive, electrolyte and lithium ion battery using the same
KR20190114680A (ko) * 2018-03-30 2019-10-10 삼성전자주식회사 양극, 이를 포함하는 리튬공기전지 및 양극 제조방법
KR20220048803A (ko) * 2020-10-13 2022-04-20 현대자동차주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017119821A (ja) 2015-12-28 2017-07-06 宇部興産株式会社 ポリイミド材料およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508924B1 (ko) * 2003-07-01 2005-08-17 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN101212065A (zh) * 2006-12-30 2008-07-02 财团法人工业技术研究院 含马来酰亚胺添加剂的非水电解液及包含它的碱金属族二次电池
US20160111754A1 (en) * 2013-07-12 2016-04-21 Jiangsu Huadong Institute Of Li-Ion Battery Co. Ltd. Electrolyte additive, electrolyte and lithium ion battery using the same
KR20190114680A (ko) * 2018-03-30 2019-10-10 삼성전자주식회사 양극, 이를 포함하는 리튬공기전지 및 양극 제조방법
KR20220048803A (ko) * 2020-10-13 2022-04-20 현대자동차주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEON YE JIN; YIM TAEEUN: "Fluorine- and maleimide-functionalized electrolyte additive as an interface modifier for Ni-rich LNMC/SiOx batteries", CURRENT APPLIED PHYSICS, ELSEVIER, AMSTERDAM, NL, vol. 46, 24 December 2022 (2022-12-24), AMSTERDAM, NL , pages 76 - 82, XP087238993, ISSN: 1567-1739, DOI: 10.1016/j.cap.2022.12.008 *

Also Published As

Publication number Publication date
KR20240047642A (ko) 2024-04-12

Similar Documents

Publication Publication Date Title
WO2018062719A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
US7241536B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2016159702A1 (ko) 비수 전해액 및 이를 구비한 리튬 이차전지
WO2014129823A1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2014104710A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2015065102A1 (ko) 리튬 이차전지
WO2018097523A1 (ko) 이차전지용 전해액 및 이를 포함하는 이차전지
WO2020153822A1 (ko) 리튬 이차 전지
WO2020085823A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2020153690A1 (ko) 리튬 복합 음극 활물질, 이를 포함하는 음극 및 이들의 제조방법
WO2017183810A1 (ko) 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
WO2017213441A1 (ko) 리튬전지
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2015037852A1 (ko) 비수계 전해액 및 이를 포함하는 리튬 이차전지
WO2018004110A1 (ko) 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
KR20080086638A (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2018004103A1 (ko) 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
WO2018097519A1 (ko) 이차전지용 전해액 및 이를 포함하는 이차전지
WO2017030416A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2024076153A1 (ko) N-(4-플루오로페닐)말레이미드를 포함하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR100801592B1 (ko) 숙신산 및 트리메틸실릴 보레이트를 포함하는 비수성전해액 및 이를 포함하는 리튬 2차 전지
WO2016048104A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2019059698A2 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬-이차 전지
WO2019013541A2 (ko) 전해질 및 이를 포함하는 리튬 황 전지
CN112216869B (zh) 高压电解液添加剂、高压电解液及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23875216

Country of ref document: EP

Kind code of ref document: A1