WO2024074007A1 - 一种连续提锂单元及其应用 - Google Patents

一种连续提锂单元及其应用 Download PDF

Info

Publication number
WO2024074007A1
WO2024074007A1 PCT/CN2023/078477 CN2023078477W WO2024074007A1 WO 2024074007 A1 WO2024074007 A1 WO 2024074007A1 CN 2023078477 W CN2023078477 W CN 2023078477W WO 2024074007 A1 WO2024074007 A1 WO 2024074007A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium extraction
continuous
electrode
extraction unit
Prior art date
Application number
PCT/CN2023/078477
Other languages
English (en)
French (fr)
Inventor
赖学明
陈传勋
李生康
肖文建
董锐
周清华
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024074007A1 publication Critical patent/WO2024074007A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/02Electrolytic production, recovery or refining of metals by electrolysis of solutions of light metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Definitions

  • the invention relates to the technical field of extraction metallurgy, and in particular to a continuous lithium extraction unit and application thereof.
  • Lithium and lithium compounds such as lithium chloride, lithium carbonate, lithium hydroxide and organic lithium compounds are widely used in high-energy batteries, aerospace, nuclear power generation and other fields, and are of great significance to economic development. For example, with the rapid development of science and technology and the sharp increase in energy demand, the supply of energy faces great challenges. The use of clean energy such as nuclear energy and solar energy is imminent. In the process of using clean energy, energy storage batteries are needed. Among various energy storage batteries, lithium (ion) batteries stand out because of their excellent performance. Lithium is the main material (positive electrode, electrolyte) of lithium (ion) batteries, so the extraction/repetition of lithium will help promote the development of high-energy batteries and new energy applications.
  • Salt lake lithium resources account for more than 69% of the world's industrial reserves of lithium resources. Extracting lithium from salt lake brine is one of the methods to compete for strategic energy high ground.
  • the methods that have been realized to extract lithium from brine mainly include evaporation crystallization, precipitation, extraction, adsorption, calcination, membrane separation, electrochemical lithium extraction, etc.
  • electrochemical lithium extraction technology as a new type of lithium separation and extraction technology, has the advantages of green environmental protection, high lithium extraction efficiency, and good impurity separation effect, and has received more and more attention and research.
  • electrochemical lithium extraction devices and lithium extraction methods there are relatively few studies on electrochemical lithium extraction devices and lithium extraction methods.
  • the device consists of a lithium desorption tank and a lithium adsorption tank separated by an anion membrane.
  • the feed direction of the raw material liquid and the lithium-rich liquid needs to be switched, that is, the original lithium desorption tank is switched to the lithium adsorption tank, and the lithium adsorption tank is switched to the lithium desorption tank.
  • the lithium desorption and adsorption tanks need to be stopped to wash, and the lithium separation and extraction efficiency is low and the water consumption is high.
  • the lithium extraction system is relatively complex, and only one electrode is transferred from the extraction tank to the recovery tank at a time, so the lithium extraction efficiency is low and the energy consumption is high.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a continuous lithium extraction unit, which can realize continuous electrolytic lithium extraction and improve the lithium extraction efficiency.
  • the present invention also provides a continuous lithium extraction system comprising the continuous lithium extraction unit.
  • the present invention also provides a lithium extraction method using the above-mentioned continuous lithium extraction unit or continuous lithium extraction system.
  • the present invention also provides application of the lithium extraction method in lithium extraction from seawater and post-processing of lithium ion batteries.
  • a continuous lithium extraction unit comprising:
  • anion membrane wherein the anion membrane is in movable contact with the side wall of the cylindrical chamber and divides the cylindrical chamber into a first chamber and a second chamber; the side wall of the first chamber includes a first electrode; the side wall of the second chamber includes a second electrode; the first electrode and the second electrode include a lithium storage material;
  • a transmission rod controls the rotation of the cylindrical chamber.
  • the contact mode between the anion membrane and the side wall of the cylindrical chamber cooperates with the transmission rod to change the relative positions of the first electrode, the second electrode, the first chamber and the second chamber;
  • the presence of the lithium storage material can satisfy the adsorption or desorption of lithium in the first electrode or the second electrode;
  • the continuous lithium extraction unit when a certain electrode (for example, the first electrode) completes lithium adsorption in a chamber (for example, the first chamber), it can be transferred to another chamber for lithium desorption through the rotation of the cylindrical chamber, and at the same time, the other electrode moves to adsorb lithium; in sequence, continuous lithium extraction is achieved only by rotating the side wall of the cylindrical chamber, which simplifies the operation steps and significantly improves the lithium extraction efficiency.
  • a certain electrode for example, the first electrode
  • the continuous lithium extraction unit provided by the present invention does not need to include a liquid path switching device during continuous operation, which simplifies the structure of the continuous lithium extraction unit and makes it easier to commercialize.
  • the lithium storage material is capable of accommodating the insertion and extraction of lithium ions.
  • the lithium storage material includes at least one of common lithium-ion battery positive electrode materials and negative electrode materials.
  • the lithium storage material includes olivine-structured lithium iron phosphate (LiFePO 4 , LFP), spinel-structured lithium manganese oxide (LiMn 2 O 4 , LMO), spinel-structured lithium nickel manganese oxide (LiNi x Mn 2-x O 4 , LNMO), and layered positive electrode materials (LCO, LNO or NCM).
  • LiFePO 4 , LFP olivine-structured lithium iron phosphate
  • LiMn 2 O 4 , LMO spinel-structured lithium manganese oxide
  • LiNi x Mn 2-x O 4 , LNMO spinel-structured lithium nickel manganese oxide
  • LCO layered positive electrode materials
  • the first electrode is an arc-shaped electrode, forming a side wall of the first chamber.
  • the first electrode occupies a portion of a side wall of the first chamber.
  • the second electrode is an arc-shaped electrode, forming a side wall of the second chamber.
  • the second electrode occupies a portion of a side wall of the second chamber.
  • the continuous lithium extraction unit further comprises an insulating component disposed on the side wall of the cylindrical chamber and disposed between the first electrode and the second electrode. Short circuit.
  • the insulating component also serves to connect the first electrode and the second electrode to form the cylindrical chamber.
  • the anion membrane passes through the axis of the cylindrical chamber.
  • the first chamber and the second chamber are both semi-cylindrical chambers.
  • the continuous lithium extraction unit further comprises a sealing component disposed between the side wall of the cylindrical chamber and the anion membrane, thereby preventing the contents in the first chamber and the second chamber from being contaminated with each other during the rotation of the cylindrical chamber (both chambers are liquid-free).
  • the sealing member connects the insulating member of the cylindrical chamber and the anion membrane.
  • the continuous lithium extraction unit further comprises a sealing plate for sealing the cylindrical chamber.
  • the sealing plate enables the first chamber and the second chamber to form two closed spaces.
  • the sealing plate is made of an insulating material.
  • a sealing plate on one side of the cylindrical chamber is provided with a lithium-rich liquid inlet connected to the second chamber; and a raw material liquid outlet connected to the first chamber.
  • a sealing plate on the other side of the cylindrical chamber is provided with a lithium-rich liquid outlet connected to the second chamber; and a raw material liquid inlet connected to the first chamber.
  • the number of the transmission rods is ⁇ 1.
  • the transmission rod and the cylindrical chamber are connected by at least one of gear engagement and thread engagement, thereby achieving better transmission.
  • the transmission rod as a whole is at least one of a cylindrical screw rod and a quasi-cylindrical screw rod.
  • the transmission rod is made of insulating material, thereby avoiding any influence on the first electrode or the second electrode.
  • the continuous lithium extraction unit further includes a power supply system, wherein a cathode and an anode of the power supply system are respectively connected to the first electrode or the second electrode.
  • connection between the power supply system and the first electrode and the second electrode is a movable connection
  • the power supply system is provided with a switch to achieve the switching of the power supply electrode.
  • a continuous lithium extraction system comprising at least one continuous lithium extraction unit as described above, and an insulating shell accommodating the continuous lithium extraction unit.
  • the continuous lithium extraction system adopts all the technical solutions of the continuous lithium extraction unit of the above embodiment, it at least has all the beneficial effects brought by the technical solutions of the above embodiment.
  • the insulating shell is a supporting structure of the continuous lithium extraction system, wherein the insulation ensures that it is not affected by the external circuit.
  • the insulating housing is cylindrical, so that it is more convenient for the cylindrical chamber to rotate under the drive of the transmission rod.
  • two sections of the insulating housing are provided with covers to prevent external substances from affecting the movement of the cylindrical chamber, for example, to prevent mechanical jamming caused by external debris.
  • the transmission rod passes through the cover, so that the transmission rod can be driven by an external circuit, and the cover can also support the transmission rod.
  • the cylindrical chamber passes through the cover, so that the cover can form a supporting effect for the cylindrical chamber.
  • the side walls of the cylindrical chambers of the plurality of continuous lithium extraction units do not contact each other, thereby avoiding mutual influence of electrodes in different continuous lithium extraction units.
  • the number of the continuous lithium extraction units is 10 to 25.
  • connection mode of the plurality of continuous lithium extraction units includes at least one of parallel connection and series connection.
  • a parallel connection can be used; conversely, if the lithium extraction efficiency needs to be improved as much as possible, multiple continuous lithium extraction units can be connected in series. At the same time, a mixed connection of series and parallel connection can also be used as needed.
  • the continuous lithium extraction system further includes an external raw material solution buffer tank and a lithium-rich solution buffer tank to achieve the circulation of the raw material solution and the lithium-rich solution.
  • the hydraulic retention time of the raw material solution and the lithium-rich solution in the continuous lithium extraction system is 3 to 5 hours, and preferably, the hydraulic retention time is about 4 hours.
  • a lithium extraction method is provided, using the continuous lithium extraction unit or the continuous lithium extraction system;
  • the lithium extraction method comprises the following steps:
  • the raw material solution is injected into the first chamber, the lithium-rich solution is injected into the second chamber, and the first electrode is used as the cathode and the second electrode is used as the anode to perform an electrochemical adsorption-desorption lithium extraction operation;
  • the mechanism of the lithium extraction method is:
  • the first electrode is a cathode
  • lithium ions in the raw material solution are embedded in the cathode, and lithium ions in the second electrode are released into the lithium-rich solution.
  • the lithium ions embedded in the first electrode will also be released into the lithium-rich solution, and the second electrode after the release will also contact the raw material solution to perform the lithium absorption step.
  • the lithium content in the raw liquid will decrease, and the lithium content in the lithium-rich liquid will increase.
  • the lithium extraction method adopts the continuous lithium extraction system or the continuous lithium extraction unit, so that the continuous extraction of lithium can be achieved through simple rotation and electrode switching, thereby improving production efficiency.
  • the raw material liquid and the lithium-rich liquid are not in contact with each other and there is no contamination between them, there is no need to clean the first chamber or the second chamber, which simplifies the operation steps of the lithium extraction process and reduces the water consumption, thereby facilitating industrialization.
  • the feed solution and the lithium-rich solution are injected continuously.
  • the raw material liquid is selected from at least one of lithium salt lake brine, underground brine or other lithium-containing solutions.
  • the content of lithium ions in the raw material solution is ⁇ 0.2 g/L; preferably, the content of lithium ions in the raw material solution is ⁇ 0.4 g/L.
  • the lithium-rich solution introduced is selected from a lithium chloride aqueous solution.
  • the concentration of the lithium chloride aqueous solution is ⁇ 0.1 g/L.
  • the concentration of the lithium chloride aqueous solution is ⁇ 1 g/L.
  • step S2 the rotation angle is 180°.
  • an application of the lithium extraction method in extracting lithium from a lithium-containing solution is proposed.
  • the lithium-containing solution includes at least one of seawater and lithium-ion battery leachate.
  • the actual meaning of “about” in the present invention is that the error is allowed to be within the range of ⁇ 2%, for example, about 100 is actually 100 ⁇ 2% ⁇ 100.
  • FIG1 is a side schematic diagram of a continuous lithium extraction unit in Example 1 of the present invention.
  • FIG2 is a schematic top view of the components of the continuous lithium extraction unit except the transmission rod in Example 1 of the present invention.
  • FIG3 is a side schematic diagram of the continuous lithium extraction system in Example 2 of the present invention.
  • FIG4 is a schematic diagram of the operating mechanism of the series continuous lithium extraction system in Example 2 of the present invention.
  • FIG5 is a schematic diagram of the operating mechanism of the parallel continuous lithium extraction system in Example 2 of the present invention.
  • This embodiment provides a continuous lithium extraction unit, the structural schematic diagram of which is shown in Figures 1 and 2. Specifically:
  • the continuous lithium extraction unit includes:
  • the cylindrical chamber 100, the arc-shaped first electrode 111, and the arc-shaped second electrode 121 are connected via an insulating member 130 to form a side wall of the cylindrical chamber 100;
  • the arc-shaped first electrode 111 and the arc-shaped second electrode 121 include a lithium storage material that can intercalate and deintercalate lithium ions.
  • the above-mentioned lithium storage material can be at least one of olivine-structured lithium iron phosphate ( LiFePO4 , LFP), spinel -structured lithium manganese oxide ( LiMn2O4 , LMO), spinel-structured lithium nickel manganese oxide ( LiNixMn2 - xO4 , LNMO), and layered positive electrode materials (LCO, LNO or NCM); LFP is selected in this embodiment.
  • Sealing plates 140 are provided at the openings at both ends of the cylindrical chamber 100, so that the cylindrical chamber 100 is surrounded by a closed space; the sealing plates 140 are made of insulating material;
  • the anion membrane 200 is disposed inside the cylindrical chamber 100 and passes through the axis of the cylindrical chamber 100 and is movably connected to the insulating component 130 via the sealing component 400;
  • the anion membrane 200 divides the cylindrical chamber 100 into a first chamber 112 and a second chamber 122;
  • the sealing plate 140 on one side of the cylindrical chamber 100 is provided with: a lithium-rich solution inlet 124 connected to the second chamber 122, and a raw material solution outlet 114 connected to the first chamber 112.
  • the sealing plate 140 on the other side of the cylindrical chamber 100 is provided with: a lithium-rich solution outlet 123 connected to the second chamber 122, and a raw material solution inlet 113 connected to the first chamber 112.
  • the transmission rod 300 is made of an insulating material, and the transmission rod 300 and the cylindrical chamber 100 are engaged with each other through threads, and the former controls the rotation of the latter through screw transmission.
  • This embodiment provides a continuous lithium extraction system integrated with the continuous lithium extraction unit provided in the embodiment, and the structural schematic diagram is shown in FIG3 .
  • the continuous lithium extraction system includes:
  • the insulating shell is in the shape of a cylinder with a cover.
  • the cylindrical cover is provided with a hole.
  • the transmission rod and the cylindrical chamber of the continuous lithium extraction unit pass through the hole to form positioning and support, and are connected to the external liquid circuit and circuit at the same time.
  • liquid paths of the multiple continuous lithium extraction units are connected in parallel, as shown in a specific schematic diagram in FIG4 ; that is, all the raw liquids pass through only one continuous lithium extraction unit.
  • the continuous lithium extraction system also includes an external raw material liquid buffer tank and a lithium-rich liquid buffer tank (not shown in the figure), wherein the raw material liquid buffer tank can buffer and store the raw material liquid discharged from the continuous lithium extraction system, and re-transport the buffered raw material liquid to the continuous lithium extraction system for processing.
  • This example adopts the parallel continuous lithium extraction system in Example 2 (a total of 9 continuous lithium extraction units, FIG4 is only a schematic diagram of the principle), and performs lithium extraction operation of high lithium concentration salt lake brine, and the specific steps are as follows:
  • the raw material liquid is continuously injected into the first chamber 112, the lithium-rich liquid is continuously injected into the second chamber 122, and the first electrode 111 is used as the cathode and the second electrode 121 is used as the anode to perform an electrochemical adsorption-desorption lithium extraction operation; during this process, the lithium in the raw material liquid is adsorbed into the cathode;
  • step S2 After the adsorption-desorption lithium extraction of step S1 has been running for 4 hours, the anion membrane 200 is kept fixed, and the side wall of the cylindrical chamber 100 is driven to rotate 180° by the transmission rod 300, and the electrodes of the power supply are switched at the same time, so that the first electrode 111 becomes the anode and contacts with the lithium-rich solution, and the second electrode 121 becomes the cathode and contacts with the raw material solution, and the electrochemical adsorption-desorption lithium extraction operation continues.
  • step S3 After the adsorption-desorption lithium extraction in step S2 is run for 4 hours, steps S1 to S2 are circulated and the produced raw material liquid and lithium-rich liquid are collected.
  • the hydraulic retention time of the raw material solution and the lithium-rich solution in the continuous lithium extraction system is about 4 hours, during which the flow state of the two solutions is turbulent.
  • compositions of the raw material solution, lithium-rich solution, and the produced raw material solution and lithium-rich solution are shown in Table 1.
  • Embodiment 3 performs lithium extraction operation from salt lake brine with medium and low lithium concentrations, and the specific difference from Embodiment 3 is that:
  • Example 2 The serial continuous lithium extraction system in Example 2 was used (there were 9 continuous lithium extraction units in total, and FIG4 is only a schematic diagram of the principle).
  • compositions of the raw material solution, lithium-rich solution, and the produced raw material solution and lithium-rich solution are shown in Table 2.
  • the lithium extraction method provided by the present invention when using a parallel continuous lithium extraction system, can effectively enrich and extract lithium from an aqueous solution, and minimize the entry of other components into the lithium-rich solution.
  • the continuous lithium extraction unit and continuous lithium extraction system provided by the present invention can effectively separate lithium from other components in an aqueous solution, whether for a raw material solution with a high lithium concentration or a raw material solution with a low lithium concentration, to achieve enrichment and recovery, and have broad application prospects in extracting lithium from seawater, and are also expected to recover lithium from the leachate of lithium-ion battery recycling materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Molecular Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种连续提锂单元及其应用,用于水溶液中的锂进行连续的回收和富集,上述连续提锂单元包括:圆筒状腔室;阴离子膜,阴离子膜和圆筒状腔室的侧壁可活动接触,且将圆筒状腔室分割为第一腔室和第二腔室;第一腔室的侧壁包括第一电极;第二腔室的侧壁包括第二电极;第一电极和第二电极中包括储锂物质;传动杆,传动杆控制圆筒状腔室的转动。本发明还公开了上述连续提锂单元的应用。

Description

一种连续提锂单元及其应用 技术领域
本发明涉及提取冶金技术领域,尤其是涉及一种连续提锂单元及其应用。
背景技术
锂及锂的化合物如氯化锂、碳酸锂、氢氧化锂和有机锂化物,在高能电池、航空航天、核能发电等领域有着广泛应用,对经济的发展具有重要的意义。例如,随着科技的迅猛发展及能源的需求量直线上升,能源的供应面对的挑战很大,核能、太阳能等清洁能源的利用迫在眉睫,清洁能源的利用过程中,需要储能电池的辅助,在各种储能电池中,锂(离子)电池因为其优异的性能脱颖而出。锂是锂(离子)电池的主要材料(正极、电解液),因此实现锂的提取/重复,有助于促进高能电池领域和新能源应用领域的发展。
盐湖锂资源占世界锂资源工业储量的69%以上,从盐湖卤水中提取锂是一种争夺能源战略高地的方法之一。现在已经实现的,从卤水中提取锂的方法主要有蒸发结晶法、沉淀法、萃取法、吸附法、煅烧法、膜分离法、电化学提锂等。其中,电化学提锂技术作为一种新型的锂分离提取技术,具有绿色环保、提锂效率高、杂质分离效果好等优点,受到越来越多的关注与研究。然而,目前针对电化学提锂装置及提锂方法的研究相对较少。例如,有技术实现了基于阴离子交换膜的盐湖卤水镁锂分离及富集装置,然而,该装置由一张阴离子膜分隔的锂脱附槽和锂吸附槽构成,在完成一个提锂周期后,需切换原料液与富锂液的进料方向即原锂脱附槽切换为锂吸附槽、锂吸附槽切换为锂脱附槽,且在切换过程中需停机对锂的脱、吸附槽进行洗涤,锂的分离提取效率低、水耗高。还有技术实现了连续式电化学元素提取,但该提锂体系较为复杂,且每次仅有一个电极从提取槽转入回收槽,因而锂的提取效率较低且能耗较高。
为适用于不同锂浓度溶液中锂的连续、稳定、高效电化学分离提取,需要开发一种结构及操作简单,且易于实现工业化应用的连续式的电化学提锂装置。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种连续提锂单元,能够实现连续的电解提锂,提升了锂的提取效率。
本发明还提供了包括上述连续提锂单元的连续提锂系统。
本发明还提供了采用上述连续提锂单元或连续提锂系统的提锂方法。
本发明还提供了上述提锂方法在海水提锂和锂离子电池后处理中的应用。
根据本发明第一方面的实施例,提供了一种连续提锂单元,所述连续提锂单元包括:
圆筒状腔室;
阴离子膜,所述阴离子膜和所述圆筒状腔室的侧壁可活动接触,且将所述圆筒状腔室分割为第一腔室和第二腔室;所述第一腔室的侧壁包括第一电极;所述第二腔室的侧壁包括第二电极;所述第一电极和第二电极中包括储锂物质;
传动杆,所述传动杆控制所述圆筒状腔室的转动。
根据本发明实施例的连续提锂单元,至少具有如下有益效果:
(1)本发明提供的连续提锂单元中,阴离子膜和圆筒状腔室的侧壁之间的接触方式,与传动杆相互配合,可以使第一电极、第二电极,与第一腔室和第二腔室之间的相对位置发生变化;
加之储锂物质的存在可满足锂在第一电极或第二电极中的吸附或脱附;
由此连续提锂单元使用过程中,当某一电极(例如第一电极)在一个腔室(例如第一腔室)中锂吸附完成后,通过圆筒状腔室的转动,可转移至另一个腔室进行锂的脱附,同时另一个电极移动后进行锂的吸附;依次循环,仅通过旋转圆筒状腔室的侧壁即实现了锂的连续提取,简化了操作步骤,同时显著提升了锂的提取效率。
(2)本发明提供的连续提锂单元,在连续运行过程中,无需包括液路切换装置,简化了连续提锂单元的结构,使其更便于进行商业化拓展。
根据本发明的一些实施例,所述储锂物质能够容纳锂离子的脱嵌。
根据本发明的一些实施例,所述储锂物质包括常见锂离子电池正极材料和负极材料中的至少一种。
根据本发明的一些实施例,所述储锂物质包括橄榄石结构的磷酸铁锂(LiFePO4、LFP)、尖晶石结构的锰酸锂(LiMn2O4、LMO)、尖晶石结构的镍锰酸锂(LiNixMn2-xO4、LNMO)、以及层状正极材料(LCO、LNO或NCM)。
根据本发明的一些实施例,所述第一电极为弧形电极,形成所述第一腔室的侧壁。
根据本发明的一些实施例,所述第一电极占据所述第一腔室的侧壁的部分位置。
根据本发明的一些实施例,所述第二电极为弧形电极,形成所述第二腔室的侧壁。
根据本发明的一些实施例,所述第二电极占据所述第二腔室的侧壁的部分位置。
根据本发明的一些实施例,所述连续提锂单元还包括设于所述圆筒状腔室的侧壁上,且设于所述第一电极和第二电极之间的绝缘部件。由此,可避免所述第一电极和第二电极之间形成 短路。
当所述第一电极为所述第一腔室的侧壁,第二电极为第二腔室的侧壁时,所述绝缘部件还起到连接所述第一电极和第二电极,使其组成所述圆筒状腔室的作用。
根据本发明的一些实施例,所述阴离子膜穿过所述圆筒状腔室的轴线。由此,所述第一腔室和第二腔室,均为半圆筒状的腔室。
根据本发明的一些实施例,所述连续提锂单元还包括设于所述圆筒状腔室的侧壁与所述阴离子膜之间的密封部件。由此可避免所述圆筒状腔室转动过程中,所述第一腔室和所述第二腔室中内容物相互污染(两个腔室均不漏液)。
根据本发明的一些实施例,所述密封部件连接所述圆筒状腔室的绝缘部件和所述阴离子膜。
根据本发明的一些实施例,所述连续提锂单元还包括密封所述圆筒状腔室的密封板。
所述密封板使所述第一腔室和第二腔室形成了两个密闭的空间。
为避免所述第一电极和第二电极之间发生短路,所述密封板的材质为绝缘材质。
根据本发明的一些实施例,所述圆筒状腔室一侧的密封板上,设有连通所述第二腔室的富锂液进口;设有连通所述第一腔室的原料液出口。
根据本发明的一些实施例,所述圆筒状腔室另一侧的密封板上,设有连通所述第二腔室的富锂液出口;设有连通所述第一腔室的原料液进口。
根据本发明的一些实施例,所述连续提锂单元中,所述传动杆的个数≥1。
根据本发明的一些实施例,所述传动杆和所述圆筒状腔室之间的连接方式为齿轮咬合或螺纹咬合中的至少一种。由此可更好的实现传动。
根据本发明的一些实施例,所述传动杆整体为圆柱状螺杆或类圆柱状螺杆中的至少一种。
根据本发明的一些实施例,所述传动杆为绝缘材质。由此可避免对所述第一电极或所述第二电极产生影响。
根据本发明的一些实施例,所述连续提锂单元还包括供电系统,所述供电系统的阴极和阳极,分别与所述第一电极或第二电极连接。
由于在所述连续提锂单元运行过程中,所述第一电极和所述第二电极需要转换阴阳极,因此所述供电系统和所述第一电极、第二电极的连接方式为可移动连接;
或者,所述供电系统上设有切换开关,以实现电源电极的转换。
根据本发明第二方面的实施例,提供了一种连续提锂系统,所述连续提锂系统包括至少一个所述的连续提锂单元,以及容纳所述连续提锂单元的绝缘外壳。
根据本发明实施例的连续提锂系统,至少具有如下有益效果:
由于所述连续提锂系统采用了上述实施例的连续提锂单元的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果。
所述绝缘外壳为所述连续提锂系统的支撑结构,其中绝缘确保其不受外部电路的影响。
根据本发明的一些实施例,所述绝缘外壳为圆筒状。由此更方便所述圆筒状腔室在所述传动杆的驱动下进行旋转。
根据本发明的一些实施例,所述绝缘外壳的两段设有盖子,以避免外部的物质影响所述圆筒状腔室的运动,例如避免外部碎屑导致的机械卡死。
根据本发明的一些实施例,所述传动杆穿过所述盖子,由此可通过外部电路驱动所述传动杆,同时所述盖子还可对所述传动杆形成支撑。
根据本发明的一些实施例,所述圆筒状腔室穿过所述盖子,由此所述盖子可对所述圆筒状腔室形成支撑作用。
根据本发明的一些实施例,多个连续提锂单元的圆筒状腔室的侧壁之间,不接触。由此避免了不同连续提锂单元中电极的彼此影响。
根据本发明的一些实施例,所述连续提锂系统中,所述连续提锂单元的个数为10~25个。
多个所述连续提锂单元的连接方式包括并联和串联中的至少一种。
具体的,如果提取较为容易,且处理量较大时,可以采用并联的方式;反之,如果需要尽可能提升锂的提取效率,则可将多个连续提锂单元进行串联。同时,根据需要也可以进行串联和并联混连的方式。
根据本发明的一些实施例,所述连续提锂系统还包括外接的原料液缓冲槽与富锂液缓冲槽;以实现所述原料液和富锂液的循环流动。
在上述原料液缓冲槽和富锂液缓冲槽的缓冲作用下,所述原料液和富锂液在所述连续提锂系统中的水力停留时长为3~5h,优选地,所述水力停留时长约为4h。
根据本发明第三方面的实施例,提供了一种提锂方法,采用所述的连续提锂单元,或所述的连续提锂系统;
所述提锂方法包括以下步骤:
S1.将原料液注入所述第一腔室,富锂液注入所述第二腔室,并以所述第一电极为阴极,所述第二电极为阳极,进行电化学吸附—脱附提锂操作;
S2.维持所述阴离子膜固定,通过所述传动杆驱动所述圆筒状腔室的侧壁转动,使所述第一 电极成为阳极,且与所述富锂液接触,所述第二电极成为阴极,且与所述原料液接触,继续进行电化学吸附—脱附提锂操作电化学吸附—脱附提锂操作。
所述提锂方法的机理是:
当所述第一电极为阴极时,原料液中的锂离子嵌入阴极内,第二电极中的锂离子释放进入所述富锂液中。
当上述过程完成后,由于旋转和电极转换,嵌入第一电极中的锂离子也会释放进富锂液中,而释放完成后的第二电极也会与原料液接触,进行吸锂步骤。
如此往复,原料液中的锂含量会下注下降,富锂液中锂含量上升。
根据本发明实施例的提锂方法,至少具有如下有益效果:
所述提锂方法采用所述连续提锂系统,或者所述连续提锂单元,因此可以通过简单的旋转和电极切换,即可实现对锂的连续提取,提升了生产效率。同时由于原料液和富锂液一直不接触,彼此间无污染,因此无需对第一腔室或第二腔室进行清洗,简化了提锂处理的操作步骤,也减少了水的消耗量;便于实现工业化。
根据本发明的一些实施例,所述原料液和所述富锂液连续注入。
根据本发明的一些实施例,所述原料液选自锂盐湖卤水、地下卤水或其他含锂溶液至少一种。
根据本发明的一些实施例,所述原料液中锂离子的含量≥0.2g/L;优选地,所述原料液中锂离子的含量≥0.4g/L。
根据本发明的一些实施例,步骤S1中,通入的富锂液选自氯化锂水溶液。优选地,所述氯化锂水溶液的浓度≥0.1g/L。优选地,所述氯化锂水溶液的浓度≤1g/L。
根据本发明的一些实施例,步骤S2中,所述转动的角度为180°。
根据本发明第四方面的实施例,提出了一种所述提锂方法在含锂溶液提锂中的应用。
由于所述应用采用了上述实施例的提锂方法的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果。
根据本发明的一些实施例,所述含锂溶液包括海水、锂离子电池浸出液中的至少一种。
若无特殊说明,本发明的“约”实际表示的含义是允许误差在±2%的范围内,例如约100实际是100±2%×100。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明实施例1中连续提锂单元的侧视示意图。
图2是本发明实施例1中连续提锂单元除传动杆之外其他部件的俯视示意图。
图3是本发明实施例2中连续提锂系统的侧视示意图。
图4是本发明实施例2中串联式连续提锂系统的运行机理示意图;
图5是本发明实施例2中并联式连续提锂系统的运行机理示意图。
附图标记:
圆筒状腔室100;第一电极111;第一腔室112;原料液进口113;原料液出口114;第二电
极121;第二腔室122;富锂液出口123;富锂液进口124;绝缘部件130;密封板140;
阴离子膜200;
传动杆300;
密封部件400;
绝缘外壳500。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,如果有描述到第一、第二等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本发明的描述中,需要说明的是,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
实施例1
本实施例提供了一种连续提锂单元,结构示意图如图1~2所示,具体的:
连续提锂单元包括:
圆筒状腔室100,弧形第一电极111、弧形第二电极121经由绝缘部件130连接,组成圆筒状腔室100的侧壁;
弧形第一电极111和弧形第二电极121中包括可脱嵌锂离子的储锂物质,可以理解的是,上述储锂物质可以是橄榄石结构的磷酸铁锂(LiFePO4、LFP)、尖晶石结构的锰酸锂(LiMn2O4、LMO)、尖晶石结构的镍锰酸锂(LiNixMn2-xO4、LNMO)、以及层状正极材料(LCO、LNO或NCM)中的至少一种;本实施例选择LFP。
圆筒状腔室100两端开口处,设有密封板140,使圆筒状腔室100围成一个密闭空间;密封板140为绝缘材质;
阴离子膜200设于圆筒状腔室100内部,且穿过圆筒状腔室100的轴线,与绝缘部件130经由密封部件400活动连接;
阴离子膜200将圆筒状腔室100分割为第一腔室112和第二腔室122;
圆筒状腔室100一侧的密封板140上设有:连通第二腔室122的富锂液进口124,连通第一腔室112的原料液出口114。圆筒状腔室100另一侧的密封板140上设有:连通第二腔室122的富锂液出口123,连通第一腔室112的原料液进口113。
绝缘材质的传动杆300,传动杆300和圆筒状腔室100通过螺纹咬合,前者通过螺杆传动控制后者的转动。
实施例2
本实施例提供了一种由实施例提供的连续提锂单元集成的连续提锂系统,结构示意图如图3所示,具体的,上述连续提锂系统包括:
若干个连续提锂单元,以及容纳上述连续提锂单元的绝缘外壳;
上述绝缘外壳的形状为带盖圆筒状,圆筒状的盖子上设有孔,连续提锂单元的传动杆和圆筒状腔室穿过上述孔,形成定位和支撑,并同时和外部的液路与电路连接。
可以理解的是,多个连续提锂单元的液路之间形成并联,具体示意图如图4所示;即所有原料液仅经过一个连续提锂单元。
可以理解的是,多个连续提锂单元的液路之间形成串联,具体示意图如图5所示;即原料液经过连续提锂系统中的所有连续提锂单元。
可以理解的是,连续提锂系统还包括外接的原料液缓冲槽与富锂液缓冲槽(图中未示出),其中,原料液缓冲槽可缓冲贮存从连续提锂系统排出的原料液,并将缓冲贮存的原料液重新输送至连续提锂系统中进行处理。
实施例3
本实施例采用实施例2中并联式连续提锂系统(共有9个连续提锂单元,图4中仅为原理示意图),进行了高锂浓度盐湖卤水的提锂操作,具体步骤为:
S1.将原料液持续注入第一腔室112,富锂液持续注入第二腔室122,并以第一电极111为阴极,第二电极121为阳极,进行电化学吸附—脱附提锂操作;该过程中原料液中的锂吸附至阴极内;
S2.待步骤S1的吸附—脱附提锂运行4h后,维持阴离子膜200固定,通过传动杆300驱动圆筒状腔室100的侧壁转动180°,同时切换电源的电极,使第一电极111成为阳极,且与富锂液接触,第二电极121成为阴极,且与原料液接触,继续进行电化学吸附—脱附提锂操作。
S3.待步骤S2的吸附—脱附提锂运行4h后,循环进行步骤S1~S2,并收集产出的原料液和富锂液。
本实施例中,原料液和富锂液在连续提锂系统中的水力停留时长约为4h,期间两种溶液的流动状态为湍流。
本实施例中,所用原料液、富锂液,以及产出的原料液、富锂液的成分如表1所示。
表1实施例3中原料以及产物的部分组成(g/L)
由此说明,本发明提供的提锂方法,当采用串联式的连续提锂系统时,能有效的富集、提取水溶液中的锂,并尽可能减少其他成分进入富锂液。
实施例4
本实施例进行了中低锂浓度盐湖卤水的提锂操作,具体和实施例3的区别在于:
采用实施例2中串联式连续提锂系统(共有9个连续提锂单元,图4中仅为原理示意图)。
本实施例中,所用原料液、富锂液,以及产出的原料液、富锂液的成分如表2所示。
表2实施例4中原料以及产物的部分组成(g/L)
由此说明,本发明提供的提锂方法,当采用并联式的连续提锂系统时,能有效的富集、提取水溶液中的锂,并尽可能减少其他成分进入富锂液。综上,本发明提供的连续提锂单元和连续提锂系统,无论针对高锂浓度的原料液,还是针对低锂浓度的原料液,均可有效将水溶液中的锂与其他成分进行分离,实现富集、回收,在海水提锂方面有广泛的应用前景,也有望对锂离子电池回收料浸出液中的锂进行回收。
上面结合附图对本发明实施例作了详细说明,但本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (10)

  1. 一种连续提锂单元,其特征在于,所述连续提锂单元包括:
    圆筒状腔室(100);
    阴离子膜(200),所述阴离子膜(200)和所述圆筒状腔室(100)的侧壁可活动接触,且将所述圆筒状腔室分割为第一腔室(112)和第二腔室(122);所述第一腔室(112)的侧壁包括第一电极(111);所述第二腔室(122)的侧壁包括第二电极(121);所述第一电极(111)和第二电极(121)中包括储锂物质;
    传动杆(300),所述传动杆(300)控制所述圆筒状腔室(100)的转动。
  2. 根据权利要求1所述的连续提锂单元,其特征在于,所述连续提锂单元还包括密封所述圆筒状腔室(100)的密封板(140)。
  3. 根据权利要求1所述的连续提锂单元,其特征在于,所述连续提锂单元中,所述传动杆(300)的个数≥1。
  4. 根据权利要求1所述的连续提锂单元,其特征在于,所述连续提锂单元还包括设于所述圆筒状腔室(100)的侧壁与所述阴离子膜(200)之间的密封部件(400)。
  5. 根据权利要求1所述的连续提锂单元,其特征在于,所述连续提锂单元还包括设于所述圆筒状腔室(100)的侧壁上,且设于所述第一电极(111)和第二电极(121)之间的绝缘部件(130)。
  6. 根据权利要求1~5任一项所述的连续提锂单元,其特征在于,所述连续提锂单元还包括供电系统,所述供电系统的阴极和阳极,分别与所述第一电极(111)或第二电极(121)连接。
  7. 一种连续提锂系统,其特征在于,所述连续提锂系统包括至少一个如权利要求1~6任一项所述的连续提锂单元,以及容纳所述连续提锂单元的绝缘外壳(500)。
  8. 一种提锂方法,其特征在于,采用如权利要求1~6任一项所述的连续提锂单元,或如权利要求7所述的连续提锂系统;
    所述提锂方法包括以下步骤:
    S1.将原料液注入所述第一腔室(112),富锂液注入所述第二腔室(122),并以所述第一电极(111)为阴极,所述第二电极(121)为阳极,进行电化学吸附—脱附提锂操作;
    S2.维持所述阴离子膜(200)固定,通过所述传动杆(300)驱动所述圆筒状腔室(100)的侧壁转动,使所述第一电极(111)成为阳极,且与所述富锂液接触,所述第二电极(121)成为阴极,且与所述原料液接触,继续进行电化学吸附—脱附提锂操作。
  9. 根据权利要求8所述的提锂方法,其特征在于,所述原料液和所述富锂液连续注入。
  10. 一种如权利要求8或9所述的提锂方法在含锂溶液提锂中的应用。
PCT/CN2023/078477 2022-10-08 2023-02-27 一种连续提锂单元及其应用 WO2024074007A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211222060.9A CN117845275A (zh) 2022-10-08 2022-10-08 一种连续提锂单元及其应用
CN202211222060.9 2022-10-08

Publications (1)

Publication Number Publication Date
WO2024074007A1 true WO2024074007A1 (zh) 2024-04-11

Family

ID=90540557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078477 WO2024074007A1 (zh) 2022-10-08 2023-02-27 一种连续提锂单元及其应用

Country Status (2)

Country Link
CN (1) CN117845275A (zh)
WO (1) WO2024074007A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167628A (ja) * 2000-11-28 2002-06-11 National Institute Of Advanced Industrial & Technology リチウム回収装置および方法
US20130186760A1 (en) * 2010-11-19 2013-07-25 Central South University Method and device for extracting and enriching lithium
CN104587835A (zh) * 2015-01-12 2015-05-06 太原理工大学 一种连续同步选择性分离回收稀溶液中阴、阳离子的装置及方法
CN105948188A (zh) * 2016-06-29 2016-09-21 太原理工大学 一种连续电控离子分离装置和工艺
CN205653516U (zh) * 2016-03-03 2016-10-19 中南大学 一种电化学方法回收锂的装置
CN106732239A (zh) * 2017-01-18 2017-05-31 太原理工大学 一种溶液中阴阳离子连续性分离的装置及其使用方法
CN109264835A (zh) * 2018-10-09 2019-01-25 天津科技大学 一种连续式电化学元素提取系统
CN110724832A (zh) * 2019-09-29 2020-01-24 天津科技大学 一种连续式离子泵提锂装置及其提锂方法
CN113999979A (zh) * 2021-11-26 2022-02-01 西安热工研究院有限公司 一种连续运行电化学提锂系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167628A (ja) * 2000-11-28 2002-06-11 National Institute Of Advanced Industrial & Technology リチウム回収装置および方法
US20130186760A1 (en) * 2010-11-19 2013-07-25 Central South University Method and device for extracting and enriching lithium
CN104587835A (zh) * 2015-01-12 2015-05-06 太原理工大学 一种连续同步选择性分离回收稀溶液中阴、阳离子的装置及方法
CN205653516U (zh) * 2016-03-03 2016-10-19 中南大学 一种电化学方法回收锂的装置
CN105948188A (zh) * 2016-06-29 2016-09-21 太原理工大学 一种连续电控离子分离装置和工艺
CN106732239A (zh) * 2017-01-18 2017-05-31 太原理工大学 一种溶液中阴阳离子连续性分离的装置及其使用方法
CN109264835A (zh) * 2018-10-09 2019-01-25 天津科技大学 一种连续式电化学元素提取系统
CN110724832A (zh) * 2019-09-29 2020-01-24 天津科技大学 一种连续式离子泵提锂装置及其提锂方法
CN113999979A (zh) * 2021-11-26 2022-02-01 西安热工研究院有限公司 一种连续运行电化学提锂系统及方法

Also Published As

Publication number Publication date
CN117845275A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
Zhou et al. Progress in electrochemical lithium ion pumping for lithium recovery
Zhao et al. Review on the electrochemical extraction of lithium from seawater/brine
Chen et al. Dual-ions electrochemical deionization: a desalination generator
CN111270072B (zh) 一种废旧磷酸铁锂电池正极材料的回收利用方法
CN112374553B (zh) 一种退役锂离子电池正极材料回收再生的方法
CN102751549A (zh) 一种废旧锂离子电池正极材料全组分资源化回收方法
CN104157831A (zh) 一种核壳结构的尖晶石镍锰酸锂、层状富锂锰基复合正极材料及其制备方法
CN104577243A (zh) 一种利用锂离子载体从含锂离子溶液中回收锂资源的方法
CN104091919B (zh) 一种锂离子电池正极材料及其制备方法
CN107611384B (zh) 一种高性能浓度梯度高镍材料、其制备方法及在锂离子电池的用途
ES2962915A1 (es) Método de regeneración de material de cátodo ternario de desecho y aplicación del mismo
KR102588699B1 (ko) 열수-볼 밀링에 의한 Ni-HITP 복합 재료와 이의 제조 방법 및 이를 이용한 리튬 이온 배터리 전극 재료
CN105190964A (zh) 金属掺杂的过渡金属六氰合铁酸盐(tmhcf)电池电极
CN106229555A (zh) 聚合氮杂冠醚涂层隔膜提高锰系锂离子电池使用寿命的方法
Luo et al. Electrochemical lithium ion pumps for lithium recovery: A systematic review and influencing factors analysis
CN104157843B (zh) 一种高镍锂离子电池正极材料及其制备方法及包含其的锂离子电池
Zhou et al. Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine
CN110777390B (zh) 一种基于“摇椅”式结构电极体系的“自驱动”电化学提锂方法
CN105428625A (zh) 铝盐水溶液后处理制备氧化铝包覆钴酸锂锂离子电池正极材料的方法
Meng et al. Electrochemical recovery of lithium from brine by highly stable truncated octahedral LiNi0. 05Mn1. 95O4
WO2024074007A1 (zh) 一种连续提锂单元及其应用
CN116555564A (zh) 电化学提锂电极以及电化学提锂方法
CN115418675A (zh) 一种电化学提锂方法
CN115818801A (zh) 一种从盐湖卤水中提取锂的方法
CN113943021A (zh) 一种再生钴酸锂及其修复方法、用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874202

Country of ref document: EP

Kind code of ref document: A1