WO2024071789A1 - 폐리튬이온배터리 진공 열분해 방법 - Google Patents

폐리튬이온배터리 진공 열분해 방법 Download PDF

Info

Publication number
WO2024071789A1
WO2024071789A1 PCT/KR2023/014041 KR2023014041W WO2024071789A1 WO 2024071789 A1 WO2024071789 A1 WO 2024071789A1 KR 2023014041 W KR2023014041 W KR 2023014041W WO 2024071789 A1 WO2024071789 A1 WO 2024071789A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
vacuum
vacuum chamber
minutes
set temperature
Prior art date
Application number
PCT/KR2023/014041
Other languages
English (en)
French (fr)
Inventor
임현열
박준우
이준희
채지훈
이용택
조건우
Original Assignee
주식회사 이알
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이알 filed Critical 주식회사 이알
Publication of WO2024071789A1 publication Critical patent/WO2024071789A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/691Arrangements or processes for draining liquids from casings; Cleaning battery or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a vacuum thermal decomposition method for waste lithium-ion batteries. More specifically, in addition to discharge induction due to thermal decomposition in vacuum, electrolyte removal and recovery, and even various polymers can be treated through a distillation process, thereby providing high quality raw materials when pulverized. It relates to a method of vacuum pyrolysis of waste lithium-ion batteries that allows recovery.
  • a battery pack includes a plurality of electrically connected battery modules, and these battery packs are widely used in electric vehicles (EV) or hybrid electric vehicles (HEV) that require large electric capacity.
  • Electric vehicles and hybrid electric vehicles are attracting attention as next-generation means of transportation, and their production number is expected to increase rapidly.
  • waste battery packs and lithium secondary batteries generated from electric vehicles are also expected to increase rapidly in the future, research on disposal methods for waste lithium-ion batteries is insufficient.
  • This salt water discharge process is a method of discharging by immersing in salt water with an electric current flowing. It is recognized as a safe method and is mainly used. However, when discharging a large amount of waste batteries with salt water, there is no way to check whether they are discharged due to the diversity of battery types and differences in charge amount.
  • waste lithium-ion batteries that are not properly discharged, they can still cause large-scale explosions and fires, and fires and explosions can easily occur during the shredding/crushing process for processing raw materials.
  • crushing and pulverizing operations are performed in that order, but it is very difficult to completely discharge electrically, and salt water discharge treatment also causes quality deterioration due to a large amount of waste water and corrosion of electrodes. There was a problem.
  • the present invention was created to eliminate the above-mentioned problems, and in addition to the discharge induction due to thermal decomposition in vacuum, electrolyte removal and recovery, and even various polymers can be treated through the distillation process, so that high-quality raw materials can be recovered during crushing. It was completed as a technical task with a focus on the vacuum thermal decomposition method for waste lithium-ion batteries.
  • the present invention for achieving the above technical problem is a vacuum pyrolysis method for waste lithium ion batteries, which has an accommodating space movably provided on a straight rail 94 after removing the external case of the stored battery 5.
  • the basket 10 is in the form of a net, has a receiving space and is open at the top.
  • the rail 94 is connected to the chain 92 and the chain motor 91, and after sealing the vacuum chamber 20 in which the basket 10 is charged, the vacuum pump 81 connected to the vacuum chamber 20 forming a vacuum atmosphere inside the vacuum chamber 20 by operating (S3);
  • the vacuum pump 81 is a water ring type vacuum pump.
  • the water ring type vacuum pump is driven to form a vacuum of 0.08 MPa inside the vacuum chamber 20, and the cooling chiller connected to the water ring vacuum pump is operated to adjust the temperature of the water ring water.
  • a plurality of heaters 25 are provided on the inner surface of the vacuum chamber 20 to heat the heaters 25 to 650° C.
  • 100°C is set as the first set temperature and the first set temperature is raised for 60 to 70 minutes.
  • the first set temperature of 100°C is maintained for 60 to 70 minutes, and 200°C is set for the second time.
  • the second set temperature of 200°C is maintained for 120 to 130 minutes, and the third set temperature is 450°C for 90 to 100 minutes.
  • the third set temperature of 450°C is maintained for 120 to 130 minutes, and the fourth set temperature is set at 650°C for 90 to 100 minutes.
  • the fourth set temperature of 650°C is maintained for 180 to 190 minutes, and the heating temperature is repeatedly raised for a certain period of time and the temperature is maintained for a certain period of time, and the electrolyte of the battery (2) is vaporized during the temperature maintenance time.
  • the evaporation rate of the electrolyte is increased by ensuring that the electrolyte is mixed and used as a mixture of at least two of the Cyclic carbonate, Linear carbonate, and Linear Ester series, and the vaporized electrolyte is placed vertically on the lower side of the vacuum chamber (20).
  • a moving pipe 35 is connected to the upper end of the receiver tank 30, a cold trap 40 is connected to the moving end of the moving pipe 35, and a discharge pipe is connected to the end of the cold trap 40. (42) is connected so that the gas that has not been processed in the receiver tank (30) is supplied to the cold trap (40) through the transfer pipe (35) and condensed.
  • FIG. 1 is an exemplary process sequence diagram of the vacuum pyrolysis method for waste lithium ion batteries according to the present invention.
  • FIG. 2 is an illustration of a device in which the vacuum pyrolysis method for waste lithium ion batteries according to the present invention is implemented.
  • Figure 3 is an implementation diagram of an electrolyte vaporized battery according to the present invention.
  • Figure 4 is an implementation diagram of the first and second battery crushing states according to the present invention.
  • Figure 5 is a diagram showing the separation state after first and second crushing according to the present invention.
  • the present invention for achieving the above technical problem is a vacuum pyrolysis method for waste lithium ion batteries, which has an accommodating space movably provided on a straight rail 94 after removing the external case of the stored battery 5.
  • the basket 10 is in the form of a net, has a receiving space and is open at the top.
  • the rail 94 is connected to the chain 92 and the chain motor 91, and after sealing the vacuum chamber 20 in which the basket 10 is charged, the vacuum pump 81 connected to the vacuum chamber 20 forming a vacuum atmosphere inside the vacuum chamber 20 by operating (S3);
  • the vacuum pump 81 is a water ring type vacuum pump.
  • the water ring type vacuum pump is driven to form a vacuum of 0.08 MPa inside the vacuum chamber 20, and the cooling chiller connected to the water ring vacuum pump is operated to adjust the temperature of the water ring water.
  • a plurality of heaters 25 are provided on the inner surface of the vacuum chamber 20 to heat the heaters 25 to 650° C.
  • 100°C is set as the first set temperature and the first set temperature is raised for 60 to 70 minutes.
  • the first set temperature of 100°C is maintained for 60 to 70 minutes, and 200°C is set for the second time.
  • the second set temperature of 200°C is maintained for 120 to 130 minutes, and the third set temperature is 450°C for 90 to 100 minutes.
  • the third set temperature of 450°C is maintained for 120 to 130 minutes, and the fourth set temperature is set at 650°C for 90 to 100 minutes.
  • the fourth set temperature of 650°C is maintained for 180 to 190 minutes, and the heating temperature is repeatedly raised for a certain period of time and the temperature is maintained for a certain period of time, and the electrolyte of the battery (2) is vaporized during the temperature maintenance time.
  • the evaporation rate of the electrolyte is increased by ensuring that the electrolyte is mixed and used as a mixture of at least two of the Cyclic carbonate, Linear carbonate, and Linear Ester series, and the vaporized electrolyte is placed vertically on the lower side of the vacuum chamber (20).
  • a moving pipe 35 is connected to the upper end of the receiver tank 30, a cold trap 40 is connected to the moving end of the moving pipe 35, and a discharge pipe is connected to the end of the cold trap 40. (42) is connected so that the gas that has not been processed in the receiver tank (30) is supplied to the cold trap (40) through the transfer pipe (35) and condensed.
  • the present invention relates to a vacuum thermal decomposition method for waste lithium-ion batteries. More specifically, in addition to discharge induction due to thermal decomposition in vacuum, electrolyte removal and recovery, and even various polymers can be treated through a distillation process, thereby providing high quality raw materials when pulverized. It relates to a method of vacuum pyrolysis of waste lithium-ion batteries that allows recovery.
  • the external case of the received battery 5 is first removed.
  • the normal external case is made of synthetic resin material, it is an unnecessary element for thermal decomposition of the battery 5, so it must be completely removed.
  • Step S1 the battery 5 is placed in the basket 10 having an accommodation space movably provided on the straight rail 94.
  • step S2 the basket 10 is moved straight along the rail 94 and charged into the vacuum chamber 20 (step S2).
  • the rail 94 is connected to the chain 92 connected to the chain motor 91 and moves according to the driving of the chain motor 91 to move the basket 10 in a straight line.
  • the basket 10 since the basket 10 must be vaporized in a vacuum chamber 20 to be described later while accommodating a plurality of batteries 5, the basket 10 has the stability and vaporization properties of the batteries 5. Considering this, it is desirable to form a tubular structure with an accommodating space in the form of a net and an open top.
  • the basket 10 is “ “or “It is more desirable to form it into a barrel structure.
  • the basket 10 is installed on the installation base 2 installed on the ground and is configured to move linearly in the longitudinal direction of the basket 10.
  • a vacuum chamber 20, which will be described later, is provided in the longitudinal direction of the basket 10.
  • step S2 the vacuum chamber 20 in which the basket 10 is loaded is sealed, and then the vacuum pump 81 connected to the vacuum chamber 20 is operated to create a vacuum atmosphere inside the vacuum chamber 20. .
  • a water ring type vacuum pump is used as an example, and this water ring type vacuum pump is driven to form a vacuum of about 0.08 MPa inside the vacuum chamber 20. At this time, it is desirable to operate the cooling chiller connected to the water ring type vacuum pump to maintain the temperature of water ring water below 18°C.
  • a plurality of heaters 25 are provided on the inner surface of the vacuum chamber 20 to heat the heaters 25 to 650°C. It is configured to vaporize the electrolyte of the battery in the vacuum chamber 20.
  • the electrolyte mainly comes in Cyclic carbonate, Linear carbonate, and Linear Ester series, and has different characteristics. It cannot be used alone, and at least two of the Cyclic carbonate, Linear carbonate, and Linear Ester series must be used to suit the intended purpose. Please mix and use. These electrolytes include EC, PC, DMC, DEC, and EMC, and their boiling points are 90°C to 247°C. And, LiPF6 is mainly used as electrolyte salt.
  • the temperature inside the vacuum chamber 20 is heated up to 650°C in multiple stages for a certain period of time, and the battery 2 is heated at that temperature during the temperature maintenance time by repeating the heating temperature rise for a certain period of time and maintaining the temperature for a certain period of time. It is configured to increase the electrolyte vaporization rate by ensuring sufficient vaporization of the electrolyte.
  • Step S4 the vaporized electrolyte is moved to the receiver tank 30 through the vertical movement pipe 22 on the lower side of the vacuum chamber 20 and condensed.
  • the condensed water condensed in the receiver tank 30 is discharged to the outside through the discharge pipe 32 connected to the bottom of the receiver tank 30, and this condensation process creates an airflow within the vacuum chamber 20. occurs, and as a result, the temperature is well transmitted within the vacuum atmosphere.
  • the organic solvent condensed in the receiver tank (30) is transferred to the Air Diaphragm Pump and stored in a separate storage tank.
  • a moving pipe 35 is connected in communication to the upper side of the receiver tank 30, and the moving pipe A cold trap (40) is connected to the moving end of (35), and a discharge pipe (42) is connected to the end of the cold trap (40), so that gas that has not been processed in the receiver tank (30) flows into the moving pipe (35). Double condensation was achieved by supplying it to the cold trap 40 and condensing it.
  • step S4 nitrogen or air is filled in the vacuum chamber 20 in which vaporization of the battery has been completed, the pressure inside the vacuum chamber 20 is reduced and the vacuum is released, and then the vacuum chamber 20 located in the vacuum chamber 20 is released.
  • the basket 10 is moved backward to take out the battery, and then the battery is shredded and moved to the sorting line (step S5).
  • battery primary crushed powder 5-1 is formed as shown in (a) of FIG. 4, which is again divided into 2
  • secondary battery crushing powder 5-2 is formed as shown in (b) of FIG. 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 폐리튬이온배터리 진공 열분해 방법에 관한 것으로서, 보다 상세하게는 진공에서의 열분해로 인한 방전유도와 더불어 전해질제거 및 회수, 나아가서는 각종 고분자까지 증류공정으로 처리가능하여 파분쇄시 고품질의 원료를 회수할 수 있도록 하는 폐리튬이온배터리 진공 열분해 방법에 관한 것이다.

Description

폐리튬이온배터리 진공 열분해 방법
본 발명은 폐리튬이온배터리 진공 열분해 방법에 관한 것으로서, 보다 상세하게는 진공에서의 열분해로 인한 방전유도와 더불어 전해질제거 및 회수, 나아가서는 각종 고분자까지 증류공정으로 처리가능하여 파분쇄시 고품질의 원료를 회수할 수 있도록 하는 폐리튬이온배터리 진공 열분해 방법에 관한 것이다.
일반적으로, 충전하여 사용하는 리튬이온 배터리는 휴대기기인 무선 전화기, 스마트폰, 모바일 기기 등이 많이 사용되면서 기하급수적으로 그 수요량이 폭발적으로 증가하였고, 최근 단위 배터리셀을 복수개 포함하는 배터리팩의 사용이 증가하고 있다.
배터리팩은 전기적으로 연결되어 있는 배터리 모듈을 복수개 포함하고 있는데, 이러한 배터리팩은 큰 전기용량이 필요한 전기자동차(EV) 내지 하이브리드 전기자동차(HEV)에 많이 사용되고 있다. 전기자동차 및 하이브리드 전기자동차는 차세대 이동수단으로 각광받고 있으며, 생산대수는 급격히 증가할 것으로 예상된다. 다만, 전기자동차에서 발생하는 폐배터리팩, 리튬 이차전지 역시 향후 급격히 증가할 것으로 예상되지만 폐리튬이온배터리의 처리방법에 대해서는 그 연구가 미비한 실정이다.
폐리튬이온배터리를 재활용하기 위해서는 배터리를 방전공정이 필요하며 이러한 방전 공정은 보통 염수에 담궈 5~15일정도 방치시키는 공정이 이루어 진다. 이러한 염수방전 공정은 전류가 흐르는 소금물에 담가 방전시키는 방식으로 대부분 안전한 방법으로 인식되어 주로 사용되고 있다. 그러나 다량의 폐배터리의 염수 방전 시 배터리 종류의 다양성과 충전량 차이 등으로 인해 방전여부를 확인할 길이 없다.
이러한 방전이 제대로 이루어지지 않은 폐리튬이온배터리의 경우에는 여전히 대형 폭발과 화재의 원인이 될 수 있으며, 원료의 가공을 위한 파/분쇄 공정에서는 매우 손쉽게 화재와 폭발이 동반된다. 뿐만 아니라, 방전작업과 해체작업을 한 후에 파쇄 및 분쇄작업 순으로 진행되나, 전기적으로 완전히 방전처리하기 매우 어렵고, 또한 염수방전처리시 다량의 폐수와 전극의 부식으로 인한 품질저하의 요인이 되는 등의 문제점이 있었다.
이에 본 발명은 상기한 문제점을 일소하기 위해 창안한 것으로서, 진공에서의 열분해로 인한 방전유도와 더불어 전해질제거 및 회수, 나아가서는 각종 고분자까지 증류공정으로 처리가능하여 파분쇄시 고품질의 원료를 회수할 수 있도록 하는 폐리튬이온배터리 진공 열분해 방법에 주안점을 두고 그 기술적 과제로서 완성한 것이다.
위 기술적 과제를 달성하기 위한 본 발명은, 폐리튬이온배터리 진공 열분해 방법에 있어서, 입고된 배터리(5)의 외부케이스를 제거한 후, 직선형 레일(94) 상에 이동가능하게 구비된 수용공간을 갖는 바스켓(10)에 배터리(5)를 담는 단계(S1); 상기 바스켓(10)은 망 형태로서, 수용공간을 갖으며 상부가 개방된 “
Figure PCTKR2023014041-appb-img-000001
”또는 “
Figure PCTKR2023014041-appb-img-000002
”형태의 통 구조로 형성되고, 상기 레일(94)을 따라 바스켓(10)을 직선 이동시켜 진공챔버(20) 내로 장입하는 단계(S2); 상기 레일(94)은 체인(92) 및 체인모터(91)에 연결되고, 상기 바스켓(10)이 장입된 진공챔버(20)를 밀폐한 후, 진공챔버(20)에 연결된 진공펌프(81)를 가동하여 진공챔버(20) 내부에 진공분위기를 형성하는 단계(S3); 상기 진공펌프(81)는 수봉식 진공펌프이며, 상기 수봉식 진공펌프를 구동시켜 진공챔버(20) 내부를 0.08㎫의 진공으로 형성토록 하고, 상기 수봉식 진공펌프에 연결된 냉각칠러를 가동하여 수봉수의 온도를 유지토록 하며, 상기 진공챔버(20)의 내부면에 다수의 히터(25)가 구비되어 상기 히터(25)를 650℃까지 가열하여 진공챔버(20) 내의 배터리(5)의 전해액을 기화시키는 과정에서, 100℃를 1차설정온도로 하여 60∼70분 동안 1차상승시키고, 상기 1차상승 후, 60∼70분 동안 100℃의 1차설정온도를 유지토록 하며, 200℃를 2차설정온도로 하여 60∼70분 동안 2차상승시키고, 상기 2차상승 후, 120∼130분 동안 200℃의 2차설정온도를 유지토록 하며, 450℃를 3차설정온도로 하여 90∼100분 동안 3차상승시키고, 상기 3차상승 후, 120∼130분 동안 450℃의 3차설정온도를 유지토록 하며, 650℃를 4차설정온도로 하여 90∼100분 동안 4차상승시키고, 상기 4차상승 후, 180∼190분 동안 650℃의 4차설정온도를 유지토록 하는 방식으로, 일정시간 가열온도상승 및 일정시간 온도류지를 반복토록 하여, 상기 온도유지 시간동안에 배터리(2)의 전해액 기화가 이루어지도록 함으로써 전해액 기화율을 높이도록 하고, 상기 전해액은 Cyclic carbonate, Linear carbonate, Linear Ester 계열 중 적어도 2개 이상을 혼합하여 사용토록 하고, 상기 기화된 전해액을 진공챔버(20)의 하부측 수직이동관(22)을 통해 리시버탱크(30)로 이동시켜 응축시키는 단계(S4); 상기 리시버탱크(30)에 응축된 유기용제는 Air Diaphragm Pump로 이송하여 별도의 보관탱크에 저장토록 하고, 상기 리시버탱크(30)에서 응축된 응축수를 리시버탱크(30)의 바닥측에 연통된 배출관(32)을 통해 배출시키고, 상기 배터리(5)의 기화가 완료된 진공챔버(20) 내에 질소 또는 에어를 충진하여 진공챔버(20) 내부의 압력을 줄이면서 진공을 해제한 후, 상기 진공챔버(20) 내에 위치된 바스켓(10)을 후진이동시켜 배터리(5)를 꺼낸 다음, 상기 배터리(5)를 파쇄하여 선별라인으로 이동시키는 단계(S5); 상기 배터리(5)는 1차파쇄하여 배터리1차파쇄분(5-1)이 형성되게 하고, 이를 다시 2차파쇄(ER Process)에 투입하여 배터리2차파쇄분(5-2)이 형성되게 한 후, 분리체를 통해 구리 및 알루미늄과, 블랙파우더로 분리시키도록 하는 것을 포함하여 이루어짐을 특징으로 하는 폐리튬이온배터리 진공 열분해 방법을 제공한다.
또한, 상기 리시버탱크(30)의 상단측에 이동관(35)이 연통 연결되고, 상기 이동관(35)의 이동측 단부에 콜드트랩(40)이 연결되며, 상기 콜드트랩(40)의 단부에 배출관(42)이 연결되어, 상기 리시버탱크(30)에서 처리되지 못한 기체가 이동관(35)을 통해 콜드트랩(40)에 공급되어 응축되도록 함을 특징으로 한다.
상기한 본 발명에 의하면 진공에서의 열분해로 인한 방전유도와 더불어 전해질제거 및 회수, 나아가서는 각종 고분자까지 증류공정으로 처리가능하여 파분쇄시 고품질의 원료를 회수할 수 있는 등의 효과가 있다.
도 1은 본 발명에 의한 폐리튬이온배터리 진공 열분해 방법의 공정순서 예시도
도 2는 본 발명에 의한 폐리튬이온배터리 진공 열분해 방법이 실시되는 장치 예시도
도 3은 본 발명에 의한 전해액 기화된 배터리 실시도
도 4는 본 발명에 의한 배터리 1,2차 파쇄상태 실시도
도 5는 본 발명에 의한 1,2차 파쇄 후 분리상태 실시도
위 기술적 과제를 달성하기 위한 본 발명은, 폐리튬이온배터리 진공 열분해 방법에 있어서, 입고된 배터리(5)의 외부케이스를 제거한 후, 직선형 레일(94) 상에 이동가능하게 구비된 수용공간을 갖는 바스켓(10)에 배터리(5)를 담는 단계(S1); 상기 바스켓(10)은 망 형태로서, 수용공간을 갖으며 상부가 개방된 “
Figure PCTKR2023014041-appb-img-000003
”또는 “
Figure PCTKR2023014041-appb-img-000004
”형태의 통 구조로 형성되고, 상기 레일(94)을 따라 바스켓(10)을 직선 이동시켜 진공챔버(20) 내로 장입하는 단계(S2); 상기 레일(94)은 체인(92) 및 체인모터(91)에 연결되고, 상기 바스켓(10)이 장입된 진공챔버(20)를 밀폐한 후, 진공챔버(20)에 연결된 진공펌프(81)를 가동하여 진공챔버(20) 내부에 진공분위기를 형성하는 단계(S3); 상기 진공펌프(81)는 수봉식 진공펌프이며, 상기 수봉식 진공펌프를 구동시켜 진공챔버(20) 내부를 0.08㎫의 진공으로 형성토록 하고, 상기 수봉식 진공펌프에 연결된 냉각칠러를 가동하여 수봉수의 온도를 유지토록 하며, 상기 진공챔버(20)의 내부면에 다수의 히터(25)가 구비되어 상기 히터(25)를 650℃까지 가열하여 진공챔버(20) 내의 배터리(5)의 전해액을 기화시키는 과정에서, 100℃를 1차설정온도로 하여 60∼70분 동안 1차상승시키고, 상기 1차상승 후, 60∼70분 동안 100℃의 1차설정온도를 유지토록 하며, 200℃를 2차설정온도로 하여 60∼70분 동안 2차상승시키고, 상기 2차상승 후, 120∼130분 동안 200℃의 2차설정온도를 유지토록 하며, 450℃를 3차설정온도로 하여 90∼100분 동안 3차상승시키고, 상기 3차상승 후, 120∼130분 동안 450℃의 3차설정온도를 유지토록 하며, 650℃를 4차설정온도로 하여 90∼100분 동안 4차상승시키고, 상기 4차상승 후, 180∼190분 동안 650℃의 4차설정온도를 유지토록 하는 방식으로, 일정시간 가열온도상승 및 일정시간 온도류지를 반복토록 하여, 상기 온도유지 시간동안에 배터리(2)의 전해액 기화가 이루어지도록 함으로써 전해액 기화율을 높이도록 하고, 상기 전해액은 Cyclic carbonate, Linear carbonate, Linear Ester 계열 중 적어도 2개 이상을 혼합하여 사용토록 하고, 상기 기화된 전해액을 진공챔버(20)의 하부측 수직이동관(22)을 통해 리시버탱크(30)로 이동시켜 응축시키는 단계(S4); 상기 리시버탱크(30)에 응축된 유기용제는 Air Diaphragm Pump로 이송하여 별도의 보관탱크에 저장토록 하고, 상기 리시버탱크(30)에서 응축된 응축수를 리시버탱크(30)의 바닥측에 연통된 배출관(32)을 통해 배출시키고, 상기 배터리(5)의 기화가 완료된 진공챔버(20) 내에 질소 또는 에어를 충진하여 진공챔버(20) 내부의 압력을 줄이면서 진공을 해제한 후, 상기 진공챔버(20) 내에 위치된 바스켓(10)을 후진이동시켜 배터리(5)를 꺼낸 다음, 상기 배터리(5)를 파쇄하여 선별라인으로 이동시키는 단계(S5); 상기 배터리(5)는 1차파쇄하여 배터리1차파쇄분(5-1)이 형성되게 하고, 이를 다시 2차파쇄(ER Process)에 투입하여 배터리2차파쇄분(5-2)이 형성되게 한 후, 분리체를 통해 구리 및 알루미늄과, 블랙파우더로 분리시키도록 하는 것을 포함하여 이루어짐을 특징으로 하는 폐리튬이온배터리 진공 열분해 방법을 제공한다.
또한, 상기 리시버탱크(30)의 상단측에 이동관(35)이 연통 연결되고, 상기 이동관(35)의 이동측 단부에 콜드트랩(40)이 연결되며, 상기 콜드트랩(40)의 단부에 배출관(42)이 연결되어, 상기 리시버탱크(30)에서 처리되지 못한 기체가 이동관(35)을 통해 콜드트랩(40)에 공급되어 응축되도록 함을 특징으로 한다.
이하 본 발명의 실시를 위한 구체적인 내용을 첨부한 도면을 참조하여 더욱 상세하게 설명한다.
본 발명은 폐리튬이온배터리 진공 열분해 방법에 관한 것으로서, 보다 상세하게는 진공에서의 열분해로 인한 방전유도와 더불어 전해질제거 및 회수, 나아가서는 각종 고분자까지 증류공정으로 처리가능하여 파분쇄시 고품질의 원료를 회수할 수 있도록 하는 폐리튬이온배터리 진공 열분해 방법에 관한 것이다.
도 1 내지 도 5를 참고하여 보면 아래 S1∼S5단계를 통해 이루어진다.
본 발명의 구현을 위해 먼저 입고된 배터리(5)의 외부케이스를 제거한다. 이때 통상의 외부케이스는 합성수지재로 형성되므로, 배터리(5)의 열분해에 불필요한 요소이므로 이를 반드리 제거토록 한다.
그런 다음, 도 2에서와 같이 직선형 레일(94) 상에 이동가능하게 구비된 수용공간을 갖는 바스켓(10)에 배터리(5)를 담는다.(S1단계)
그리고, 상기 레일(94)을 따라 바스켓(10)을 직선 이동시켜 진공챔버(20) 내로 장입시킨다.(.S2단계)
이때, 상기 레일(94)은 체인모터(91)에 연결된 체인(92)에 연결되어 체인모터(91)의 구동에 따라 이동되면서 바스켓(10)을 직선 이동시키게 된다. 또한, 상기 바스켓(10)은 다수의 배터리(5)를 수용한 상태에서 후술되는 진공챔버(20) 내에서 기화가 이루어져야 하므로, 상기 바스켓(10)은 배터리(5)의 수용안착성 및 기화성을 고려하여 망 형태로서 수용공간을 갖으며 상부가 개방된 통 구조로 형성되도록 함이 바람직하다.
그 실시예로서 미도시되었으나, 상기 바스켓(10)은 “
Figure PCTKR2023014041-appb-img-000005
”또는 “
Figure PCTKR2023014041-appb-img-000006
”형태의 통 구조로 형성되도록 함이 더욱 바람직하다.
또한, 상기 바스켓(10)은 지면에 설치된 설치베이스(2) 상에 설치되어 바스켓(10)의 길이방향으로 직선 이동하도록 구성된다. 그리고, 상기 바스케(10)의 길이방향에 후술되는 진공챔버(20)가 구비된다.
상기 S2단계 이후, 상기 바스켓(10)이 장입된 진공챔버(20)를 밀폐한 후, 진공챔버(20)에 연결된 진공펌프(81)를 가동하여 진공챔버(20) 내부에 진공분위기를 형성한다.
상기 진공펌프(81)는 실시예로서 수봉식진공펌프를 사용토록 하며, 이러한 수봉식 진공펌프를 구동시켜 진공챔버(20) 내부를 0.08㎫ 정도의 진공으로 형성토록 한다. 이때, 상기 수봉식 진공펌프에 연결된 냉각칠러를 가동하여 수봉수가 18℃이하의 온도가 유지되도록 함이 바람직하다.
그리고, 상기 진공챔버(20) 내에서 배터리(5)의 전해액을 기화시키기 위해 상기 진공챔버(20)의 내부면에 다수의 히터(25)가 구비되어 상기 히터(25)를 650℃까지 가열하여 진공챔버(20) 내의 배터리의 전해액을 기화시키도록 구성한다.
상기 전해액은 주로 Cyclic carbonate, Linear carbonate, Linear Ester 계열이 있으며, 서로 다른 특성을 가지고 있고, 이는 단독으로 사용할 수 없고 적절하게 용도에 맞게 상기 Cyclic carbonate, Linear carbonate, Linear Ester 계열 중 적어도 2개 이상을 혼합하여 사용토록 한다. 이러한 전해액은 EC, PC, DMC, DEC, EMC 등으로 끓는점은 90℃ ~ 247℃이다. 그리고, 전해액염은 주로 LiPF6가 사용된다.
이때, 상기 히터(25)를 650℃까지 가열하여 진공챔버(20) 내의 배터리의 전해액을 기화시키는 과정에서, 단번에 650℃까지 가열하지 않고 100℃를 1차설정온도로 하여 60∼70분 동안 1차상승시키고, 200℃를 2차설정온도로 하여 60∼70분 동안 2차상승시키며, 450℃를 3차설정온도로 하여 90∼100분 동안 3차상승시키고, 650℃를 4차설정온도로 하여 90∼100분 동안 4차상승시키도록 하는 방식, 즉 일정시간 동안의 다단으로 온도를 650℃까지 가열상승시켜 배터리(5)의 전해액 기화가 단계적으로 이루어지게 함으로써 기화율을 높이도록 한다.
상기한 방식으로 배터리(5)의 전해액을 기화시킴에 있어, 배터리(5) 내 완전기화를 구현하기 위해서 상기 히터(25)를 1∼4차상승시키는 과정에서, 상기 1차상승 후, 60∼70분 동안 100℃의 1차설정온도를 유지토록 하고, 상기 2차상승 후, 120∼130분 동안 200℃의 2차설정온도를 유지토록 하며, 상기 3차상승 후, 120∼130분 동안 450℃의 3차설정온도를 유지토록 하고, 상기 4차상승 후, 180∼190분 동안 650℃의 4차설정온도를 유지토록 하는 것이 바람직하다.
즉, 상기 진공챔버(20)의 내부를 일정시간 동안의 다단으로 온도를 650℃까지 가열상승시키되, 일정시간 가열온동상승 및 일정시간 온도유지를 반복함으로써 해당온도에서 온도유지 시간동안에 배터리(2)의 전해액 기화가 충분히 이루어지도록 함으로써 전해액 기화율을 높이도록 구성한다.
한편, 도 2에서와 같이 상기 기화된 전해액을 진공챔버(20)의 하부측 수직이동관(22)을 통해 리시버탱크(30)로 이동시켜 응축시킨다.(S4단계)
이때, 상기 리시버탱크(30)에서 응축된 응축수를 리시버탱크(30)의 바닥측에 연통된 배출관(32)을 통해 외부로 배출시키도록 하며, 이러한 응축과정에 의해 진공챔버(20) 내에서 기류가 발생하게 되고, 이에 따라 진공분위기 내에서 온도가 잘 전달되는 것이다.
상기 리시버탱크(30)에 응축된 유기용제는 Air Diaphragm Pump로 이송하여 별도의 보관탱크에 저장토록 한다.
또한 이때, 상기 리시버탱크(30) 내에서 완전한 응축처리가 이루어지지 못할 우려가 있어, 이를 해결하기 위해 본 발명에서는 상기 리시버탱크(30)의 상단측에 이동관(35)이 연통 연결되고, 상기 이동관(35)의 이동측 단부에 콜드트랩(40)이 연결되며, 상기 콜드트랩(40)의 단부에 배출관(42)이 연결되어, 상기 리시버탱크(30)에서 처리되지 못한 기체가 이동관(35)을 통해 콜드트랩(40)에 공급되어 응축되도록 함으로써 2중 응축이 이루어지게 하였다.
상기 S4단계가 완료되면 상기 배터리의 기화가 완료된 진공챔버(20) 내에 질소 또는 에어를 충진하여 진공챔버(20) 내부의 압력을 줄이면서 진공을 해제한 후, 상기 진공챔버(20) 내에 위치된 바스켓(10)을 후진이동시켜 배터리를 꺼낸 다음, 상기 배터리를 파쇄하여 선별라인으로 이동시키게 된다.(S5단계)
이때, 전해액이 기화된 배터리(5)는 도 3에서와 같이 형성되며, 이를 1차파쇄하게 되면 도 4의 (a)와 같이 배터리1차파쇄분(5-1)이 형성되고, 이를 다시 2차파쇄(ER Process)에 투입하게 되면 도 4의 (b)와 같이 배터리2차파쇄분(5-2)이 형성된다.
그리고, 2차파쇄된 기화 배터리(5)를 준비한 다음, 분리체(미도시됨)를 통해 구리(및 알루미늄, 도 5의 (a), 5-3)와 블랙파우더(도 5의 (b), 5-4)로 분리시킴으로써 본 발명의 폐리튬이온배터리 진공 열분해 방법이 완성된다.
상술된 본 발명의 폐리튬이온배터리 진공 열분해 방법에 의하면, 진공에서의 열분해로 인한 방전유도와 더불어 전해질제거 및 회수, 나아가서는 각종 고분자까지 증류공정으로 처리가능하여 파분쇄시 고품질의 원료를 회수할 수 있게 된다.
이상에서 설명한 본 발명은, 도면에 도시된 일실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 명확히 하여야 할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
상기한 본 발명에 의하면 진공에서의 열분해로 인한 방전유도와 더불어 전해질제거 및 회수, 나아가서는 각종 고분자까지 증류공정으로 처리가능하여 파분쇄시 고품질의 원료를 회수할 수 있는 등의 효과가 있다.

Claims (2)

  1. 폐리튬이온배터리 진공 열분해 방법에 있어서,
    입고된 배터리(5)의 외부케이스를 제거한 후, 직선형 레일(94) 상에 이동가능하게 구비된 수용공간을 갖는 바스켓(10)에 배터리(5)를 담는 단계(S1); 상기 바스켓(10)은 망 형태로서, 수용공간을 갖으며 상부가 개방된 “
    Figure PCTKR2023014041-appb-img-000007
    ”또는 “
    Figure PCTKR2023014041-appb-img-000008
    ”형태의 통 구조로 형성되고,
    상기 레일(94)을 따라 바스켓(10)을 직선 이동시켜 진공챔버(20) 내로 장입하는 단계(S2); 상기 레일(94)은 체인(92) 및 체인모터(91)에 연결되고,
    상기 바스켓(10)이 장입된 진공챔버(20)를 밀폐한 후, 진공챔버(20)에 연결된 진공펌프(81)를 가동하여 진공챔버(20) 내부에 진공분위기를 형성하는 단계(S3); 상기 진공펌프(81)는 수봉식 진공펌프이며, 상기 수봉식 진공펌프를 구동시켜 진공챔버(20) 내부를 0.08㎫의 진공으로 형성토록 하고, 상기 수봉식 진공펌프에 연결된 냉각칠러를 가동하여 수봉수의 온도를 유지토록 하며,
    상기 진공챔버(20)의 내부면에 다수의 히터(25)가 구비되어 상기 히터(25)를 650℃까지 가열하여 진공챔버(20) 내의 배터리(5)의 전해액을 기화시키는 과정에서,
    100℃를 1차설정온도로 하여 60∼70분 동안 1차상승시키고, 상기 1차상승 후, 60∼70분 동안 100℃의 1차설정온도를 유지토록 하며,
    200℃를 2차설정온도로 하여 60∼70분 동안 2차상승시키고, 상기 2차상승 후, 120∼130분 동안 200℃의 2차설정온도를 유지토록 하며,
    450℃를 3차설정온도로 하여 90∼100분 동안 3차상승시키고, 상기 3차상승 후, 120∼130분 동안 450℃의 3차설정온도를 유지토록 하며,
    650℃를 4차설정온도로 하여 90∼100분 동안 4차상승시키고, 상기 4차상승 후, 180∼190분 동안 650℃의 4차설정온도를 유지토록 하는 방식으로, 일정시간 가열온도상승 및 일정시간 온도류지를 반복토록 하여, 상기 온도유지 시간동안에 배터리(2)의 전해액 기화가 이루어지도록 함으로써 전해액 기화율을 높이도록 하고,
    상기 전해액은 Cyclic carbonate, Linear carbonate, Linear Ester 계열 중 적어도 2개 이상을 혼합하여 사용토록 하고,
    상기 기화된 전해액을 진공챔버(20)의 하부측 수직이동관(22)을 통해 리시버탱크(30)로 이동시켜 응축시키는 단계(S4); 상기 리시버탱크(30)에 응축된 유기용제는 Air Diaphragm Pump로 이송하여 별도의 보관탱크에 저장토록 하고, 상기 리시버탱크(30)에서 응축된 응축수를 리시버탱크(30)의 바닥측에 연통된 배출관(32)을 통해 배출시키고,
    상기 배터리(5)의 기화가 완료된 진공챔버(20) 내에 질소 또는 에어를 충진하여 진공챔버(20) 내부의 압력을 줄이면서 진공을 해제한 후, 상기 진공챔버(20) 내에 위치된 바스켓(10)을 후진이동시켜 배터리(5)를 꺼낸 다음, 상기 배터리(5)를 파쇄하여 선별라인으로 이동시키는 단계(S5); 상기 배터리(5)는 1차파쇄하여 배터리1차파쇄분(5-1)이 형성되게 하고, 이를 다시 2차파쇄(ER Process)에 투입하여 배터리2차파쇄분(5-2)이 형성되게 한 후, 분리체를 통해 구리 및 알루미늄과, 블랙파우더로 분리시키도록 하는 것을 포함하여 이루어짐을 특징으로 하는 폐리튬이온배터리 진공 열분해 방법.
  2. 제1항에 있어서,
    상기 리시버탱크(30)의 상단측에 이동관(35)이 연통 연결되고, 상기 이동관(35)의 이동측 단부에 콜드트랩(40)이 연결되며, 상기 콜드트랩(40)의 단부에 배출관(42)이 연결되어, 상기 리시버탱크(30)에서 처리되지 못한 기체가 이동관(35)을 통해 콜드트랩(40)에 공급되어 응축되도록 함을 특징으로 하는 폐리튬이온배터리 진공 열분해 방법.
PCT/KR2023/014041 2022-09-27 2023-09-18 폐리튬이온배터리 진공 열분해 방법 WO2024071789A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0122395 2022-09-27
KR1020220122395A KR102516189B1 (ko) 2022-09-27 2022-09-27 폐리튬이온배터리 진공 열분해 방법

Publications (1)

Publication Number Publication Date
WO2024071789A1 true WO2024071789A1 (ko) 2024-04-04

Family

ID=85986021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014041 WO2024071789A1 (ko) 2022-09-27 2023-09-18 폐리튬이온배터리 진공 열분해 방법

Country Status (2)

Country Link
KR (1) KR102516189B1 (ko)
WO (1) WO2024071789A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102516189B1 (ko) * 2022-09-27 2023-03-30 주식회사 이알 폐리튬이온배터리 진공 열분해 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160064104A (ko) * 2013-09-30 2016-06-07 미쓰비시 마테리알 가부시키가이샤 불소 함유 전해액의 처리 방법
JP2020049459A (ja) * 2018-09-28 2020-04-02 太平洋セメント株式会社 廃リチウムイオン電池の処理装置及び処理方法
KR20210036287A (ko) * 2019-09-25 2021-04-02 주식회사 엘지화학 폐전지 처리 방법
KR102426585B1 (ko) * 2022-02-28 2022-08-01 (주)에코프로머티리얼즈 폐전지 친환경 재활용을 위한 열처리시스템
JP2022123497A (ja) * 2021-02-12 2022-08-24 太平洋セメント株式会社 加熱システム及び加熱方法
KR102516189B1 (ko) * 2022-09-27 2023-03-30 주식회사 이알 폐리튬이온배터리 진공 열분해 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102378528B1 (ko) 2019-12-20 2022-03-23 재단법인 포항산업과학연구원 폐리튬이온배터리의 폐수 처리방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160064104A (ko) * 2013-09-30 2016-06-07 미쓰비시 마테리알 가부시키가이샤 불소 함유 전해액의 처리 방법
JP2020049459A (ja) * 2018-09-28 2020-04-02 太平洋セメント株式会社 廃リチウムイオン電池の処理装置及び処理方法
KR20210036287A (ko) * 2019-09-25 2021-04-02 주식회사 엘지화학 폐전지 처리 방법
JP2022123497A (ja) * 2021-02-12 2022-08-24 太平洋セメント株式会社 加熱システム及び加熱方法
KR102426585B1 (ko) * 2022-02-28 2022-08-01 (주)에코프로머티리얼즈 폐전지 친환경 재활용을 위한 열처리시스템
KR102516189B1 (ko) * 2022-09-27 2023-03-30 주식회사 이알 폐리튬이온배터리 진공 열분해 방법

Also Published As

Publication number Publication date
KR102516189B1 (ko) 2023-03-30

Similar Documents

Publication Publication Date Title
WO2023163336A1 (ko) 폐전지 친환경 재활용을 위한 열처리시스템
WO2024071789A1 (ko) 폐리튬이온배터리 진공 열분해 방법
WO2024071787A1 (ko) 폐리튬이온배터리 진공 열분해 장치
CN102017276B (zh) 废旧磷酸铁锂动力电池的回收利用方法
EP4129508A1 (en) Heat treatment method for battery-waste and lithium recovery method
US20130302226A1 (en) Method and apparatus for recycling lithium-ion batteries
CN102637921A (zh) 一种新型高效废旧锂离子电池资源化综合利用方法
CN110112480A (zh) 一种带电动力电池的充保护气破碎无氧裂解回收工艺
KR102447931B1 (ko) 폐전지 친환경 재활용 방법
CN112670609B (zh) 废旧锂电池石墨负极全组分一体化回收与再生方法和装置
CN104183888A (zh) 一种废旧磷酸铁锂动力电池绿色回收处理的方法
KR102426579B1 (ko) 중대형 폐전지 방전시스템
CN212093672U (zh) 一种废旧镍氢电池综合回收装置
CN107910610B (zh) 一种锂电池的正极及电解液混合回收方法
CN108963370A (zh) 废旧锂电池处理回收方法
CN208444920U (zh) 废旧锂电池回收处理系统
US11710867B2 (en) Method to open up electro chemical energy storage devices and thermal treatment system
JP2020049460A (ja) 廃リチウムイオン電池の処理装置及び処理方法
CN108565520A (zh) 一种废旧动力锂电池的回收方法
CN109719117A (zh) 一种回收处理废旧锂电池过程中热解的方法
KR102430803B1 (ko) 전기 자동차 폐배터리모듈 처리 방법 및 자원재활용 시스템
ES2957175A2 (es) Método para recuperar una batería de óxido de litio y cobalto de desecho
CN115332659A (zh) 废旧锂离子电池水下破碎回收电解液的方法
CN106252774A (zh) 一种废旧镍氢动力电池的回收处理方法
JP7234485B2 (ja) リチウムイオン電池のリサイクル方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872907

Country of ref document: EP

Kind code of ref document: A1