WO2024075789A1 - 方向性電磁鋼板およびその製造方法 - Google Patents

方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2024075789A1
WO2024075789A1 PCT/JP2023/036262 JP2023036262W WO2024075789A1 WO 2024075789 A1 WO2024075789 A1 WO 2024075789A1 JP 2023036262 W JP2023036262 W JP 2023036262W WO 2024075789 A1 WO2024075789 A1 WO 2024075789A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
groove
glass film
grooves
thickness
Prior art date
Application number
PCT/JP2023/036262
Other languages
English (en)
French (fr)
Inventor
雅人 安田
秀行 濱村
公彦 杉山
宣郷 森重
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024075789A1 publication Critical patent/WO2024075789A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • the present invention relates to grain-oriented electrical steel sheets.
  • Grain-oriented electrical steel sheet is a steel sheet whose crystal orientation is controlled by a combination of cold rolling and annealing processes so that the magnetization easy axis of the crystal grains coincides with the rolling direction.
  • Crystal orientation is controlled by creating a primary recrystallization texture in the annealing process after cold rolling, and then performing high-temperature annealing to induce preferential growth in an orientation favorable to magnetic properties, known as secondary recrystallization. This control of crystal orientation reduces the hysteresis loss of grain-oriented electrical steel sheet.
  • Grain-oriented electrical steel sheets in which an insulating film is formed on the surface of a base steel sheet with controlled crystal orientation, are known as a technology for reducing eddy current loss, which is a type of iron loss in grain-oriented electrical steel sheets.
  • the insulating film not only provides electrical insulation, but also provides tensile strength, rust resistance, and other properties to the base steel sheet.
  • Magnetic domain control methods are classified into a method of applying distortion to the base steel sheet of the grain-oriented electrical steel sheet, and a method of forming grooves on the surface of the base steel sheet where a coating exists that applies tension to the base steel sheet.
  • Figure 1 is a schematic diagram of an electromagnetic steel sheet with grooves formed.
  • Figure 1 shows a state in which multiple grooves 2 are formed on the surface of a base steel sheet 1 at intervals in the rolling direction of the base steel sheet 1.
  • the symbol ⁇ indicates the angle between the longitudinal direction of the groove 2 and the direction perpendicular to the rolling direction and thickness direction of the base steel sheet 1 (the sheet width direction).
  • the symbol W indicates the width of the groove
  • the symbol D indicates the depth of the groove
  • the symbol P indicates the distance between adjacent grooves 2 in the rolling direction.
  • Patent Document 1 discloses an electrolytic etching method for forming grooves on the surface of a grain-oriented electrical steel sheet by electrolytic etching.
  • Patent document 2 discloses a gear pressing method in which a gear is mechanically pressed onto the surface of a grain-oriented electromagnetic steel sheet to form grooves on the surface of the steel sheet.
  • the gear press method the hardness of the electromagnetic steel sheet is high, so the teeth wear out in a short period of time. Furthermore, from the perspective of high-speed processing, it is difficult to achieve a line speed of 100 mpm or more, as is required in general steel manufacturing processes.
  • the electrolytic etching method does not have the problem of teeth wearing out, but it requires the steps of masking, etching, and mask removal, making the process more complicated than the mechanical method.
  • Patent Document 3 discloses a laser irradiation method in which the laser-irradiated parts of the steel sheet surface of a grain-oriented electromagnetic steel sheet are melted and evaporated by laser irradiation.
  • the laser irradiation method does not have the problems of tooth wear or complicated processes, and allows for high-speed processing.
  • Patent Document 4 also uses the laser irradiation method, and discloses that a laser is irradiated on a final product plate coated with a tensile insulating film. However, in this case, it is necessary to apply the insulating tensile film again, which creates the problem of poor productivity.
  • Patent Document 5 discloses forming grooves in cold-rolled steel sheet. This method does not require recoating of the insulating tension film and is highly productive. However, there is a problem in that the primary recrystallization texture deteriorates during the subsequent decarburization annealing, and secondary recrystallization does not occur well during the subsequent high-temperature annealing.
  • the present invention was developed in consideration of the above problems, and aims to provide a grain-oriented electromagnetic steel sheet that further improves iron loss in magnetic domain control for forming laser grooves (grooves formed by laser irradiation) in steel sheet.
  • the inventors have conducted extensive research to solve the above problems. They have discovered conditions for forming laser grooves in grain-oriented electrical steel sheets after decarburization annealing and before finish annealing, that do not deteriorate the primary recrystallization texture in the laser groove-formed areas.
  • the present invention is based on this finding, and is summarized as follows.
  • a grain-oriented electrical steel sheet has a plurality of grooves on a surface of the steel sheet and a glass coating on the surface.
  • the grain-oriented electrical steel sheet is characterized in that the absolute value of the angle ⁇ between the longitudinal direction of the groove and a direction perpendicular to the rolling direction and sheet thickness direction of the steel sheet is 0 to 40°, the width W of the groove is 20 to 300 ⁇ m, the depth D of the groove is 10 to 40 ⁇ m, and the interval P of the grooves in the rolling direction is 1.0 to 30 mm, and the thickness of the glass coating on the flat parts of the steel sheet (parts other than the grooves) is t1 and the thickness of the glass coating at the deepest part of the groove is t2, whereby the grain-oriented electrical steel sheet satisfies the relational expression (1).
  • the grain-oriented electrical steel sheet according to one embodiment of the present invention is the grain-oriented electrical steel sheet according to the above-mentioned [1], characterized in that, when the thickness of the inserted portion of the glass film in the flat portion of the base steel sheet is s1 and the thickness of the inserted portion of the glass film in the deepest portion of the groove is s2, the grain-oriented electrical steel sheet satisfies the relational expression of formula (2).
  • a method for producing grain-oriented electrical steel sheet according to one embodiment of the present invention is a method for producing grain-oriented electrical steel sheet as defined in the above-mentioned [1] or [2], comprising a groove forming step of forming grooves by a laser on a surface of the steel sheet after decarburization annealing and before finish annealing, wherein in the groove forming step, a focused spot diameter dL of the laser beam in the rolling direction of the steel sheet and a focused spot diameter dC of the laser beam in the sheet width direction satisfy formula (3). 0.10 ⁇ dL/dC ⁇ 1.00 ... Equation (3)
  • the present invention provides grain-oriented electrical steel sheets with good core loss properties that have magnetic domains controlled by laser grooves.
  • FIG. 2 is a schematic diagram of an electromagnetic steel sheet in which grooves are formed.
  • FIG. 2 is a schematic diagram of a cross section of a steel sheet in a cross section perpendicular to the longitudinal direction of a groove in the vicinity of the groove.
  • this electromagnetic steel sheet comprises a base steel sheet 1 having a plurality of grooves 2 on its surface, and a glass coating 8 formed on the surface of the base steel sheet 1.
  • a tensile coating (insulating coating) (not shown) may be formed on the surface of the glass coating 8.
  • the plurality of grooves 2 are formed adjacent to each other in the rolling direction of the base steel sheet 1.
  • the groove direction (angle ⁇ ), groove width W, depth D, and spacing P are determined taking into account iron loss, as in the case of ordinary grain-oriented electromagnetic steel sheets.
  • the angle ⁇ between the direction perpendicular to the rolling direction and thickness direction of the base steel sheet (sheet width direction) and the longitudinal direction of the groove is preferably 0 to 40° (0° or more and 40° or less), since if it is too large, there will be no magnetic domain control effect and the iron loss improvement effect will not be obtained.
  • the angle ⁇ is preferably small, and is preferably 35° or less, 30° or less, 25° or less, 20° or less, 15° or less, 10° or less, 8° or less, 6° or less, or 5° or less.
  • the lower limit of the angle ⁇ is 0°, that is, when the longitudinal direction of the groove is parallel to the sheet width direction.
  • the direction of the angle ⁇ is not important, and refers to the acute angle of the angle formed by the longitudinal direction of the groove and the sheet width direction.
  • a plurality of grooves are arranged approximately parallel to the surface of the base steel sheet, and the angle ⁇ for each groove may be within the range described above.
  • the groove width W refers to the width of the groove on the surface of the base steel sheet in the cross section (groove cross section) of the groove on a plane perpendicular to the longitudinal direction of the groove. If the groove width W is too narrow, it will not be the starting point of magnetic pole generation, there will be no magnetic domain control effect, and good iron loss will not be obtained, so it is preferable that it is 20 ⁇ m or more. On the other hand, if the groove width W is too wide, it will not be the starting point of magnetic pole generation, there will be no magnetic domain control effect, only the magnetic flux density will be significantly reduced, and good iron loss will not be obtained, so it is preferable that it is 300 ⁇ m or less.
  • the groove width W is preferably 20 to 300 ⁇ m (20 ⁇ m or more and 300 ⁇ m or less).
  • the lower limit of the groove width W is preferably 25 ⁇ m, 30 ⁇ m, or 35 ⁇ m.
  • the upper limit of the groove width W is preferably 250 ⁇ m, 200 ⁇ m, 150 ⁇ m, 100 ⁇ m, or 80 ⁇ m.
  • the groove depth D is 10 ⁇ m or more.
  • the groove depth D is too deep, the magnetic domain control effect will reach saturation, and only the magnetic flux density will drop significantly, so good iron loss will not be obtained, so it is preferable that the groove depth D is 40 ⁇ m or less. Therefore, the groove depth D is preferably 10 to 40 ⁇ m (10 ⁇ m or more and 40 ⁇ m or less).
  • the lower limit of the groove depth D is preferably 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, or 15 ⁇ m.
  • the upper limit of the groove depth D is preferably 38 ⁇ m, 36 ⁇ m, 34 ⁇ m, 32 ⁇ m, 30 ⁇ m, 28 ⁇ m, or 26 ⁇ m.
  • the groove spacing P is the distance between the longitudinal centerlines of adjacent grooves arranged approximately parallel to each other on the surface of the base steel sheet, and refers to the distance in the rolling direction of the base steel sheet.
  • the centerline of the groove is a line that passes through the midpoint of the groove on the surface of the base steel sheet in the groove cross section and is parallel to the longitudinal direction of the groove. If the groove spacing P is too narrow, the magnetic domain control effect is saturated, and only the magnetic flux density is significantly reduced, and good iron loss cannot be obtained, so it is preferable that the groove spacing P is 1 mm or more.
  • the groove spacing P is 30 mm or less. Therefore, the groove spacing P is preferably 1 to 30 mm (1 mm or more and 30 mm or less). The groove spacing P does not have to be equal, but the groove spacing P between adjacent grooves is preferably within the above range.
  • the lower limit of the groove spacing P is preferably 1.2 mm, 1.4 mm, 1.5 mm, 1.6 mm, 1.8 mm, or 2.0 mm.
  • the upper limit of the groove spacing P is preferably 25 mm, 20 mm, 15 mm, 10 mm, 7 mm, or 5 mm.
  • the present electrical steel sheet is a grain-oriented electrical steel sheet characterized in that when the thickness of the glass coating on the flat part of the base steel sheet is t1 and the thickness of the glass coating at the deepest part of the groove in the recess of the groove is t2, the relational expression (1) is satisfied. t2/t1 ⁇ 1.00 ... Equation (1)
  • the glass coating in this electromagnetic steel sheet has an inset structure as shown in FIG. 2.
  • the inset structure refers to a structure in which the end of the glass coating extends into the base steel sheet like the roots of a plant.
  • the part where the glass coating is inset into the steel sheet like the roots of a plant is called the inset part of the glass coating. Therefore, in the cross section of the steel sheet, the end part of the inset structure may appear separated from the glass coating.
  • the glass coating inset part 9 can be seen like an isolated island away from the glass coating 8 on the flat part and the groove recess surface.
  • the end of the glass coating refers to the part furthest from the glass coating surface in the cross section of the steel sheet perpendicular to the longitudinal direction of the groove, including not only the glass coating 8 but also the glass coating inset part 9 of the inset structure part that appears to exist away from the glass coating.
  • a method for measuring the thicknesses t1 and t2 of the glass film at each portion will be described below with reference to FIG.
  • a straight line indicating the glass film surface in the flat portion 4 is designated as L1U
  • a line passing through the end of the insertion structure of the glass film in the flat portion that is deepest in the plate thickness direction and parallel to L1U is designated as L1L
  • a line passing through the glass film surface at the deepest part of the groove (the deepest point in the thickness direction on the contour of the groove) and parallel to L1U is defined as L2U.
  • a line passing through the deepest end of the glass film inlay structure near the deepest part of the groove and parallel to L2U is defined as L2L.
  • the glass film thickness t1 at the flat portion is defined as the distance from L1U to L1L
  • the glass film thickness t2 at the deepest portion of the groove is defined as the distance from L2U to L2L.
  • the thickness t1 of the glass film on the flat portion of the base steel sheet is the distance from the surface of the glass film to the end of the glass film penetration structure as shown in FIG. 2, that is, the maximum value of the glass film penetration depth on the flat portion.
  • the glass film thickness t2 at the deepest part of the groove is the distance from the surface of the glass film at the deepest part of the groove to the end of the glass film insertion structure as shown in Figure 2, i.e., the maximum value of the glass film insertion depth at the deepest part of the groove.
  • the thickness of the glass film can be measured, for example, by polishing the cross section of the steel sheet and observing it with an optical microscope or SEM.
  • the observation range for measuring the glass film penetration depth may be a range including a distance equivalent to the groove width across the groove. That is, the observation range may be a cross section perpendicular to the longitudinal direction of the groove, with the length in the rolling direction securing the groove width on both sides across the groove (i.e., a length of three times or more of the groove width with the groove at the center) and the length in the plate thickness direction being about twice the groove depth.
  • the glass film thickness in the flat portion is measured on one side of the groove (the left or right side across the groove in FIG. 2) in a range from the edge of the groove to the groove width W at a distance of 1/2 or more of the groove width W, and the average value (arithmetic average value) of these is taken as the thickness of the glass film in the flat portion.
  • magnetic domain refinement occurs when the magnetic poles that form on the surface of the steel sheet increase magnetostatic energy, and to eliminate this, new 180° magnetic domain walls are generated, narrowing the magnetic domain width.
  • the magnetic domain width is narrowed, the distance the magnetic domain wall moves when the steel sheet is magnetized becomes shorter, reducing energy loss during magnetic domain wall movement and eddy current loss.
  • the difference in expansion coefficient between the steel sheet and the glass film causes a tensile force to be applied in the rolling direction, which subdivides the magnetic domains and improves eddy current loss.
  • the glass film is made of non-magnetic oxides and has a different magnetic permeability from the steel sheet, magnetic poles are generated at the interface and magnetic domains are subdivided. Therefore, it is thought that the glass film acts as the starting point for magnetic pole generation and promotes magnetic domain refinement, thereby reducing eddy current loss.
  • tension is less likely to be applied in the rolling direction in the grooves, forming grooves perpendicular to the rolling direction generates magnetic poles on the concave surfaces of the grooves, and the synergistic effect of this and the generation of magnetic poles by the glass coating promotes the subdivision of magnetic domains.
  • the glass film is a non-magnetic oxide
  • the magnetic flux density decreases, resulting in increased hysteresis loss.
  • Iron loss in electrical steel sheets is the sum of hysteresis loss and eddy current loss, and it is desirable to control the glass film so that iron loss is minimized.
  • the inventors therefore increased the thickness of the glass film on the flat parts, which occupy most of the area when the base steel sheet surface is viewed from above, to ensure magnetic pole generation starting points and promote magnetic domain refinement, while in steel sheet grooves, the grooves themselves function as magnetic pole generation starting points, so magnetic pole generation starting points made by the glass film are not necessary.
  • steel sheet grooves they discovered that by making the glass film thinner at the deepest part of the groove to suppress a decrease in magnetic flux density, magnetic pole generation starting points are efficiently ensured throughout the entire steel sheet, improving iron loss.
  • t2/t1 is preferably 0.95 or less, 0.90 or less, 0.85 or less, 0.80 or less, 0.75 or less, 0.70 or less, 0.65 or less, 0.60 or less, 0.55 or less, or 0.50 or less.
  • t2/t1 may be 0.05 or more.
  • the glass film has an indentation structure, which is a structure in which the ends of the glass film extend into the base steel sheet like the roots of a plant.
  • the indentation of the glass film refers to the portion where the glass film indents into the steel sheet like the roots of a plant, and the thickness of the indentation refers to the depth of the indentation in the thickness direction of the steel sheet.
  • the thickness s1 of the penetration part of the glass film on the flat part of the steel plate is the distance between the deepest part of the part where the glass film on the flat part of the base steel plate is observed continuously from the surface and the deepest part of the glass film including the end of the penetration part of the glass film that looks like an isolated island.
  • the thickness s2 of the insertion part of the glass film at the deepest part of the groove is the distance between the deepest part of the part where the glass film at the deepest part of the groove of the base steel plate is observed continuously from the surface, and the deepest part of the glass film including the end of the insertion part of the glass film.
  • a line L1M is defined as a line passing through the deepest part of the portion where the glass film 8 is continuously observed from the surface at the end 9 of the glass film inset structure of the flat portion 4 of the steel plate, and parallel to L1U.
  • a line L2M is defined as a line passing through the deepest part of the portion where the glass film is continuously observed from the surface at the end of the glass film inset structure near the deepest part of the groove, and parallel to L2U.
  • the thickness s1 of the glass film inset part at the flat portion is defined as the distance from L1U to L1M
  • the thickness s2 of the glass film inset part at the deepest part of the groove is defined as the distance from L2U to L2M.
  • the thickness of the insertion portion of the glass film can be measured, for example, by polishing the cross section of the steel sheet and observing it with an optical microscope or SEM, in the same manner as the thickness of the glass film.
  • the observation range for measuring the thickness of the insertion portion of the glass film is the same as the thickness of the glass film.
  • the thickness of the insertion portion at the flat portion is also determined by averaging the measured values at the flat portions on both sides of the groove, in the same manner as the thickness of the glass film.
  • the iron loss improvement effect of having a thinner thickness s2 of the glass film at the deepest part of the groove compared to the thickness s1 of the glass film at the flat part of the base steel sheet is estimated as follows. That is, the glass film inlay structure is more likely to be the starting point for magnetic pole generation than a continuous glass film on the surface side of the base steel sheet, and it is estimated that the magnetic domain refinement effect is greater accordingly.
  • the groove itself is the starting point for magnetic pole generation, and even if the glass film inlay is formed deeper than the groove, not only is the magnetic pole generation effect small, but the magnetic flux density decreases and hysteresis loss worsens. Furthermore, if the inlay penetrates deeper, an inlay with a complex structure is formed, which may be a factor in worsening the magnetic properties.
  • s2/s1 is preferably 0.95 or less, 0.90 or less, 0.85 or less, 0.80 or less, 0.75 or less, 0.70 or less, 0.65 or less, 0.60 or less, 0.55 or less, or 0.50 or less.
  • s2/s1 may be 0.05 or more.
  • a cold-rolled steel sheet for the present electrical steel sheet is manufactured by a known method.
  • the steel sheet components and the manufacturing method of the cold-rolled steel sheet are not particularly limited, and known methods, such as the steel sheet components and steel sheet manufacturing method described in Patent Document 6, can be adopted.
  • decarburization annealing can be performed by a known method, and at this time, nitriding annealing may be performed as necessary.
  • Known conditions can be adopted for the decarburization conditions.
  • the steel sheet is heated to 850°C, held at that temperature for 60 seconds, and then cooled.
  • the decarburization atmosphere is a hydrogen-inert gas atmosphere with P H2O /P H2 in the range of 0.15 to 0.65. Particularly good properties are obtained when P H2O /P H2 is around 0.33.
  • Known methods can also be adopted for nitriding.
  • the amount of nitriding can be in the range of 50 to 400 ppm, for example, but particularly good properties are obtained at around 200 ppm.
  • ⁇ Groove formation process Groove formation by laser> A steel sheet that has been subjected to decarburization annealing or nitriding annealing after decarburization annealing is irradiated with a laser to form a plurality of grooves at predetermined intervals in a direction intersecting the rolling direction (groove forming step).
  • the type of laser light source, the laser output, the laser scanning speed, and the steel sheet moving speed during laser irradiation are not particularly limited, but conditions may be appropriately selected such that the groove width W, the groove depth D, and the predetermined interval between the grooves (groove interval P) fall within the specified ranges.
  • Laser light source for example, a high-power laser generally used for industrial purposes, such as a fiber laser, a YAG laser, a semiconductor laser, or a CO2 laser, can be used. As long as the grooves can be stably formed, a pulsed laser or a continuous wave laser can be used.
  • the laser output If the laser output is too small, the laser scanning speed to form the desired grooves will drop significantly, resulting in a drop in industrial productivity, so it is recommended to set the laser output to 200 W or more. It is preferably 1000 W or more, and more preferably 1500 W or more. If the laser output is too large, the power supply capacity will increase and the equipment costs will become enormous, which is not industrially practical, so it is recommended to set the laser output to 3000 W or less. It is preferably 2800 W or less, and more preferably 2500 W or less.
  • Laser scanning speed If the laser scanning speed is too slow, the productivity decreases, so it is set to 5 m/s or more. It is preferably 20 m/s or more, and more preferably 40 m/s or more. If the laser scanning speed is too fast, high output is required, which increases the equipment cost, so it is set to 100 m/s or less. It is preferably 80 m/s or less, and more preferably 60 m/s or less.
  • the laser beam focusing spot diameter dL in the rolling direction is 5 to 100 ⁇ m
  • the laser beam focusing spot diameter dC in the sheet width direction is 5 to 100 ⁇ m
  • the laser output is 200 to 3000 W
  • the laser scanning speed is 5 m/s to 100 m/s. It is preferable to satisfy formula (3). 0.10 ⁇ dL/dC ⁇ 1.00 ... Equation (3)
  • the spot diameter ratio dL/dC should be less than 1.00, and the upper limit should preferably be 0.90 or less, 0.80 or less, 0.70 or less, 0.60 or less, or 0.50 or less.
  • the spot diameter ratio dL/dC should be greater than 0.1, and the lower limit should preferably be 0.15 or more, or 0.20 or more.
  • the mechanism by which the laser irradiation conditions contribute to controlling the thickness of the glass film in the groove recesses is believed to be as follows. First, in the area (flat portion) where no laser irradiation is performed, the internal oxide layer SiO2 generated inside the base steel sheet during decarburization annealing and the annealing separator MgO applied to the steel sheet surface before finish annealing react with each other during the high-temperature annealing at 1200°C in the finish annealing process to generate a glass coating, which is an oxide consisting of Mg2SiO4 .
  • the internal oxide layer formed by the decarburization annealing before the laser irradiation is removed by the laser, so that the base steel is exposed on the inner surface of the groove.
  • the molten part remains along the side surface of the groove, and the molten part grows in an oriented manner during solidification, generating columnar crystals.
  • the grain boundaries of the columnar crystals become a diffusion path for oxygen, and an internal oxide layer is formed.
  • the base steel part is oxidized by the moisture of the annealing separator MgO slurry, and at this time, oxygen diffuses and oxidizes along the grain boundaries of the columnar crystals, forming an internal oxide layer (SiO 2 ) on the side surface of the groove.
  • the newly formed SiO 2 along the groove reacts with MgO in the same way as in the flat part, forming a glass film.
  • the spot diameter ratio dL/dC is set to less than 1.00 and the laser spot shape is made oblong in the direction perpendicular to the rolling direction (sheet width direction), the heat input to the steel sheet is reduced, thin columnar crystals are formed along the side of the groove, and the diffusion path is limited, preventing the development of an internal oxide layer. As a result, a thin glass film is formed in the deepest part of the groove.
  • the upper limit of the spot diameter ratio dL/dC should be set to 0.90, and preferably to 0.80 or less, 0.70 or less, 0.60 or less, or 0.50 or less.
  • an assist gas Simultaneously with the irradiation of the laser light, an assist gas is sprayed onto the portion of the steel sheet that is irradiated with the laser light.
  • the assist gas plays a role in removing components that have been melted or evaporated from the steel sheet by the laser irradiation. By spraying the assist gas, the laser light reaches the steel sheet stably, so that grooves are formed stably.
  • the flow rate of the assist gas is preferably, for example, 10 to 1000 liters per minute.
  • the assist gas is preferably air or an inert gas.
  • an annealing separator is applied to the surface of the steel sheet.
  • the finish annealing described later may be performed in a state where the steel sheet is wound into a coil. If the finish annealing is performed in such a state, the coil may be burned and it may be difficult to unwind the coil. Therefore, in this embodiment, an annealing separator is applied so that the coil can be unwound after the finish annealing.
  • the main component of the annealing separator is MgO, and the MgO in the annealing separator reacts with SiO 2 in the internal oxide layer during the finish annealing to form a glass film.
  • the composition of the annealing separator may be a known one, for example, MgO: 100 parts by mass, TiO 2 : 5 parts by mass, and the additive may be, for example, FeCl 2 added to 200 ppm of chlorine.
  • the moisture content after drying may be adjusted as necessary. If the moisture content of the annealing separator is too low, the glass film formation will be insufficient, resulting in poor appearance, so it is recommended to set it to 0.5% or more. On the other hand, if the moisture content of the annealing separator is too high, the glass film thickness may become too large, resulting in deterioration of the magnetic properties, so it is recommended to set it to 6.0% or less. In other words, the moisture content of the annealing separator should be 0.5% or more and 6.0% or less.
  • the moisture content of the annealing separator can be calculated, for example, by recovering the annealing separator from the surface of the steel sheet before finish annealing, measuring its weight, and then measuring the weight again after heating to 1000° C.
  • the moisture content can be calculated from the difference in weight before and after heating.
  • a crucible may be used when heating to 1000° C.
  • the final annealing process is also called the secondary recrystallization annealing process, and is a process for promoting secondary recrystallization of the steel sheet structure and simultaneously forming a glass film.
  • the final annealing process is performed by winding up the steel sheet coated with the annealing separator into a coil, holding it at a temperature of 1150 to 1250°C for 10 to 30 hours, and then cooling it.
  • the dew point temperature of the atmospheric gas supplied to the finish annealing furnace is preferably equal to or lower than 0° C. If the dew point temperature exceeds 0° C., the thickness of the glass coating becomes too large, which is undesirable since it may deteriorate the magnetic properties.
  • a tension film (insulating film) is usually formed on the glass film to enhance the magnetic domain control effect.
  • the tension film can be made of aluminum phosphate as a main component, for example, and can have a thickness of 1 ⁇ m.
  • Example 1 A slab containing 3.3 mass% Si, 0.10 mass% Mn, 0.006 mass% S, 0.060 mass% C, 0.027 mass% acid-soluble Al, 0.008 mass% N, and the balance being Fe and impurities, was hot-rolled by a known method, and then annealed as a hot-rolled sheet. Steel plates A1 to A11 and a1 to a10 were obtained by cold rolling to a final sheet thickness of 0.22 mm.
  • the cold-rolled steel sheet was decarburized and annealed, and then subjected to nitriding treatment.
  • the decarburization annealing conditions were that the steel sheet was heated to 850°C, held at that temperature for 60 seconds, and then cooled.
  • the decarburization atmosphere was a hydrogen-nitrogen atmosphere, and P H2O /P H2 was adjusted in the range of 0.15 to 0.65.
  • the amount of nitriding was 200 ppm.
  • a laser was irradiated onto the surface of the steel plate, and multiple grooves extending in a direction intersecting the rolling direction were formed at intervals of 1 to 40 mm along the rolling direction.
  • the groove formation direction was inclined at an angle of 0 to 45 degrees toward the L direction (rolling direction) with respect to the C direction (steel plate width direction) of the steel plate, with a groove depth of 5 to 45 ⁇ m and a groove width of 15 to 400 ⁇ m.
  • the laser light irradiation conditions were adjusted to a laser output of 2000 W, a focused spot diameter of the laser light in the rolling direction of 5 to 100 ⁇ m, a focused spot diameter of the laser light in the plate width direction of 5 to 100 ⁇ m, and a laser scanning speed in the range of 5 to 100 m/s.
  • an annealing separator mainly composed of MgO was applied to each side at a coating amount of 4 g/ m2 .
  • the composition of the annealing separator was 100 parts by mass of MgO, 5 parts by mass of TiO2 , and FeCl2 was added to the annealing separator at a chlorine content of 200 ppm.
  • the moisture content of the annealing separator was 2.5%.
  • the steel sheet coated with the annealing separator was wound into a coil and held at 1200°C for 20 hours before being cooled to form a glass film on the surface.
  • the dew point temperature of the atmospheric gas supplied to the finish annealing furnace was -20°C.
  • a tension film made primarily of aluminum phosphate was formed to a thickness of 1 ⁇ m to obtain a grain-oriented electrical steel sheet. The tension at this time was 12 MPa in the rolling direction, including the glass film.
  • the core loss W 17/50 energy loss measured under excitation conditions of 1.7 T and 50 Hz
  • magnetic flux density B8 magnetic flux density at a magnetizing force of 800 A/m
  • the absolute value of the angle ⁇ between the groove and the longitudinal direction is in the range of 0 to 40°
  • the groove width W is in the range of 20 to 300 ⁇ m
  • the groove depth D is in the range of 10 to 40 ⁇ m
  • the groove spacing P in the rolling direction is in the range of 1.0 to 30 mm.
  • the iron loss is better than 0.075 W/kg.
  • Example 2 A slab containing 3.3 mass% Si, 0.10 mass% Mn, 0.006 mass% S, 0.060 mass% C, 0.027 mass% acid-soluble Al, 0.008 mass% N, and the balance being Fe and impurities, was hot-rolled by a known method and then annealed as a hot-rolled sheet. Steel sheets B1 to B4 and b1 to b4 were obtained by cold rolling to a final sheet thickness of 0.22 mm.
  • the cold-rolled steel sheet was decarburized and annealed, and then subjected to nitriding treatment.
  • the decarburization annealing conditions were that the steel sheet was heated to 850°C, held at that temperature for 60 seconds, and then cooled.
  • the decarburization atmosphere was a hydrogen-nitrogen atmosphere, and P H2O /P H2 was adjusted in the range of 0.10 to 0.80.
  • the amount of nitriding was 200 ppm.
  • a laser was irradiated onto the surface of the steel plate, and multiple grooves extending in a direction intersecting the rolling direction were formed at intervals of 5 mm along the rolling direction.
  • the groove formation direction was inclined at 10° to the L direction (rolling direction) with respect to the C direction (steel plate width direction) of the steel plate, with a groove depth of 20 ⁇ m and a groove width of 50 ⁇ m.
  • the laser light irradiation conditions were adjusted to a laser output of 2000 W, a focused spot diameter of the laser light in the rolling direction of 5 to 100 ⁇ m, a focused spot diameter of the laser light in the plate width direction of 5 to 100 ⁇ m, and a laser scanning speed in the range of 5 to 100 m/s.
  • an annealing separator mainly composed of MgO was applied so that the amount of application was 4 g/ m2 on one side.
  • the composition of the annealing separator was 100 parts by mass of MgO, 5 parts by mass of TiO2 , and FeCl2 was added so that the chlorine content was 200 ppm.
  • the moisture content of the annealing separator was 1.5%.
  • the steel sheet coated with the annealing separator was wound into a coil and held at 1200°C for 20 hours before being cooled to form a glass film on the surface.
  • the dew point temperature of the atmospheric gas supplied to the finish annealing furnace was -10°C.
  • a tension film made mainly of aluminum phosphate was formed to a thickness of 1 ⁇ m to obtain a grain-oriented electrical steel sheet. The tension at this time was 12 MPa in the rolling direction, including the glass film.
  • the core loss W 17/50 energy loss measured under excitation conditions of 1.7 T and 50 Hz
  • magnetic flux density B8 magnetic flux density at a magnetizing force of 800 A/m
  • Inventive examples B1 to B4 and comparative examples b1 to b4 the conditions of groove angle, groove depth, groove spacing, and groove width that affect iron loss are all the same, but in the comparative examples, the focused spot diameter does not satisfy formula (3), resulting in inferior iron loss.
  • Example 3 For the sample prepared in Example 2, the thickness s1 of the inserted portion of the glass film on the flat portion of the base steel sheet and the thickness s2 of the inserted portion of the glass film on the deepest portion of the groove in the recess of the groove were measured, and the results are shown in Table 2. The iron loss was good in the ranges that satisfied the relationships t2/t1 ⁇ 1.00 and s2/s1 ⁇ 1.00.
  • the present invention can be used in industrial equipment that uses oriented electromagnetic steel sheets, such as winding cores for transformers.
  • Base steel sheet 2 Groove 3 Base steel sheet 4 Flat portion 8 Glass film 9 Glass film insertion portion ⁇ Angle between the direction perpendicular to the rolling direction of the base steel sheet (sheet width direction) and the longitudinal direction of the groove W Groove width D Groove depth P Groove spacing t1 Glass film thickness at flat portion of base steel sheet t2 Glass film thickness at deepest portion of groove

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本発明は、脱炭焼鈍後かつ仕上げ焼鈍前の鋼板にレーザ溝を形成する磁区制御において、鉄損を一層改善した方向性電磁鋼板を提供することを目的とする。 本発明に係る方向性電磁鋼板は、鋼板の表面に複数の溝を有する鋼板と、前記鋼板の前記表面上に形成されたグラス皮膜とを備える方向性電磁鋼板であって、前記鋼板の圧延方向および板厚方向に直交する方向と、前記溝の長手方向との成す角θの絶対値が0~40°、前記溝の幅Wが20~300μm、前記溝の深さDが10~40μm、前記圧延方向における前記溝の間隔Pが1.0~30mmであり、前記鋼板表面の平坦部(溝以外の部分)でのグラス皮膜の厚さをt1、前記溝の最深部のグラス皮膜厚さをt2としたとき、式(1)の関係式を満たすことを特徴とする方向性電磁鋼板。 t2/t1<1.00 ・・・ 式(1)

Description

方向性電磁鋼板およびその製造方法
 本発明は、方向性電磁鋼板に関するものである。
 方向性電磁鋼板は、冷間圧延処理と焼鈍処理との組み合わせによって、結晶粒の磁化容易軸と圧延方向とが一致するように結晶方位が制御された鋼板である。
 結晶方位の制御は、冷間圧延処理後の焼鈍処理において一次再結晶集合組織を造り込み、さらに高温焼鈍を施すことで磁気特性に好ましい方位の優先成長、いわゆる二次再結晶を発現させることで行われる。この結晶方位の制御により方向性電磁鋼板のヒステリシス損が低減される。
 方向性電磁鋼板の鉄損の一種である渦電流損を低減する技術として、結晶方位が制御された母材鋼板の表面に絶縁皮膜が形成された方向性電磁鋼板が知られている。絶縁皮膜は、電気的絶縁性だけでなく、張力および耐錆性等を母材鋼板に与える役割も担っている。
 異常渦電流損を低減するための他の方法として、圧延方向に交差する方向に形成された歪み領域や溝を、圧延方向に沿って所定間隔で形成することにより、180°磁区の幅を狭くする(180°磁区の細分化)磁区制御法が知られている。磁区制御法は、歪みを方向性電磁鋼板の母材鋼板に与える方法と、母材鋼板に張力をかけられる皮膜が存在する母材鋼板の表面に溝を形成する方法とに分類される。
 溝による磁区制御を施した方向性電磁鋼板を用いることにより、変圧器の鉄心(巻コア)を製造して、歪み取り焼鈍処理を実施しても溝が消失しないので、磁区細分化効果を維持することができる。そのため、巻きコアに対しては、異常渦電流損を低減する方法として溝形成による磁区制御法が採用されることがある。
 図1は、溝を形成した電磁鋼板の概略を示す図である。図1では、母材鋼板1の表面に、複数の溝2が母材鋼板1の圧延方向に間隔をおいて形成された状態を示している。図1において、符号θは、母材鋼板1の圧延方向および板厚方向に直交する方向(板幅方向)と溝2の長手方向との成す角を示す。符号Wは溝の幅を示し、符号Dは溝の深さを示し、符号Pは圧延方向に隣り合う溝2の間隔を示す。
 電磁鋼板に溝を形成する方法は種々提案されている。
 例えば、特許文献1には、電解エッチングによって方向性電磁鋼板の鋼板表面に溝を形成する電解エッチング法が開示されている。
 特許文献2には、機械的に歯車を方向性電磁鋼板の鋼板表面にプレスすることにより、鋼板表面に溝を形成する歯車プレス法が開示されている。
 しかしながら、歯車プレス法は、電磁鋼板の硬度が高いため歯形が短期間で摩耗する。さらに高速処理という観点では、一般的な鉄鋼製造プロセスで要求されるようなライン速度100mpm以上を実現することは困難である。電解エッチングによる方法は、歯形が磨耗するという問題はないが、マスキング、エッチング処理、マスク除去の工程が必要であり、機械的方法に比べて工程が複雑になる問題がある。
 特許文献3には、レーザ照射により方向性電磁鋼板の鋼板表面のレーザ照射部を溶融および蒸発させるレーザ照射法が開示されている。レーザ照射法は、歯形の摩耗や工程が複雑になる問題がなく、高速処理も可能である。
 また、レーザ照射法においても、溝を形成する工程がいくつか提示されている。例えば、特許文献4もレーザ照射法であり、張力絶縁皮膜を塗布した最終製品板でレーザを照射することが開示されている。しかしながら、その場合、再度、絶縁張力皮膜を塗布する必要があり、生産性が悪いという問題がある。
 一方、特許文献5には冷延鋼板に溝を形成することが開示されている。この方法は、絶縁張力皮膜の再コートの必要がなく、生産性に優れる。しかしながら、その後の脱炭焼鈍において、一次再結晶集合組織が劣化し、その後の高温焼鈍における二次再結晶が良好に発現しないという問題がある。
特公昭62-54873号公報 特公昭62-53579号公報 特開2003-129135号公報 特開2012-087332号公報 国際公開第2019/156127号 国際公開第2011/007771号
 本発明は上記の問題に鑑み開発されたものであり、鋼板にレーザ溝(レーザ照射により形成された溝)を形成する磁区制御において、鉄損を一層改善することを課題とし、そのような方向性電磁鋼板を提供することを目的とするものである。
 発明者らは、上記課題の解決に向けて鋭意検討を重ねた。脱炭焼鈍後かつ仕上げ焼鈍前の鋼板にレーザ溝を形成する方向性電磁鋼板において、レーザ溝形成部の一次再結晶集合組織を劣化させない条件を見出した。本発明は、この知見を基に成したものであり、その要旨は次の通りである。
[1] 
 本発明の一態様に係る方向性電磁鋼板は、鋼板の表面に複数の溝を有し、前記表面上にグラス皮膜を備える。前記鋼板の圧延方向および板厚方向に直交する方向と、前記溝の長手方向との成す角θの絶対値が0~40°、前記溝の幅Wが20~300μm、前記溝の深さDが10~40μm、前記圧延方向における前記溝の間隔Pが1.0~30mmであり、前記鋼板の平坦部(溝以外の部分)のグラス皮膜の厚さをt1、前記溝の最深部のグラス皮膜厚さをt2としたとき、式(1)の関係式を満たすことを特徴とする方向性電磁鋼板。
 t2/t1<1.00  ・・・ 式(1)
[2] 
 本発明の一態様に係る方向性電磁鋼板は、上記[1]に記載の方向性電磁鋼板において、母材鋼板の平坦部のグラス皮膜の嵌入部の厚さをs1、前記溝の最深部のグラス皮膜の嵌入部の厚さをs2としたとき、式(2)の関係式を満たすことを特徴とする[1]記載の方向性電磁鋼板。
 s2/s1<1.00  ・・・ 式(2)
 [3] 
 本発明の一態様に係る方向性電磁鋼板の製造方法は、上記[1]または[2]に記載の方向性電磁鋼板を製造する方法であって、脱炭焼鈍後かつ仕上げ焼鈍前の鋼板の表面にレーザで溝を形成する溝形成工程を含み、前記溝形成工程において、前記鋼板の圧延方向における前記レーザ光の集光スポット径dLと板幅方向における前記レーザ光の集光スポット径dCが式(3)を満たすことを特徴とする方向性電磁鋼板の製造方法。
 0.10≦dL/dC<1.00 ・・・ 式(3)
 本発明によれば、レーザ溝で磁区制御された鉄損の良好な方向性電磁鋼板を提供できる。
溝が形成された電磁鋼板の概略を示す図である。 溝近傍の溝長手方向に垂直な断面における鋼板断面の模式図である。
 以下、本発明の一実施形態に係る方向性電磁鋼板(以下、本電磁鋼板と略称する)を例として本発明について説明する。
 本電磁鋼板は、図1、2に示すように、表面に複数の溝2を有する母材鋼板1と、母材鋼板1の表面上に形成されたグラス皮膜8とを備える。本電磁鋼板において、グラス皮膜8の表面に張力皮膜(絶縁皮膜)(図示していない。)が形成されていてもよい。図1に示すように、母材鋼板1の表面において、複数の溝2は、母材鋼板1の圧延方向に隣り合うように形成されている。溝の方向(角度θ)、溝の幅W、深さD、および間隔Pは、通常の方向性電磁鋼板と同様、鉄損を考慮して決定する。
<母材鋼板の長手方向と溝の長手方向とのなす角度θ>
 母材鋼板の圧延方向および板厚方向に直交する方向(板幅方向)と溝の長手方向との成す角θは、大きすぎると磁区制御効果がなく、鉄損改善効果が得られなくなるので、0~40°(0°以上40°以下)がよい。角θは小さい方が好ましく、35°以下、30°以下、25°以下、20°以下、15°以下、10°以下、8°以下、6°以下、または5°以下にするとよい。角θの下限は0°、つまり溝の長手方向は板幅方向に平行であるときである。なお、角度θの方向は不問であり、溝の長手方向と板幅方向が成す角のうち鋭角側の角度を指す。母材鋼板の表面に複数の溝が概ね平行に配置されているが、溝ごとの角θが、前記したような範囲であればよい。
<溝幅W>
 溝幅Wは、溝の長手方向に垂直な面での溝の断面(溝断面)において、母材鋼板表面における溝の幅を指す。溝幅Wは、狭すぎても磁極の発生起点にならず、磁区制御効果がなく、良好な鉄損が得られないので20μm以上であるとよい。一方溝幅Wは、広すぎると磁極の発生起点にならず、磁区制御効果がなく、磁束密度のみが著しく低下してしまい、良好な鉄損が得られないので、300μm以下であるとよい。そのため、溝幅Wは20~300μm(20μm以上300μm以下)がよい。溝幅Wの下限は、好ましくは25μm、30μm、または35μmにするとよい。溝幅Wの上限は、好ましくは250μm、200μm、150μm、100μm、または80μmとするとよい。
<溝深さD>
 溝の深さDが浅すぎる場合は、磁極の起点にならず磁区制御効果がなく、良好な鉄損が得られないので10μm以上であるとよい。一方、深すぎる場合は、磁区制御効果は飽和に達してしまい、磁束密度のみが著しく低下するため、良好な鉄損が得られないので40μm以下であるとよい。そのため、溝の深さDを10~40μm(10μm以上40μm以下)がよい。溝深さDの下限は、好ましくは11μm、12μm、13μm、14μm、または15μmにするとよい。溝深さDの上限は、好ましくは38μm、36μm、34μm、32μm、30μm、28μm、または26μmとするとよい。
<溝間隔P>
 溝間隔Pは、母材鋼板表面において概ね平行に配置された溝の隣接する溝の長手方向中心線の間隔であり、母材鋼板の圧延方向の距離を指す。溝の中心線とは、溝断面において母材鋼板表面における溝の中点を通る、溝の長手方向に平行な線である。溝間隔Pは、狭すぎる場合は磁区制御効果が飽和し、磁束密度だけが著しく低下し良好な鉄損が得られないので1mm以上であるとよい。一方、広すぎる場合は、磁区制御効果が十分に得られず良好な鉄損が得られないので30mm以下であるとよい。そのため、溝間隔Pは1~30mm(1mm以上30mm以下)の間隔がよい。尚、溝の間隔Pは等間隔でなくてもよいが、隣接する溝との溝間隔Pは、前記範囲であるとよい。溝間隔Pの下限は、好ましくは1.2mm、1.4mm、1.5mm、1.6mm、1.8mm、または2.0mmであるとよい。溝間隔Pの上限は、好ましくは25mm、20mm、15mm、10mm、7mm、または5mmであるとよい。
<グラス皮膜の厚さ>
 本電磁鋼板における、母材鋼板の平坦部(鋼板表面において溝が形成されていない部分、すなわち溝以外の部分であって、溝縁から溝幅の1/2以上離れた部分を指す。以下単に「平坦部」という場合がある。)およびレーザ溝凹部(以下単に「溝」という場合がある。)のグラス皮膜について図2を用いて説明する。
 図2は、溝凹部の溝長手方向に垂直な断面における断面図であり、溝を含む領域を見た図である。以下、特に断りのない限り、この溝長手方向に垂直な断面での断面図(図2)を基に説明する。
 本電磁鋼板では、母材鋼板の平坦部のグラス皮膜の厚さをt1、溝の凹部において、溝の最深部のグラス皮膜厚さをt2としたとき、式(1)の関係式を満たすことを特徴とする方向性電磁鋼板である。
 t2/t1<1.00 ・・・ 式(1)
 各部の皮膜厚さt1、t2について説明する。本電磁鋼板におけるグラス皮膜は、図2に示すように嵌入構造を有している。嵌入構造とは、いわゆる植物の根のようにグラス皮膜の末端が母材鋼板中に伸びている構造のことをいう。グラス皮膜が鋼板中に植物の根のように嵌入している部分のことをグラス皮膜の嵌入部と呼ぶ。そのため鋼板断面では、嵌入構造の末端部分がグラス皮膜から離れた状態に現れる場合がある。例えば図2において、平坦部や溝凹部表面のグラス皮膜8とは離れたところに孤島のようにグラス皮膜嵌入部9が確認できるが、これは嵌入構造になっているグラ皮膜嵌入部9の末端部の断面が観察されるためである。以下、グラス皮膜の末端とは、溝長手方向に垂直な鋼板断面において、グラス皮膜8だけでなく、これらグラス皮膜から離れて存在するように見える嵌入構造部分のグラス皮膜嵌入部9も含め、グラス皮膜表面から一番離れた部分を指す。
 以下、各部のグラス皮膜の厚さt1、t2の測定方法について図2にて説明する。
 図2で示すように、平坦部4におけるグラス皮膜表面を示す直線をL1Uとし、平坦部のグラス皮膜の嵌入構造の末端のうち、板厚方向最深にある末端を通り、L1Uに平行な線をL1Lとする。
 溝の最深部(溝の輪郭で板厚方向最深となる点)のグラス皮膜表面を通りL1Uに平行な線をL2Uとする。また、溝の最深部近傍のグラス皮膜嵌入構造の末端のうち板厚方向最深にある末端を通りL2Uに平行な線をL2Lとする。
 平坦部のグラス皮膜厚さt1はL1UからL1Lまでの距離で、溝の最深部のグラス皮膜厚さt2はL2UからL2Lまでの距離で、それぞれ定義する。
 母材鋼板の平坦部のグラス皮膜の厚さt1は、図2で示すようにグラス皮膜の表面からグラス皮膜嵌入構造の末端までの距離、すなわち平坦部におけるグラス皮膜嵌入深さの最大値である。
 溝の凹部において、溝の最深部のグラス皮膜厚さt2は、図2に示すように溝の最深部のグラス皮膜の表面からグラス皮膜の嵌入構造の末端までの距離、すなわち溝最深部におけるグラス皮膜嵌入深さの最大値である。
 グラス皮膜の厚さは、例えば、鋼板断面を研磨した後、光学顕微鏡、またはSEMにて観察して、測定することができる。グラス皮膜嵌入深さを測定するための観察範囲は、溝を挟んで、溝幅と同程度の距離を含む範囲とすればよい。すなわち観察範囲は、溝長手方向に垂直な断面において、圧延方向の長さが溝を挟んで両側に溝幅分を確保し(すなわち溝を中心として溝幅の3倍以上の長さ)で、板厚方向の長さが溝深さの2倍程度にするとよい。平坦部におけるグラス皮膜厚さは、溝の片側(図2で溝を挟んで左側または右側)ごとに溝縁からの距離が溝幅Wの1/2以上で溝幅Wまでの範囲で測定し、これらの平均値(算術平均値)を平坦部のグラス皮膜の厚さとする。
 次に、母材鋼板の平坦部のグラス皮膜厚さt1に対して、溝の最深部のグラス皮膜厚さt2が薄いことによる鉄損改善効果について説明する。
 方向性電磁鋼板における磁区細分化は、鋼板表面に生じた磁極により静磁エネルギーが高くなり、これを解消するために新たに180°磁壁が生成して磁区幅が狭くなることで実現する。磁区幅が狭くなると鋼板が磁化された際の磁壁の移動距離が短くなり、磁壁移動時のエネルギーロスが低減し渦電流損が低減する。
 また、高温中で鋼板と膨張係数の異なるグラス皮膜を塗布して焼き付けることにより、冷却後は鋼板とグラス皮膜の膨張係数の違いから、圧延方向に引張り張力が印加されることで磁区が細分化され渦電流損が改善される。
 さらに、グラス皮膜は非磁性の酸化物からなり鋼板とは透磁率が異なるので、その界面に磁極が生成し磁区が細分化される。そのため、グラス皮膜は磁極発生の起点となり、磁区細分化を促すことで渦電流損を低減すると考えられる。
 溝部では圧延方向に張力がかかりにくいものの、圧延方向に直角方向の溝を形成すると溝の凹部表面に磁極が発生し、グラス皮膜による磁極発生との相乗効果により、磁区の細分化が促進される。
 一方、グラス皮膜は非磁性酸化物であることからグラス皮膜が厚い場合、磁束密度が低下し、その結果、ヒシテリシス損が悪化する。電磁鋼板における鉄損はヒステリシス損と渦電流損の総和であり、グラス皮膜は鉄損が最小になるように制御することが望ましい。
 そこで本発明者らは、母材鋼板表面を上方から見たとき面積の大部分を占める平坦部のグラス皮膜厚さを厚くして磁極発生起点を確保し磁区細分化を促進させる一方で、鋼板溝では溝自体が磁極発生起点として機能するため、グラス皮膜による磁極発生起点は不要である。すなわち鋼板溝では、磁束密度低下を抑制するために溝の最深部でのグラス皮膜を薄くすることで、鋼板全体で効率良く磁極発生起点を確保することで鉄損が改善されることを見出した。
 すなわち、母材鋼板の平坦部のグラス皮膜厚さt1、溝の最深部のグラス皮膜厚さt2が式(1)のt2/t1<1.00を満たすように制御するとよいことを見出した。これにより、溝形成部に非磁性酸化物からなるグラス皮膜が母材鋼板の平坦部のグラス皮膜よりも少なく制御される結果、磁束密度の低下を抑制し、ヒステリシス損が悪化せず、全鉄損が向上する。t2/t1は、好ましくは0.95以下、0.90以下、0.85以下、0.80以下、0.75以下、0.70以下、0.65以下、0.60以下、0.55以下、または0.50以下とするとよい。t2/t1の下限は特に限定せず、0であってもよい。現実的には、t2/t1は0.05以上であってもよい。
<グラス皮膜の嵌入部の厚さ>
 さらに、本電磁鋼板では、母材鋼板の平坦部のグラス皮膜の嵌入部の厚さ(深さ)をs1、溝の最深部のグラス皮膜の嵌入部の厚さ(深さ)をs2としたとき、式(2)の関係式を満たすことが好ましい。
  s2/s1<1.00 ・・・ 式(2)
 グラス皮膜が嵌入構造を呈することは前述したとおりであり、いわゆる植物の根のようにグラス皮膜の末端が母材鋼板中に伸びている構造のことをいう。グラス皮膜の嵌入部とは、グラス皮膜が鋼板中に植物の根のように嵌入している部分のことを指し、嵌入部の厚さとは、嵌入部が嵌入した鋼板厚さ方向の深さのことを言う。
 鋼板平坦部でのグラス皮膜の嵌入部の厚さs1は、母材鋼板の平坦部のグラス皮膜が表面から連続して観察される部分の最深部と、孤島のように見えるグラス皮膜の嵌入部の末端を含むグラス皮膜最深部の距離である。
 溝の最深部におけるグラス皮膜の嵌入部の厚さs2は、母材鋼板の溝の最深部のグラス皮膜が表面から連続して観察される部分の最深部と、グラス皮膜の嵌入部の末端を含むグラス皮膜最深部の距離である。
 各部のグラス皮膜の嵌入部厚さs1、s2の測定方法について図2にて説明する。図2で示すように、鋼板の平坦部4のグラス皮膜の嵌入構造の末端9のうち、グラス皮膜8が表面から連続して観察される部分の最深部を通り、L1Uに平行な線をL1Mとする。また、溝の最深部近傍のグラス皮膜嵌入構造の末端のうち、グラス皮膜が表面から連続して観察される部分の最深部を通り、L2Uに平行な線をL2Mとする。平坦部のグラス皮膜の嵌入部厚さs1はL1UからL1Mまでの距離で、溝の最深部のグラス皮膜の嵌入部厚さs2はL2UからL2Mまでの距離で、それぞれ定義する。
 グラス皮膜の嵌入部厚さは、例えば、グラス皮膜の厚さと同様に、鋼板断面を研磨した後、光学顕微鏡、またはSEMにて観察して、測定することができる。グラス皮膜の嵌入部厚さを測定するための観察範囲は、グラス皮膜の厚さと同様である。また、平坦部での嵌入部厚さの求め方も、グラス皮膜の厚さと同様に、溝を挟んで両側の平坦部での測定値の平均とする。
 母材鋼板の平坦部のグラス皮膜の嵌入部の厚さs1に対して、溝の最深部のグラス皮膜の嵌入部の厚さs2が薄いことによる鉄損改善効果については次のように推定される。すなわち、グラス皮膜の嵌入構造は、母材鋼板の表面側に存在する連続したグラス皮膜よりも、より磁極発生起点になりやすく、その分磁区細分化効果も大きくなると推定される。一方、レーザ溝凹部では、溝自体が磁極発生の起点となっており、溝よりも深い側にグラス皮膜の嵌入部が形成されても、磁極発生効果が小さいだけでなく、かえって磁束密度が低下しヒシテリシス損が悪化する。さらに嵌入部が深く入り込むと複雑な構造の嵌入部が形成され、その分磁気特性の悪化要因になる可能性がある。
 そこで、母材鋼板の平坦部のグラス皮膜の嵌入部の厚さs1、溝の最深部のグラス皮膜の嵌入部の厚さs2がs2/s1<1.00を満たすように制御するとよいことを見出した。これにより溝の最深部のグラス皮膜嵌入部を薄くして嵌入構造の複雑化を抑制できるので、より磁束密度の低下を抑制し全鉄損を向上させることができる。s2/s1の値は、好ましくは0.95以下、0.90以下、0.85以下、0.80以下、0.75以下、0.70以下、0.65以下、0.60以下、0.55以下、または0.50以下とするとよい。s2/s1の下限は特に限定せず、0であってもよい。現実的には、s2/s1は0.05以上であってもよい。
<製造方法>
 はじめに、公知の方法により、本電磁鋼板用の冷延鋼板を製造する。鋼板成分や冷延鋼板の製造方法は特に限定されるものではなく、公知の方法、例えば特許文献6に記載の鋼板成分や鋼板製造方法を採用することができる。
<脱炭焼鈍>
 次に、公知の方法で、脱炭焼鈍を施すことができる、この時必要に応じて窒化焼鈍を行ってもよい。
 脱炭条件は、公知の条件を採用することができる。例えば、鋼板を850℃まで昇温して、60秒保定した後冷却し、脱炭雰囲気は水素-不活性ガス雰囲気でPH2O/PH2が0.15~0.65の範囲とするとよい。特にPH2O/PH2が0.33付近で良好な特性が得られる。窒化も公知の方法を採用することができる。窒化量は、例えば50~400ppmの範囲にすることができるが、特に200ppm付近で良好な特性が得られる。
<溝形成工程:レーザによる溝形成>
 脱炭焼鈍もしくは脱炭焼鈍後に窒化焼鈍を施した鋼板に、レーザを照射することにより、圧延方向に交差する方向に複数の溝を所定間隔で形成する(溝形成工程)。レーザ照射条件のうちレーザ光源の種類、レーザ出力、レーザ走査速度、レーザ照射時の鋼板移動速度は特に限定しないが、溝幅W、溝深さD、溝の所定間隔(溝間隔P)が規定の範囲になる条件を適宜選択すればよい。
[レーザ光源]
 レーザ光源としては、例えばファイバレーザ、YAGレーザ、半導体レーザ、またはCO2レーザ等の一般的に工業用に用いられる高出力レーザを使用できる。溝を安定的に形成することができれば、パルスレーザでも連続波レーザでもよい。
[レーザ出力]
 レーザ出力が小さすぎると、所望の溝を形成するためにはレーザ走査速度が著しく低下して、工業生産性が低下するため、200W以上とするとよい。好ましくは1000W以上、さらに好ましくは1500W以上である。また、レーザ出力が大きすぎると、電源容量が大きくなり、設備コストが莫大となるため、工業的に現実的ではないため、3000W以下とするとよい。好ましくは2800W以下、さらに好ましくは2500W以下である。
[レーザ走査速度]
 レーザ走査速度は、遅すぎると生産性が低下するため、5m/s以上とする。好ましくは20m/s以上、さらに好ましくは40m/s以上である。また、レーザ走査速度は、速すぎると高出力が必要となり設備コストが増大するため、100m/s以下とする。好ましくは80m/s以下、さらに好ましくは60m/s以下である。
[レーザ光集光スポット形状]
 レーザ光の照射条件として、例えば、レーザ光の圧延方向における集光スポット径dLを5~100μm、レーザ光の板幅方向における集光スポット径dCを5~100μm、レーザ出力を200~3000W、レーザ走査速度を5m/s~100m/sとし、式(3)を満たすとよい。
 0.10≦dL/dC<1.00 ・・・ 式(3)
 dL/dCが1以上の場合、レーザスポット径が圧延方向に長楕円型となり、レーザ溝形状の制御が困難になる。スポット径比dL/dCは1.00より小さくするとよく、その上限は、好ましくは0.90以下、0.80以下、0.70以下、0.60以下、または0.50以下にするとよい。
 dL/dCが0.10よりも小さい場合、レーザスポット径が板幅方向に超長楕円となり、レーザ溝形状の制御が困難になる。従って、スポット径比dL/dCは0.1より大きい方がよく、その下限は、好ましくは0.15以上、または0.20以上にするとよい。
 レーザ照射条件が、溝凹部のグラス皮膜の厚さ制御に寄与する機構は次のように考えられる。
 まず、レーザ照射のない領域(平坦部)においては、脱炭焼鈍で母材鋼板の内部に生成する内部酸化層SiOと仕上焼鈍前に鋼板表面に塗布された焼鈍分離材MgOが仕上焼鈍工程における1200℃の高温焼鈍で反応してMgSiOからなる酸化物であるグラス皮膜を生成する。
 一方,レーザ溝部においては、レーザ照射前の脱炭焼鈍で形成した内部酸化層をレーザにて除去するため溝内面に地鉄が露出した状態となる。この時、溝側面に沿って溶融部が残存するが、その溶融部は凝固時に配向成長し柱状結晶が生成する。柱状結晶が発達した場合、柱状結晶の粒界が酸素の拡散パスとなり,内部酸化層が形成される。続く仕上げ焼鈍において,焼鈍分離材MgOスラリーの水分により地鉄部分が酸化するが、この時柱状結晶の粒界に沿って酸素が拡散して酸化し,溝側面に内部酸化層(SiO)が形成する。新たに溝部に沿って形成したSiOは平坦部と同様にMgOと反応し、グラス皮膜が形成する。
 そこでスポット径比dL/dCを1.00未満にすることで、レーザスポット形状が圧延方向の直角方向(板幅方向)に長楕円形にした場合は、鋼板への入熱が小さくなり、溝側面に沿って柱状結晶が薄く生成し,拡散パスが限定されて内部酸化層が発達しない。その結果,溝最深部のグラス皮膜は薄く形成される。
 また、t2/t1<0.90に制御するためには、スポット径比dL/dCの上限を0.90とするとよく、好ましくは0.80以下、0.70以下、0.60以下、または0.50以下にするとよい。
[アシストガス]
 レーザ光の照射と同時に、アシストガスを、レーザ光が照射される鋼板の部位に吹き付ける。アシストガスは、レーザ照射によって鋼板から溶融または蒸発した成分を除去する役割を担う。アシストガスの吹き付けにより、レーザ光が安定的に鋼板に到達するため、溝が安定的に形成される。アシストガスの流量は、例えば、毎分10~1000リットルとすることが好ましい。また、アシストガスは、空気または不活性ガスが好ましい。
<焼鈍分離剤塗布>
 その後、鋼板の表面に焼鈍分離剤を塗布する。後述する仕上げ焼鈍は鋼板をコイル状に巻き取った状態で行われる場合がある。このような状態で仕上げ焼鈍を行った場合、コイルが焼き付いてコイルを巻きほどくことが困難になることがある。そこで、本実施形態では、仕上げ焼鈍後にコイルを巻きほどくことができるように、焼鈍分離剤を塗布する。ここで、焼鈍分離剤の主成分はMgOであり、焼鈍分離剤中のMgOが仕上げ焼鈍時に内部酸化層中のSiOと固相反応し、グラス皮膜を生成する。焼鈍分離剤の組成は公知のものを採用することができ、例えば、MgO:100質量部、TiO:5質量部とし、添加物としては、例えばFeClを塩素で200ppmとなるよう添加したものとすることができる。
 溝部のグラス皮膜の厚さを小さくするために、焼鈍分離剤を鋼板表面に塗布する際に必要に応じて乾燥した後の水分含有量は調整するとよい。焼鈍分離剤の水分含有量が少なすぎると、グラス皮膜形成が不十分となって外観不良となるので0.5%以上にするとよい。一方、焼鈍分離剤の水分含有量が多すぎると、グラス皮膜厚さが過大となって磁気特性が劣化する場合があるので6.0%以下にするとよい。すなわち焼鈍分離剤の水分含有量は0.5%以上6.0%以下であるとよい。
 焼鈍分離剤の水分含有量は、例えば、仕上焼鈍前の鋼板表面から焼鈍分離剤を回収して重量を測定し、1000℃に昇温した後に再び重量を測定し、昇温前後の重量差によって算出することができる。1000℃に昇温する際、るつぼを用いてもかまわない。
<仕上げ焼鈍>
 仕上げ焼鈍工程は、二次再結晶焼鈍工程とも称される焼鈍であり、鋼板組織の二次再結晶を促すと同時にグラス皮膜を生成する工程である。仕上げ焼鈍工程は、焼鈍分離剤を塗布した鋼板をコイル状に巻き取って、温度1150~1250℃で10~30時間保定したのち冷却する工程で形成される。
 仕上げ焼鈍炉に供給される雰囲気ガスの露点温度は0℃以下であるとよい。露点温度が0℃超の場合、グラス皮膜厚さが過大となって、磁気特性が劣化する場合があるので好ましくない 。
<張力皮膜形成>
 グラス皮膜のみでも鋼板に張力を付与できるが、磁区制御効果を高めるため、グラス皮膜の上には通常張力皮膜(絶縁皮膜)を形成する。張力皮膜は、例えば、リン酸アルミニウムを主成分とするものとすることができ、厚さを1μmとすることができる。
 次に本発明の実施例について説明する。実施例での条件は、本発明の一実施態様であり、本発明はこの一実施態様に限定されるものではない。
<実施例1>
 Si:3.3質量%、Mn:0.10質量%、S:0.006質量%、C:0.060質量%、酸可溶解Al:0.027質量%、N:0.008質量%を含み残部Feおよび不純物であるスラブを素材として公知の方法にて熱間圧延後、熱延板焼鈍を行い、冷間圧延で0.22mmを最終板厚とする鋼板A1~A11およびa1~a10を得た。
 冷延鋼板を脱炭焼鈍し、さらに窒化処理を施した。脱炭焼鈍条件は、鋼板を850℃まで昇温した後、60秒保定して冷却した。脱炭雰囲気は水素-窒素雰囲気で、PH2O/PH2を0.15~0.65の範囲で調整した。また、窒化量は200ppmとした。
 続いて、鋼板の表面にレーザを照射し、圧延方向に交差する方向に延びる複数の溝を、圧延方向に沿って1~40mm間隔で形成した。溝形成方向は、鋼板のC方向(鋼板幅方向)に対してL方向(圧延方向)に0~45°傾斜した方向とし、溝深さは5~45μm、溝幅は15~400μmとした。
 レーザ光の照射条件は、レーザ出力が2000W、レーザ光の圧延方向における集光スポット径が5~100μm、レーザ光の板幅方向における集光スポット径が5~100μm、レーザ走査速度が5~100m/sの範囲で調整した。
 レーザ照射の際、レーザにより溶融、蒸発した鋼板の金属を効率的に除去するために空気のアシストガスとして空気を100リットル/分で吹き付けた。
 その後、MgOを主体とする焼鈍分離剤を、塗布量が片面4g/mとなるよう塗布した。焼鈍分離剤の組成は、MgO:100質量部、TiO:5質量部に対し、FeClを塩素で200ppmとなるよう添加した。焼鈍分離剤の含水量は、2.5%であった。
 続いて、焼鈍分離剤を塗布した鋼板をコイル状に巻き取って、1200℃で20時間保定したのち冷却し、表面にグラス皮膜を形成した。仕上げ焼鈍炉に供給される雰囲気ガスの露点温度は、-20℃であった。さらに、リン酸アルミニウムを主成分とする張力皮膜を厚さ1μmとなるよう形成し方向性電磁鋼板を得た。この際の張力は、グラス皮膜を含めて圧延方向に対して12MPaであった。
 張力絶縁皮膜付与後の鉄損W17/50(1.7T、50Hzの励磁条件下で測定されたエネルギー損失)と磁束密度B8(磁化力800A/mにおける磁束密度)を測定した。その結果を表1に示す。
 発明例A1~A11と比較例a1~a10において、溝の長手方向との成す角θの絶対値が0~40°、前記溝の幅Wが20~300μm、前記溝の深さDが10~40μm、前記圧延方向における前記溝の間隔Pが1.0~30mmの範囲にあり、同時に式(3)を満たす発明例A1~A11では鉄損が0.075W/kgよりも良好である。
<実施例2>
 Si:3.3質量%、Mn:0.10質量%、S:0.006質量%、C:0.060質量%、酸可溶解Al:0.027質量%、N:0.008質量%を含み残部Feおよび不純物であるスラブを素材として公知の方法にて熱間圧延後、熱延板焼鈍を行い、冷間圧延で0.22mmを最終板厚とする鋼板B1~B4およびb1~b4を得た。
 冷延鋼板を脱炭焼鈍し、さらに窒化処理を施した。脱炭焼鈍条件は、鋼板を850℃まで昇温した後、60秒保定して冷却した。脱炭雰囲気は水素-窒素雰囲気で、PH2O/PH2を0.10~0.80の範囲で調整した。また、窒化量は200ppmとした。
 続いて、鋼板の表面にレーザを照射し、圧延方向に交差する方向に延びる複数の溝を、圧延方向に沿って5mm間隔で形成した。溝形成方向は、鋼板のC方向(鋼板幅方向)に対してL方向(圧延方向)に10°傾斜した方向とし、溝深さは20μm、溝幅は50μmとした。
 レーザ光の照射条件は、レーザ出力が2000W、レーザ光の圧延方向における集光スポット径が5~100μm、レーザ光の板幅方向における集光スポット径が5~100μm、レーザ走査速度が5~100m/sの範囲で調整した。
 レーザ照射の際、レーザにより溶融、蒸発した鋼板の金属を効率的に除去するためにアシストガスとして空気を100リットル/分で吹き付けた。
 その後、MgOを主体とする焼鈍分離剤を、塗布量が片面4g/mとなるよう塗布した。焼鈍分離剤の組成は、MgO:100質量部、TiO:5質量部に対し、FeClを塩素で200ppmとなるよう添加した。焼鈍分離剤の含水量は、1.5%であった。
 続いて、焼鈍分離剤を塗布した鋼板をコイル状に巻き取って、1200℃で20時間保定したのち冷却し、表面にグラス皮膜を形成した。仕上げ焼鈍炉に供給される雰囲気ガスの露点温度は、-10℃であった。さらに、リン酸アルミニウムを主成分とする張力皮膜を厚さ1μmとなるよう形成し方向性電磁鋼板を得た。この際の張力は、グラス皮膜を含めて圧延方向に対して12MPaであった。
 張力絶縁皮膜付与後の鉄損W17/50(1.7T、50Hzの励磁条件下で測定されたエネルギー損失)と磁束密度B8(磁化力800A/mにおける磁束密度)を測定した。その結果を表2に示す。
 発明例B1~B4と比較例b1~b4において、鉄損に影響する溝角度、溝深さ、溝間隔、溝幅の条件は全て同一であるが、比較例では集光スポット径が式(3)を満たさず、鉄損が劣位となった。
<実施例3>
 実施例2にて作成したサンプルにおいて、母材鋼板の平坦部のグラス皮膜の嵌入部厚さs1と、溝の凹部において溝の最深部のグラス皮膜の嵌入部厚さs2を測定した結果を表2に示す。鉄損が良好となるのは、t2/t1<1.00でありs2/s1<1.00の関係を満たす範囲であった。
 本発明は、例えばトランス用巻き芯など、方向性電磁鋼板を利用する産業用機器に利用することができる。
 1 母材鋼板
 2 溝
 3 母材鋼板
 4 平坦部
 8 グラス皮膜
 9 グラス皮膜嵌入部
 θ 母材鋼板の圧延方向に直交する方向(板幅方向)と溝の長手方向との成す角度
 W 溝の幅
 D 溝の深さ
 P 溝の間隔
 t1 母材鋼板の平坦部のグラス皮膜厚さ
 t2 溝の最深部のグラス皮膜厚さ

Claims (3)

  1.  鋼板の表面に複数の溝を有し、
    前記表面上にグラス皮膜とを備える方向性電磁鋼板であって、
    前記鋼板の圧延方向および板厚方向に直交する方向と、前記溝の長手方向との成す角θの絶対値が0~40°、前記溝の幅Wが20~300μm、前記溝の深さDが10~40μm、前記圧延方向における前記溝の間隔Pが1.0~30mmであり、
    前記表面の前記溝以外の部分である平坦部のグラス皮膜の厚さをt1、前記溝の最深部のグラス皮膜の厚さをt2としたとき、式(1)の関係式を満たす
    ことを特徴とする方向性電磁鋼板。
     t2/t1<1.00  ・・・ 式(1)
  2.  前記方向性電磁鋼板において、前記平坦部のグラス皮膜の嵌入部の厚さをs1、前記溝の最深部のグラス皮膜の嵌入部の厚さをs2としたとき、式(2)の関係式を満たすことを特徴とする請求項1記載の方向性電磁鋼板。
     s2/s1<1.00  ・・・ 式(2)
  3.  請求項1に記載の方向性電磁鋼板を製造する方法であって、
    脱炭焼鈍後かつ仕上げ焼鈍前の鋼板の表面にレーザで溝を形成する溝形成工程を含み、
    前記溝形成工程において、前記鋼板の圧延方向における前記レーザの集光スポット径dLと板幅方向における前記レーザの集光スポット径dCが式(3)を満たす
    ことを特徴とする方向性電磁鋼板の製造方法。
     0.10≦dL/dC<1.00 ・・・ 式(3)
PCT/JP2023/036262 2022-10-04 2023-10-04 方向性電磁鋼板およびその製造方法 WO2024075789A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-160270 2022-10-04
JP2022160270 2022-10-04

Publications (1)

Publication Number Publication Date
WO2024075789A1 true WO2024075789A1 (ja) 2024-04-11

Family

ID=90608042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036262 WO2024075789A1 (ja) 2022-10-04 2023-10-04 方向性電磁鋼板およびその製造方法

Country Status (1)

Country Link
WO (1) WO2024075789A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171130A1 (ja) * 2015-04-20 2016-10-27 新日鐵住金株式会社 方向性電磁鋼板
WO2019156127A1 (ja) * 2018-02-09 2019-08-15 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
WO2022013960A1 (ja) * 2020-07-15 2022-01-20 日本製鉄株式会社 方向性電磁鋼板および方向性電磁鋼板の製造方法
WO2023195466A1 (ja) * 2022-04-04 2023-10-12 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
WO2023195470A1 (ja) * 2022-04-04 2023-10-12 日本製鉄株式会社 方向性電磁鋼板及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171130A1 (ja) * 2015-04-20 2016-10-27 新日鐵住金株式会社 方向性電磁鋼板
WO2019156127A1 (ja) * 2018-02-09 2019-08-15 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
WO2022013960A1 (ja) * 2020-07-15 2022-01-20 日本製鉄株式会社 方向性電磁鋼板および方向性電磁鋼板の製造方法
WO2023195466A1 (ja) * 2022-04-04 2023-10-12 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
WO2023195470A1 (ja) * 2022-04-04 2023-10-12 日本製鉄株式会社 方向性電磁鋼板及びその製造方法

Similar Documents

Publication Publication Date Title
KR100297046B1 (ko) 매우철손이낮은방향성전자강판과그제조방법
JP6597940B1 (ja) 方向性電磁鋼板及びその製造方法
JP6915689B2 (ja) 方向性電磁鋼板及びその製造方法
JP7299511B2 (ja) 方向性電磁鋼板の製造方法
JP5130488B2 (ja) 磁気特性および被膜密着性に優れた方向性電磁鋼板およびその製造方法
WO2017111555A1 (ko) 방향성 전기강판 및 그의 제조 방법
CN100374601C (zh) 在薄膜粘附性方面极优越的晶粒取向性电工硅钢片及其制造方法
JP7235058B2 (ja) 方向性電磁鋼板の製造方法
WO2023195466A1 (ja) 方向性電磁鋼板及びその製造方法
WO2023195470A1 (ja) 方向性電磁鋼板及びその製造方法
JPH10130726A (ja) 磁束密度が高い低鉄損鏡面一方向性電磁鋼板の製造方法
WO2024075789A1 (ja) 方向性電磁鋼板およびその製造方法
KR102542971B1 (ko) 방향성 전자 강판 및 그 제조 방법
JP7299512B2 (ja) 方向性電磁鋼板の製造方法
JP7315857B2 (ja) 方向性電磁鋼板の製造方法
JP2003342642A (ja) 磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法
JP6003197B2 (ja) 磁区細分化処理方法
WO2024096082A1 (ja) 方向性電磁鋼板
JP2022022494A (ja) 方向性電磁鋼板
WO2024075788A1 (ja) 方向性電磁鋼板およびその製造方法
JP2003301272A (ja) 低鉄損方向性電磁鋼板の製造方法
JP2001303131A (ja) 表面欠陥が極めて少なくかつ磁気特性に優れる高磁束密度方向性電磁鋼板の製造方法
WO2024111642A1 (ja) 方向性電磁鋼板及びその製造方法
WO2024111612A1 (ja) 方向性電磁鋼板
JP7364931B2 (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874914

Country of ref document: EP

Kind code of ref document: A1