WO2024075812A1 - 有機半導体インク組成物の製造方法、有機半導体インク組成物、有機光電変換膜、及び有機光電変換素子 - Google Patents

有機半導体インク組成物の製造方法、有機半導体インク組成物、有機光電変換膜、及び有機光電変換素子 Download PDF

Info

Publication number
WO2024075812A1
WO2024075812A1 PCT/JP2023/036347 JP2023036347W WO2024075812A1 WO 2024075812 A1 WO2024075812 A1 WO 2024075812A1 JP 2023036347 W JP2023036347 W JP 2023036347W WO 2024075812 A1 WO2024075812 A1 WO 2024075812A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
photoelectric conversion
ink composition
type organic
organic
Prior art date
Application number
PCT/JP2023/036347
Other languages
English (en)
French (fr)
Inventor
千浩 中林
茂 中根
英典 中山
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2024075812A1 publication Critical patent/WO2024075812A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a method for producing an organic semiconductor ink composition, an organic semiconductor ink composition, an organic photoelectric conversion film, and an organic photoelectric conversion element.
  • Organic photoelectric conversion films that convert the energy of incident light into electrical energy are expected to be applied to organic photoelectric conversion elements such as solar cells and photosensors (photodiodes).
  • organic photoelectric conversion films organic photoelectric conversion films made of a mixture of an electron donor semiconductor (p-type organic semiconductor) and an electron acceptor semiconductor (n-type organic semiconductor) are known.
  • the p-type organic semiconductor and the n-type organic semiconductor each form a bicontinuous domain (bulk heterojunction structure: BHJ structure) on the order of nanometers, and having such a structure is considered promising for obtaining a high-performance organic photoelectric conversion film.
  • BHJ-type photoelectric conversion film consisting of a mixture of a conjugated polymer, which is a p-type organic semiconductor, and a fullerene derivative, such as PCBM, which is an n-type organic semiconductor, has been known, and organic solar cells with a maximum photoelectric conversion efficiency (PCE) of approximately 11% have been reported.
  • PCE photoelectric conversion efficiency
  • PCE can be further improved by using small molecule electron acceptor semiconductors called non-fullerene acceptors instead of fullerene derivatives; for example, solar energy conversion efficiencies of over 18% have been reported.
  • Such foreign matter in the organic photoelectric conversion film can significantly affect the image output of an image sensor using the organic photoelectric conversion film, and can lead to degradation of image output characteristics, characteristic variations between pixels, pixel defects, and the like. Under these circumstances, various studies have been conducted to improve the film quality of the organic photoelectric conversion film, specifically to reduce foreign matter in the organic photoelectric conversion film.
  • Non-Patent Document 1 reports that by using a block copolymer in which PCBM is introduced into the poly(3-alkylthiophene) side chain, PCBM-derived precipitation can be suppressed compared to an organic photoelectric conversion film made of a poly(3-alkylthiophene)/PCBM mixture.
  • Non-Patent Document 1 is a technique for a specific material.
  • the present invention has been made in consideration of the above circumstances, and provides a method for producing an organic semiconductor ink composition that can produce an organic photoelectric conversion film with reduced foreign matter, without the need to develop a specific material as disclosed in Non-Patent Document 1.
  • a method for producing an organic semiconductor ink composition containing a p-type organic semiconductor, an n-type organic semiconductor, and a non-halogen-based organic solvent comprising the steps of: a first dissolution step of dissolving at least one of the p-type organic semiconductor and the n-type organic semiconductor in the non-halogenated organic solvent to obtain a partial solution; a first filtration, which is a filtration of the partial solution obtained in the first dissolution; and a post-addition of an organic semiconductor, which comprises adding at least one of the p-type organic semiconductor and the n-type organic semiconductor to the solution obtained by the first filtration to obtain a total solution.
  • [2] The method for producing the organic semiconductor ink composition according to [1], further comprising a second filtration step of filtering the entire solution obtained by subsequent addition of the organic semiconductor.
  • [3] The method for producing an organic semiconductor ink composition according to [2], wherein the pore size of the filter used in the second filtration is equal to or smaller than the pore size of the filter used in the first filtration.
  • [4] The method for producing an organic semiconductor ink composition according to any one of [1] to [3], wherein the p-type organic semiconductor is dissolved in the non-halogenated organic solvent in the first dissolution, and the n-type organic semiconductor is added to the solution obtained by the first filtration in a post-addition step of the organic semiconductor.
  • [5] The method for producing an organic semiconductor ink composition according to any one of [1] to [3], wherein the n-type organic semiconductor is dissolved in the non-halogenated organic solvent in the first dissolution, and the p-type organic semiconductor is added to the solution obtained by the first filtration in a post-addition step of the organic semiconductor.
  • [6] The method for producing an organic semiconductor ink composition according to any one of [1] to [5], wherein the p-type organic semiconductor is a polymer compound.
  • [7] The method for producing an organic semiconductor ink composition according to any one of [1] to [6], wherein the n-type organic semiconductor is an organic compound having a molecular weight of 100 to 5,000.
  • an organic semiconductor ink composition can be produced that can produce an organic photoelectric conversion film with little foreign matter. Furthermore, by using the obtained organic semiconductor ink composition, an organic photoelectric conversion film with little foreign matter and an organic photoelectric conversion element having this organic photoelectric conversion film can be obtained.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of an embodiment of an organic photoelectric conversion element of the present invention.
  • 1 is a photograph showing a dark field image of the surface of an organic photoelectric conversion film obtained in an example.
  • 1 is a photograph showing a dark field image of the surface of an organic photoelectric conversion film obtained in a comparative example.
  • Organic semiconductor ink composition (hereinafter, simply referred to as "ink composition") that is the target of the manufacturing method of this embodiment contains an organic semiconductor and a non-halogen-based organic solvent.
  • the organic semiconductor contained in the ink composition contains a p-type organic semiconductor and an n-type organic semiconductor.
  • the p-type organic semiconductor is not particularly limited and any known compound can be used, preferably a donor organic semiconductor (compound).
  • the p-type organic semiconductor is preferably a polymer compound, for example, a hole-transporting organic compound that is a p-type conjugated polymer compound, and a polymer compound that has a property of easily donating electrons can be used.
  • the polymer compound means a polymer having a molecular weight distribution and a weight average molecular weight of 10,000 or more in terms of standard polystyrene, determined by size exclusion chromatography.
  • the p-type organic semiconductor is preferably a compound having a skeleton with excellent hole transport properties.
  • skeletons having excellent hole transport properties include a carbazole structure, a thiophene structure, a benzodithiophene structure, a thienothiophene structure, a dibenzofuran structure, a triarylamine structure, a naphthalene structure, a phenanthrene structure, and a pyrene structure.
  • compounds that can form a film by mixing with an n-type organic semiconductor described below and applying the mixture are particularly preferred.
  • a polymer compound represented by the following formula (II) is preferably used as the p-type organic semiconductor.
  • n is a positive number.
  • the weight average molecular weight of the p-type organic semiconductor is preferably 10,000 or more, more preferably 50,000 or more, because the characteristics of the p-type semiconductor are easily expressed. In addition, from the viewpoint of solubility in a solvent, it is preferably 150,000 or less, more preferably 100,000 or less.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 10,000 or more and 150,000 or less, or 50,000 or more and 100,000 or less.
  • the weight average molecular weight of the p-type organic semiconductor is a value determined by size exclusion chromatography.
  • the n-type organic semiconductor is an acceptor organic semiconductor, and is mainly represented by an electron transporting compound, which is a compound that has a property of easily accepting electrons. More specifically, it refers to the compound that has a larger electron affinity when two compounds are used in contact with each other. Therefore, any compound that has electron accepting properties can be used as the acceptor compound.
  • the n-type organic semiconductor is preferably an organic compound with a molecular weight of 100 to 5000.
  • the molecular weight is more preferably 500 to 4000, and even more preferably 1000 to 3000. If it is equal to or greater than the lower limit, it has excellent ability to form a BHJ structure with the p-type organic semiconductor, and if it is equal to or less than the upper limit, it has excellent solubility in a solvent.
  • n-type organic semiconductors include fused aromatic carbocyclic compounds (naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene derivatives, etc.); 5- to 7-membered heterocyclic compounds containing a nitrogen atom, an oxygen atom, or a sulfur atom, or fused rings containing a 5- to 7-membered heterocyclic compound (e.g., pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline, isoquinoline, pteridine, acridine, phenazine, phenanthroline, tetrazo ...
  • fused aromatic carbocyclic compounds naphthalene derivatives, anthracene derivatives, phenanthrene derivative
  • Examples of the compound include aryl, pyrazole, imidazole, thiazole, oxazole, indazole, benzimidazole, benzotriazole, benzoxazole, benzothiazole, carbazole, purine, triazolopyridazine, triazolopyrimidine, tetrazaindene, oxadiazole, imidazopyridine, pyrazine, pyrrolopyridine, thiadiazolopyridine, dibenzazepine, tribenzazepine, etc.); polyarylene compounds; fluorene compounds; cyclopentadiene compounds; silyl compounds; and metal complexes having a nitrogen-containing heterocyclic compound as a ligand.
  • any compound having a larger electron affinity than the compound used as the donor semiconductor may be used as the acceptor semiconductor.
  • the ratio of the n-type organic semiconductor having a fullerene skeleton to the n-type organic semiconductor not having a fullerene skeleton is preferably 10 mass % or less, and it is more preferable that the n-type organic semiconductor is substantially free of the n-type organic semiconductor having a fullerene skeleton.
  • substantially free of n-type organic semiconductors having a fullerene skeleton means that the n-type organic semiconductors having no fullerene skeleton are responsible for transporting electrons generated in the photoelectric conversion layer, and may be contained in small amounts to improve the morphology of the photoelectric conversion layer.
  • the n-type organic semiconductors having a fullerene skeleton are usually contained in an amount of 5 mass% or less relative to the n-type organic semiconductors having no fullerene skeleton, and this ratio is preferably 2 mass% or less.
  • the n-type organic semiconductor used in this embodiment preferably contains at least one of a compound represented by the following formula (I) and a polymer of two or more compounds represented by the following formula (I), particularly from the viewpoint of compatibility with p-type organic semiconductors and ability to form a BHJ-type photoelectric conversion layer.
  • A represents an atom selected from Group 14 of the periodic table
  • X 1 to X 4 each independently represent a hydrogen atom or a halogen atom
  • R 1a and R 1b each independently represent a linear or branched alkyl group
  • R 2 to R 5 each independently represent a linear or branched alkyl group, a linear or branched alkoxy group, a linear or branched thioalkyl group, or a hydrogen atom.
  • A is preferably a carbon atom or a silicon atom.
  • X 1 to X 4 each independently represent a hydrogen atom or a halogen atom, and the halogen atom is preferably a fluorine atom or a chlorine atom.
  • R 1a and R 1b each independently represent a linear or branched alkyl group, and the alkyl group preferably has 8 to 24 carbon atoms, more preferably 10 to 20 carbon atoms, and further preferably 12 to 18 carbon atoms.
  • linear or branched alkyl groups having 8 to 24 carbon atoms include linear alkyl groups such as n-octyl, n-decyl, lauryl, myristyl, palmityl, and stearyl; primary alkyl groups having branches such as 2-ethylhexyl and 2-butyloctyl; and secondary alkyl groups such as 2-octyl, 2-nonyl, and 2-decyl.
  • Linear alkyl groups and primary alkyl groups having branches are preferred, with 2-ethylhexyl and 2-butyloctyl being more preferred.
  • R 2 to R 5 are each independently a linear or branched alkyl group, a linear or branched alkoxy group, a linear or branched thioalkyl group, or a hydrogen atom, and the alkyl group, alkoxy group, and thioalkyl group preferably have 8 to 24 carbon atoms, more preferably 10 to 20 carbon atoms, and even more preferably 12 to 18 carbon atoms.
  • R 2 to R 5 are each preferably independently a straight-chain or branched alkoxy group having 8 to 24 carbon atoms, and more preferably a 2-ethylhexyloxy group or a palmityloxy group.
  • R 1a and R 1b are the same group.
  • R 2 to R 5 are preferably composed of two or more different groups.
  • the mass ratio of the n-type organic semiconductor to the p-type organic semiconductor is preferably 0.5 to 2.5, more preferably 1.0 to 2.0, in terms of the organic photoelectric conversion element characteristics. If it is equal to or less than the upper limit, the sensitivity in the near infrared region tends to be excellent. If it is equal to or more than the lower limit, dark current tends to be less likely to be generated.
  • the mass ratio of the n-type organic semiconductor to the p-type organic semiconductor is preferably 0.2 to 1.8. In terms of facilitating a well-balanced improvement in the characteristics and thermal stability of the organic photoelectric conversion element, the mass ratio of the n-type organic semiconductor to the p-type organic semiconductor is preferably from 1.1 to 1.9, and more preferably from 1.2 to 1.8.
  • Non-halogen organic solvent contains a non-halogen-based organic solvent.
  • Non-halogenated means that the compound does not contain halogen as a constituent element, and does not exclude solvents that contain trace amounts of halogen elements as impurities during the manufacturing or handling process.
  • the non-halogenated organic solvent may be any solvent capable of dissolving a p-type organic semiconductor and an n-type organic semiconductor.
  • non-halogenated organic solvent examples include aromatic hydrocarbon solvents such as toluene, xylene, mesitylene, and cyclohexylbenzene; ether solvents including aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA); aromatic ethers such as 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, and 2,4-dimethylanisole; aliphatic ester solvents such as ethyl acetate, n-butyl acetate, ethyl lactate, and n-butyl lactate; and ester solvents including aromatic esters such as phenyl acetate, phenyl
  • aromatic hydrocarbon solvent from the viewpoint of the solubility of p-type organic semiconductors and n-type organic semiconductors, it is preferable to use an aromatic hydrocarbon solvent, and it is preferable to use an aromatic hydrocarbon solvent.
  • the ink composition which is the target of the manufacturing method of this embodiment may contain other components as required in addition to the p-type organic semiconductor, the n-type organic semiconductor and the non-halogenated organic solvent.
  • other components include stabilizers, viscosity modifiers, and curing agents.
  • the total content of the other components is preferably 10% by mass or less relative to the total solid content of the p-type organic semiconductor, n-type organic semiconductor, and other components (total solid content).
  • the total content of the p-type organic semiconductor and n-type organic semiconductor is preferably 90 to 100% by mass relative to the total solid content excluding the solvent from the ink composition.
  • total solids means all components other than the solvent. Even if a component other than the solvent is liquid at room temperature, that component is included in the total solids.
  • the solids concentration of the ink composition which is the target of the production method of this embodiment i.e., the total solids content excluding the solvent from the ink composition, is preferably 10 to 40 mg/mL, and more preferably 15 to 30 mg/mL.
  • the solids concentration of the ink composition of this embodiment is 10 to 40 mg/mL, and more preferably 15 to 30 mg/mL.
  • the method for producing an ink composition according to the present embodiment is a method for producing an ink composition that contains an organic semiconductor that includes a p-type organic semiconductor and an n-type organic semiconductor, and a non-halogen-based organic solvent.
  • an ink composition has been produced by dissolving the entire amount of an organic semiconductor contained in the ink composition in a solvent and then filtering the solution.
  • the production method of the present embodiment is characterized by having a step of filtering a solution containing only a portion of the organic semiconductor contained in the ink composition (partial solution).
  • the method for producing an ink composition of the present embodiment includes the steps of obtaining a partial solution containing a portion of the organic semiconductor and a non-halogenated organic solvent, filtering the obtained partial solution, and using the filtrate of the partial solution to prepare a total solution containing all of the organic semiconductors and all of the non-halogenated organic solvent.
  • the method for producing an ink composition of the present embodiment is a method for producing an organic semiconductor ink composition containing a p-type organic semiconductor, an n-type organic semiconductor, and a non-halogenated organic solvent, and includes, in this order, a step of dissolving at least one of the p-type organic semiconductor and the n-type organic semiconductor in a non-halogenated organic solvent to obtain a partial solution (first dissolution), a step of filtering the partial solution (partial solution filtering step: first filtration), and a step of adding at least one of the p-type organic semiconductor and the n-type organic semiconductor to the solution after the filtration (organic semiconductor post-addition step: organic semiconductor post-addition).
  • a step of filtering the entire solution may be provided. That is, a step of filtering the entire solution may be provided after the post-addition step of the organic semiconductor (a step of filtering the entire solution).
  • the other components may be partially contained in the solution, or may all be added when preparing the solution.
  • the foreign matters contained in the ink composition have low solubility in non-halogenated organic solvents.
  • possible foreign matters include polymers of p-type organic semiconductors, aggregates of p-type organic semiconductors, aggregates of n-type organic semiconductors, and associations of p-type organic semiconductors and n-type organic semiconductors.
  • by filtering only a portion of the solution it becomes possible to remove more foreign matter by the filtering process compared to conventional methods.
  • the organic semiconductors contained in the ink composition it is preferable to dissolve a material containing foreign matter or a component that causes foreign matter in advance in a non-halogenated organic solvent to prepare a partial solution, and then filter the solution one or more times, which makes it possible to remove as many foreign matter or components as possible.
  • the partial solution may be one type, or two or more types of partial solutions may be prepared and each of them may be filtered one or more times.
  • the two or more types of partial solutions may have the same composition.
  • the remaining organic semiconductor is added to the filtrate of the partial solution thus obtained to obtain a total solution. If the non-halogenated organic solvent contained in the partial solution is a part of the non-halogenated organic solvent contained in the target ink composition, the remaining non-halogenated organic solvent can also be added to the filtrate of the partial solution to obtain a total solution. The remaining organic semiconductor may be added to the filtrate of the partial solution in a state where it is dissolved in part or all of the remaining non-halogenated organic solvent. The resulting total solution can be used as is or further filtered to provide the desired ink composition. In this manner, the amount of foreign matter contained in the ink composition can be reduced. By forming an organic photoelectric conversion film using this ink composition, the amount of foreign matter in the organic photoelectric conversion film can be reduced.
  • the amount of the organic semiconductor contained in the partial solution is preferably 20 to 60 mass %, more preferably 25 to 55 mass %, and even more preferably 30 to 50 mass %, based on the total mass of the organic semiconductor used in producing the ink composition.
  • the total amount of the non-halogenated organic solvents contained in the partial solution is preferably 70 to 100 mass %, more preferably 80 to 100 mass %, and even more preferably 90 to 100 mass %, based on the total mass of the non-halogenated organic solvents contained in the target ink composition.
  • a non-halogenated organic solvent may be added when preparing the total solution. That is, this mode includes, in this order, a step of dissolving a p-type organic semiconductor in a non-halogenated organic solvent, a step of filtering the solution, and a step of adding an n-type organic semiconductor to the filtered solution.
  • the partial solution containing the p-type organic semiconductor does not contain an n-type organic semiconductor, or if it does contain an n-type organic semiconductor, the amount is less than that of the p-type organic semiconductor.
  • the amount of the n-type organic semiconductor contained in this partial solution is preferably less than 100 parts by mass, preferably 50 parts by mass or less, and more preferably 20 parts by mass or less. It may also be 0 parts by mass.
  • the n-type organic semiconductor to be added to the filtrate may not have been subjected to a filtration step, or may be added as a filtrate obtained by filtering a partial solution containing the n-type organic semiconductor and the non-halogenated organic solvent one or more times.
  • a non-halogenated organic solvent may be added when preparing the total solution. That is, this mode includes, in this order, a step of dissolving an n-type organic semiconductor in a non-halogenated organic solvent, a step of filtering the solution, and a step of adding a p-type organic semiconductor to the filtered solution.
  • the partial solution containing the n-type organic semiconductor does not contain a p-type organic semiconductor, or if it does contain a p-type organic semiconductor, the amount is less than the n-type organic semiconductor.
  • the amount of the p-type organic semiconductor contained in this partial solution is preferably less than 100 parts by mass, preferably 50 parts by mass or less, and more preferably 20 parts by mass or less. It may also be 0 parts by mass.
  • the p-type organic semiconductor to be added to the filtrate may not have been subjected to a filtration step, or may be added as a filtrate obtained by filtering a partial solution containing the p-type organic semiconductor and the non-halogenated organic solvent one or more times.
  • the filter used for filtering the part of the solution is preferably a membrane filter.
  • the material of the thin film filter is preferably a material that is resistant to some solutions, such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polypropylene (PP), polyethersulfone (PES), nylon (NYL), cellulose acetate (CA), regenerated cellulose (RC), and glass fiber.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PP polypropylene
  • PES polyethersulfone
  • nylon NYL
  • CA cellulose acetate
  • RC regenerated cellulose
  • the pore size of the filter used for filtering the part of the solution is preferably from 0.01 to 10 ⁇ m, more preferably from 0.05 to 5 ⁇ m, further preferably from 0.07 to 1 ⁇ m, and particularly preferably from 0.1 to 0.5 ⁇ m.
  • the pore size of the filter in the present invention is determined by the bubble point method.
  • the partial solution is filtered once or more, and the more the number of times is increased, the more the foreign matter removal property is improved.
  • the upper limit is not particularly limited, and can be set in consideration of the production efficiency. For example, 10 times or less is preferable, and 5 times or less is more preferable.
  • the partial solution may be filtered 1 to 10 times, or 1 to 5 times.
  • a multi-layer filter in which filters having different pore sizes are combined, or a filter with a prefilter may be used.
  • the pore size of the filter used in the first filtration is the largest, the pore size of the filter is gradually decreased, and the pore size of the filter used in the final filtration is the smallest.
  • the filtration may be carried out under increased pressure or reduced pressure as necessary.
  • the filter used for filtering the entire solution is preferably a membrane filter.
  • the material of the membrane filter is preferably a material that is resistant to all of the solutions, for example, a filter made of the same material as the filter used to filter some of the solutions.
  • the pore size of the filter used for filtering the entire solution is preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m, further preferably 0.07 to 1 ⁇ m, and particularly preferably 0.1 to 0.5 ⁇ m.
  • the pore size D2 of the filter used for filtering the entire solution is preferably equal to or smaller than the pore size D1 of the filter used for filtering the partial solution ( D2 ⁇ D1 ).
  • the total solution is filtered once or more, and the more the number of times, the more the foreign matter removal is improved.
  • the upper limit is not particularly limited, and can be set in consideration of production efficiency. For example, 10 times or less is preferable, and 5 times or less is more preferable.
  • the total solution may be filtered 1 to 10 times, or 1 to 5 times.
  • the embodiments that can be used are similar to those in the multistage filtration of a portion of the solution.
  • the filtration may be carried out under increased pressure or reduced pressure as necessary.
  • the ink composition of the present embodiment is applied to a coating target to form a coating film (unsolidified film), and then the solvent in the coating film is removed to form a solidified film of the ink composition.
  • the solidified film of the ink composition can be suitably used as an organic photoelectric conversion film.
  • the coating film can be formed by a known wet film-forming method such as spin coating. The conditions for spin coating may be appropriately set according to a standard method, taking into account the viscosity of the ink composition, etc.
  • the solvent in the coating film can be removed by a known drying method, for example, a heat drying method or a reduced pressure drying method.
  • the organic photoelectric conversion film of this embodiment is a solidified film of an ink composition with reduced foreign matter.
  • the number of bright spots in the dark-field image of the surface of the organic photoelectric conversion film reflects the amount of foreign matter present in the organic photoelectric conversion film, and the fewer the number of bright spots per unit area, the fewer the foreign matters.
  • the number of bright spots in the dark-field image of the film surface is preferably 100/ mm2 or less, more preferably 50/ mm2 or less, even more preferably 20/ mm2 or less, and particularly preferably 0/ mm2 .
  • the method for measuring the number of bright spots in a dark field image of the surface of the organic photoelectric conversion film is the method described in the "Method for evaluating film quality" in the Examples section below.
  • the organic photoelectric conversion film of this embodiment preferably has a surface roughness Ra of 0.1 to 10 nm, more preferably 0.1 to 5 nm, after a heat resistance test.
  • the heat resistance test is performed by maintaining the film at a temperature of 200° C. for 50 minutes.
  • the temperature condition of the heat resistance test being T°C means that the temperature of the film is T°C.
  • the surface roughness Ra after the heat resistance test can be used as an index of the thermal stability of the organic photoelectric conversion film.
  • the heat resistance test when the domains of the p-type organic semiconductor and the n-type organic semiconductor constituting the organic photoelectric conversion film are enlarged or crystallized, the smoothness of the surface of the organic photoelectric conversion film is impaired, and the surface roughness Ra increases.
  • the smaller the difference in surface roughness Ra before and after the heat resistance test the more the film quality deterioration due to heating is suppressed.
  • it is important that the surface roughness Ra after the heat resistance test is generally small.
  • the surface roughness Ra after the heat resistance test can be adjusted, for example, by the ratio of the p-type organic semiconductor to the n-type organic semiconductor contained in the organic photoelectric conversion film, that is, by the ratio of the p-type organic semiconductor to the n-type organic semiconductor contained in the ink composition.
  • the ratio of the p-type organic semiconductor to the p-type organic semiconductor is 0.2 to 1.8
  • an organic photoelectric conversion film having a surface roughness Ra of 0.1 to 10 nm after a heat resistance test can be produced.
  • the ink composition of this embodiment can be suitably used for forming a photoelectric conversion layer (a layer made of an organic photoelectric conversion film) of an organic photoelectric conversion element.
  • a photoelectric conversion layer a layer made of an organic photoelectric conversion film
  • the configuration of the organic photoelectric conversion element of this embodiment and layers other than the photoelectric conversion layer will be described later.
  • the photoelectric conversion layer of the organic photoelectric conversion element of the present embodiment can be formed by a method of applying an ink composition onto a carrier transport layer (a hole transport layer or an electron transport layer) to form a coating film, and then solidifying the coating film.
  • the film thickness of the photoelectric conversion layer can be arbitrarily designed depending on the configuration of the photoelectric conversion layer and the application of the organic photoelectric conversion element, but a thicker film is preferable in terms of sufficient light absorption and high efficiency, while a thinner film is preferable in terms of reduced internal resistance and small loss. Therefore, a film thickness of 10 nm to 1 ⁇ m is preferable.
  • the photoelectric conversion layer of the organic photoelectric conversion element may be subjected to a pretreatment such as a thermal annealing treatment or a solvent annealing treatment before the completion of the organic photoelectric conversion element.
  • the solvent annealing treatment is a treatment in which the photoelectric conversion layer is exposed to a specific solvent atmosphere, and can be carried out by a known method. It is preferable to subject the coating film to a thermal annealing treatment, which also serves as a drying treatment for removing the solvent in the coating film. The drying treatment and the thermal annealing treatment may be performed separately.
  • thermal annealing method examples include a method of directly heating using a hot plate, a hot air heating method, an infrared heating method, a light heating method using a flash lamp, etc.
  • the outer surface of the carrier transport layer side (the surface opposite to the photoelectric conversion layer) of a laminate in which a photoelectric conversion layer is formed on a carrier transport layer can be heated by contacting it with a hot plate.
  • the heating temperature in the thermal annealing treatment is, for example, preferably 80 to 300° C., and more preferably 150 to 300° C.
  • the heating time in the thermal annealing treatment is, for example, preferably 1 second to 30 minutes.
  • the heating temperature of the drying treatment or thermal annealing treatment of the photoelectric conversion layer being t°C means that the temperature of the photoelectric conversion layer in the drying treatment or thermal annealing treatment is t°C.
  • Preferred embodiments of the method for subjecting the organic photoelectric conversion film to a thermal annealing treatment include the following.
  • a thermal annealing treatment is carried out, which also serves as a drying treatment, immediately after the formation of a coating film of the ink composition.
  • a coating film of the ink composition is formed, dried by a reduced pressure drying method to solidify the coating film, and then subjected to a thermal annealing treatment.
  • a step of laminating a carrier transport layer (a hole transport layer or an electron transport layer) that is not deteriorated by the heat of the thermal annealing treatment on the solidified organic photoelectric conversion film can be provided.
  • the photoelectric conversion layer (organic photoelectric conversion film) of the organic photoelectric conversion element is an organic photoelectric conversion film that has been thermally annealed at a high temperature of 150 to 300° C.
  • the heat resistance of the organic photoelectric conversion element is improved.
  • the photoelectric conversion characteristics (e.g., EQE) of the organic photoelectric conversion element are unlikely to deteriorate. This is thought to be because the thermal annealing process at the above-mentioned high temperature improves the thermal stability of the BHJ structure of the organic photoelectric conversion film.
  • the heating temperature in the high-temperature thermal annealing treatment is preferably 150 to 300° C., more preferably 160 to 250° C., and further preferably 180 to 220° C. If the heating temperature in the thermal annealing treatment is high, the thermal stability of the BHJ structure of the organic photoelectric conversion film can be improved, while if the heating temperature is low, deterioration of the material is less likely to occur.
  • the heating time in the thermal annealing treatment at high temperature is preferably from 1 second to 30 minutes, more preferably from 10 seconds to 25 minutes, and even more preferably from 1 to 20 minutes. A long heating time is expected to improve the thermal stability of the BHJ structure of the organic photoelectric conversion film, while a short heating time is unlikely to cause deterioration of the material.
  • the photoelectric conversion layer of the organic photoelectric conversion element By subjecting the photoelectric conversion layer of the organic photoelectric conversion element to the above-mentioned high-temperature thermal annealing treatment, it is possible to achieve, for example, an EQE maintenance rate of 70 to 100%, preferably 80 to 100%, in the heat resistance test described in the examples below.
  • Organic photoelectric conversion element of the present embodiment has a photoelectric conversion layer which is the organic photoelectric conversion film of the present embodiment described above.
  • the structure of the organic photoelectric conversion element of this embodiment can be, for example, that described in Japanese Patent Application Laid-Open No. 2007-324587, and is not particularly limited.
  • the organic photoelectric conversion element may have a structure in which a transparent electrode, an electron transport layer, a photoelectric conversion layer, a hole transport layer, and a metal electrode are stacked in this order on a transparent substrate, or a structure in which a transparent electrode, a hole transport layer, a photoelectric conversion layer, an electron transport layer, and a metal electrode are stacked in this order on a transparent substrate.
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic photoelectric conversion element of this embodiment.
  • this organic photoelectric conversion element 10 a first electrode 11, a hole transport layer 12, a photoelectric conversion layer 13, an electron transport layer 14, and a second electrode 15 as a lower electrode are laminated in this order.
  • the hole transport layer 12, the photoelectric conversion layer 13, and the electron transport layer 14 form an organic photoelectric film 20.
  • a substrate is provided on the side of the first electrode 11 opposite the hole transport layer 12.
  • the organic photoelectric conversion element may include a substrate to support the first electrode, the hole transport layer, the photoelectric conversion layer, the electron transport layer, the second electrode, etc.
  • the substrate may be provided on either the first electrode side or the second electrode side, or on both sides, but is preferably provided at least on the first electrode side.
  • the substrate can be made of any material, but if light is incident from the substrate side, it must be made of a highly transparent material.
  • materials constituting the substrate include inorganic materials such as glass, sapphire, and titania; organic materials such as polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyimide, nylon, polystyrene, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, fluororesin, vinyl chloride, polyethylene, cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, and polynorbornene; paper materials such as paper and synthetic paper; and composite materials such as metals such as stainless steel, titanium, and aluminum whose surfaces are coated or laminated to impart insulating properties.
  • the constituent materials of the substrate may be used alone or in combination of two or more kinds.
  • the shape and dimensions of the substrate there is no limitation on the shape and dimensions of the substrate, and they can be set arbitrarily. Furthermore, another layer may be laminated on the substrate in order to impart gas barrier properties or control the surface condition.
  • the thickness of the substrate can be freely designed depending on the application and constituent materials of the organic photoelectric conversion element, but a thicker substrate is preferable in terms of strength as a support member, while a thinner substrate is preferable in terms of cost. Therefore, a film- or plate-shaped substrate with a thickness of about 10 ⁇ m to 50 mm is usually used.
  • the electrodes (first electrode, second electrode) can be made of any material having electrical conductivity.
  • Examples of materials constituting the electrodes include metals such as platinum, gold, silver, aluminum, chromium, nickel, copper, titanium, magnesium, calcium, barium, and sodium, or alloys thereof; metal oxides such as indium oxide and tin oxide, or composite oxides thereof (e.g., ITO and IZO); conductive polymers such as polyaniline, polypyrrole, polythiophene, and polyacetylene; conductive polymers to which dopants such as acids such as hydrochloric acid, sulfuric acid, and sulfonic acid, Lewis acids such as FeCl3 , halogen atoms such as iodine, and metal atoms such as sodium and potassium have been added; and conductive composite materials in which conductive particles such as metal particles, carbon black, fullerene, and carbon nanotubes are dispersed in a matrix such as a polymer binder.
  • the electrode may be made of one material alone or two or more materials in combination.
  • the organic photoelectric conversion element at least one pair (two electrodes) is provided, and a photoelectric conversion layer is provided between the pair of electrodes.
  • at least one of the pair of electrodes is transparent (i.e., transmits light absorbed by the photoelectric conversion layer for power generation).
  • transparent electrode examples include composite oxides such as indium tin oxide (ITO) and indium zinc oxide (IZO); and metal thin films.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • metal thin films There is no limitation on the range of the light transmittance, but in consideration of the photoelectric conversion efficiency of the organic photoelectric conversion element, it is preferably 80% or more.
  • the light transmittance can be measured by a general spectrophotometer.
  • the electrode has a function of collecting holes and electrons generated in the photoelectric conversion layer, and therefore, as a material for the electrode, it is preferable to use a material suitable for collecting holes and electrons from among the above-mentioned materials.
  • electrode materials suitable for collecting holes include materials with high work functions such as Au and ITO.
  • electrode materials suitable for collecting electrons include materials with low work functions such as aluminum (Al).
  • the thickness of the electrodes there are no particular limitations on the thickness of the electrodes, and it is determined appropriately taking into consideration the material used and the required conductivity, transparency, etc., but it is usually around 10 nm to 100 ⁇ m.
  • the electrodes can be formed by any method, including a dry process such as vacuum deposition or sputtering. They can also be formed by a wet process using a conductive ink composition. Any conductive ink composition can be used, including conductive polymers and metal particle dispersions.
  • the electrodes can be stacked in two or more layers, and can be surface-treated to improve their characteristics (electrical properties, wetting properties, etc.).
  • the hole transport layer may be made of a known hole transport material, for example, a hole transport polymer such as a polytriarylamine compound represented by the following chemical formula:
  • a hole transport polymer such as a polytriarylamine compound represented by the following chemical formula:
  • the method for forming the hole transport layer is not particularly limited, but it is preferably formed by a wet film formation method using a hole transporting polymer.
  • a composition for forming the hole transport layer containing a hole transporting polymer and a solvent is used.
  • the solvent is sufficient if it can dissolve the hole transport polymer, and is usually a solvent that dissolves the hole transport polymer at room temperature to a concentration of 0.05% by mass or more, preferably 0.5% by mass or more, and more preferably 1% by mass or more.
  • the solvent is not particularly limited, but for example, ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, and amide-based solvents are preferred.
  • ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA); and aromatic ethers such as 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, and 2,4-dimethylanisole.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA)
  • aromatic ethers such as 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-meth
  • ester solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvents include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, and methylnaphthalene.
  • amide solvent examples include N,N-dimethylformamide and N,N-dimethylacetamide. In addition to these, dimethyl sulfoxide can also be used.
  • the concentration of the hole transport polymer in the composition for forming the hole transport layer is arbitrary as long as it does not significantly impair the effect of this embodiment. In terms of uniformity of the film thickness, a lower concentration is preferable, while a higher concentration is preferable in terms of preventing defects from occurring in the hole transport layer.
  • the concentration is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and particularly preferably 0.5% by mass or more, while the concentration is preferably 70% by mass or less, more preferably 60% by mass or less, and particularly preferably 50% by mass or less.
  • the above upper and lower limits can be combined in any manner.
  • the concentration may be 0.01% by mass or more and 70% by mass or less, 0.1% by mass or more and 60% by mass or less, or 0.5% by mass or more and 50% by mass or less.
  • the concentration of the solvent in the composition for forming the hole transport layer is usually 10% by mass or more, preferably 30% by mass or more, and more preferably 50% by mass or more.
  • heating is usually performed after coating the composition for forming a hole transport layer.
  • the heating method is not particularly limited, but the conditions for drying by heating are usually 100°C or higher, preferably 120°C or higher, more preferably 150°C or higher, and usually 400°C or lower, preferably 350°C or lower, more preferably 300°C or lower.
  • the above upper and lower limits can be combined arbitrarily. For example, it may be 100°C or higher and 400°C or lower, 120°C or higher and 350°C or lower, or 150°C or higher and 300°C or lower.
  • the heating time is usually 1 minute or more, preferably 24 hours or less.
  • the heating means is not particularly limited, but means such as placing the laminate having the formed layer on a hot plate or heating in an oven can be used. For example, heating conditions of 120° C. or more on a hot plate for 1 minute or more can be used.
  • the thickness of the hole transport layer is 50 nm or more and 100 nm or less, and in another embodiment, it is more than 100 nm and 400 nm or less, preferably 350 nm or less, i.e., 50 nm or more and 400 nm or less, preferably 50 nm or more and 350 nm or less.
  • the thickness of the hole transport layer is preferably thick in that the effect of reducing dark current due to the provision of the hole transport layer as a blocking layer is easily achieved, while it is preferably thin in that it allows a wide angle of incidence of light in a CMOS image sensor using an organic photoelectric conversion element and allows the organic photoelectric conversion element to be made thin.
  • the hole transport layer preferably has a LUMO (lowest unoccupied molecular orbital) that is shallower by 0.3 eV or more than the n-type organic semiconductor of the photoelectric conversion layer, preferably has a LUMO that is shallower by 0.5 eV or more, and more preferably has a LUMO that is shallower by 1.0 eV or more.
  • the difference in HOMO (highest occupied molecular orbital) between the hole transport layer and the p-type organic semiconductor of the photoelectric conversion layer is preferably within 0.5 eV, and more preferably within 0.3 eV.
  • the photoelectric conversion layer is a layer that absorbs light and separates charges.
  • the photoelectric conversion layer of the organic photoelectric conversion element of this embodiment is the photoelectric conversion layer (organic photoelectric conversion film) of this embodiment formed from the organic semiconductor ink composition of this embodiment.
  • the electron transport layer is not necessarily required for an organic photoelectric conversion element, by providing the electron transport layer between the photoelectric conversion layer and the second electrode, it is possible to increase the photoelectric conversion efficiency and reduce the dark current.
  • the electron transport layer is formed from a compound capable of efficiently transporting electrons generated in the photoelectric conversion layer to the second electrode.
  • the electron transporting compound used in the electron transport layer is required to have a high efficiency of electron injection from the photoelectric conversion layer and a high electron mobility so as to efficiently transport the injected electrons.
  • the difference in LUMO between the electron transport layer and the n-type organic semiconductor of the photoelectric conversion layer is preferably 1.5 eV or less, and more preferably 1.0 eV or less.
  • the electron transport layer when dark current is reduced by the electron transport layer, preferably has a HOMO that is 0.3 eV or more deeper than the p-type semiconductor of the photoelectric conversion layer, more preferably has a HOMO that is 0.5 eV or more deeper, and even more preferably has a HOMO that is 1.0 eV or more deeper.
  • electron transport compounds used in the electron transport layer include metal complexes such as aluminum complexes of 8-hydroxyquinoline (JP Patent Publication 59-194393), metal complexes of 10-hydroxybenzo[h]quinoline, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Patent Publication 5,645,948), quinoxaline compounds (JP Patent Publication 6-207169), phenanthroline derivatives (JP Patent Publication 5-331459), 2-t-butyl-9,10-N,N'-dicyanoanthraquinone diimine, n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, and n-type zinc selenide.
  • metal complexes such as aluminum complexe
  • metal oxides such as titanium oxide, zinc oxide, tin oxide, and cerium oxide can be used as materials for forming the electron transport layer.
  • the method for forming the electron transport layer can be a method of wet-forming nanoparticles of the metal oxide and drying them to form a metal oxide layer, or a method of wet-forming a precursor and converting it by heating.
  • the thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the above upper and lower limits can be combined in any way. For example, it may be 1 nm or more and 300 nm or less, or 5 nm or more and 100 nm or less.
  • the electron transport layer can be formed by a wet deposition method or a vacuum deposition method, but the vacuum deposition method is usually used.
  • the organic photoelectric conversion element may include constituent layers other than the above-described substrate, first and second electrodes, hole transport layer, photoelectric conversion layer, and electron transport layer, as long as the effects of this embodiment are not significantly impaired.
  • the organic photoelectric conversion element may be provided with a protective film to cover the photoelectric conversion layer portion and further the electrode portion in order to minimize the influence of the outside air.
  • the protective layer may be composed of, for example, a polymer film such as a styrene resin, an epoxy resin, an acrylic resin, a polyurethane, a polyimide, a polyvinyl alcohol, a polyvinylidene fluoride, a polyethylene-polyvinyl alcohol copolymer, or the like; an inorganic oxide film or a nitride film such as silicon oxide, silicon nitride, or aluminum oxide; or a laminated film thereof.
  • a polymer film such as a styrene resin, an epoxy resin, an acrylic resin, a polyurethane, a polyimide, a polyvinyl alcohol, a polyvinylidene fluoride, a polyethylene-polyvinyl alcohol copolymer, or the like
  • an inorganic oxide film or a nitride film such as silicon oxide, silicon nitride, or aluminum oxide
  • the protective film when it is a polymer film, it can be formed by coating and drying a polymer solution, or by coating or vapor-depositing a monomer and polymerizing it. When forming a polymer film, it is also possible to carry out a cross-linking process or form a multi-layer film.
  • the protective film when the protective film is an inorganic film such as an inorganic oxide film or a nitride film, it can be formed by a vacuum process such as a sputtering method or a vapor deposition method, or by a solution process such as the sol-gel method.
  • a charge injection layer may be provided between the first electrode and the hole transport layer, or between the electron transport layer and the second electrode.
  • the organic photoelectric conversion element may be provided with an optical filter that does not transmit, for example, ultraviolet light on the light incident side. Since ultraviolet light generally accelerates the deterioration of organic photoelectric conversion elements, blocking this ultraviolet light can extend the life of the organic photoelectric conversion element.
  • An organic photoelectric conversion element is usually manufactured by laminating a first electrode, a hole transport layer, a photoelectric conversion layer, and a second electrode on a substrate in this order by the above-mentioned method, and a step of forming an electron transport layer or the like is provided between these layers as necessary.
  • the photoelectric conversion element of this embodiment is used, for example, in an optical sensor or an image sensor.
  • the optical sensor and the image sensor may have known configurations.
  • ⁇ Measurement method> [Method of evaluating film quality]
  • the film surface was observed in a dark field using an optical microscope Eclipse LV100ND (Nikon Corporation) with a 20x objective lens.
  • the number of bright spots present in the observed image (unit: spots/ mm2 ) was visually counted.
  • the size of the bright spots was measured by taking the maximum value of the distance between two parallel tangent lines as the maximum diameter.
  • the heat resistance test was a heating test simulating a heating environment such as that during a reflow process in element manufacturing, and was carried out under conditions in which the organic photoelectric conversion element was held at a temperature of 200° C. for 50 minutes. Specifically, the glass substrate of the organic photoelectric conversion element was heated by contacting it with a hot plate set at 200° C.
  • EQE maintenance rate (EQE after heat resistance test / EQE before heat resistance test) x 100)
  • Example 1 [Formation of Hole Transport Layer] A surface of an ITO substrate having a pattern of a transparent conductive film of indium tin oxide (ITO) formed as an electrode on a glass substrate was treated with an ultraviolet ozone cleaner (NL-UV253, manufactured by Japan Laser Electronics Co., Ltd.) for 10 minutes, and then a hole transport layer was formed as follows.
  • ITO indium tin oxide
  • a polytriarylamine compound (hole transport polymer) shown in the following formula (1) was dissolved in 1 mL of anisole to prepare a composition for forming a hole transport layer.
  • This composition was spin-coated on the electrode surface of the ITO substrate at a rotation speed of 1000 rpm for 60 seconds, and then heated and dried at 240°C for 30 minutes to form a hole transport layer with a thickness of 300 nm.
  • the p-type organic semiconductor used was a compound represented by formula (II) (weight average molecular weight: 80,000), and the n-type organic semiconductor used was a compound represented by formula (I) in which A is a carbon atom, X 1 to X 4 are each a chlorine atom, R 1a and R 1b are each a 2-ethylhexyl group, R 2 is a 2-ethylhexyl group, R 3 is a 2-ethylhexyloxy group, and R 4 and R 5 are each a hydrogen atom (molecular weight: 1,339).
  • A is a carbon atom
  • X 1 to X 4 are each a chlorine atom
  • R 1a and R 1b are each a 2-ethylhexyl group
  • R 2 is a 2-ethylhexyl group
  • R 3 is a 2-ethylhexyloxy group
  • R 4 and R 5 are each a hydrogen atom (molecular weight
  • the filtration conditions were as follows: (Filtration A) Filter used: Filter with prefilter. From the upstream side, the filter is equipped with a glass fiber prefilter (pore size: 10 to 1.0 ⁇ m) and a glass fiber thin film filter (pore size: 0.45 ⁇ m). (Filtration B) Filter used: PTFE thin film filter (pore size 0.45 ⁇ m). (Filtration C) Filter used: PTFE thin film filter (pore size 0.45 ⁇ m).
  • the obtained organic semiconductor ink composition was spin-coated on the hole transport layer at 1000 revolutions per minute, and then heat-treated (thermal annealing) at 120° C. for 10 minutes to form a photoelectric conversion layer with a thickness of 150 nm.
  • thermal annealing the glass substrate was heated by contacting it with a hot plate set at 120° C.
  • the obtained photoelectric conversion layer was subjected to dark field observation of the film surface according to the above-mentioned film quality evaluation method, and the number of bright spots present in the dark field image was calculated. A photograph of the dark field image is shown in FIG.
  • Example 1 ⁇ Comparative Example 1>
  • 0.11 g of the p-type organic semiconductor and 0.13 g of the n-type organic semiconductor were dissolved in 9.68 mL of o-xylene, and then filtered using a PTFE thin film filter (pore size: 5.0 ⁇ m), and the obtained filtrate was used as an organic semiconductor ink composition.
  • a photoelectric conversion layer was formed, an organic photoelectric conversion element was produced, and evaluated in the same manner as in Example 1.
  • a photograph of a dark field image is shown in FIG.
  • Example 1 foreign matter observed as bright spots of about 1 to 5 ⁇ m in size in the dark-field image of the film surface could be effectively removed. That is, it was confirmed that the method for producing an organic semiconductor ink composition of the present invention can obtain a photoelectric conversion layer with few foreign matters. It is considered that the filtration of the partial solution containing only the p-type organic semiconductor removed insoluble components in the solvent containing high molecular weight components with low solubility in o-xylene.
  • the foreign matter observed in the dark-field image of Comparative Example 1 is considered to be insoluble components in the solvent containing high molecular weight components in the p-type organic semiconductor and associations of high molecular weight components in the p-type organic semiconductor and n-type organic semiconductor. Due to the influence of these components, in the state of the entire solution of Comparative Example 1, filtration with a filter with a pore size smaller than 5.0 ⁇ m was difficult, and it is considered that the removal of these components could not be performed sufficiently. In other words, it can be said that it is important to effectively remove high molecular weight components in the p-type or n-type organic semiconductor that can cause filterability to be impaired and cause foreign matters in the film at the partial solution stage.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

有機光電変換膜中の異物を低減できる有機半導体インク組成物を提供する。本発明の有機半導体インク組成物の製造方法は、p型有機半導体、n型有機半導体及び非ハロゲン系有機溶媒を含有する有機半導体インク組成物の製造方法であって、前記非ハロゲン系有機溶媒に、前記p型有機半導体及び前記n型有機半導体の少なくとも何れかの有機半導体を溶解して一部溶液を得る第一の溶解、前記第一の溶解で得られた前記一部溶液の濾過である第一の濾過、及び、前記第一の濾過で得られた溶液に、前記p型有機半導体及び前記n型有機半導体の少なくとも何れかの有機半導体を添加して全部溶液を得る有機半導体の後添を含む。

Description

有機半導体インク組成物の製造方法、有機半導体インク組成物、有機光電変換膜、及び有機光電変換素子
 本発明は、有機半導体インク組成物の製造方法、有機半導体インク組成物、有機光電変換膜、及び有機光電変換素子に関する。
 本願は、2022年10月5日に日本出願された特願2022-160984号に基づき優先権を主張し、その内容をここに援用する。
 入射された光のエネルギーを電気エネルギーに変換する有機光電変換膜は、太陽電池や光センサ(光ダイオード)などの有機光電変換素子への適応が期待されている。
 有機光電変換膜については、電子ドナー性半導体(p型有機半導体)と、電子アクセプター性半導体(n型有機半導体)との混合物からなる有機光電変換膜が知られている。有機光電変換膜中において、p型有機半導体とn型有機半導体は、それぞれナノメートルオーダーの共連続ドメイン(バルクヘテロジャンクション構造:BHJ構造)を形成しており、このような構造を有することが、高性能な有機光電変換膜を得ることに有望とされている。
 従来、p型有機半導体である共役系ポリマーと、n型有機半導体となるPCBMに代表されるフラーレン誘導体との混合物からなるBHJ型光電変換膜が知られており、最大で11%程度の光電変換効率(PCE)を持つ有機太陽電池が報告されている。
 近年では、フラーレン誘導体に代わって、非フラーレン型アクセプターと呼ばれる低分子電子アクセプター性半導体を用いることにより、更なるPCEの向上が可能であることが報告され、例えば、太陽光からのエネルギー変換効率が18%を超えるものも報告されている。
 有機光電変換素子への適応においては、有機光電変換膜の光電変換特性に加え、その膜質が極めて重要である。
 例えば、有機光電変換膜中では、主に有機光電変換膜を構成する材料の結晶化や凝集による析出物、材料中の不純物成分、インク中の溶存気体や気泡等に由来する異物が形成され得る。また、そのサイズは、数ナノメートルから数マイクロメートルに及ぶ。暗視野顕微鏡観察は、上述の異物を輝点として明瞭に観察することのできる有用な異物検出法である。
 このような有機光電変換膜中の異物は、有機光電変換膜を用いたイメージセンサにおいて、センサ出画に著しい影響を与え、出画特性の低下や画素間の特性バラツキ、画素欠損等を招き得る。
 このような背景のもと、有機光電変換膜の膜質改善、具体的には有機光電変換膜中の異物低減に向けて従来様々な検討がなされてきた。
 例えば、非特許文献1では、ポリ(3-アルキルチオフェン)側鎖にPCBMを導入したブロック共重合体を用いることで、ポリ(3-アルキルチオフェン)/PCBM混合の有機光電変換膜と比較して、PCBM由来の析出を抑制できることが報告されている。
Chem. Commun., 2010, 46, 6723-6725頁
 しかしながら、非特許文献1の手法は、特定の材料についての技術である。
 本発明は前記事情に鑑みてなされたもので、非特許文献1に開示されたような特定材料を開発しなくとも、異物が少ない有機光電変換膜を製造できる有機半導体インク組成物の製造方法を提供する。
 本発明者は、上記課題を解決すべく鋭意検討を行った結果、有機光電変換膜を形成する材料である有機半導体インク組成物を特定の方法で製造することにより、有機光電変換膜中の異物を低減できることを見出した。
 本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
[1]p型有機半導体、n型有機半導体及び非ハロゲン系有機溶媒を含有する有機半導体インク組成物の製造方法であって、
 前記非ハロゲン系有機溶媒に、前記p型有機半導体及び前記n型有機半導体の少なくとも何れかの有機半導体を溶解して一部溶液を得る第一の溶解、
 前記第一の溶解で得られた前記一部溶液の濾過である第一の濾過、及び、
 前記第一の濾過で得られた溶液に、前記p型有機半導体及び前記n型有機半導体の少なくとも何れかの有機半導体を添加して全部溶液を得る有機半導体の後添を含む、有機半導体インク組成物の製造方法。
[2]さらに、前記有機半導体の後添で得られた前記全部溶液の濾過である第二の濾過を含む、[1]の有機半導体インク組成物の製造方法。
[3]前記第二の濾過で用いるフィルターの孔径が、前記第一の濾過で用いるフィルターの孔径以下である、[2]の有機半導体インク組成物の製造方法。
[4]前記第一の溶解で前記p型有機半導体を前記非ハロゲン系有機溶媒に溶解し、前記有機半導体の後添で前記n型有機半導体を前記第一の濾過で得られた溶液に添加する、[1]~[3]のいずれかの有機半導体インク組成物の製造方法。
[5]前記第一の溶解で前記n型有機半導体を前記非ハロゲン系有機溶媒に溶解し、前記有機半導体の後添で前記p型有機半導体を前記第一の濾過で得られた溶液に添加する、[1]~[3]のいずれかの有機半導体インク組成物の製造方法。
[6]前記p型有機半導体が高分子化合物である、[1]~[5]のいずれかの有機半導体インク組成物の製造方法。
[7]前記n型有機半導体が、分子量100~5000の有機化合物である、[1]~[6]のいずれかの有機半導体インク組成物の製造方法。
[8]固形分濃度が10~40mg/mLである、[1]~[7]のいずれかの製造方法で得られた有機半導体インク組成物。
[9][8]の有機半導体インク組成物の塗膜が固化した、有機光電変換膜。
[10]膜表面の暗視野像における輝点の数が100個/mm以下である、[9]の有機光電変換膜。
[11]150~300℃で熱アニール処理された、[9]又は[10]の有機光電変換膜。
[12]200℃の温度条件に50分間保持する耐熱性試験後の表面粗さRaが、0.1~10nmである、[9]~[11]のいずれかの有機光電変換膜。
[13][9]~[12]のいずれかの有機光電変換膜を有する、有機光電変換素子。
 本発明によれば、異物の少ない有機光電変換膜を製造できる有機半導体インク組成物が製造できる。また、得られた有機半導体インク組成物を用いることにより、異物の少ない有機光電変換膜、及びこの有機光電変換膜を有する有機光電変換素子が得られる。
本発明の有機光電変換素子の実施形態の一例を示す断面模式図である。 実施例で得られた有機光電変換膜の表面の暗視野像を示す写真である。 比較例で得られた有機光電変換膜の表面の暗視野像を示す写真である。
 以下に本発明を実施するための形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の代表例であり、本発明はこれらの内容に限定されるものではない。
[有機半導体インク組成物]
 本実施形態の製造方法の目的物である有機半導体インク組成物(以下、単に「インク組成物」ともいう)は、有機半導体及び非ハロゲン系有機溶媒を含有する。インク組成物に含まれる有機半導体は、p型有機半導体及びn型有機半導体を含有する。
<p型有機半導体>
 p型有機半導体は、特に限定されず公知の化合物を用いることができる。好ましくはドナー性の有機半導体(化合物)である。
 p型有機半導体は高分子化合物が好ましい。例えば、p型共役高分子化合物である正孔輸送性有機化合物が挙げられ、電子を供与しやすい性質を有する高分子化合物を用いることができる。
 本明細書において、高分子化合物とは分子量分布を有し、サイズ排除クロマトグラフィーにより求めた標準ポリスチレン換算の重量平均分子量が10000以上である重合体を意味する。
 p型有機半導体は、正孔輸送性に優れる骨格を有する化合物が好ましい。
 正孔輸送性に優れる骨格としては、例えば、カルバゾール構造、チオフェン構造、ベンゾジチオフェン構造、チエノチオフェン構造、ジベンゾフラン構造、トリアリールアミン構造、ナフタレン構造、フェナントレン構造、ピレン構造が挙げられる。
 これらのうち、特に後述するn型有機半導体と混合して塗布することにより膜を形成できる化合物が好ましい。
 p型有機半導体は、例えば、下記式(II)で表される高分子化合物が好適に用いられる。なお、式(II)中、nは正の数である。
Figure JPOXMLDOC01-appb-C000001
 p型有機半導体の重量平均分子量は、p型半導体としての特性が発現しやすいことから、10000以上が好ましく、50000以上がさらに好ましい。また溶媒への溶解性の面から、150000以下が好ましく、100000以下がさらに好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、10000以上150000以下であってよく、50000以上100000以下であってよい。
 前記下限値以上であれば有機光電変換素子特性が高くなりやすく、また、前記上限値以下であれば溶媒への溶解性に優れる。
 本明細書において、p型有機半導体の重量平均分子量は、サイズ排除クロマトグラフィーにより求めた値である。
<n型有機半導体>
 n型有機半導体は、アクセプター性有機半導体であり、主に電子輸送性化合物に代表され、電子を受容しやすい性質を有する化合物をいう。さらに詳しくは2つの化合物を接触させて用いたときに電子親和力の大きい方の化合物をいう。従って、アクセプター性化合物は、電子受容性のある化合物であれば何れの化合物も使用可能である。
 n型有機半導体は、分子量が100~5000の有機化合物が好ましい。分子量は500~4000がより好ましく、1000~3000がさらに好ましい。前記下限値以上であればp型有機半導体とのBHJ構造形成能に優れ、また、前記上限値以下であれば溶媒への溶解性に優れる。
 n型有機半導体としては、例えば、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体等);窒素原子、酸素原子、硫黄原子を含有する5ないし7員のヘテロ環化合物又は5ないし7員のヘテロ環化合物を含む縮合環(例えばピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、チアゾール、オキサゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、トリアゾロピリダジン、トリアゾロピリミジン、テトラザインデン、オキサジアゾール、イミダゾピリジン、ピラリジン、ピロロピリジン、チアジアゾロピリジン、ジベンズアゼピン、トリベンズアゼピン等);ポリアリーレン化合物;フルオレン化合物;シクロペンタジエン化合物;シリル化合物;含窒素ヘテロ環化合物を配位子として有する金属錯体;が挙げられる。
 これに限らず、上述したように、ドナー性半導体として用いた化合物よりも電子親和力の大きな化合物であれば、アクセプター性半導体として用いてよい。
 n型有機半導体としてフラーレン骨格を有するものを用いると、光電変換効率を高めるためにバルクヘテロ接合構造としても、嵩高いフラーレン骨格の存在でn型有機半導体とp型半導体との距離が離れてしまい、光電変換効率が低下してしまう可能性がある。
 従って、本実施形態におけるn型有機半導体は、フラーレン骨格を有するn型有機半導体の割合がフラーレン骨格を有さないn型有機半導体に対して10質量%以下であることが好ましく、フラーレン骨格を有するn型有機半導体が実質的に含まれていないことがより好ましい。
 ここで、「フラーレン骨格を有するn型有機半導体を実質的に含まない」とは、フラーレン骨格を有さないn型有機半導体が光電変換層において発生した電子の輸送を担うという意味であり、光電変換層のモルフォロジーの改善のために少量含有することはあり得る。そのような目的においては、通常、フラーレン骨格を有するn型有機半導体は、フラーレン骨格を有さないn型有機半導体に対して5質量%以下で含有されており、好ましくはこの割合は2質量%以下である。
 本実施形態で用いるn型有機半導体は、特にp型有機半導体との相溶性およびBHJ型光電変換層形成能の観点から、下記式(I)で表される化合物及び下記式(I)で表される化合物の2以上の多量体の少なくとも何れかの化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式(I)中、Aは周期表第14族から選ばれる原子を表し、X~Xは、それぞれ独立して、水素原子又はハロゲン原子を表す。R1a,R1bは、それぞれ独立して、直鎖又は分岐のアルキル基を表し、R~Rは、それぞれ独立して、直鎖又は分岐のアルキル基、直鎖又は分岐のアルコキシ基、直鎖又は分岐のチオアルキル基、あるいは水素原子を表す。)
 式(I)中、Aは好ましくは炭素原子又はケイ素原子である。
 X~Xは、それぞれ独立して、水素原子又はハロゲン原子であり、ハロゲン原子としてはフッ素原子又は塩素原子が好ましい。
 R1a,R1bは、それぞれ独立して、直鎖又は分岐のアルキル基であり、アルキル基の炭素数は8~24が好ましく、10~20がより好ましく、12~18がさらに好ましい。
 炭素数8~24の直鎖又は分岐のアルキル基としては、例えば、n-オクチル基、n-デシル基、ラウリル基、ミリスチル基、パルミチル基、ステアリル基等の直鎖アルキル基;2-エチルヘキシル基、2-ブチルオクチル基等の分岐を有する1級アルキル基;2-オクチル基、2-ノニル基、2-デシル基等の2級アルキル基;が挙げられる。直鎖アルキル基又は分岐を有する1級アルキル基が好ましく、2-エチルヘキシル基、2-ブチルオクチル基がより好ましい。
 R~Rは、それぞれ独立して、直鎖又は分岐のアルキル基、直鎖又は分岐のアルコキシ基、直鎖又は分岐のチオアルキル基、あるいは水素原子であり、アルキル基、アルコキシ基、チオアルキル基の炭素数は8~24が好ましく、10~20がより好ましく、12~18がさらに好ましい。
 R~Rとしては、それぞれ独立して、炭素数8~24の直鎖又は分岐のアルコキシ基であることが好ましく、2-エチルヘキシルオキシ基、パルミチルオキシ基がより好ましい。
 p型有機半導体との相溶性およびBHJ型光電変換層形成能の観点からR1aとR1bは同じ基であることが好ましい。
 また、p型有機半導体との相溶性およびBHJ型光電変換層形成能の観点からR~Rは2種類以上の異なる基で構成されることが好ましい。
<p型有機半導体及びn型有機半導体の含有割合>
 本実施形態の製造方法の目的物であるインク組成物に含まれるp型有機半導体とn型有機半導体の割合は、p型有機半導体に対するn型有機半導体の質量比(n型有機半導体の質量/p型有機半導体の質量)が、有機光電変換素子特性の点で、0.5~2.5であることが好ましく、1.0~2.0がより好ましい。前記上限値以下であれば近赤外領域における感度に優れる傾向がある。前記下限値以上であれば暗電流が発生し難い傾向にある。
 また、有機光電変換膜の熱安定性が向上しやすい点では、p型有機半導体に対するn型有機半導体の質量比が0.2~1.8であることが好ましい。
 有機光電変換素子の特性と熱安定性がバランスよく向上しやすい点で、p型有機半導体に対するn型有機半導体の質量比は1.1~1.9が好ましく、1.2~1.8がより好ましい。
<非ハロゲン系有機溶媒>
 本実施形態の製造方法の目的物であるインク組成物は、非ハロゲン系有機溶媒を含有する。
 「非ハロゲン系」とは構成元素としてハロゲンを含まない化合物であることを意味しており、溶媒の製造過程や取り扱い過程において不純物として微量のハロゲン元素が混入したものを排除するものではない。
 非ハロゲン系有機溶媒は、p型有機半導体及びn型有機半導体を溶解できるものであればよい。例えば、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテルを含むエーテル系溶媒;酢酸エチル、酢酸n-ブチル、乳酸エチル、乳酸n-ブチル等の脂肪族エステル系溶媒、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸イソプロピル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステルを含むエステル系溶媒が挙げられる。
 これらは、1種類を単独で用いてもよく、2種類以上を併用してもよい。
 これらの溶媒のうち、p型有機半導体およびn型有機半導体の溶解性の観点から芳香族炭化水素系溶媒を含むことが好ましく、芳香族炭化水素系溶媒であることが好ましい。
<その他の成分>
 本実施形態の製造方法の目的物であるインク組成物には、p型有機半導体、n型有機半導体及び非ハロゲン系有機溶媒の他、必要に応じたその他の成分が含まれてもよい。
 その他の成分としては、例えば、安定剤、粘度調整剤、硬化剤が挙げられる。
 p型有機半導体、n型有機半導体及びその他の成分の合計(全固形分)に対して、その他の成分の合計の含有量は10質量%以下であることが好ましい。すなわち、インク組成物から溶媒を除いた全固形分に対して、p型有機半導体とn型有機半導体の合計の含有量は90~100質量%であることが好ましい。
 なお、「全固形分」とは、溶媒以外の全成分を意味し、溶媒以外の成分が常温で液体であっても、その成分は全固形分に含める。
<固形分濃度>
 本実施形態の製造方法の目的物であるインク組成物の固形分濃度、即ち、インク組成物から溶媒を除いた全固形分の含有量は、10~40mg/mLが好ましく、15~30mg/mLがより好ましい。また、本実施形態のインク組成物の固形分濃度は、10~40mg/mLであり、15~30mg/mLが好ましい。
 前記下限値以上であれば光電変換層の成膜性に優れ、また、前記上限値以下であればインク組成物を容易に調製することができ、また、その取り扱い性に優れる。
<有機半導体インク組成物の製造方法>
 本実施形態のインク組成物の製造方法は、p型有機半導体及びn型有機半導体を含有する有機半導体と、非ハロゲン系有機溶媒とを含有するインク組成物を製造する方法である。
 従来、インク組成物の製造は、インク組成物に含まれる有機半導体の全量を溶媒に溶解後に濾過していた。これに対し、本実施形態の製法は、インク組成物に含まれる有機半導体の一部のみを含む溶液(一部溶液)を濾過する工程を有することを特徴とする。
 即ち、本実施形態のインク組成物の製造方法は、有機半導体の一部と非ハロゲン系有機溶媒とを含む一部溶液を得る工程、得られた一部溶液を濾過する工程、一部溶液の濾液を用いて、全部の有機半導体及び全部の非ハロゲン系有機溶媒を含む全部溶液を調製する工程を含む。
 また、本実施形態のインク組成物の製造方法は、p型有機半導体、n型有機半導体および非ハロゲン系有機溶媒を含有する有機半導体インク組成物の製造方法であって、前記p型有機半導体及び前記n型有機半導体の少なくとも何れかの有機半導体を非ハロゲン系有機溶媒に溶解させて一部溶液を得る工程(第一の溶解)、前記一部溶液を濾過する工程(一部溶液の濾過工程:第一の濾過)、及び、前記濾過後の溶液に、前記p型有機半導体及び前記n型有機半導体の少なくとも何れかの有機半導体を添加する工程(有機半導体の後添工程:有機半導体の後添)を、この順に有する。
 さらに、全部溶液を濾過する工程を設けてもよい。即ち、前記有機半導体の後添工程後に濾過する工程(全部溶液の濾過工程)を有してもよい。
 なお、その他の成分は、一部溶液に含有させてもよく、全部溶液を調製する際に加えてもよい。
 インク組成物に含まれる異物は、非ハロゲン系有機溶媒への溶解性が低いものが多いと推定され、例えば、p型有機半導体の高分子量体、p型有機半導体の凝集物、n型有機半導体の凝集物、p型有機半導体とn型有機半導体との会合体が異物となり得る。
 本実施形態では、濾過の対象を一部溶液とすることにより、従来法に比べて、濾過工程により、より多くの異物を除去することが可能となる。
 具体的には、インク組成物に含まれる有機半導体のうち、異物又は異物の原因成分を含む材料を、予め非ハロゲン系有機溶媒に溶解させて一部溶液とし、1回以上濾過することが好ましく、これにより異物又は原因成分をより多く除去することができる。
 一部溶液は1種類でもよく、2種類以上の一部溶液を調製し、それぞれを1回以上濾過してもよい。2種類以上の一部溶液は互いに組成が同じであってもよい。
 こうして得られる一部溶液の濾液に、残りの有機半導体を加えて全部溶液とする。一部溶液に含まれる非ハロゲン系有機溶媒が、目的のインク組成物に含まれる非ハロゲン系有機溶媒の一部である場合は、一部溶液の濾液に残りの非ハロゲン系有機溶媒も加えて全部溶液とすることができる。この残りの有機半導体を、この残りの非ハロゲン系有機溶媒の一部又は全部に溶解させた状態で、一部溶液の濾液に加えてもよい。
 得られた全部溶液は、そのままで、又はさらに濾過して目的のインク組成物とすることができる。
 このようにして、インク組成物に含まれる異物を低減することができる。このインク組成物を用いて有機光電変換膜を形成することにより、有機光電変換膜中の異物を減らすことができる。
 一部溶液に含まれる有機半導体の量は、インク組成物の製造に用いる有機半導体の総質量に対して、20~60質量%が好ましく、25~55質量%がより好ましく、30~50質量%がさらに好ましい。
 一部溶液に含まれる非ハロゲン系有機溶媒の合計量は、目的のインク組成物に含まれる非ハロゲン系有機溶媒の総質量に対して、70~100質量%が好ましく、80~100質量%がより好ましく、90~100質量%がさらに好ましい。
 本実施形態のインク組成物の製造方法の好ましい態様として以下が挙げられる。
(態様1)
 非ハロゲン系有機溶媒とp型有機半導体を含む一部溶液を調製して1回以上濾過し、この濾液に、n型有機半導体を加えて全部溶液を調製する態様。ここで、全部溶液を調製する際に、非ハロゲン系有機溶媒を加えてもよい。即ち、この態様は、p型有機半導体を非ハロゲン系有機溶媒に溶解させる工程、この溶液を濾過する工程、及び、この濾過後の溶液にn型有機半導体を添加する工程を、この順に有する。
 ここで、p型有機半導体を含む一部溶液は、n型有機半導体を含まないか、含む場合はp型有機半導体よりも少量であることが好ましい。この一部溶液に含まれるp型有機半導体を100質量部に対し、この一部溶液に含まれるn型有機半導体は100質量部未満であることが好ましく、50質量部以下が好ましく、20質量部以下がより好ましい。なお、0質量部でもよい。
 本態様において、濾液に加えるn型有機半導体は、濾過工程を経ていないものでもよく、n型有機半導体と非ハロゲン系有機溶媒を含む一部溶液を1回以上濾過した濾液として加えてもよい。
(態様2)
 非ハロゲン系有機溶媒とn型有機半導体とを含む一部溶液を調製して1回以上濾過し、この濾液に、p型有機半導体を加えて全部溶液を調製する態様。ここで、全部溶液を調製する際に、非ハロゲン系有機溶媒を加えてもよい。即ち、この態様は、n型有機半導体を非ハロゲン系有機溶媒に溶解させる工程、この溶液を濾過する工程、及び、この濾過後の溶液にp型有機半導体を添加する工程を、この順に有する。
 ここで、n型有機半導体を含む一部溶液は、p型有機半導体を含まないか、含む場合はn型有機半導体よりも少量であることが好ましい。この一部溶液に含まれるn型有機半導体を100質量部に対し、この一部溶液に含まれるp型有機半導体は100質量部未満であることが好ましく、50質量部以下が好ましく、20質量部以下がより好ましい。なお、0質量部でもよい。
 本態様において、濾液に加えるp型有機半導体は、濾過工程を経ていないものでもよく、p型有機半導体と非ハロゲン系有機溶媒を含む一部溶液を1回以上濾過した濾液として加えてもよい。
 一部溶液の濾過に用いられるフィルターは、薄膜フィルターが好ましい。
 薄膜フィルターの材質は、一部溶液に対して耐性を有する材質であることが好ましい。例えば、ポリテトラフルオロエチレン(PTFE)、フッ化ポリビニリデン(PVDF)、ポリプロピレン(PP)、ポリエーテルスルホン(PES)、ナイロン(NYL)、セルロースアセテート(CA)、再生セルロース(RC)、ガラス繊維が挙げられる。
 フィルターの孔径が大きいほど濾過速度は速いが、小さいほど小粒径の異物除去性に優れる。
 一部溶液の濾過に用いられるフィルターの孔径は、0.01~10μmが好ましく、0.05~5μmがより好ましく、0.07~1μmがさらに好ましく、0.1~0.5μmが特に好ましい。
 本発明におけるフィルターの孔径は、バブルポイント法により求める。
 一部溶液を濾過する回数は1回以上であり、回数が増すほど異物除去性は改善される。上限は特に限定されず、製造効率を考慮して設定できる。例えば、10回以下が好ましく、5回以下がより好ましい。例えば、一部溶液の濾過回数は1~10回であってよく、1~5回であってよい。
 一部溶液を2回以上濾過する多段濾過において、孔径の異なるフィルターを組み合わせた多層フィルターや、プレフィルター付きフィルターを用いてもよい。
 孔径の異なるフィルターを2つ以上用いる場合、最初の濾過で使用するフィルターの孔径が最も大きく、漸次小さくなり、最後の濾過で使用するフィルターの孔径が最も小さいことが好ましい。
 なお、濾過は必要に応じて加圧下、若しくは減圧下で行われてもよい。
 全部溶液の濾過に用いられるフィルターは、薄膜フィルターが好ましい。
 薄膜フィルターの材質は、全部溶液に対して耐性を有する材質であることが好ましい。例えば、一部溶液の濾過に使用されるフィルターと同様の材質のフィルターが挙げられる。
 全部溶液の濾過に使用されるフィルターの孔径は、0.01~10μmが好ましく、0.05~5μmがより好ましく、0.07~1μmがさらに好ましく、0.1~0.5μmが特に好ましい。
 全部溶液の濾過に使用されるフィルターの孔径Dは、一部溶液の濾過に使用されるフィルターの孔径D以下(D≦D)であることが好ましい。
 全部溶液を濾過する回数は1回以上であり、回数が増すほど異物除去性は改善される。上限は特に限定されず、製造効率を考慮して設定できる。例えば10回以下が好ましく、5回以下がより好ましい。例えば、全部溶液の濾過回数は1~10回であってよく、1~5回であってよい。
 全部溶液を2回以上濾過する多段濾過において、用いうる態様は一部溶液の多段濾過と同様である。
 なお、濾過は必要に応じて加圧下、若しくは減圧下で行われてもよい。
<有機光電変換膜>
 本実施形態のインク組成物を、塗布対象に塗布して塗膜(未固化膜)を形成した後、塗膜中の溶媒を除去することにより、インク組成物の固化膜を形成することができる。インク組成物の固化膜は有機光電変換膜として好適に用いることができる。
 塗膜を形成する方法は、スピンコート法等の公知の湿式成膜法を用いることができる。スピンコートの条件はインク組成物の粘度等を考慮して定法に従って適宜設定すればよい。
 塗膜中の溶媒を除去する方法は、公知の乾燥法、例えば、加熱乾燥法や減圧乾燥法を用いることができる。
 本実施形態の有機光電変換膜は、異物が低減されたインク組成物の固化膜である。本実施形態のインク組成物を用いることにより、異物が少ない有機光電変換膜を製造しやすい。
 有機光電変換膜の表面の暗視野像における輝点の数は、有機光電変換膜に存在する異物の量を反映しており、単位面積当たりの輝点の数が少ないほど異物が少ないことを意味する。膜表面の暗視野像における輝点の数は100個/mm以下が好ましく、50個/mm以下がより好ましく、20個/mm以下がさらに好ましく、0個/mmが特に好ましい。
 本明細書において、有機光電変換膜の表面の暗視野像における輝点の数の計測方法は、後述の実施例の「膜質の評価方法」に記載した方法である。
 本実施形態の有機光電変換膜は、耐熱性試験後の表面粗さRaが0.1~10nmであることが好ましく、0.1~5nmがより好ましい。耐熱性試験は、200℃の温度条件で50分間保持して行う。
 本明細書において、耐熱性試験の温度条件がT℃であるとは、膜の温度がT℃であることを意味する。
 耐熱性試験後の表面粗さRaは、有機光電変換膜の熱安定性の指標とすることができる。
 耐熱性試験において、有機光電変換膜を構成するp型有機半導体及びn型有機半導体のドメインの増長や結晶化が生じると、有機光電変換膜の表面の平滑性が損なわれ、表面粗さRaが増大する。耐熱性試験前後の表面粗さRaの差が小さいほど、加熱による膜質劣化が抑制されたことを意味するところ、耐熱性試験前の表面粗さRaが大きいものは特性不良である可能性が大きいため、総じて耐熱性試験後の表面粗さRaが小さいことが重要である。
 耐熱性試験後の表面粗さRaは、例えば、有機光電変換膜に含まれるp型有機半導体とn型有機半導体の比率によって調整できる。即ち、インク組成物に含まれるp型有機半導体とn型有機半導体の比率によって調整できる。
 例えば、p型有機半導体に対するn型有機半導体の質量比が0.2~1.8であれば、耐熱性試験後の表面粗さRaが0.1~10nmである有機光電変換膜を製造しうる。
<光電変換層>
 本実施形態のインク組成物は、有機光電変換素子の光電変換層(有機光電変換膜からなる層)の形成に好適に用いることができる。
 本実施形態の有機光電変換素子の構成及び光電変換層以外の層については後述する。
 本実施形態の有機光電変換素子の光電変換層は、キャリア輸送層(正孔輸送層又は電子輸送層)の上にインク組成物を塗布して塗膜を形成した後、塗膜を固化する方法により、形成することができる。
 光電変換層の膜厚は、光電変換層の構成や有機光電変換素子の用途に応じて任意に設計できるが、光吸収が十分で効率が高くなりやすい点では厚いことが好ましく、また、一方で、内部抵抗が軽減され損失が小さくなりやすい点では薄いことが好ましい。そこで、10nm~1μmが好ましい。
 有機光電変換素子の光電変換層は、有機光電変換素子の完成前に、熱アニール処理やソルベントアニール処理等の前処理が施されたものであってもよい。
 ソルベントアニール処理は、光電変換層を特定の溶媒雰囲気下に暴露させる処理であり、公知の方法により行うことができる。
 塗膜中の溶媒を除去する乾燥処理を兼ねて、塗膜を熱アニール処理することが好ましい。乾燥処理と熱アニール処理は別々に行ってもよい。
 熱アニール処理の方法としては、例えば、ホットプレートを用いて直接的に加熱する方法、熱風加熱法、赤外線加熱法、フラッシュランプによる光加熱法などが挙げられる。例えば、キャリア輸送層上に光電変換層が形成された積層体の、キャリア輸送層側の外面(光電変換層とは反対側の面)をホットプレートに接触させて加熱することができる。
 熱アニール処理の加熱温度は、例えば、80~300℃が好ましく、150~300℃がより好ましい。熱アニール処理の加熱時間は、例えば1秒間~30分間が好ましい。
 本明細書において、光電変換層の乾燥処理又は熱アニール処理の加熱温度がt℃であるとは、乾燥処理又は熱アニール処理における光電変換層の温度がt℃であることを意味する。
 有機光電変換膜に熱アニール処理を施す方法の好ましい態様として以下の態様が挙げられる。
(態様i)インク組成物の塗膜を形成した直後に、乾燥処理を兼ねて熱アニール処理を施す態様。
(態様ii)インク組成物の塗膜を形成し、減圧乾燥法により乾燥処理して塗膜を固化した後に、熱アニール処理を施す態様。
 本態様では、乾燥処理の後、熱アニール処理の前に、固化した有機光電変換膜の上に、熱アニール処理の熱により劣化しないキャリア輸送層(正孔輸送層又は電子輸送層)を積層する工程を設けることができる。
 特に、有機光電変換素子の光電変換層(有機光電変換膜)が、150~300℃の高温で熱アニール処理された有機光電変換膜であると、有機光電変換素子の耐熱性が向上する。例えば、有機光電変換素子が半田付け工程などの高熱に曝される工程を経ても、有機光電変換素子の光電変換特性(例えば、EQE)が低下し難い。上記高温での熱アニール処理を施すことにより、有機光電変換膜のBHJ構造の熱的安定性が向上するためと考えられる。
 上記高温での熱アニール処理における加熱温度は、150~300℃が好ましく、160~250℃がより好ましく、180~220℃がさらに好ましい。熱アニール処理における加熱温度が高いと、有機光電変換膜のBHJ構造の熱的安定性向上が見込め、また、一方で、低いと材料の劣化が起こり難い。
 上記高温での熱アニール処理における加熱時間は、1秒間以上30分間以下が好ましく、10秒間~25分間がより好ましく、1~20分間がさらに好ましい。加熱時間が長いと有機光電変換膜のBHJ構造の熱的安定性向上が見込め、また、一方で、短いと材料の劣化が起こり難い。
 有機光電変換素子の光電変換層に、上記高温での熱アニール処理を施すことにより、例えば、後述の実施例に記載の耐熱性試験におけるEQE維持率を70~100%、好ましくは80~100%とすることが可能である。
<有機光電変換素子>
 本実施形態の有機光電変換素子は、上述の本実施形態の有機光電変換膜である光電変換層を有する。
 本実施形態の有機光電変換素子の構造は、例えば、日本国特開2007-324587号公報を参照することができ、特段限定されない。例えば、透明基板上に、透明電極、電子輸送層、光電変換層、正孔輸送層、及び金属電極の順に積層された構造であってよく、透明基板上に、透明電極、正孔輸送層、光電変換層、電子輸送層、及び金属電極の順に積層された構造であってもよい。
 図1は、本実施形態の有機光電変換素子の一例を示す模式的断面図である。この有機光電変換素子10は、第1電極11、正孔輸送層12、光電変換層13、電子輸送層14、及び下部電極としての第2電極15がこの順で積層されている。正孔輸送層12、光電変換層13及び電子輸送層14で有機光電膜20を形成する。通常、第1電極11の正孔輸送層12とは反対側には基板が設けられる。
<基板>
 有機光電変換素子は、第1電極、正孔輸送層、光電変換層、電子輸送層及び第2電極等を支持するために、基板を備えていてもよい。基板は、第1電極側、第2電極側のいずれに設けられていてもよく、両側に設けられてもよいが、少なくとも、第1電極側に設けられていることが好ましい。
 基板は、任意の材料により形成することが可能であるが、光を基板側から入射する場合は、透明性の高い材料で形成する必要がある。
 基板の構成材料としては、例えば、ガラス、サファイア、チタニア等の無機材料;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂、塩化ビニル、ポリエチレン、セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン等の有機材料;紙、合成紙等の紙材料;ステンレス、チタン、アルミニウム等の金属に、絶縁性を付与するために表面をコート或いはラミネートしたもの等の複合材料;が挙げられる。
 基板の構成材料は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
 基板の形状及び寸法に制限はなく、任意に設定することができる。
 さらに、基板には、ガスバリア性の付与や表面状態の制御のために、別の層を積層してもよい。
 基板の厚さは、有機光電変換素子の用途、構成材料等に応じて任意に設計可能であるが、支持部材としての強度の点では厚いことが好ましく、また、一方でコストの点では薄いことが好ましい。そこで、通常10μm~50mm程度のフィルム状乃至板状の基板を用いる。
<電極>
 電極(第1電極、第2電極)は、導電性を有する任意の材料により形成することが可能である。
 電極の構成材料としては、例えば、白金、金、銀、アルミニウム、クロム、ニッケル、銅、チタン、マグネシウム、カルシウム、バリウム、ナトリウム等の金属あるいはそれらの合金;酸化インジウムや酸化錫等の金属酸化物、あるいはその複合酸化物(例えばITO、IZO);ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン等の導電性高分子;前記導電性高分子に、塩酸、硫酸、スルホン酸等の酸、FeCl等のルイス酸、ヨウ素等のハロゲン原子、ナトリウム、カリウム等の金属原子などのドーパントを添加したもの;金属粒子、カーボンブラック、フラーレン、カーボンナノチューブ等の導電性粒子をポリマーバインダー等のマトリクスに分散した導電性の複合材料が挙げられる。
 電極の構成材料は、1種を単独で用いてもよく、2種以上を併用してもよい。
 有機光電変換素子において、電極は少なくとも一対(2個)設けられ、この一対の電極の間に光電変換層が設けられる。この際、一対の電極のうち、少なくとも一方は透明(即ち、発電のために光電変換層が吸収する光を透過させる)ことが好ましい。透明な電極の材料としては、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)等の複合酸化物;金属薄膜が挙げられる。
 光の透過率の範囲に制限はなく、有機光電変換素子の光電変換効率を考慮すると、80%以上が好ましい。光の透過率は、通常の分光光度計で測定可能である。
 電極は、光電変換層内に生じた正孔及び電子を捕集する機能を有するものである。従って、電極の構成材料としては、上述した材料のうち、正孔及び電子を捕集するのに適した構成材料を用いることが好ましい。
 正孔の捕集に適した電極の材料としては、例えば、Au、ITO等の高い仕事関数を有する材料が挙げられる。電子の捕集に適した電極の材料としては、例えば、アルミニウム(Al)のような低い仕事関数を有する材料が挙げられる。
 電極の厚さには特に制限はなく、用いた材料と、必要とされる導電性、透明性等を考慮して適宜決定されるが、通常10nm~100μm程度である。
 なお、電極の形成方法に制限はないが、例えば、真空蒸着、スパッタ等のドライプロセスにより形成することができる。また、例えば、導電性インク組成物等を用いたウェットプロセスにより形成することもできる。この際、導電性インク組成物としては任意のものを使用することができ、例えば、導電性高分子、金属粒子分散液を用いることができる。さらに、電極は2層以上積層してもよく、特性(電気特性やぬれ特性等)改良のための表面処理を施してもよい。
<正孔輸送層>
 正孔輸送層の構成材料としては、公知の正孔輸送物質を用いることができる。例えば、下記化学式で示したポリトリアリールアミン化合物等の正孔輸送性高分子が例示できる。
 その他、例えば、日本国特開2019-173032号公報に記載の2,7-ビス(4-ブロモフェニル)-9,9-ジヘキシルフルオレン、2-アミノ-9,9-ジヘキシルフルオレン、4-(4-(1,1-ビス(4’-ブロモ-[1,1’-ビフェニル]-4-イル)エチル)フェニル)-1,2-ジヒドロシクロブタ[a]ナフタレンから合成したポリトリルアリールアミン化合物;4,4’-ジブロモビフェニル、2-アミノ-9,9-ジヘキシルフルオレン、3-(1,2-ジヒドロキシシクロブタ[a]ナフタレン-4-イル)アニリンから合成したポリトリアリールアミン化合物;4,4’-ジブロモビフェニル、4-(3,5-ジブロモフェニル)-1,2-ジヒドロシクロブタ[a]ナフタレン、2-アミノ-9,9-ジヘキシルフルオレンから合成したポリトリアリールアミン化合物;を用いることができる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 正孔輸送層の製膜方法は特に限定されないが、好ましくは正孔輸送性高分子を用い、湿式成膜法により形成される。
 湿式成膜法による正孔輸送層の形成には、正孔輸送性高分子と溶剤とを含む正孔輸送層形成用組成物が用いられる。
 溶剤は、正孔輸送性高分子を溶解できればよく、通常正孔輸送性高分子を常温で0.05質量%以上、好ましくは0.5質量%以上、さらに好ましくは1質量%以上溶解する溶剤である。溶剤としては、特に制限されるものではないが、例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤が好ましい。
 エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル;が挙げられる。
 エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステルが挙げられる。
 芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレンが挙げられる。
 アミド系溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが挙げられる。
 これらの他、ジメチルスルホキシドも用いることができる。
 正孔輸送層形成用組成物における正孔輸送性高分子の濃度は、本実施形態の効果を著しく損なわない限り任意であり、膜厚の均一性の点では低い方が好ましく、一方、正孔輸送層に欠陥が生じ難い点では高い方が好ましい。具体的には、0.01質量%以上であることが好ましく、0.1質量%以上であることがさらに好ましく、0.5質量%以上であることが特に好ましく、また、一方、70質量%以下であることが好ましく、60質量%以下であることがさらに好ましく、50質量%以下であることが特に好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、0.01質量%以上70質量%以下であってよく、0.1質量%以上60質量%以下であってよく、0.5質量%以上50質量%以下であってよい。
 また、正孔輸送層形成用組成物中の溶剤の濃度は、通常10質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上である。
 正孔輸送層形成用組成物を用いて正孔輸送層を成膜する場合、正孔輸送層形成用組成物の塗布後、通常加熱を行う。加熱の手法は特に限定されないが、加熱乾燥の場合の条件としては、通常100℃以上、好ましくは120℃以上、より好ましくは150℃以上、また通常400℃以下、好ましくは350℃以下、より好ましくは300℃以下に、正孔輸送層形成用組成物を用いて形成された層を加熱する。上記の上限及び下限は任意に組み合わせることができる。例えば、100℃以上400℃以下であってよく、120℃以上350℃以下であってよく、150℃以上300℃以下であってよい。
 加熱時間としては、通常1分以上、好ましくは24時間以下である。加熱手段としては特に限定されないが、形成された層を有する積層体をホットプレート上に載せる、オーブン内で加熱する、などの手段が用いられる。例えば、ホットプレート上で120℃以上、1分間以上加熱する条件を用いることができる。
 正孔輸送層の膜厚は、一実施形態では50nm以上100nm以下であり、別の実施形態では100nmより大きく400nm以下、好ましくは350nm以下である。即ち、50nm以上400nm以下、好ましくは50nm以上350nm以下である。
 正孔輸送層の膜厚は、ブロッキング層として正孔輸送層を設けたことによる暗電流の低減効果を発現しやすい点では厚いことが好ましい。また、一方で、有機光電変換素子を利用したCMOSイメージセンサにおいて、光の入射角を広くとることが可能であり、また、有機光電変換素子の薄膜化をはかることができる点では、薄いことが好ましい。
 暗電流を効果的に低減するために、正孔輸送層は光電変換層のn型有機半導体に対して0.3eV以上浅いLUMO(最低空分子軌道)を有していることが好ましく、0.5eV以上浅いLUMOを有していることが好ましく、1.0eV以上浅いLUMOを有することがさらに好ましい。また、正孔輸送層は光電変換層で発生した正孔を効率よく第1電極へと運ぶ役割を果たすことから、光電変換層のp型有機半導体とのHOMO(最高被占分子軌道)の差が0.5eV以内であることが好ましく、0.3eV以内であることが好ましい。
<光電変換層>
 光電変換層は、光を吸収して電荷を分離する層である。本実施形態の有機光電変換素子の光電変換層は、前述の本実施形態の有機半導体インク組成物により形成された前述の本実施形態の光電変換層(有機光電変換膜)である。
<電子輸送層>
 電子輸送層は、有機光電変換素子に必ずしも必要とされるものではないが、光電変換層と第2電極との間に電子輸送層を設けることで、光電変換効率を高めたり、暗電流を低減したりすることができる。
 電子輸送層は、光電変換層で生成した電子を効率よく第2電極に輸送することができる化合物より形成される。電子輸送層に用いられる電子輸送性化合物としては、光電変換層からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物であることが必要である。
 このために、電子輸送層は光電変換層のn型有機半導体とのLUMOの差が1.5eV以下であることが好ましく、1.0eV以下であることが好ましい。また、電子輸送層によって暗電流を低減させる場合、電子輸送層は光電変換層のp型半導体に対して0.3eV以上深いHOMOを有していることが好ましく、0.5eV以上深いHOMOを有していることがより好ましく、1.0eV以上深いHOMOを有していることがさらに好ましい。
 電子輸送層に用いる電子輸送性化合物としては、例えば、8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(日本国特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(日本国特開平6-207169号公報)、フェナントロリン誘導体(日本国特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛が挙げられる。
 また、電子輸送層の形成材料として、酸化チタン、酸化亜鉛、酸化スズ、酸化セリウムなどの金属酸化物を用いることもできる。その場合、電子輸送層の成膜方法としては、金属酸化物のナノ粒子を湿式成膜して乾燥して金属酸化物層とする方法や、前駆体を湿式成膜して加熱変換する方法を用いることができる。
 電子輸送層の膜厚は、通常1nm以上、好ましくは5nm以上であり、また、一方、通常300nm以下、好ましくは100nm以下である。上記の上限及び下限は任意に組み合わせることができる。例えば、1nm以上300nm以下であってよく、5nm以上100nm以下であってよい。
 電子輸送層は、湿式成膜法或いは真空蒸着法により形成することができるが、通常、真空蒸着法が用いられる。
<その他の構成層>
 有機光電変換素子は、本実施形態の効果を著しく損なわなければ、上述した基板、第1及び第2電極、正孔輸送層、光電変換層及び電子輸送層以外の構成層を備えていてもよい。
 例えば、有機光電変換素子は、外気の影響を最小限にするために、光電変換層部分、さらには電極部分を含めて覆うように保護膜を備えていてもよい。保護層は、例えば、スチレン樹脂、エポキシ樹脂、アクリル樹脂、ポリウレタン、ポリイミド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリエチレンポリビニルアルコール共重合体、等のポリマー膜;酸化珪素、窒化珪素、酸化アルミニウム等の無機酸化膜や窒化膜;あるいはこれらの積層膜により構成することができる。
 保護膜の形成方法に制限はない。例えば、保護膜をポリマー膜とする場合には、ポリマー溶液の塗布乾燥による形成方法、モノマーを塗布或いは蒸着して重合する形成方法が挙げられる。また、ポリマー膜の形成に際しては、さらに架橋処理を行なったり、多層膜を形成したりすることも可能である。一方、保護膜を無機酸化膜や窒化膜等の無機物膜とする場合には、例えば、スパッタ法、蒸着法等の真空プロセスでの形成方法、ゾルゲル法に代表される溶液プロセスでの形成方法を用いることができる。
 また、光電変換層で発生した電荷を効率よく電極に捕集させるために、第1電極と正孔輸送層との間、あるいは電子輸送層と第2電極との間に電荷注入層を備えていてもよい。
 さらに、有機光電変換素子は、例えば紫外線を透過させない光学フィルターを光の入射側に備えていてもよい。紫外線は一般に有機光電変換素子の劣化を促進することが多いため、この紫外線を遮断することにより、有機光電変換素子を長寿命化させることができるからである。
<有機光電変換素子の製造方法>
 有機光電変換素子は、通常、基板上に、第1電極、正孔輸送層、光電変換層、第2電極の順でこれらの層をそれぞれ前述した方法で積層形成することにより製造される。これらの層間に必要に応じて設けられる電子輸送層等の形成工程が設けられる。
<有機光電変換素子の用途>
 本実施形態の光電変換素子は、例えば、光センサや撮像素子に使用される。その場合の光センサ及び撮像素子の構成は、既知のものを適用すればよい。
 以下、実施例により本発明をより具体的に説明するが、本発明の範囲は、以下の実施例により限定されるものではない。
<測定方法>
[膜質の評価方法]
 光学顕微鏡 Eclipse LV100ND(ニコン社製)にて、20倍対物レンズを用いて膜表面の暗視野観察を行った。観察像に存在する輝点の数(単位:個/mm)を目視で計測した。また輝点の大きさは、互いに平行な2本の接線の距離の最大値を最大径として測定した。
[耐熱性試験]
 耐熱性試験は、素子製造におけるリフロー工程時などの加熱環境を想定した加熱試験であり、有機光電変換素子を200℃の温度条件に50分間保持する条件で実施した。具体的には、有機光電変換素子のガラス基板を、200℃に設定したホットプレートに接触させて加熱した。
[EQE維持率の測定方法]
 擬似太陽光装置・電気特性測定機器(分光計器社製)による分光感度の測定から、波長940nmの光において、有機光電変換素子に-5Vの電圧を印加した際の外部量子効率(EQE)の値を得た。
 上記の耐熱性試験前及び耐熱性試験後に、それぞれEQEを測定し、下記式によりEQE維持率(単位:%)を求めた。
 EQE維持率=(耐熱性試験後EQE/耐熱性試験前EQE)×100)
[表面粗さRaの測定方法]
 走査型プローブ顕微鏡(日立ハイテクサイエンス製、L-trace II)を用いて、耐熱性試験後の有機光電変換素子について、光電変換層の膜表面観察を行った。
 予め、有機光電変換素子を製造する際に、光電変換層の上に積層する層を光電変換層の全面に形成せず、光電変換層の上面の一部が露出した状態とした。この露出した部分の表面について膜表面観察を行った。
 得られた膜表面観察結果の断面プロファイルから、表面粗さRa値を算出した。
<実施例1>
[正孔輸送層の形成]
 ガラス基板上に電極としてインジウムスズ酸化物(ITO)の透明導電膜がパターン成膜されたITO基板の表面を、紫外線オゾン洗浄機(NL-UV253、日本レーザー電子社製)で10分間処理した後に、正孔輸送層を次のように成膜した。
 下記式(1)に示すポリトリアリールアミン化合物(正孔輸送性高分子)60mgを1mLのアニソールに溶解させ、正孔輸送層形成用組成物を調製した。この組成物を回転数1000rpmで60秒間、ITO基板の電極面にスピンコートし、240℃で30分間加熱乾燥して、膜厚300nmの正孔輸送層を形成した。
Figure JPOXMLDOC01-appb-C000006
[有機半導体インク組成物の製造]
 p型有機半導体は、前記式(II)で表される化合物(重量平均分子量80000)を用いて、n型有機半導体は、前記式(I)において、Aが炭素原子、X~Xがそれぞれ塩素原子、R1a,R1bがそれぞれ2-エチルヘキシル基、Rが2-エチルヘキシル基、Rが2-エチルヘキシルオキシ基、R,Rがそれぞれ水素原子である化合物(分子量1339)を用いた。
 まず、p型有機半導体0.11gをo-キシレン9.68mLに溶解させて一部溶液を調製し、下記の条件で濾過(濾過A)し、得られた濾液をさらに下記の条件で濾過(濾過B)した。
 次いで、濾過Bで得られた濾液に、n型有機半導体0.13gを溶解して全部溶液を調製し、下記の条件で濾過(濾過C)し、濾液を有機半導体インク組成物とした。
 得られた有機半導体インク組成物において、p型有機半導体とn型有機半導体の質量比(n型有機半導体/p型有機半導体)は1.2であり、有機半導体インク組成物の固形分濃度は25mg/mLであった。
 濾過条件は以下の通りとした。
(濾過A)
 使用フィルター:プレフィルター付きフィルター。上流側から順に、ガラス繊維プレフィルター(孔径10~1.0μm)、及びガラス繊維製薄膜フィルター(孔径0.45μm)を備える。
(濾過B)
 使用フィルター:PTFE製薄膜フィルター(孔径0.45μm)。
(濾過C)
 使用フィルター:PTFE製薄膜フィルター(孔径0.45μm)。
[光電変換層の形成]
 得られた有機半導体インク組成物を用いて、正孔輸送層上に毎分1000回転でスピンコートした後、120℃で10分間加熱処理(熱アニール処理)し、膜厚150nmの光電変換層を形成した。熱アニール処理では、120℃に設定したホットプレートにガラス基板を接触させて加熱した。
 得られた光電変換層について、上記膜質の評価方法に従って、膜表面の暗視野観察を行い、暗視野像に存在する輝点の数を求めた。暗視野像の写真を図2に示す。
[有機光電変換素子の製造]
 次いで、光電変換層上に、電子輸送材料としてC60フラーレン(フロンティアカーボン社製)を真空中で成膜し、厚さ40nmの電子輸送層を形成した。
 さらに、電子輸送層上に、金属電極材料としてアルミニウムを真空中で成膜し、厚さ100nmの電極層を形成して、有機光電変換素子を得た。
 得られた有機光電変換素子について、上記の方法で耐熱性試験を行い、EQE維持率及び耐熱性試験後の光電変換層の表面粗さRaを測定した。
<比較例1>
 実施例1において、p型有機半導体0.11g及びn型有機半導体0.13gをo-キシレン9.68mLに溶解させた後、PTFE製薄膜フィルター(孔径:5.0μm)を用いて濾過し、得られた濾液を有機半導体インク組成物とした。
 上記で得た有機半導体インク組成物を用いた以外は実施例1と同様にして、光電変換層を形成し、有機光電変換素子を製造し、評価した。暗視野像の写真を図3に示す。
 図2、3の結果に示されるように、実施例1の光電変換層は、膜表面の暗視野像において輝点は観察されなかった。一方、比較例1では、最大径が1~5μm程度の輝点が約2000個/mm観察された。
 また、比較例1において、p型有機半導体及びn型有機半導体を一括的に溶解した全部溶液を濾過する際に、孔径が5.0μmより小さいフィルターでは濾過が困難であった。
 これに対して、実施例1では、p型有機半導体のみを含む一部溶液を濾過した濾液を用いて全部溶液を調製したことで、孔径0.45μmのフィルターで全部溶液を濾過することができた。
 これらの結果からわかるように、実施例1では、膜表面の暗視野像で大きさ1~5μm程度の輝点として観察される異物を効果的に除去することができた。即ち、本発明の有機半導体インク組成物の製造方法により、異物の少ない光電変換層が得られることが裏付けられた。p型有機半導体のみを含む一部溶液の濾過では、o-キシレンへの溶解性が低い高分子量体成分を含む溶媒への不溶解成分が除去されたと考えられる。そして、比較例1の暗視野像で観察された異物は、p型有機半導体中の高分子量成分や、p型有機半導体中の高分子量成分とn型有機半導体の会合体を含む溶媒への不溶解成分であると考えられる。これら成分の影響で、比較例1の全部溶液の状態では、孔径5.0μmより小さなフィルターでの濾過が困難となり、またそれら成分の除去も十分に行えなかったと考えられる。つまり、一部溶液の段階で濾過性を損なう原因かつ膜中異物の原因となり得るp型若しくはn型の有機半導体中の高分子量成分を効果的に除去することが重要であると言える。
 10 有機光電変換素子
 11 第1電極
 12 正孔輸送層
 13 光電変換層(有機光電変換膜)
 14 電子輸送層
 15 第2電極
 20 有機光電膜

Claims (13)

  1.  p型有機半導体、n型有機半導体及び非ハロゲン系有機溶媒を含有する有機半導体インク組成物の製造方法であって、
     前記非ハロゲン系有機溶媒に、前記p型有機半導体及び前記n型有機半導体の少なくとも何れかの有機半導体を溶解して一部溶液を得る第一の溶解、
     前記第一の溶解で得られた前記一部溶液の濾過である第一の濾過、及び、
     前記第一の濾過で得られた溶液に、前記p型有機半導体及び前記n型有機半導体の少なくとも何れかの有機半導体を添加して全部溶液を得る有機半導体の後添を含む、有機半導体インク組成物の製造方法。
  2.  さらに、前記有機半導体の後添で得られた前記全部溶液の濾過である第二の濾過を含む、請求項1に記載の有機半導体インク組成物の製造方法。
  3.  前記第二の濾過で用いるフィルターの孔径が、前記第一の濾過で用いるフィルターの孔径以下である、請求項2に記載の有機半導体インク組成物の製造方法。
  4.  前記第一の溶解で前記p型有機半導体を前記非ハロゲン系有機溶媒に溶解し、前記有機半導体の後添で前記n型有機半導体を前記第一の濾過で得られた溶液に添加する、請求項1に記載の有機半導体インク組成物の製造方法。
  5.  前記第一の溶解で前記n型有機半導体を前記非ハロゲン系有機溶媒に溶解し、前記有機半導体の後添で前記p型有機半導体を前記第一の濾過で得られた溶液に添加する、請求項1に記載の有機半導体インク組成物の製造方法。
  6.  前記p型有機半導体が高分子化合物である、請求項1に記載の有機半導体インク組成物の製造方法。
  7.  前記n型有機半導体が、分子量100~5000の有機化合物である、請求項1に記載の有機半導体インク組成物の製造方法。
  8.  固形分濃度が10~40mg/mLである、請求項1~7のいずれか一項に記載の製造方法で得られた有機半導体インク組成物。
  9.  請求項8に記載の有機半導体インク組成物の塗膜が固化した、有機光電変換膜。
  10.  膜表面の暗視野像における輝点の数が100個/mm以下である、請求項9に記載の有機光電変換膜。
  11.  150~300℃で熱アニール処理された、請求項9に記載の有機光電変換膜。
  12.  200℃の温度条件に50分間保持する耐熱性試験後の表面粗さRaが、0.1~10nmである、請求項9に記載の有機光電変換膜。
  13.  請求項9~12のいずれか一項に記載の有機光電変換膜を有する、有機光電変換素子。
PCT/JP2023/036347 2022-10-05 2023-10-05 有機半導体インク組成物の製造方法、有機半導体インク組成物、有機光電変換膜、及び有機光電変換素子 WO2024075812A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-160984 2022-10-05
JP2022160984 2022-10-05

Publications (1)

Publication Number Publication Date
WO2024075812A1 true WO2024075812A1 (ja) 2024-04-11

Family

ID=90608421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036347 WO2024075812A1 (ja) 2022-10-05 2023-10-05 有機半導体インク組成物の製造方法、有機半導体インク組成物、有機光電変換膜、及び有機光電変換素子

Country Status (1)

Country Link
WO (1) WO2024075812A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528122A (ja) * 2003-10-02 2007-10-04 マックスデム インコーポレイテッド 有機ダイオード及び有機材料
WO2013099926A1 (ja) * 2011-12-28 2013-07-04 株式会社クラレ 光電変換素子及びその製造方法
JP2014090156A (ja) * 2012-10-04 2014-05-15 Fujifilm Corp 成膜用有機材料及びそれを用いて得られた有機光電変換素子、撮像素子、成膜方法、有機光電変換素子の製造方法
JP2017139437A (ja) * 2016-01-28 2017-08-10 株式会社リコー 光電変換素子
WO2018131350A1 (ja) * 2017-01-11 2018-07-19 富士フイルム株式会社 組成物、膜、光学フィルタ、パターン形成方法、固体撮像素子、画像表示装置および赤外線センサ
JP2021136402A (ja) * 2020-02-28 2021-09-13 三菱ケミカル株式会社 光電変換層作成用インク、光電変換素子の製造方法、光電変換素子、及び光センサー
JP2022166501A (ja) * 2021-04-21 2022-11-02 住友化学株式会社 インク組成物及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528122A (ja) * 2003-10-02 2007-10-04 マックスデム インコーポレイテッド 有機ダイオード及び有機材料
WO2013099926A1 (ja) * 2011-12-28 2013-07-04 株式会社クラレ 光電変換素子及びその製造方法
JP2014090156A (ja) * 2012-10-04 2014-05-15 Fujifilm Corp 成膜用有機材料及びそれを用いて得られた有機光電変換素子、撮像素子、成膜方法、有機光電変換素子の製造方法
JP2017139437A (ja) * 2016-01-28 2017-08-10 株式会社リコー 光電変換素子
WO2018131350A1 (ja) * 2017-01-11 2018-07-19 富士フイルム株式会社 組成物、膜、光学フィルタ、パターン形成方法、固体撮像素子、画像表示装置および赤外線センサ
JP2021136402A (ja) * 2020-02-28 2021-09-13 三菱ケミカル株式会社 光電変換層作成用インク、光電変換素子の製造方法、光電変換素子、及び光センサー
JP2022166501A (ja) * 2021-04-21 2022-11-02 住友化学株式会社 インク組成物及びその製造方法

Similar Documents

Publication Publication Date Title
JP5649970B2 (ja) 有機光電池を製造するための処理添加剤
Zhou et al. Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability
JP5838975B2 (ja) 有機光電変換素子および太陽電池
KR20090017552A (ko) 유기 광전 변환 소자의 제조 방법 및 유기 광전 변환 소자
US20090194167A1 (en) Methods of Forming Photoactive Layer
Qi et al. Evaluation of the passivation effects of PEDOT: PSS on inverted perovskite solar cells
TW201945513A (zh) 電荷輸送性組成物
JP2015514327A (ja) 有機光起電力デバイスのための正孔キャリア層
CN110364626B (zh) 一种窄带光电探测器及其制备方法
Zou et al. Reduced graphene oxide-induced crystallization of CuPc interfacial layer for high performance of perovskite photodetectors
JP7339239B2 (ja) 光電変換素子
US8518735B2 (en) Methods for controlling the crystalline nanofibre content of organic layers used in organic electronic devices
US20210313516A1 (en) Organic photodiode and infrared cmos sensor
WO2024075812A1 (ja) 有機半導体インク組成物の製造方法、有機半導体インク組成物、有機光電変換膜、及び有機光電変換素子
JP2021057422A (ja) Cmosイメージセンサ
WO2024075810A1 (ja) 有機光電変換膜、有機光電変換素子、有機光電変換膜の製造方法、及び有機半導体インク組成物
Kim et al. Size Fractionation of Graphene Oxide via Solvent‐Mediated Consecutive Charge Manipulation and Investigation of the Size Effect as Hole Transporting Layer in Perovskite Solar Cells
WO2023112943A1 (ja) 有機半導体インク、光電変換層及び有機光電変換素子
WO2023157864A1 (ja) 有機半導体インク、有機膜、光電変換層、光電変換層の製造方法及び有機光電変換素子
JP2024054634A (ja) 有機光電変換素子の製造方法及び有機光電変換素子
Feria et al. Perovskite solar cells stability enhancement via analytical fabrication conditions
EP3987588A1 (fr) Formulation comprenant un materiau semiconducteur organique de type p et un materiau semiconducteur de type n
EP2200103A1 (en) Methods for controlling the crystalline nanofibre content of organic layers used in organic electronic devices
EP3987586A1 (fr) Formulation comprenant un matériau semiconducteur organique detype p et un matériau semiconducteur de type n
Hussein et al. Enhancement efficiency of different treatment annealin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874937

Country of ref document: EP

Kind code of ref document: A1