WO2024071758A1 - 광전복합케이블용 터미널박스 및 광전복합 터미널박스 시스템 - Google Patents

광전복합케이블용 터미널박스 및 광전복합 터미널박스 시스템 Download PDF

Info

Publication number
WO2024071758A1
WO2024071758A1 PCT/KR2023/013704 KR2023013704W WO2024071758A1 WO 2024071758 A1 WO2024071758 A1 WO 2024071758A1 KR 2023013704 W KR2023013704 W KR 2023013704W WO 2024071758 A1 WO2024071758 A1 WO 2024071758A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
terminal box
optical
power
photoelectric composite
Prior art date
Application number
PCT/KR2023/013704
Other languages
English (en)
French (fr)
Inventor
진성수
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230121312A external-priority patent/KR20240043086A/ko
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Publication of WO2024071758A1 publication Critical patent/WO2024071758A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the present invention relates to a terminal box for a photoelectric composite cable and a photoelectric composite terminal box system. More specifically, the present invention improves the workability of the connection work between the terminal box and the photoelectric composite cable or jumper cable in the RRH type base station, but the connector provided on the cable connected to the terminal box is not exposed to the outside, thereby preventing watertightness and corrosion.
  • This relates to a terminal box for photoelectric composite cable and a photoelectric composite terminal box system that improves performance and allows efficient use of space within the terminal box, making the terminal box smaller and thus lighter.
  • a communication signal is transmitted from a base station of a telecommunication company to a base station, and the RF signal transmitted from the base transceiver station (BTS) of the base station is transmitted wirelessly through the base station antenna. Additionally, the wireless signal transmitted from the user's portable terminal is received by the base station antenna, and the received signal is amplified through a TMA (Tower Mount Amplifier) and transmitted to the BTS.
  • TMA Tower Mount Amplifier
  • the BTS, TMA, and antenna of the base station are connected by a coaxial feed line, but the signal loss of the coaxial feed line increases as the length of the cable increases.
  • the signal loss increases in the coaxial feed line connecting the base station on the ground and the antenna, and the signal provided from the base station is required by the antenna due to signal loss in the coaxial feed line. Since the signal strength is not reached and is attenuated, a TMA is installed to compensate and amplify this.
  • the TMA consumes a relatively large amount of power to amplify the signal, from the perspective of the overall system, it requires a lot of maintenance costs and reduces its efficiency.
  • RRH Remote Radio Head
  • RRH compensates for the inefficient power consumption and maintenance of mobile communication base stations using conventional TMA. RRH separates the RRU (Remote RF Unit) from the conventional BTS, places it at the bottom of the antenna of the base station tower, and controls it remotely.
  • RRU Remote RF Unit
  • the remaining parts of the existing BTS where the RRU is separated from the RRH that is, the BBU (Baseband Unit) and the PSU (Power Supply Unit), are connected to the RRU with an optoelectronic composite cable containing an optical unit and a power unit with almost no attenuation per length.
  • Communication signals from the BBU and PSU are supplied to the RRU through the optical units that make up the photovoltaic composite cable, and power is supplied to the RRU through the power units that make up the photoelectric composite cable.
  • the RRU can be installed and operated at the top of the base station tower directly below the base station antenna, the length of the coaxial feed line for supplying the signal converted into an RF signal by the RRU to the antenna is minimized, which causes RF signal transmission through the coaxial line. Since RF signal attenuation is not a problem, the amount of signal attenuation right before emission is minimized, and the need for TMA, which previously used a lot of power consumption, is eliminated. These technical features became a special advantage of RRH in terms of maintenance of the base station.
  • BBU, PSU, and RRU are branched and connected through a terminal box for photoelectric composite cable.
  • the photoelectric composite cable is provided with the optical unit and power unit as one cable
  • the BBU, PSU, and multiple RRUs cannot be directly connected to the photoelectric composite cable, and the power unit and optical unit are connected in the terminal box for the photoelectric composite cable.
  • This method of branching and connecting to a plurality of RRUs may be used.
  • the connector provided on the cable side and the connection unit provided on the terminal box side are mainly made of metal and are exposed to the outdoors while the connector and connection unit are connected, there is a problem of continuous exposure to snow and rain.
  • Connectors and connection units that are installed and operated outdoors and exposed to snow and rain may have problems such as corrosion of the connectors themselves or moisture infiltrating between the connectors and connection units, causing device failure and deterioration of equipment durability. This can ultimately increase the cost of the base station system.
  • the present invention improves the workability of the connection work between the terminal box and the photoelectric composite cable or jumper cable in the RRH type base station, but the connector provided on the cable connected to the terminal box is not exposed to the outside, improving watertightness and corrosion prevention performance.
  • the problem to be solved is to provide a terminal box for photoelectric composite cable and a photoelectric composite terminal box system that can efficiently use the space within the terminal box to miniaturize the terminal box and thereby reduce its weight.
  • the present invention branches out at least one optoelectric composite cable including a plurality of power units and a plurality of optical units into a plurality of jumper cables including at least one power unit and at least one optical unit.
  • a terminal box for a terminal box comprising: a housing having a connection space inside and a cover on the front; a unit connection portion where an optical unit and a power unit of the optoelectric composite cable and the jumper cable introduced into the housing are interconnected; a connection optical unit connecting the optical unit of the photoelectric composite cable and the optical unit of the jumper cable at the unit connection portion; It is possible to provide a terminal box including a connection power unit that connects the power units of the photoelectric composite cable and the jumper cable at the unit connection part.
  • the cover may be opened, closed, or detachable by hinge coupling with the housing.
  • the housing may have dimensions in the following order: width, height, and thickness.
  • the photoelectric composite cable and the jumper cable are fixed in a shape introduced upward from the lower part of the housing, and the optical unit and the power unit, each of which has a cable jacket removed from the housing, are branched and connected to the unit connection part. You can.
  • optical unit and power unit of the optoelectric composite cable and the jumper cable introduced into the housing are each provided with a connector at the end, and can be connected to the unit connection portion through each connector.
  • the connected optical units at the unit connection portion are each provided with connectors at both ends, so that they can be connected through connectors and couplers of the optical unit and power unit of the optoelectric composite cable and the jumper cable.
  • optical unit and power unit of the photoelectric composite cable may be branched within the housing and then connected to the unit connection portion in the horizontal direction.
  • optical unit and power unit of the jumper cable may be branched within the housing and then connected upward to the unit connection portion.
  • the connecting optical unit of the unit connection portion can connect the optical unit of the photoelectric composite cable connected in the horizontal direction and the optical unit of the jumper cable connected in the upward direction.
  • the unit connection unit may be provided with an optical connection housing in which connection optical units that respectively connect the optical units of the photoelectric composite cable and the optical units of the jumper cable are disposed.
  • one end of the connected power unit is connected to the power unit of the photoelectric composite cable at the upper part of the optical connector housing, and the other end of the connected power unit can be bypassed to the lower part of the optical connector housing and connected to the power unit of the jumper cable. there is.
  • a plurality of optical couplers to which the optical unit of the jumper cable is connected may be provided in a row on the lower surface of the optical connector housing.
  • the optical coupler to which the optical unit of the jumper cable is connected may be provided in multiple layers on the lower surface of the optical connector housing.
  • the connector to which the power unit of the jumper cable is connected may be mounted at the rear of the optical connector housing and may be provided in plural numbers in a row so as to be exposed to the lower part of the optical connector housing.
  • a terminal box A photoelectric composite cable including a plurality of optical units connected between the BBU and the terminal box and a plurality of power units arranged around the optical units and connected between the PSU and the terminal box;
  • a terminal box system may be provided, which is disposed outside the plurality of optical units and introduced from below the terminal box.
  • the connection between the optical unit and the power unit inside the terminal box is performed using a connector method, so the connection work and branching of the terminal box and the photoelectric composite cable or jumper cable are performed. Workability can be improved.
  • the connection between the optical unit and the power unit inside the terminal box is performed using a connector, so the connector is not exposed to the outside, thereby ensuring water tightness and corrosion of the connector. Prevention performance is improved, improving the durability of the system and reducing costs.
  • Figure 1 shows the configuration of a terminal box for photoelectric composite cable and a base station installed with the system according to an embodiment of the present invention.
  • Figure 2 shows a cross-sectional view of a photoelectric composite cable introduced into the terminal box for the photoelectric composite cable of the present invention and branched or connected.
  • Figure 3 shows the internal structure of the terminal box for photoelectric composite cable according to the present invention with the cover open.
  • Figure 4 shows a connection state in which the optical unit of the photoelectric composite cable and the optical unit of the jumper cable are connected by the connection optical unit within the terminal box for the photoelectric composite cable according to the present invention.
  • Figure 5 shows a connection state in which the power unit of the photoelectric composite cable and the power unit of the jumper cable are connected by the connection power unit within the terminal box for the photoelectric composite cable according to the present invention.
  • Figure 6 shows a rear perspective view of the terminal box for photoelectric composite cable according to the present invention.
  • Figure 1 shows the configuration of a terminal box 1000 for a photoelectric composite cable and a base station in which the system is installed according to an embodiment of the present invention.
  • the RRH type base station system 1 separates the RRU 40 from the conventional BTS type base station, places it under the antenna 20 of the base station installation tower, and remotely controls it.
  • the remaining part (10) of the existing BTS-type base station, where the RRU (40) is separated from the RRH-type base station system (1), that is, the BBU, PSU, and RRU, includes optical units and power units with almost no attenuation per length. It is connected to a photoelectric composite cable (100).
  • Communication signals from the BBU and PSU are supplied to the RRU (40) through the optical unit 130 that constitutes the photoelectric composite cable (100), and power is supplied to the RRU through the power unit (110) that constitutes the photoelectric composite cable (100). It is supplied as (40).
  • the RRU (40) can be installed on the top of the base station tower directly below the base station antenna (20), so the length of the coaxial line (30) for supplying the signal converted into an RF signal in the RRU (40) to the antenna (20) is minimized, so RF signal attenuation that may occur when transmitting RF signals through the coaxial line 30 is not a problem, so the amount of signal attenuation just before radiation is minimized, and TMA, which previously used a lot of power consumption, is not required. .
  • TMA which previously used a lot of power consumption
  • the base station system 1 of the RRH type described above is connected to a part 10 consisting of a BBU and a PSU and a photoelectric composite cable 100 via a terminal box 1000 for the photoelectric composite cable. do.
  • the optical unit 130 (see FIG. 2) of the photoelectric composite cable 100 is connected to the BBU, and the power unit 110 (see FIG. 2) is connected to the PSU.
  • the photoelectric composite cable 100 is a cable in which multiple optical units and power units are combined into one cable, and the part 10 consisting of a BBU and a PSU and a plurality of RRUs of various types installed in one base station tower are directly connected to each other. They cannot be connected, and each optical unit and power unit constituting the photoelectric composite cable 100 are branched from the terminal box 1000 for the photoelectric composite cable and then connected through a plurality of RRUs 40 and jumper cables 50. Each connection method may be used.
  • the optical unit 130 and power unit 110 constituting the photoelectric composite cable 100, and the optical unit and power unit constituting the jumper cable 50 are used. Connecting a connection requires a considerable amount of time.
  • the photoelectric composite cable 100 can be easily mounted on the terminal box 1000 while the terminal box 1000 is installed on the base station tower, and further, the photoelectric composite cable 100 can be installed even by one worker.
  • the object of the present invention is to provide a terminal box 1000 for a photoelectric composite cable that can easily connect the optical unit 130 and the power unit 110 that make up ) to the terminal box 1000.
  • Figure 2 shows a cross-sectional view of the photoelectric composite cable 100 introduced into the terminal box 1000 for the photoelectric composite cable of the present invention and branched or connected.
  • the photoelectric composite cable 100 may be composed of a cable core 105 and an outer skin layer 150 surrounding the cable core 105.
  • the cable core 105 may include a plurality of power units 110 for supplying power and a plurality of optical units 130 for transmitting optical signals.
  • a center tension line 145 may be disposed at the center of the photoelectric composite cable 100, and a plurality of optical units 130 are disposed around the center tension line 145 in the longitudinal direction of the photoelectric composite cable 100. It can be.
  • a protective layer 140 may be further provided outside the plurality of layers of the optical units 130 to protect the optical units 130.
  • the optical unit 130 can be configured in any form including an optical fiber for transmission of an optical signal, for example, at least one optical fiber 133 and a tube 135 surrounding the optical fiber 133. may include.
  • the tube 135 may be made of, for example, polybutylene terephthalate (PBT), polypropylene, polyethylene, or polyvinyl chloride. Additionally, the tube 135 may be additionally filled with a filler 137 such as jelly or waterproof thread.
  • jelly may be filled, or a tension material (not shown) such as aramid yarn may be filled.
  • the tension member has excellent tensile strength and is flexible, allowing the cable to be installed stably.
  • the optical unit has a plurality of optical fibers and is connected to an MPO type optical connector, so that one optical unit can be branched and connected to a plurality of jumper cables 50.
  • the optical unit 130 may be configured in various forms as needed, such as a tight buffer type or a loose tube type.
  • each power unit 110 includes a conductor 113 and an insulator 115 surrounding the conductor 113.
  • the power unit 110 may be in a form that complies with standards used for general power, and the plurality of conductors 113 may be twisted together.
  • the conductor 113 may be made of a metal such as copper or aluminum
  • the insulator 115 may be made of a polymer resin such as polyethylene, polypropylene, or polyvinyl chloride.
  • the optical unit 130 Comparing the optical unit 130 and the power unit 110, the optical unit 130 has a smaller diameter than the power unit 110, and the optical fiber 133 provided in the optical unit 130 is prone to bending or disconnection, etc. Since it is relatively more vulnerable, the optical unit 130 can be placed in the center of the photoelectric composite cable 100, the outside of it is wrapped with a protective layer 140, and the power unit 110 can be placed on the outer peripheral surface of the protective layer. there is.
  • the cable core 105 may further include a filler 120 that fills the gap between the plurality of power units 110 or optical units 130.
  • the power unit 110 Since the power unit 110 has a circular shape, an air gap or gap occurs between neighboring power units 110. In this configuration, the overall outer shape of the photoelectric composite cable 100 does not maintain its original shape, making it vulnerable to bending or impact from the outside. Accordingly, the voids within the cable core 105 can be filled with the filler 120, and the outer shape of the filler 120 can be maintained in a circular shape to have a structure capable of withstanding external impacts.
  • the outer shell layer 150 provided on the outermost layer of the photoelectric composite cable 100 is a part that forms the outer shape of the photoelectric composite cable 100, and is a part of the optical unit 130 and the power unit 110 included in the photoelectric composite cable 100. ) protects.
  • the outer skin layer 150 is in contact with the cable core 105, and a non-woven tape 151 surrounds the outer circumference of the cable core 105.
  • the cable core 105 is formed in a circular shape on the outside of the non-woven tape 151. It may include a metal protective layer 153 that surrounds and protects the cable core 105 from external shock, and an outer jacket 155 that surrounds the metal protective layer 153.
  • the non-woven tape 151 is provided to surround the outer circumference of the cable core 105, and is provided to surround the power unit 110 and the optical unit 130 in a circular shape. You can.
  • the non-woven tape 151 is a compressed non-woven fabric and may be arranged to surround the optical unit and power unit inside.
  • the non-woven tape 151 may be formed by winding or vertically wrapping a tape-shaped material.
  • the metal protective layer 153 may be formed with wrinkles in which wrinkles and valleys are repeatedly formed to surround the cable core 105.
  • the metal protective layer 153 has a corrugated shape in which corrugated mountains and corrugations are repeatedly formed and may be made of a metal pipe such as aluminum.
  • a plate-type metal sheet is supplied along with the cable core 105 including the optical unit 130 and the power unit 110, and the metal sheet is rolled. After forming the cable core to surround the outside, both ends of the metal plates in contact are joined by welding or other methods to form a pipe with a predetermined diameter. Subsequently, it can be constructed by pressing at predetermined intervals to form wrinkles on the outside of the pipe.
  • the outer jacket 155 has flame retardant properties and may be made of an eco-friendly resin.
  • the outer jacket 155 may be made of polyethylene, polypropylene, or polyvinyl chloride (PVC).
  • the photoelectric composite cable 100 is connected to a jumper cable 50 that is connected to the RRU 40 after the power unit 110 and the optical unit 130 are branched from the terminal box 1000 described above.
  • terminal box 1000 for the photoelectric composite cable will be examined in detail.
  • Figure 3 shows the internal structure of the terminal box 1000 for a photoelectric composite cable according to the present invention with the cover open.
  • the description will be made with reference to the optical units 130, 53 and power units 110, 51 of the photoelectric composite cable 100 and jumper cable 50 of FIGS. 2, 4, and 5.
  • the terminal box 1000 for a photoelectric composite cable is a power terminal box for connecting at least one photoelectric composite cable 100 including a plurality of power units 110 and a plurality of optical units 130 to an RRU. It is a terminal box (1000) for branching into a plurality of jumper cables (50) including a unit (51) and an optical unit (53). It has a connection space inside and is equipped with a cover (510) that can be opened or detached on the front.
  • Housing 520 A unit connection portion 300 through which the optical units 130, 53 and power units 110, 51 of the photoelectric composite cable 100 and the jumper cable 50 introduced into the housing 520 are interconnected; A connecting optical unit 200 connecting the optical unit 130 of the photoelectric composite cable 100 and the optical unit 53 of the jumper cable 50 at the unit connection part 300; It may be configured to include a connection power unit 400 that connects the power unit 110 of the photoelectric composite cable 100 and the power unit 51 of the jumper cable 50 at the unit connection portion 300.
  • the terminal box 1000 according to the present invention can be connected to the part 10 consisting of the BBU and PSU shown in Figure 1 and the photoelectric composite cable 100 shown in Figure 2. there is.
  • the purpose of the terminal box 1000 according to the present invention is to improve the workability of photoelectric composite cable 100 mounting, branching, and connection work in a base station tower.
  • the terminal box 1000 is first installed in a base station tower, and then the optical unit 130 and the power unit 110 are pre-branched, and the photoelectric composite cable 100, the optical unit 53, and the power unit 51 are connected. By introducing this pre-branched jumper cable 50 into the terminal box 1000, each unit can be connected to the unit connection portion 300.
  • the terminal box 1000 according to the present invention is installed in the power unit (110, 51) after installing the terminal box (1000) in the base station tower.
  • optical units (130, 53) can be applied by pulling the pre-branched photoelectric composite cable (100) and jumper cable (50), introducing and fixing them inside the terminal box (1000), and then connecting them, thereby improving workability. It can be greatly improved.
  • the terminal box 1000 includes the optical units 130, 53 and the power unit 110 of the photoelectric composite cable 100 and the jumper cable 50 introduced into the housing 520. 51) may be provided with a unit connection unit 300 that is interconnected.
  • the area where the photoelectric composite cable 100 and jumper cable 50 are introduced and each of the optical units 130, 53 and the power units 110, 51 are connected are separated to make it easier to manage cross-dressing, improve durability, and improve connection workability.
  • the present invention provides a unit connection unit 300 for connecting the optical units 130, 53 and power units 110, 51 of the photoelectric composite cable 100 and the jumper cable 50 within the terminal box 1000. It is provided to separate the area where the photoelectric composite cable 100 and the jumper cable 50 are introduced, and the optical units 130, 53 and power of the photoelectric composite cable 100 and the jumper cable 50 are connected to the unit connection part 300. Connect the units 110 and 51.
  • the terminal box 1000 for a photoelectric composite cable connects the optical units 130, 53 and the power units 110, 51 of the photoelectric composite cable 100 and the jumper cable 50 at the unit connection portion 300. ), but when connecting the optical units (130, 53) and power units (110, 51) of the photoelectric composite cable (100) and the jumper cable (50) within the unit connection portion (300), the connecting optical unit (200) ) can be connected by applying the connection power unit 400. A detailed explanation of this will be postponed later.
  • the terminal box 1000 for a photoelectric composite cable according to the present invention can efficiently use the space inside the terminal box 1000 and reduce the size of the terminal box 1000.
  • the terminal box 1000 is provided with an openable or removable cover 510, so that the receiving space inside the housing 520 can be selectively opened.
  • the housing 520 may have a structure in which a cover can be mounted and fixed with a fastening member such as a bolt or can be hinged.
  • the housing 520 of the terminal box 1000 shown in FIG. 3 has a photoelectric composite cable 100 and a jumper cable 50 introduced from the bottom.
  • the photoelectric composite cable 100 with a relatively large diameter is introduced from the lower right side of the housing 520, and then the pre-branched optical unit 130 and power unit 110 are bent or bypassed and provided on the upper left side.
  • a plurality of jumper cables 50, which are connected to the unit connection portion 300 and are relatively flexible and have a small diameter, are introduced from the left lower surface of the housing 520 and then pre-branched into the optical unit 53 and the power unit 51. It can be connected to the unit connection part 300 located at the top.
  • the structure is such that moisture can easily penetrate into the housing 520, so the jumper cables 50 connect the RRU located at the top of the terminal box 1000. Despite this, it is preferable that it is configured to be connected upward from the bottom of the housing 520.
  • the terminal box 1000 can be configured to have a width greater than the height. Accordingly, the housing 520 may have dimensions in the following order: width, height, and thickness. It is also possible to reduce the width and increase the height by arranging a plurality of jumper cables (50) with relatively small diameters in multiple layers.
  • a plurality of introduction parts 501, 503 are formed on the lower surface of the housing 520 for introducing the photoelectric composite cable 100 and the jumper cable 50, and the plurality of introduction parts 501, 503 are provided inside the housing.
  • the cable may be configured to be equipped with separate sealing members (511, 513, see FIGS. 4 and 5) that prevent moisture from penetrating into the cable.
  • the terminal box 1000 of the photoelectric composite cable 100 according to the present invention can be transported to the base station tower in a state separated from each cable, but for convenience of connection work, the terminal box 1000 is used.
  • the optical units 130, 53 and power units 110, 51 branched from the photoelectric composite cable 100 and the jumper cable 50 are provided with connectors 130c, 53c, 110c, and 51c at their ends, respectively. It can be connected to the unit connection unit 300.
  • the photoelectric composite cable 100 is shown as having two optical unit connectors 130c, but the number may be increased to three or more depending on the number of optical units grouped.
  • connection can be completed by simply connecting to the optical coupler (320a, 320b) or power coupler (330a, 330b) of the unit connection part 300 in the housing 520 by a connecting method.
  • the photoelectric composite cable 100 and the jumper cable 50 are connected to a plurality of connection optical units 200 and connection power units for branching and connection for one-to-many branch connection ( 400), and the connecting optical unit 200 and the connecting power unit 400 are also provided with connectors at their ends to connect the optical couplers 320a, 320b or power couplers 330a, 330b of the unit connection portion 300. ) can be connected to each connection method.
  • connection difficulty for optical connection is relatively high, so a lot of time is required for optical connection work in the field during installation and maintenance of the terminal box 1000, so the connection optical unit 200 has a connector at the end ( It is preferable to connect the unit connection unit 300 to the optical couplers 320a and 320b with 200c) already provided.
  • the connected power unit 400 is connected directly (hard-wired) to the power couplers 330a and 330b without a connector at the end. It is desirable to do so. In this case, the internal space of the terminal box 1000 is used efficiently by suppressing the provision of unnecessary connectors, so that the terminal box can be made smaller and lighter.
  • connectors are provided at the ends of the photoelectric composite cable 100 and the jumper cable 50 outside the terminal box 1000, and a connector connection unit is provided on the terminal box housing to connect the photoelectric composite cable 100 outside the terminal box 1000.
  • the optoelectronic composite cable 100 and the jumper cable 50 introduced into the terminal box are pre-branched.
  • Each connector (130c, 53c, 110c, 51c) provided at the end of the units (130, 53) and the power unit (110, 51) is connected to the optical coupler (320a, 320b) and power coupler of the unit connection portion (300) inside the terminal box.
  • the advantage of the connector-type terminal box 1000 is improved connection and maintenance workability, but the connector is exposed to the outside of the housing 520, which can cause connector corrosion or cable damage. Problems such as moisture penetration into the interior can be minimized.
  • At least one cable holder 350, 360 or a fixed tie member 370 is provided to support the photoelectric composite cable introduced inside the housing 520 of the terminal box 1000 or to organize the optical unit, etc. It can be used to organize wiring inside the terminal box.
  • Figure 4 shows the connection state of the optical unit in the terminal box 1000 for a photoelectric composite cable according to the present invention
  • Figure 5 shows the connection state of the power unit in the terminal box 1000 for the photoelectric composite cable according to the present invention. do.
  • connection state of the optical unit and the connection state of the power unit within the terminal box 1000 are shown separately in FIGS. 4 and 5.
  • the photoelectric composite cable 100 and the jumper cable 50 are introduced upward from the lower part of the housing 520, their respective cable jackets are removed and the optical units 130 and 53 are connected to each other for power. Connectors may be mounted on the ends of the units 110 and 51.
  • the connecting optical unit 200 in the unit connection part 300 is provided with connectors 200c at both ends to connect the photoelectric composite cable 100 and the jumper cable ( 50) may be configured to be connected to the connectors 130c, 53c of the optical units 130, 53 and optical couplers 320a, 320b, and the connected power unit 400 at the unit connection portion 300 provides power. It may be configured to be directly connected to the couplers (330a, 330b) so that the connectors (110c, 51c) of the power units (110, 51) of the photoelectric composite cable (100) and the jumper cable (50) are connected.
  • connection optical unit 200 for interconnecting the optical units 130, 53 and the power units 110, 51 of the photoelectric composite cable 100 and the jumper cable 50 within the unit connection unit 300, and
  • a coupler (320a, 320b, 330a, 330b) of the unit connection portion 300 is provided with a connection power unit 400, and the connection optical unit 200 and the connection power unit 400 are each provided with or without a connector.
  • the connectors of the patch cord-type units can be configured to be interconnected.
  • a fixing part 340 may be provided on the front side of the optical connector housing 310 to fix the coupler 330a to which the power unit 110 of the photoelectric composite cable 100 is connected.
  • the unit connection portion 300 in the housing 520 of the terminal box 1000 shown in FIGS. 4 and 5 is mounted on the upper left inside the housing 520 of the terminal box 1000, and therefore has a relatively large diameter and branching.
  • the optical unit 130 and power unit 110 of the photoelectric composite cable 100 with a large number of units can be branched within the housing 520, bent in the horizontal direction, and then connected to the unit connection portion 300. there is.
  • the power unit 110 of the photoelectric composite cable 100 has a larger diameter than the optical unit 130, so it is not easy to bend, and in particular, as the number of power units 110 increases, the bending characteristics become poorer.
  • the power units 110 can be divided into a plurality of groups and mounted on a plurality of connectors 110c to improve connector fastening workability in the field and to miniaturize and lightweight the terminal box 1000. You can.
  • the eight power units 110 are divided into two groups of four and equipped with two connectors 110c, so that the eight power units 110 are bundled into one connector 110c.
  • the connection work of the power unit 110 is easy, and the maximum bending radius of the power unit 110 can be reduced when bending, thereby reducing the space required to place the power unit 110.
  • optical unit 53 and power unit 51 of the jumper cable 50 which has a relatively large number of cables, are configured to be branched within the housing 520 and then connected to the unit connection portion 300 in an upward direction. It can be.
  • the connecting optical unit 200 of the unit connection unit 300 is connected to the optical unit of the photoelectric composite cable 100 connected in the horizontal direction and the jumper cable 50 connected upward.
  • the optical unit 53 can be connected.
  • the optical unit which has a relatively small diameter and can be easily damaged compared to the power unit, can be connected through a separate connection space within the unit connection unit 300. Therefore, the unit connection part 300 is an optical connection housing ( 310), and the optical couplers 320a and 320b for connecting the connectors of each optical unit may be installed penetrating the side of the optical connector housing 310.
  • the optical connection housing 310 may be made of a thermosetting resin such as plastic to reduce weight, or may be made of a metal material such as aluminum to improve durability.
  • the optical connector housing 310 provided within the unit connector 300 is shown with the front cover removed.
  • the optical connector housing 310 is configured in the form of a flat case and is provided with an optical coupler 320a on the horizontal side for connecting the optical unit 130 of the photoelectric composite cable 100 and the connector of one end of the connecting optical unit 200.
  • An optical coupler (320b) may be provided on the lower side for connecting the optical unit of the jumper cable 50 and the connector of the other end of the connection optical unit 200, and each coupler (320a, 320b) has the same optical connector. It may be an optical coupler that can be mounted and optically connected.
  • the unit connection part 300 connects the power units 110 and 51 of the photoelectric composite cable 100 and the jumper cable 50 in addition to connecting the optical unit. Since the functional characteristics of the conductors constituting the power units 110 and 51 are not sensitive to bending compared to the optical fibers constituting the optical unit, as shown in FIG. 5, the connected power unit 400 is connected to the unit connection portion 300. ), one end of which is connected to the power coupler (330a) provided on the front part of the optical connector housing (310) to connect the power unit (110) of the photoelectric composite cable (100), and the other end of the connected power unit (400) It can be bypassed to the lower part of the optical connector housing 310 and connected to the power coupler 330b to be connected to the power unit 51 of the jumper cable 50.
  • the power unit connector 110c of the photoelectric composite cable 100 can be fixed to the front of the optical connector housing 310 with one or more power couplers 330a for horizontal connection, and the optical connector housing (310) A plurality of power couplers (330b) are disposed at the bottom for vertical connection of the power unit 51 of the jumper cable 50, so that the power unit 110 of the photoelectric composite cable 100 is located within the housing 520. After being branched from, the power unit 51 of the jumper cable 50 may be branched within the housing 520 and then connected in the vertical direction.
  • the power unit connector 110c is shown as having two power units grouped into two, but the number may be provided as one or increased to three or more. .
  • one end of the connected power unit 400 of the unit connection unit 300 is connected to the power unit 110 of the photoelectric composite cable 100 at the front of the optical connection housing 310 and then bypasses the optical connection housing 310.
  • each can be connected to the power unit 51 of the jumper cable 50 at the rear of the optical connection housing 310.
  • the terminal box 1000 for a photoelectric composite cable is provided with an optical connector housing 310 for accommodating the connected optical unit 200 within the unit connection portion 300, and connects the upper and lower spaces thereof to power By using it as a connection space for the unit 400, the accommodation space within the housing 520 within the narrow terminal box 1000 can be fully utilized.
  • a plurality of optical couplers 320b to which the optical unit 53 of the jumper cable 50 is connected are provided in a row through the lower surface of the optical connector housing 310, and the power unit of the jumper cable 50
  • the power coupler 330b to which (51) is connected may be mounted on the lower or rear portion of the optical connector housing 310 and may be provided in plural pieces so as to be exposed to the outside of the optical connector housing 310.
  • the coupler 320b to which the optical unit 53 of the jumper cable 50 is connected and the coupler 330b to which the power unit 51 of the jumper cable 50 is connected are arranged in multiple layers, with each coupler ( A plurality of 320b and 330b) may be provided depending on the number of connectors 53c and 51c respectively connected.
  • the terminal box 1000 for photoelectric composite cable optimizes the arrangement path of each unit within it, configures the fastening space of the connector and coupler in a multi-layer structure, and facilitates the connection of the photoelectric composite cable.
  • the space inside the terminal box is efficiently used, making it possible to miniaturize the terminal box and thereby make it lighter.
  • Figure 6 shows a rear perspective view of the terminal box 1000 for a photoelectric composite cable according to the present invention.
  • the terminal box 1000 for a photoelectric composite cable according to the present invention is installed in a base station tower, etc., and branches off the photoelectric composite cable 100 connected on the ground into a plurality of jumper cables 50 that connect to the RRU equipment installed in the base station tower. It is a device for
  • the rear of the terminal box 1000 may be provided with an uneven support 610 to prevent rotation of the terminal box when mounted on a pillar of a base station tower, etc., and when mounted on a pillar of a base station tower, etc.
  • a strip mounting hole 630, etc. may be provided to fix this, and furthermore, a fastening mount 640 having a fastening hole for fastening to a separate standard mount, etc. using a fastening member, etc. may be provided, so that it can be installed in various environments. It may be possible.
  • the mounting device 600 equipped with the uneven support 620, the strip mounting hole 630, or the fastening mount 640 is detachably mounted on the housing 520 of the terminal box 1000 to form a new type. It can be configured to be replaced with a mount device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

본 발명은 RRH 방식의 기지국에서 터미널박스와 광전복합케이블 또는 점퍼케이블 간의 접속작업의 작업성이 향상되되 터미널박스와 연결되는 케이블에 구비된 커넥터가 외부로 노출되지 않아 수밀성과 부식 방지성능이 향상되며, 터미널박스 내의 공간이 효율적으로 사용되어 터미널박스가 소형화되고 그에 따라 경량화가 가능한 광전복합케이블용 터미널박스 및 광전복합 터미널박스 시스템에 관한 것이다.

Description

광전복합케이블용 터미널박스 및 광전복합 터미널박스 시스템
본 발명은 광전복합케이블용 터미널박스 및 광전복합 터미널박스 시스템에 관한 것이다. 보다 상세하게, 본 발명은 RRH 방식의 기지국에서 터미널박스와 광전복합케이블 또는 점퍼케이블 간의 접속작업의 작업성이 향상되되 터미널박스와 연결되는 케이블에 구비된 커넥터가 외부로 노출되지 않아 수밀성과 부식 방지성능이 향상되며, 터미널박스 내의 공간이 효율적으로 사용되어 터미널박스가 소형화되고 그에 따라 경량화가 가능한 광전복합케이블용 터미널박스 및 광전복합 터미널박스 시스템에 관한 것이다.
종래의 이동통신의 경우, 통신사 기간국 등에서 기지국으로 통신신호를 전송하고, 상기 기지국의 BTS(Base Transceiver Station)에서 전송된 RF 신호가 기지국 안테나를 통해 무선 전송된다. 또한, 사용자의 휴대용 단말기에서 전송된 무선신호는 상기 기지국 안테나에 수신되고 수신된 신호는 TMA(Tower Mount Amplifier)를 통하여 증폭되어 BTS로 전송된다.
이때, 상기 기지국의 BTS, TMA 및 안테나는 동축 급전선으로 연결되었으나, 상기 동축 급전선은 케이블의 길이가 증가할수록 신호의 손실(loss)이 크다. 수십 미터 높이의 기지국 타워에 상기 안테나를 설치하는 경우에 지상의 기지국과 상기 안테나를 연결하는 동축 급전선에서 손실이 증가하게 되며, 상기 동축 급전선의 신호 손실에 의해 상기 기지국에서 제공된 신호가 상기 안테나에서 요구되는 신호의 세기에 도달하지 못하고 감쇄되므로, 이를 보상하여 증폭하기 위하여, TMA가 설치된다.
하지만, 상기 TMA는 상기 신호를 증폭하기 위하여 상대적으로 많은 전력을 소비하게 되므로, 전체적인 시스템 측면에서 볼 때, 유지보수에 많은 비용이 소요되어 그 효율성이 떨어지는 문제점을 수반한다.
한편, FTTx(Fiber to the X)의 진화와 중계장치의 소형화에 따라 기지국 설비도 진화되고 있다. 이중에서 광유닛은 동축케이블과 비교하여 케이블 길이에 따른 신호감쇠가 작은 것이 특징이다. 이러한 장점을 응용하여 광신호를 기지국 안테나의 직전까지 전달하여 신호의 손실을 최소화하고, 안테나 직전에서 광신호를 방사가 가능한 RF신호로 변환하는 기술인 RRH (Remote Radio Head)가 등장하였다.
종래의 TMA를 이용한 이동통신 기지국의 전력소비의 및 유지보수의 비효율적인 단점을 보완한 것이 RRH이다. RRH는 종래의 BTS에서 RRU(Remote RF Unit)를 분리하여 기지국 기지국 타워의 안테나 하부에 배치하고 원격 제어한다.
여기서, RRH에서 RRU가 분리된 기존 BTS의 나머지 부분 즉, BBU(Baseband Unit)와 PSU(Power SupplyUnit)는 길이당 감쇠가 거의 없는 광유닛 및 전력유닛을 포함하는 광전복합케이블로 RRU와 연결되어, BBU와 PSU에서 통신 신호는 광전복합케이블을 구성하는 광유닛을 통해 RRU로 공급되고, 전력은 광전복합케이블을 구성하는 전력유닛을 통해 RRU로 공급된다.
이러한, RRU는 기지국 타워 상단에 기지국 안테나 바로 아래 설치되어 운영될 수 있으므로, RRU에 의하여 RF 신호로 변환된 신호를 안테나로 공급하기 위한 동축 급전선의 길이는 최소화되어 동축선을 통한 RF 신호 전송시 발생되는 RF 신호 감쇠가 문제되지 않으므로, 방사직전까지의 신호의 감쇠량이 최소화되고, 기존 많은 소비전력을 사용하던 TMA의 필요성이 없어졌다. 이러한 기술적 특징은 기지국의 유지보수적인 측면에서 RRH의 특장점이 되었다.
이러한 RRH 시스템에서 BBU 및 PSU와 RRU는 광전복합케이블용 터미널박스를 매개로 분기 및 연결된다.
즉, 광전복합케이블은 광유닛과 전력유닛이 하나의 케이블화되어 제공되므로, BBU 및 PSU와 복수 개의 RRU가 광전복합케이블과 직접 연결될 수는 없고, 광전복합케이블용 터미널박스에서 전력유닛과 광유닛이 분기되어 복수 개의 RRU에 각각 연결되는 방식이 사용될 수 있다.
통신사 또는 통신방식에 따라 기지국 안테나의 개수가 많아지면, 그에 따라 RRU 또는 터미널박스의 수도 증가된다. 따라서, 기지국 관리 작업자는 광전복합케이블을 탈피하여 각각의 전력유닛과 광유닛을 터미널박스 내에서 점퍼 케이블의 전력유닛과 광유닛을 연결하는 연결작업을 수행해야 하므로 많은 시간과 노력이 요구된다.
따라서, 통신사 또는 통신방식의 종류가 더 다양해지고 급변하는 환경에서 광전복합케이블과 점퍼 케이블을 접속하는 터미널박스의 접속 작업의 개선이 요구되고 있다.
최근에는 하나의 광전복합케이블을 복수 개의 점퍼 케이블로 분기시키는 경우, 광전복합케이블과 점퍼 케이블 각각의 단부에 커넥터를 장착하고, 내부 접속이 완료된 터미널박스 외부에 케이블 커넥터가 장착되는 커넥터 접속유닛을 장착하여 작업자가 기지국 상부에서 광전복합케이블의 커넥터와 점퍼 케이블의 커넥터를 터미널박스에 장착하는 방법으로 기지국 작업을 완료할 수 있는 제품들이 소개되어 기지국 고공 작업의 작업성 개선을 도모하고 있다.
그러나 케이블 측에 구비되는 커넥터 및 터미널박스 측에 구비되는 접속유닛이 주로 금속 재질로 구성되고 커넥터와 접속유닛이 접속된 상태로 실외에 노출되는 구성이므로 눈과 비에 지속적으로 노출되는 문제가 있다.
옥외에 설치되고 운영되어 눈과 비에 노출되는 커넥터와 접속유닛은 그 자체의 부식 문제 또는 커넥터와 접속유닛 사이로 수분이 침투되는 등의 문제가 발생하여, 기기 고장 및 장비의 내구성을 저하의 원인이 되고 결국 기지국 시스템의 비용을 증가시킬 수 있다.
본 발명은 RRH 방식의 기지국에서 터미널박스와 광전복합케이블 또는 점퍼케이블 간의 접속작업의 작업성이 향상되되 터미널박스와 연결되는 케이블에 구비된 커넥터가 외부로 노출되지 않아 수밀성과 부식 방지성능이 향상되며, 터미널박스 내의 공간이 효율적으로 사용되어 터미널박스가 소형화되고 그에 따라 경량화가 가능한 광전복합케이블용 터미널박스 및 광전복합 터미널박스 시스템을 제공하는 것을 해결하고자 하는 과제로 한다.
상기 과제를 해결하기 위하여, 본 발명은 복수 개의 전력유닛 및 복수 개의 광유닛을 포함하는 적어도 하나의 광전복합 케이블을 적어도 하나의 전력유닛 및 적어도 하나의 광유닛을 포함하는 복수 개의 점퍼 케이블로 분기하기 위한 터미널박스에 있어서, 내부에 접속공간이 구비되되 전면에 커버가 구비되는 하우징; 상기 하우징의 내부로 도입된 상기 광전복합 케이블 및 상기 점퍼 케이블의 광유닛과 전력유닛이 상호 접속되는 유닛 접속부; 상기 유닛 접속부에서 상기 광전복합 케이블의 광유닛 및 상기 점퍼 케이블의 광유닛을 연결하는 연결 광유닛; 상기 유닛 접속부에서 상기 광전복합 케이블 및 상기 점퍼 케이블의 전력유닛을 연결하는 연결 전력유닛을 포함하는 터미널박스를 제공할 수 있다.
이 경우, 상기 커버는 상기 하우징과 힌지 결합으로 개폐되거나 분리 가능할 수 있다.
그리고, 상기 하우징은 폭, 높이 및 두께 순서의 크기를 가질 수 있다.
여기서, 상기 광전복합 케이블 및 상기 점퍼 케이블은 상기 하우징의 하부에서 상방향으로 도입된 형상으로 고정되고, 상기 하우징 내에서 케이블 자켓이 탈피된 각각 광유닛과 전력유닛이 분기되어 상기 유닛 접속부에 접속될 수 있다.
또한, 상기 하우징의 내부로 도입된 상기 광전복합 케이블 및 상기 점퍼 케이블의 광유닛과 전력유닛은 단부에 각각 커넥터가 구비되고, 각각의 상기 커넥터를 통해 상기 유닛 접속부에 접속될 수 있다.
이 경우, 상기 유닛 접속부에서 상기 연결 광유닛은 각각 양단에 커넥터가 구비되어 상기 광전복합 케이블 및 상기 점퍼 케이블의 광유닛과 전력유닛의 커넥터와 커플러를 통해 접속될 수 있다.
여기서, 상기 광전복합 케이블의 광유닛과 전력유닛은 상기 하우징 내에서 분기된 후 수평방향으로 상기 유닛 접속부에 접속될 수 있다.
또한, 상기 점퍼 케이블의 광유닛과 전력유닛은 상기 하우징 내에서 분기된 후 상방향으로 상기 유닛 접속부에 접속될 수 있다.
이 경우, 상기 유닛 접속부의 연결 광유닛은 수평방향으로 접속되는 광전복합케이블의 광유닛과 상방향으로 접속되는 점퍼 케이블의 광유닛을 접속할 수 있다.
그리고, 상기 유닛 접속부는 광전복합케이블의 광유닛과 점퍼 케이블의 광유닛을 각각 연결하는 연결 광유닛이 배치되는 광연결부 하우징을 구비할 수 있다.
여기서, 상기 연결 전력유닛의 일단은 상기 광연결부 하우징 상부에서 광전복합케이블의 전력유닛과 접속되고, 상기 연결 전력유닛의 타단은 상기 광연결부 하우징 하부로 우회하여 상기 점퍼케이블의 전력유닛과 접속될 수 있다.
또한, 상기 점퍼 케이블의 광유닛이 접속되는 광 커플러는 광연결부 하우징의 하면에 일렬로 복수 개가 구비될 수 있다.
이 경우, 상기 점퍼 케이블의 광유닛이 접속되는 광 커플러는 광연결부 하우징의 하면에 복수 개가 복층으로 구비될 수 있다.
여기서, 상기 점퍼 케이블의 전력유닛이 접속되는 커넥터는 상기 광연결부 하우징 후방에 장착되되 상기 광연결부 하우징 하부로 노출되도록 일렬로 복수 개가 구비될 수 있다.
또한, 상기 과제를 해결하기 위하여, 터미널박스; BBU와 터미널박스 사이에 연결되는 복수 개의 광유닛과 상기 광유닛 둘레에 배치되어 PSU와 터미널박스 사이에 연결되는 복수 개의 전력유닛을 포함하는 광전복합케이블; 및,
상기 터미널박스와 RRU 사이에 연결되어 하나 이상의 광유닛과 하나 이상의 전력유닛을 포함하는 점퍼 케이블;을 포함하고, 상기 광전복합케이블은 상기 복수 개의 광유닛이 중심부에 배치되고, 상기 복수 개의 전력 유닛이 상기 복수 개의 광유닛의 외측에 배치되며, 상기 터미널박스의 하방에서 도입되는 것을 특징으로 하는 터미널박스 시스템을 제공할 수 있다.
본 발명에 따른 광전복합케이블용 터미널박스 및 광전복합 터미널박스 시스템에 의하면, 터미널박스 내부에서 광유닛과 전력유닛의 접속이 커넥터 방식으로 수행되므로 터미널박스와 광전복합케이블 또는 점퍼케이블의 접속작업, 분기작업의 작업성이 향상될 수 있다.
또한, 본 발명에 따른 광전복합케이블용 터미널박스 및 광전복합 터미널박스 시스템에 의하면, 터미널박스 내부에서 광유닛과 전력유닛의 접속이 커넥터 방식으로 수행되므로 커넥터가 외부로 노출되지 않아 커넥터의 수밀성과 부식 방지성능이 향상되어 시스템의 내구성 향상 및 비용 절감 효과를 얻을 수 있다.
도 1은 본 발명의 일 실시예에 따른 광전복합케이블용 터미널박스 및 그 시스템이 설치된 기지국의 구성도를 도시한다.
도 2는 본 발명의 광전복합케이블용 터미널박스에 도입되어 분기 또는 접속되는 광전복합케이블의 단면도를 도시한다.
도 3은 본 발명에 따른 광전복합케이블용 터미널박스의 커버가 개방된 상태의 내부 구조를 도시한다.
도 4는 본 발명에 따른 광전복합케이블용 터미널박스 내에서 광전복합 케이이블의 광유닛과 점퍼 케이블의 광유닛이 연결 광유닛에 의하여 접속된 접속상태를 도시한다.
도 5는 본 발명에 따른 광전복합케이블용 터미널박스 내에서 광전복합 케이이블의 전력유닛과 점퍼 케이블의 전력유닛이 연결 전력유닛에 의하여 접속된 접속상태를 도시한다.
도 6은 본 발명에 따른 광전복합케이블용 터미널박스의 후면 사시도를 도시한다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조 번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명의 일 실시예에 따른 광전복합케이블용 터미널박스(1000) 및 그 시스템이 설치된 기지국의 구성도를 도시한다.
도 1을 참조하면, RRH 방식의 기지국 시스템(1)은 종래의 BTS 방식의 기지국에서 RRU(40)를 분리하여 기지국 설치용 타워의 안테나(20) 하부에 배치하고 원격 제어하게 된다.
여기서, RRH 방식의 기지국 시스템(1)에서 RRU(40)가 분리된 기존 BTS 방식의 기지국의 나머지 부분(10) 즉, BBU 및 PSU와 RRU는 길이당 감쇠가 거의 없는 광유닛 및 전력유닛을 포함하는 광전복합케이블(100)로 연결된다.
BBU 및 PSU에서 통신 신호는 광전복합케이블(100)을 구성하는 광유닛(130)을 통해 RRU(40)로 공급되고, 전력은 광전복합케이블(100)을 구성하는 전력유닛(110)을 통해 RRU(40)로 공급된다.
전술한 RRU(40)는 기지국 타워 상단에 기지국 안테나(20) 바로 아래 설치될 수 있으므로, RRU(40)에서 RF 신호로 변환된 신호를 안테나(20)로 공급하기 위한 동축선(30)의 길이는 최소화되어 동축선(30)을 통한 RF 신호 전송 시 발생할 수 있는 RF 신호 감쇠가 문제되지 않으므로, 방사 직전까지의 신호의 감쇠량이 최소화되고, 기존 많은 소비전력을 사용하던 TMA를 필요로 하지 않게 된다. 이러한 기술적 특징은 기지국의 유지보수적인 측면에서 RRH의 특장점이 되었다.
전술한 RRH 방식의 기지국 시스템(1)은 도 1에 도시된 바와 같이, BBU 및 PSU로 구성되는 부분(10)과 광전복합케이블(100)은 광전복합케이블용 터미널박스(1000)를 매개로 연결된다.
상기 광전복합케이블(100)의 광유닛(130, 도 2 참조)은 은 상기 BBU 측에 연결되고, 상기 전력유닛(110, 도 2 참조)은 상기 PSU 측에 연결된다.
즉, 광전복합케이블(100)은 다수의 광유닛과 전력유닛이 하나의 케이블화된 것으로, BBU 및 PSU로 구성되는 부분(10)과 하나의 기지국 타워에 설치되는 다양한 형태의 복수 개의 RRU가 직접 연결될 수는 없고, 광전복합케이블(100)을 구성하는 각각의 광유닛과 전력유닛은 광전복합케이블용 터미널박스(1000)에서 분기된 후 복수 개의 RRU(40)와 점퍼케이블(50)을 매개로 각각 접속되는 방식이 사용될 수 있다.
그리고 최근 휴대용 단말기의 종류가 다양해지고, 통신 세대별로 통신 방식을 달리하는 신형 단말기와 구형 단말기가 공존하고, 이동통신 사업자 간의 RRH를 구성하는 안테나(20)의 설치용 기지국 타워를 공유함에 따라 하나의 기지국 타워 상단에 수십 개의 RRH를 구성하는 RRU 등의 장비가 설치되어 그 기지국 타워의 제한된 설치 공간이 부족해지고 포설비에 대한 부담도 늘어났다.
따라서, 터미널박스(1000)를 통해 작업자가 작업하는 경우, 광전복합케이블(100)을 구성하는 광유닛(130) 및 전력유닛(110)과 점퍼케이블(50)을 구성하는 광유닛과 전력유닛을 접속하는 접속작업은 상당한 작업시간을 요구한다.
따라서, 본 발명에서는 터미널박스(1000)를 기지국 타워에 설치한 상태에서 상기 터미널박스(1000)에 광전복합케이블(100)을 용이하게 거치할 수 있으며, 나아가 작업자 1인에 의해서도 광전복합케이블(100)을 구성하는 광유닛(130)과 전력 유닛(110)을 터미널박스(1000)에 접속하는 작업이 간단히 이루어질 수 있는 광전복합케이블용 터미널박스(1000)를 제공하고자 한다.
이하, 광전복합케이블(100)의 구조를 설명한 뒤 본 발명에 따른 광전복합케이블용 터미널박스(1000)에 대하여 자세하게 설명하기로 한다.
도 2는 본 발명의 광전복합케이블용 터미널박스(1000)에 도입되어 분기 또는 접속되는 광전복합케이블(100)의 단면도를 도시한다.
도 2를 참조하면, 광전복합케이블(100)은 케이블 코어(105)와 상기 케이블 코어(105)를 감싸는 외피층(150)으로 구성될 수 있다.
상기 케이블 코어(105)는 전력 공급을 위한 복수의 전력유닛(110), 광신호를 전달하는 복수의 광유닛(130)을 구비할 수 있다.
상기 광전복합케이블(100)의 중심부에는 중심인장선(145)이 배치될 수 있으며, 상기 중심인장선(145) 둘레에 복수 개의 광유닛(130)이 광전복합케이블(100)의 길이방향으로 배치될 수 있다.
그리고, 상기 복수 개의 광유닛(130) 층 외측에는 광유닛(130)을 보호하기 위한 보호층(140)을 더 구비할 수 있다.
상기 광유닛(130)은 광신호의 전송을 위한 광섬유를 포함하는 어떠한 형태로든 구성이 가능하며, 예를 들어 적어도 1심 이상의 광섬유(133)와, 상기 광섬유(133)를 둘러싸는 튜브(135)를 포함할 수 있다. 상기 튜브(135)는 예를 들어 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌, 폴리에틸렌 또는 폴리염화비닐 등으로 구성될 수 있다. 또한, 추가적으로 상기 튜브(135) 내에는 젤리 또는 방수사 등의 충진재(137)가 충진될 수 있다. 예를 들어 젤리가 충진되거나, 아라미드 얀(aramid yarn)과 같은 인장재(미도시)가 충진될 수 있다. 상기 인장재는 인장력이 뛰어나고 유연하여 케이블을 안정적으로 설치할 수 있게 된다.
또한, 후술하는 바와 같이, 상기 광유닛은 복수 개의 광섬유를 구비하고 MPO 타입 광커넥터에 접속되어 하나의 광유닛에서 복수 개의 점퍼케이블(50)과 분기 접속될 수 있다.
상기 광유닛(130)은 타이트 버퍼 방식 또는 루즈튜브 방식 등 다양한 형태 중 필요한 형태로 구성될 수 있다.
그리고, 상기 각 전력유닛(110)은 도체(113) 및 상기 도체(113)를 감싸는 절연체(115)를 포함한다. 상기 전력유닛(110)은 일반 전력용으로 이용되는 규격에 준하는 형태로 이루어질 수 있으며, 상기 복수 개의 도체(113)는 서로 꼬인 형태를 취할 수 있다. 또한, 상기 도체(113)는 구리, 알루미늄 등의 금속으로 구성될 수 있으며, 상기 절연체(115)는 폴리에틸렌, 폴리프로필렌, 또는 폴리염화비닐 등의 고분자 수지로 구성될 수 있다.
광유닛(130)과 전력유닛(110)을 비교해 보면, 상기 광유닛(130)은 전력유닛(110)에 비하여 직경이 작고, 광유닛(130)에 구비된 광섬유(133)가 벤딩 또는 단선 등에 상대적으로 더 취약하므로, 상기 광전복합케이블(100)의 중심부에 광유닛(130)을 배치하고, 그 외부를 보호층(140)으로 감싼 후 보호층의 외주면에 전력유닛(110)을 배치할 수 있다.
그리고, 상기 케이블 코어(105)는 상기 복수의 전력유닛(110) 또는 광유닛(130) 사이의 간극을 메우는 충진재(120)를 더 구비할 수 있다.
상기 전력유닛(110)은 원형의 형태를 가지므로, 이웃한 전력유닛(110) 사이에 공극 또는 유격이 발생하게 된다. 이러한 구성에서는 광전복합케이블(100)의 전체 외형이 원형을 유지하지 못하므로 외부에서 작용하는 휘어짐 또는 충격 등에 취약하게 된다. 따라서, 케이블 코어(105) 내의 공극을 충진재(120)로 채우고, 상기 충진재(120)의 외형을 원형으로 유지하여 외부에서 작용하는 충격 등에 견딜 수 있는 구조를 갖도록 구성될 수 있다.
광전복합케이블(100)의 최외곽에 구비된 외피층(150)은 광전복합케이블(100)의 외형을 형성하는 부분으로서, 광전복합케이블(100)에 포함된 광유닛(130) 및 전력유닛(110)을 보호한다.
상기 외피층(150)은 케이블 코어(105)에 내접하며, 상기 케이블 코어(105)의 외주를 감싸는 부직포 테이프(151), 상기 부직포 테이프(151)의 바깥쪽에서 상기 케이블 코어(105)를 원형 형태로 둘러싸며 외부 충격으로부터 케이블 코어(105)를 보호하는 금속보호층(153) 및 상기 금속보호층(153)을 둘러싸는 외부 자켓(155)을 포함할 수 있다.
상기 부직포 테이프(151)는 상기 케이블 코어(105)의 외곽에서 상기 케이블 코어(105)의 외주를 감싸도록 구비되며, 상기 전력유닛(110)과 광유닛(130)을 원형 형태로 둘러싸도록 구비될 수 있다. 상기 부직포 테이프(151)는 압축부직포로 내부의 광유닛 및 전력유닛을 감싸는 형태로 배치될 수 있다. 상기 부직포 테이프(151)는 테이프 형태의 자재를 횡권하거나 종첨하는 방식으로 형성될 수 있다.
상기 금속보호층(153)은 상기 케이블 코어(105)를 감싸도록 주름산과 주름골이 반복적으로 이루어지는 주름이 형성될 수 있다.
예를 들어, 상기 금속보호층(153)은 주름산과 주름골이 반복적으로 형성된 주름진(corrugated) 형태로서 알루미늄 등의 금속 파이프로 구성될 수 있다. 상기 금속보호층(153)을 형성하는 방법에 대해 살펴보면, 광유닛(130)과 전력유닛(110)을 포함하는 케이블 코어(105)와 함께 플레이트 타입의 금속판재를 공급하고, 상기 금속판재를 말아서 케이블 코어의 외부를 감싸도록 성형한 후, 맞닿은 금속판재의 양단부를 용접 등의 방식으로 접합하여 소정의 직경을 가지는 파이프 형태로 제작한다. 이어서, 상기 파이프의 외부로 주름을 형성하도록 소정간격으로 프레싱하여 구성할 수 있다.
한편, 상기 외부 자켓(155)은 난연 특성이 있고 친환경적인 수지로 구성될 수 있다. 예를 들어 외부 자켓(155)은 폴리에틸렌(Polyethylene), 또는 폴리프로필렌(Polypropylene), 또는 폴리염화비닐(PVC) 등으로 구성될 수 있다.
상기 광전복합케이블(100)은 전술한 터미널박스(1000)에서 전력유닛(110)과 광유닛(130)이 분기된 후 RRU(40)과 연결되는 점퍼케이블(50)과 접속된다.
이하, 상기 광전복합케이블용 터미널박스(1000)에 대하여 상세하게 검토한다.
도 3은 본 발명에 따른 광전복합케이블용 터미널박스(1000)의 커버가 개방된 상태의 내부 구조를 도시한다. 설명의 편의를 위하여 도 2, 도 4, 도 5의 광전복합케이블(100) 및 점퍼케이블(50)의 광유닛(130, 53)과 전력유닛(110, 51)을 참조하여 설명한다
본 발명에 따른 광전복합케이블용 터미널박스(1000)는 복수 개의 전력유닛(110) 및 복수 개의 광유닛(130)을 포함하는 적어도 하나의 광전복합케이블(100)을 RRU를 연결하는 적어도 하나의 전력유닛(51) 및 광유닛(53)을 포함하는 복수 개의 점퍼케이블(50)로 분기하기 위한 터미널박스(1000)로서, 내부에 접속공간이 구비되되 전면에 개폐 또는 분리 가능한 커버(510)가 장착되는 하우징(520); 상기 하우징(520)의 내부로 도입된 상기 광전복합케이블(100) 및 상기 점퍼케이블(50)의 광유닛(130, 53)과 전력유닛(110, 51)이 상호 접속되는 유닛 접속부(300); 상기 유닛 접속부(300)에서 상기 광전복합케이블(100)의 광유닛(130) 및 상기 점퍼케이블(50)의 광유닛(53)을 연결하는 연결 광유닛(200); 상기 유닛 접속부(300)에서 상기 광전복합케이블(100)의 전력유닛(110) 및 상기 점퍼케이블(50)의 전력유닛(51)을 연결하는 연결 전력유닛(400)을 포함하여 구성될 수 있다.
도 3에 도시된 바와 같이, 본 발명에 따른 터미널박스(1000)는 도 1에 도시된 BBU 및 PSU로 구성되는 부분(10)과 도 2에 도시된 광전복합케이블(100)을 매개로 연결될 수 있다.
본 발명에 따른 터미널박스(1000)는 기지국 타워에서 광전복합케이블(100) 장착작업, 분기작업 및 접속작업의 작업성을 향상하는 것을 목적으로 한다.
본 발명에 따른 터미널박스(1000)는 기지국 타워에 먼저 설치된 후 상기 광유닛(130)과 전력유닛(110)이 미리 분기된 광전복합케이블(100) 및 광유닛(53)과 전력유닛(51)이 미리 분기된 점퍼케이블(50)을 터미널박스(1000) 내로 도입하여 각각의 유닛들을 유닛 접속부(300)에 접속하여 접속할 수 있다.
따라서, 본 발명에 따른 터미널박스(1000)는 광전복합케이블(100)과 터미널박스(1000)가 일체화된 일체형 시스템과 달리, 터미널박스(1000)를 기지국 타워에 설치한 후 전력유닛(110, 51)과 광유닛(130, 53)이 각각 미리 분기된 광전복합케이블(100) 및 점퍼케이블(50)을 견인하여 터미널박스(1000) 내부에 도입 및 고정한 후 접속하는 방법이 적용될 수 있으므로 작업성이 크게 향상될 수 있다.
또한, 본 발명에 따른 터미널박스(1000)는 상기 하우징(520)의 내부로 도입된 상기 광전복합케이블(100) 및 상기 점퍼케이블(50)의 광유닛(130, 53)과 전력유닛(110, 51)이 상호 접속되는 유닛 접속부(300)가 구비될 수 있다.
즉, 기지국 타워에 설치되는 터미널박스(1000) 내부에서 광전복합케이블(100)과 점퍼케이블(50)이 도입되는 영역과 각각의 광유닛(130, 53)과 전력유닛(110, 51)이 접속되는 영역을 분리하여 여장 관리가 용이하고, 내구성을 향상시키면서 접속 작업성이 향상되도록 구성하였다.
구체적으로, 본 발명은 터미널박스(1000) 내에서 광전복합케이블(100)과 점퍼케이블(50)의 광유닛(130, 53) 및 전력유닛(110, 51) 접속을 위한 유닛 접속부(300)를 구비하여 광전복합케이블(100)과 점퍼케이블(50)이 도입되는 영역을 분리하고, 유닛 접속부(300)에서 광전복합케이블(100)과 점퍼케이블(50)의 광유닛(130, 53) 및 전력유닛(110, 51)을 접속한다.
그리고, 본 발명에 따른 광전복합케이블용 터미널박스(1000)는 상기 유닛 접속부(300)에서 광전복합케이블(100)과 점퍼케이블(50)의 광유닛(130, 53) 및 전력유닛(110, 51)을 직결하는 것이 아니라 유닛 접속부(300) 내에서 광전복합케이블(100)과 점퍼케이블(50)의 광유닛(130, 53) 및 전력유닛(110, 51)을 접속함에 있어서 연결 광유닛(200)과 연결 전력유닛(400)을 적용하여 접속할 수 있다. 이에 대한 자세한 설명은 뒤로 미룬다.
따라서, 본 발명에 따른 광전복합케이블용 터미널박스(1000)는 터미널박스(1000) 내부 공간을 효율적으로 사용하고 터미널박스(1000)의 크기를 줄일 수 있다.
도 3에 도시된 바와 같이, 본 발명에 따른 터미널박스(1000)를 구성하는 개폐 또는 착탈 가능한 커버(510)를 구비하여 하우징(520) 내부의 수용공간을 선택적으로 개방할 수 있다.
상기 하우징(520)은 볼트 등의 체결부재로 커버의 장착 및 고정되거나 힌지 결합이 가능한 구조일 수 있다.
도 3에 도시된 터미널박스(1000)의 하우징(520)은 하면에서 광전복합케이블(100)과 점퍼케이블(50)이 도입된다. 구체적으로, 상대적으로 직경이 큰 광전복합케이블(100)은 하우징(520)의 우측 하면에서 도입된 후 미리 분기된 광유닛(130)과 전력유닛(110)이 밴딩 또는 우회되어 좌측 상부에 구비된 유닛 접속부(300)에 접속되고, 상대적으로 유연하고 직경이 작은 복수 개의 점퍼케이블(50)은 하우징(520)의 좌측 하면에서 도입된 후 미리 분기된 광유닛(53)과 전력유닛(51)이 그 상부에 위치한 유닛 접속부(300)에 접속될 수 있다.
복수 개의 점퍼케이블(50)이 하우징(520)의 상면에서 도입되는 경우 하우징(520) 내부로 수분 침투가 용이한 구조가 되므로 상기 점퍼케이블(50)이 터미널박스(1000) 상부에 위치한 RRU를 연결함도 불구하고 상기 하우징(520)의 하면에서 상방향으로 접속되도록 구성되는 것이 바람직하다.
상기 하우징(520) 하면에서 다수의 케이블들이 일렬로 도입되므로 본 발명에 따른 터미널박스(1000)는 폭이 높이보다 크게 구성될 수 있다. 따라서, 상기 하우징(520)은 폭, 높이 및 두께 순서의 크기를 가질 수 있다. 그리고 상대적으로 직경이 작은 복수 개의 점퍼케이블(50)을 복층으로 배치하여 폭을 줄이고 높이를 늘리는 구성도 가능하다.
상기 하우징(520)의 하면에는 상기 광전복합케이블(100)과 상기 점퍼케이블(50)을 도입하기 위한 복수 개의 도입부(501, 503)가 형성되고, 상기 복수 개의 도입부(501, 503)에는 하우징 내부로 수분이 침투하는 것을 막아주는 별도의 실링부재(511, 513, 도 4 및 도 5 참조)가 장착된 형태의 케이블이 배치되도록 구성될 수 있다.
그리고, 본 발명에 따른 광전복합케이블(100)의 터미널박스(1000)는 각각의 케이블과 분리된 상태로 기지국 타워로 이송될 수 있음은 전술한 바와 같으나 접속작업의 편의성을 위하여 터미널박스(1000) 내부에서 상기 광전복합케이블(100)과 상기 점퍼케이블(50)에서 분기된 광유닛(130, 53)과 전력유닛(110, 51)이 각각 단부에 커넥터(130c, 53c, 110c, 51c)가 구비되어 유닛 접속부(300)에 접속될 수 있다.
상기 광전복합케이블(100)의 광유닛 커넥터(130c)는 2개가 구비된 것으로 도시되어 있으나, 그 개수는 광유닛의 그룹화 개수에 따라 하나만 구비되거나 3개 이상 복수 개로 증가될 수 있다.
즉, 기지국 타워 상부에서 전력유닛(110, 51)의 도체 접속 또는 광유닛(130, 53)의 광접속 작업의 효율성을 증대하고자 각각의 유닛의 단부에 커넥터를 미리 장착하여 현장에서는 터미널박스(1000) 하우징(520) 내의 유닛 접속부(300)의 광 커플러(320a, 320b) 또는 전력 커플러(330a, 330b)에 커넥팅 방식으로 접속만 하면 접속이 완료되도록 구성할 수 있다.
또한, 상기 유닛 접속부(300)에서 광전복합케이블(100)과 점퍼케이블(50)은 일대다(一對多) 분기 연결을 위한 분기와 접속을 복수 개의 연결 광유닛(200)과 연결 전력유닛(400)을 매개로 수행될 수 있고, 연결 광유닛(200)과 연결 전력유닛(400) 역시 단부에 커넥터가 구비되어 유닛 접속부(300)의 광 커플러(320a, 320b) 또는 전력 커플러(330a, 330b)에 각각 커넥팅 방식으로 접속될 수 있다.
보다 상세하게는, 광 접속을 위한 접속 난이도는 상대적으로 높아 터미널박스(1000)의 설치 및 유지보수 시 현장에서 광 접속 작업을 위한 시간이 많이 요구되므로 상기 연결 광유닛(200)은 단부에 커넥터(200c)가 미리 구비된 상태로 상기 유닛 접속부(300)의 광 커플러(320a, 320b)와의 커넥팅 방식으로 접속하는 것이 바람직하다.
또한 도체 간 접속을 위한 접속 난이도는 상대적으로 낮으므로 상기 연결 전력유닛(400)은 단부에 커넥터를 구비하지 않은 상태로 상기 전력 커플러(330a, 330b)에 직접 연결(hard-wired) 되는 방식으로 접속하는 것이 바람직하다. 이 경우 불필요한 커넥터 구비를 억제하여 터미널박스(1000) 내부 공간이 효율적으로 사용되어 터미널박스가 소형화 및 경량화 될 수 있다.
이와 같이 터미널박스(1000)의 하우징(520) 내에서 분기된 광전복합케이블(100)과 점퍼케이블(50)의 광유닛(130, 53)과 전력유닛(110, 51) 단부에 커넥터(130c, 110c, 53c, 51c)를 구비하고, 이를 일대다(一對多) 분기 접속하기 위한 연결 광유닛(200) 및 연결 전력유닛(400)과 연결된 광 커플러(320a, 320b) 및 전력 커플러(330a, 330b)를 구비하여 기지국 타워 상부에서 접속 작업성을 향상시킬 수 있다.
따라서, 터미널박스(1000) 외측에서 광전복합케이블(100)과 점퍼케이블(50) 단부에 커넥터를 구비하고 터미널박스 하우징에 커넥터 접속유닛을 구비하여 터미널박스(1000) 외부에서 광전복합케이블(100) 및 점퍼케이블(50)의 커넥터와 터미널박스(1000)의 커넥터 접속유닛의 커넥팅 방식으로 접속되는 것이 아니라, 터미널박스 내부로 도입된 광전복합케이블(100)과 점퍼케이블(50)의 미리 분기된 광유닛(130, 53)과 전력유닛(110, 51) 단부에 구비된 각 커넥터(130c, 53c, 110c, 51c)를 터미널박스 내부의 유닛 접속부(300)의 광 커플러(320a, 320b) 및 전력 커플러(330a, 330b)에 커넥팅 방식으로 연결하여, 커넥터 방식의 터미널박스(1000)의 장점인 접속 및 유지보수 작업성을 향상시키면서도 커넥터가 하우징(520) 외측으로 노출되어 발생될 수 있는 커넥터 부식 또는 케이블 내부로의 수분 침투 등의 문제를 최소화할 수 있다.
그리고, 상기 터미널박스(1000)의 하우징(520) 내측에 도입된 광전복합케이블을 지지하거나 광유닛 등의 여장 정리를 위한 적어도 하나의 케이블 홀더(350, 360) 또는 고정형 타이부재(370) 등을 구비하여 터미널박스 내부에서의 배선 정리에 이용될 수 있다.
도 4는 본 발명에 따른 광전복합케이블용 터미널박스(1000) 내의 광유닛의 연결상태를 도시하며, 도 5는 본 발명에 따른 광전복합케이블용 터미널박스(1000) 내의 전력유닛의 연결상태를 도시한다.
도면 상의 도시의 편의성을 위하여 터미널박스(1000) 내에서 광유닛의 연결상태와 전력유닛의 연결상태를 도 4와 도 5로 분리하여 도시한다.
전술한 바와 같이, 상기 광전복합케이블(100) 및 상기 점퍼케이블(50)은 상기 하우징(520)의 하부에서 상방향으로 도입시부터 각각의 케이블 자켓이 탈피되고 광유닛(130, 53)과 전력유닛(110, 51) 단부에 커넥터가 장착된 상태일 수 있다.
도 4 및 도 5에 도시된 바람직한 실시예와 같이, 상기 유닛 접속부(300)에서 상기 연결 광유닛(200)은 양단에 커넥터(200c)가 구비되어 상기 광전복합케이블(100) 및 상기 점퍼케이블(50)의 광유닛(130, 53)의 커넥터(130c, 53c)와 광 커플러(320a, 320b)를 통해 접속되도록 구성될 수 있고, 상기 유닛 접속부(300)에서 상기 연결 전력유닛(400)은 전력 커플러(330a, 330b)와 직접 연결되어 상기 광전복합케이블(100) 및 상기 점퍼케이블(50)의 전력유닛(110, 51)의 커넥터(110c, 51c)가 접속되도록 구성될 수 있다.
즉, 상기 유닛 접속부(300) 내부에서 광전복합케이블(100)과 점퍼케이블(50)의 광유닛(130, 53)과 전력유닛(110, 51)을 상호 연결하기 위한 연결 광유닛(200)과 연결 전력유닛(400)을 구비하되, 연결 광유닛(200)과 연결 전력유닛(400)은 각각 커넥터를 구비하거나 구비하지 않은 상태로 유닛 접속부(300)의 커플러(320a, 320b, 330a, 330b)와 연결하여 패치코드 형태의 유닛들의 커넥터를 상호 접속이 가능하도록 구성할 수 있다.
또한, 광연결부 하우징(310) 전면부에 광전복합케이블(100)의 전력유닛(110)이 접속되는 커플러(330a)를 고정시키기 위해 고정부(340)가 구비될 수 있다.
그리고, 도 4 및 도 5에 도시된 터미널박스(1000) 하우징(520) 내의 유닛 접속부(300)는 상기 터미널박스(1000)의 하우징(520) 내부 좌측 상부에 장착되므로, 상대적으로 직경이 크고 분기된 유닛의 수가 많은 광전복합케이블(100)의 광유닛(130)과 전력유닛(110)은 상기 하우징(520) 내에서 분기된 후 수평방향으로 밴딩된 후 상기 유닛 접속부(300)에 접속될 수 있다.
여기서, 상기 광전복합케이블(100)의 전력유닛(110)은 광유닛(130) 대비 직경이 커서 굴곡이 용이하지 않고, 특히 전력유닛(110)의 개수가 많아질수록 굴곡 특성은 열악해지므로 복수개의 전력유닛(110)을 하나의 커넥터(110c)에 장착하지 않고 복수개의 커넥터(110c)에 복수개의 그룹으로 나누어 장착하여 현장에서 커넥터 체결 작업성을 향상시키고 터미널박스(1000)를 소형화 및 경량화 할 수 있다.
즉, 도 5에 도시된 바와 같이 8개의 전력유닛(110)을 4개씩 2개의 그룹으로 나누어서 2개의 커넥터(110c)를 장착하여, 8개의 전력유닛(110)을 1개 커넥터(110c)에 일괄 장착시와 비교할 때 전력유닛(110)의 접속 작업이 용이하고, 밴딩 시 전력유닛(110)의 최대 굴곡반경을 줄여 전력유닛(110) 배치에 필요한 공간을 줄일 수 있다.
그리고, 상대적으로 케이블의 수가 많은 상기 점퍼케이블(50)의 광유닛(53)과 전력유닛(51)은 상기 하우징(520) 내에서 분기된 후 상방향으로 상기 유닛 접속부(300)에 접속되도록 구성될 수 있다.
따라서, 도 4에 도시된 바와 같이, 상기 유닛 접속부(300)의 연결 광유닛(200)은 수평방향으로 접속되는 광전복합케이블(100)의 광유닛과 상방향으로 접속되는 점퍼케이블(50)의 광유닛(53)을 접속할 수 있다.
그리고, 전력유닛에 비해 상대적으로 직경이 작고 쉽게 손상될 수 있는 광유닛은 유닛 접속부(300) 내에서 별도의 접속공간을 통해 접속될 수 있다. 따라서, 상기 유닛 접속부(300)는 광전복합케이블(100)의 광유닛(130)과 점퍼케이블(50)의 광유닛(53)을 각각 연결하는 연결 광유닛(200)이 배치되는 광연결부 하우징(310)을 구비하고, 각각의 광유닛의 커넥터를 연결하기 위한 상기 광 커플러(320a, 320b)는 상기 광연결부 하우징(310)을 측면을 관통하며 설치될 수 있다.
상기 광연결부 하우징(310)은 경량화를 위해 플라스틱 등 열경화성 수지로 구성되거나 내구성을 향상시키기 위해 알루미늄 등의 금속 재질로 구성될 수 있다.
도 4에 도시된 실시예에서, 상기 유닛 접속부(300) 내에 구비된 광연결부 하우징(310)은 전방커버가 제거된 상태로 도시된다. 상기 광연결부 하우징(310)은 납작한 케이스 형태로 구성되어 수평 측면에 광전복합케이블(100)의 광유닛(130)과 연결 광유닛(200) 일단의 커넥터가 접속되기 위한 광 커플러(320a)가 구비되고 하단 측면에 점퍼케이블(50)의 광유닛과 연결 광유닛(200)의 타단의 커넥터가 접속되기 위한 광 커플러(320b)가 구비될 수 있으며 각각의 커플러(320a, 320b)는 동종 광커넥터가 장착되어 광접속될 수 있는 광 커플러일 수 있다.
또한, 상기 유닛 접속부(300)는 광유닛 접속 이외에도 광전복합케이블(100)과 점퍼케이블(50)의 전력유닛(110, 51)을 접속한다. 전력유닛(110, 51)을 구성하는 도체의 경우 광유닛을 구성하는 광섬유에 비해 기능적인 특성이 밴딩에 민감하지 않으므로 도 5에 도시된 바와 같이, 유닛 접속부(300)에서 상기 연결 전력유닛(400)의 일단은 상기 광연결부 하우징(310) 전면부에 구비된 전력 커플러(330a)와 연결되어 광전복합케이블(100)의 전력유닛(110)이 접속되고, 상기 연결 전력유닛(400)의 타단은 상기 광연결부 하우징(310) 하부로 우회하여 전력 커플러(330b)와 연결되어 상기 점퍼케이블(50)의 전력유닛(51)과 접속될 수 있다.
따라서, 상기 광연결부 하우징(310) 전면부에 광전복합케이블(100)의 전력유닛 커넥터(110c)가 수평방향 접속을 위한 하나 이상의 전력 커플러(330a)가 구비되어 고정될 수 있고, 상기 광연결부 하우징(310) 하부에 점퍼케이블(50)의 전력유닛(51)의 수직방향 접속을 위한 복수 개의 전력 커플러(330b)가 배치되어 광전복합케이블(100)의 전력유닛(110)은 하우징(520) 내에서 분기된 후 수평방향으로 접속되고 점퍼케이블(50)의 전력유닛(51)은 하우징(520) 내에서 분기된 후 수직방향으로 접속될 수 있다.
그리고, 도 5에 도시된 실시예에서, 상기 전력유닛 커넥터(110c)는 전력유닛이 2개로 그룹화하여 2개가 구비된 것으로 도시되어 있으나, 그 개수는 하나만 구비되거나 3개 이상 복수 개로 증가될 수 있다.
그리고 상기 유닛 접속부(300)의 연결 전력유닛(400)의 일단은 광연결부 하우징(310) 전면부에서 광전복합케이블(100)의 전력유닛(110)과 접속된 후 광연결부 하우징(310)을 우회하여 광연결부 하우징(310) 후방에서 점퍼케이블(50)의 전력유닛(51)과 각각 접속될 수 있다.
이와 같이, 본 발명에 따른 광전복합케이블용 터미널박스(1000)는 연결 광유닛(200)의 수용을 위한 광연결부 하우징(310)을 유닛 접속부(300) 내에 구비하되 그 상부와 하부 공간을 연결 전력유닛(400)의 연결공간으로 활용하여 협소한 터미널박스(1000) 내의 하우징(520) 내의 수용공간을 충분히 활용할 수 있다.
그리고, 상기 점퍼케이블(50)의 광유닛(53)이 접속되는 광 커플러(320b)는 광연결부 하우징(310)의 하면을 관통하여 일렬로 복수 개가 구비되며, 상기 점퍼케이블(50)의 전력유닛(51)이 접속되는 전력 커플러(330b)는 상기 광연결부 하우징(310) 하부 또는 후방에 장착되되 상기 광연결부 하우징(310) 외측으로 노출되도록 복수 개가 구비될 수 있다.
또한, 상기 점퍼케이블(50)의 광유닛(53) 이 접속되는 커플러(320b)와 상기 점퍼케이블(50)의 전력유닛(51)이 접속되는 커플러(330b)는 복층으로 배치되되 각각의 커플러(320b, 330b)는 각각 접속되는 커넥터(53c, 51c)의 수에 따라 복수 개씩 구비될 수도 있다.
이와 같이, 본 발명에 따른 광전복합케이블용 터미널박스(1000)는 그 내부에서 각각의 유닛의 배치경로를 최적화하고, 커넥터와 커플러의 체결공간을 복층으로 구성하는 방법 그리고 광전복합케이블의 접속 용이하도록 광전복합 케이블의 전력유닛, 광유닛을 복수 개의 그룹으로 분리하여 광유닛 커넥터, 전력유닛 커넥터를 구비하여 터미널박스 내부 공간이 효율적으로 사용되어 터미널박스가 소형화되고 그에 따라 경량화까지 가능하다.
도 6은 본 발명에 따른 광전복합케이블용 터미널박스(1000)의 후방 사시도를 도시한다.
본 발명에 따른 광전복합케이블용 터미널박스(1000)는 기지국 타워 등에 설치되어 지상에서 연결되는 광전복합케이블(100)을 기지국 타워에 설치되는 RRU 장비에 연결하는 복수 개의 점퍼케이블(50)로 분기하기 위한 장치이다.
다양한 기지국 환경에 대응하기 위하여 터미널박스(1000) 후면에는 기지국 타워의 기둥 등에 장착시 터미널 박스의 회전 등을 방지하기 위한 요철 지지부(610) 등이 구비될 수 있고, 기지국 타워의 기둥 등에 장착되는 경우 이를 고정하기 위한 스트립 장착구(630) 등이 구비될 수 있고, 더 나아가 별도의 규격 마운트 등에 체결부재 등을 이용하여 체결하기 위한 체결공이 형성된 체결 마운트(640) 등이 구비되어 다양한 환경에 설치가 가능할 수 있다.
이와 같이, 요철 지지부(620), 스트립 장착구(630) 또는 체결 마운트(640) 등이 구비된 마운트장치(600)는 터미널박스(1000)의 하우징(520)에 착탈 가능하게 장착되어 새로운 형태의 마운트장치로 교체되도록 구성될 수 있다.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.

Claims (18)

  1. 복수 개의 전력유닛 및 복수 개의 광유닛을 포함하는 적어도 하나의 광전복합 케이블을 적어도 하나의 전력유닛 및 적어도 하나의 광유닛을 포함하는 복수 개의 점퍼 케이블로 분기하기 위한 터미널박스에 있어서,
    내부에 접속공간이 구비되고 전면에 커버가 구비되는 하우징;
    상기 접속공간에 배치되어 상기 하우징의 내부로 도입된 상기 광전복합 케이블 및 상기 점퍼 케이블의 광유닛과 전력유닛이 상호 접속되는 유닛 접속부;
    상기 유닛 접속부에서 상기 광전복합 케이블의 광유닛 및 상기 점퍼 케이블의 광유닛을 연결하는 연결 광유닛;
    상기 유닛 접속부에서 상기 광전복합 케이블 및 상기 점퍼 케이블의 전력유닛을 연결하는 연결 전력유닛을 포함하는 터미널박스.
  2. 제1항에 있어서,
    상기 커버는 상기 하우징과 힌지 결합으로 개폐되거나 분리 가능한 것을 특징으로 하는 터미널박스.
  3. 제1항에 있어서,
    상기 하우징은 폭, 높이 및 두께 순서의 크기를 갖는 것을 특징으로 하는 터미널박스.
  4. 제1항에 있어서,
    상기 광전복합 케이블 및 상기 점퍼 케이블이 상기 터미널박스 내부로 도입되는 도입부가 상기 하우징의 하부에 배치되는 것을 특징으로 하는 터미널박스.
  5. 제1항에 있어서,
    상기 유닛 접속부는 상기 광전복합 케이블 및 상기 점퍼 케이블의 광유닛과 커넥팅 방식으로 연결될 수 있고, 상기 연결 광유닛의 일단 또는 타단에 연결되는 복수개의 광 커플러;
    상기 광전복합 케이블 및 상기 점퍼 케이블의 전력유닛과 커넥팅 방식으로 연결될 수 있고, 상기 연결 전력유닛의 일단 또는 타단에 연결되는 복수개의 전력 커플러;를 구비하는 것을 특징으로 하는 터미널박스.
  6. 제5항에 있어서,
    상기 광전복합 케이블의 광유닛과 커넥팅 방식으로 연결될 수 있는 광 커플러는 상기 유닛 접속부의 수평 측면에 배치되고,
    상기 점퍼 케이블의 광유닛과 커넥팅 방식으로 연결될 수 있는 광 커플러는 상기 유닛 접속부의 하단 측면에 배치되는 것을 특징으로 하는 터미널박스.
  7. 제5항에 있어서,
    상기 광전복합 케이블의 전력유닛과 커넥팅 방식으로 연결될 수 있는 전력 커플러는 상기 유닛 접속부의 수평 측면에 배치되고,
    상기 점퍼 케이블의 전력유닛과 커넥팅 방식으로 연결될 수 있는 전력 커플러는 상기 유닛 접속부의 하단 측면에 배치되는 것을 특징으로 하는 터미널박스.
  8. 제1항에 있어서,
    상기 유닛 접속부는 연결 광유닛이 배치되는 광연결부 하우징을 구비하는 것을 특징으로 하는 터미널박스.
  9. 제8항에 있어서,
    상기 광전복합 케이블의 전력유닛과 커넥팅 방식으로 연결될 수 있는 전력 커플러는 상기 광연결부 하우징의 전면부에 배치되고,
    상기 점퍼 케이블의 전력유닛과 커넥팅 방식으로 연결될 수 있는 전력 커플러는 상기 광연결부 하우징의 하부에 배치되는 것을 특징으로 하는 터미널박스.
  10. 제8항에 있어서,
    상기 점퍼 케이블의 광유닛과 커넥팅 방식으로 연결될 수 있는 광 커플러는 상기 광연결부 하우징의 하면에 일렬로 복수 개가 구비되는 것을 특징으로 하는 터미널박스.
  11. 제8항에 있어서,
    상기 점퍼 케이블의 광유닛과 커넥팅 방식으로 연결될 수 있는 광 커플러는 상기 광연결부 하우징의 하면에 복수 개가 복층으로 구비되는 것을 특징으로 하는 터미널박스.
  12. 제5항에 있어서,
    상기 광전복합 케이블의 전력유닛과 커넥팅 방식으로 연결될 수 있는 전력 커플러는 복수 개가 구비되는 것을 특징으로 하는 터미널박스.
  13. 제1항 내지 제12항 중 어느 하나의 항의 터미널박스;
    BBU와 터미널박스 사이에 연결되는 복수 개의 광유닛과 상기 광유닛 둘레에 배치되어 PSU와 터미널박스 사이에 연결되는 복수 개의 전력유닛을 포함하는 광전복합케이블; 및,
    상기 터미널박스와 RRU 사이에 연결되어 하나 이상의 광유닛과 하나 이상의 전력유닛을 포함하는 복수개의 점퍼 케이블;을 포함하고,
    상기 광전복합케이블은 상기 복수 개의 광유닛이 중심부에 배치되고, 상기 복수 개의 전력 유닛이 상기 복수 개의 광유닛의 외측에 배치되며, 상기 터미널박스의 하방에서 도입되어 고정되고,
    상기 복수개의 점퍼 케이블은 상기 터미널박스의 하방에서 도입되어 고정되며,
    상기 터미널박스의 유닛 접속부에 상기 광전복합케이블 및 점퍼 케이블의 광유닛과 전력유닛이 분기되어 접속되는 것을 특징으로 하는 터미널박스 시스템.
  14. 제13항에 있어서,
    상기 광전복합케이블 및 점퍼 케이블의 광유닛의 단부에 각각 광유닛 커넥터가 구비되어 상기 연결 광유닛 양단의 광 커플러와 각각 접속되고,
    상기 광전복합케이블 및 점퍼 케이블의 전력유닛의 단부에 각각 전력유닛 커넥터가 구비되어 상기 연결 전력유닛 양단의 전력 커플러와 각각 접속되는 것을 특징으로 하는 터미널박스 시스템.
  15. 제13항에 있어서,
    상기 광전복합 케이블의 광유닛은 상기 유닛 접속부에 수평방향으로 접속되고,
    상기 점퍼 케이블의 광유닛은 상기 유닛 접속부에 상방향으로 접속되어,
    상기 연결 광유닛에 의해 광학적으로 연결되는 것을 특징으로 하는 터미널박스 시스템.
  16. 제13항에 있어서,
    상기 광전복합 케이블의 전력유닛은 상기 유닛 접속부에 수평방향으로 접속되고,
    상기 점퍼 케이블의 전력유닛은 상기 유닛 접속부에 상방향으로 접속되어,
    상기 연결 전력유닛에 의해 전기적으로 연결되는 것을 특징으로 하는 터미널박스 시스템.
  17. 제13항에 있어서,
    상기 유닛 접속부에 접속되는 광전복합케이블의 전력유닛에 장착되는 전력유닛 커넥터는 복수 개인 것을 특징으로 하는 터미널박스.
  18. 제17항에 있어서,
    상기 전력유닛 커넥터의 개수는 상기 광전복합케이블의 전력유닛의 개수를 2 이상의 자연수로 균등하게 나눈 값인 것을 특징으로 하는 터미널박스.
PCT/KR2023/013704 2022-09-26 2023-09-13 광전복합케이블용 터미널박스 및 광전복합 터미널박스 시스템 WO2024071758A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0121675 2022-09-26
KR20220121675 2022-09-26
KR10-2023-0121312 2023-09-12
KR1020230121312A KR20240043086A (ko) 2022-09-26 2023-09-12 광전복합케이블용 터미널박스 및 광전복합 터미널박스 시스템

Publications (1)

Publication Number Publication Date
WO2024071758A1 true WO2024071758A1 (ko) 2024-04-04

Family

ID=90478479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/013704 WO2024071758A1 (ko) 2022-09-26 2023-09-13 광전복합케이블용 터미널박스 및 광전복합 터미널박스 시스템

Country Status (1)

Country Link
WO (1) WO2024071758A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120001243U (ko) * 2010-08-13 2012-02-22 대양전기공업 주식회사 전동차용 점퍼케이블 연결박스구조체
US20130108227A1 (en) * 2011-10-26 2013-05-02 Mark Edward Conner Composite cable breakout assembly
KR20160073293A (ko) * 2014-12-16 2016-06-24 엘에스전선 주식회사 광전복합 케이블용 터미널박스 및 광전복합 케이블
KR20200134674A (ko) * 2019-05-23 2020-12-02 엘에스전선 주식회사 광전복합 케이블용 터미널박스 및 광전복합 터미널박스 시스템
US20210165179A1 (en) * 2014-09-23 2021-06-03 Ppc Broadband, Inc. Access control device for permitting access to a component while selectively blocking access to another type of component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120001243U (ko) * 2010-08-13 2012-02-22 대양전기공업 주식회사 전동차용 점퍼케이블 연결박스구조체
US20130108227A1 (en) * 2011-10-26 2013-05-02 Mark Edward Conner Composite cable breakout assembly
US20210165179A1 (en) * 2014-09-23 2021-06-03 Ppc Broadband, Inc. Access control device for permitting access to a component while selectively blocking access to another type of component
KR20160073293A (ko) * 2014-12-16 2016-06-24 엘에스전선 주식회사 광전복합 케이블용 터미널박스 및 광전복합 케이블
KR20200134674A (ko) * 2019-05-23 2020-12-02 엘에스전선 주식회사 광전복합 케이블용 터미널박스 및 광전복합 터미널박스 시스템

Similar Documents

Publication Publication Date Title
US9285556B2 (en) Cable assembly
JPH0793057B2 (ja) 通信ケーブル、その接続方法および製造方法
KR102122102B1 (ko) 광전복합케이블용 터미널박스
WO2013005895A1 (ko) 광케이블 선번 관리 시스템 및 그 제어방법
KR102497929B1 (ko) 광전복합 케이블용 터미널박스 및 광전복합 케이블
WO2024071758A1 (ko) 광전복합케이블용 터미널박스 및 광전복합 터미널박스 시스템
KR20200134674A (ko) 광전복합 케이블용 터미널박스 및 광전복합 터미널박스 시스템
KR20150078265A (ko) 광전복합케이블
WO2016006858A1 (ko) 광전복합 케이블 및 광전복합 케이블용 터미널박스
KR102524182B1 (ko) 광전복합 케이블용 터미널박스 시스템
KR101965011B1 (ko) 광전복합 케이블 및 광전복합 케이블용 터미널박스
KR20240043086A (ko) 광전복합케이블용 터미널박스 및 광전복합 터미널박스 시스템
KR102547076B1 (ko) 광전복합 케이블의 말단 접속 구조체
KR102526856B1 (ko) 광전복합 케이블용 터미널박스 및 광전복합 터미널박스 시스템
CN112217036B (zh) 同轴电缆组件
KR20190076932A (ko) 광전복합케이블
KR20220103359A (ko) 광전복합케이블 분기 접속 어셈블리
KR20200134962A (ko) 광전복합 케이블용 터미널박스 패키지 및 이를 구비하는 광전복합 케이블용 터미널박스 시스템
WO2020235923A1 (ko) 이동통신 기지국용 전력유닛 및 전력케이블
KR102221902B1 (ko) 광전복합케이블용 터미널박스
WO2014106981A1 (en) Master unit for distributed antenna system, distributed antenna system having the same, and communication signal relay method of distributed antenna system
US20230360822A1 (en) Hybrid Drop Cable
WO2017065337A1 (ko) 케이블 연결 보호장치
KR20190086165A (ko) 광전복합 케이블용 터미널박스 어댑터 및 이를 구비하는 광전복합 케이블용 터미널박스 시스템
KR20160041481A (ko) 광전복합케이블

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872877

Country of ref document: EP

Kind code of ref document: A1