WO2024070780A1 - 二次電池システム及び二次電池制御方法 - Google Patents

二次電池システム及び二次電池制御方法 Download PDF

Info

Publication number
WO2024070780A1
WO2024070780A1 PCT/JP2023/033784 JP2023033784W WO2024070780A1 WO 2024070780 A1 WO2024070780 A1 WO 2024070780A1 JP 2023033784 W JP2023033784 W JP 2023033784W WO 2024070780 A1 WO2024070780 A1 WO 2024070780A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power converter
secondary battery
switch
rack
Prior art date
Application number
PCT/JP2023/033784
Other languages
English (en)
French (fr)
Inventor
大輝 小松
純 川治
宏明 小西
隆 天野
智昭 蛭田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024070780A1 publication Critical patent/WO2024070780A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery system and a secondary battery control method.
  • the energy storage system in Patent Document 1 is configured to connect multiple battery units that can be charged and discharged, and to have multiple power converters that charge and discharge the battery units.
  • the energy storage system includes switches that are connected to each of the multiple battery units and enable the battery units to be switched to the multiple power converters, and a controller that controls the multiple power converters and the switches.
  • the controller includes a combination determination unit that determines the battery units and power converters to be used for charging and discharging, a switch control unit that controls the open/closed state of the switches so that the battery units determined by the combination determination unit are connected to the power converters, and a power converter control unit that outputs charge/discharge commands to the power converters determined by the combination determination unit.
  • Patent Document 1 shows an example in which the connection state and the number of parallel connections between multiple battery units and multiple power converters can be changed.
  • Patent Document 1 does not change the connection state or the number of parallel connections based on the deterioration rate, and there is no description of control when batteries with different performance, such as additional batteries and existing batteries, are mixed. As a result, it is not possible to control batteries with different degrees of deterioration, which creates the problem of cross currents occurring and resulting in overcharging or overdischarging.
  • the present invention has been made to solve the above-mentioned problems, and aims to provide a secondary battery system and a secondary battery control method that can appropriately configure a battery system when batteries with different performance are mixed, such as an expansion battery and an existing battery.
  • the secondary battery system of the present invention is a secondary battery system equipped with a battery bank having a battery rack with multiple battery cells connected in series and a power converter for charging or discharging one or more parallel-connected battery racks to a power system, the secondary battery system having a switch that enables the battery rack of the battery bank to be switched to the power converter of another battery bank, and a controller that monitors the deterioration rate or years of use of the battery rack and controls the power converter and the switch, the controller instructing the switch to connect a power converter based on the deterioration rate or years of use of the battery rack.
  • the present invention allows for an appropriate configuration when batteries with different performance are mixed, such as additional batteries and existing batteries.
  • FIG. 1 is a diagram showing a secondary battery system according to a first embodiment
  • FIG. 11 is a flowchart showing a connection change process at the time of addition according to the first embodiment.
  • FIG. 4 is a flow chart showing an example of addition timing according to the first embodiment.
  • FIG. 11 is a diagram showing a secondary battery system having a manual switch according to a second embodiment.
  • FIG. 13 is a diagram showing a secondary battery system according to a third embodiment in which multiple connection destinations can be selected.
  • FIG. 13 is a flow chart showing a connection change process taking into account the SOH difference at the time of addition according to the third embodiment.
  • FIG. 13 is a diagram illustrating a connection example taking into consideration the SOH difference at the expansion timing according to the third embodiment.
  • FIG. 13 is a flow diagram showing a connection change process taking into account the SOH difference before the expansion according to the third embodiment.
  • FIG. 13 is a diagram illustrating a connection example taking into consideration the SOH difference before expansion according to the third embodiment.
  • FIG. 13 is a flowchart showing a connection change process in consideration of an average SOC before expansion according to the third embodiment.
  • FIG. 13 is a diagram illustrating a connection example in which an average SOC before expansion is taken into consideration in the third embodiment.
  • FIG. 13 is a diagram showing a secondary battery system according to a fourth embodiment in which there are multiple expansion timings.
  • FIG. 13 is a flowchart showing a connection change process in a case where there are multiple addition timings according to the fourth embodiment.
  • FIG. 13A and 13B are diagrams illustrating a connection change process when a power converter according to the fifth embodiment fails.
  • FIG. 13 is a diagram showing a secondary battery system in a case where a second-hand battery is added according to a sixth embodiment.
  • FIG. 23 is a flow chart showing a connection change process when adding a second-hand battery according to the sixth embodiment.
  • FIG. 23 is a diagram showing a connection example when adding a used battery according to the sixth embodiment.
  • FIG. 1 is a diagram showing a secondary battery system 100 according to a first embodiment.
  • a system configuration capable of responding to the expansion of the secondary battery system will be described.
  • FIG. 1 shows the configuration of a large-scale secondary battery system, in which two battery racks B in which batteries are connected in series are connected in parallel to a load via a power conditioning system (PCS) 2 that converts direct current to alternating current.
  • the power conditioning system 2 and the battery racks B are collectively referred to as a battery bank 3, and the battery banks 3 are connected in three parallel connections (battery banks 31, 32, and 33) to a load (not shown).
  • the number of batteries in series in the battery rack B, the number of battery racks in parallel under the power conditioning system, and the number of banks to the load may be any number.
  • the power conditioning system will be referred to as a PCS as appropriate.
  • the secondary battery system 100 has a switch 4 (switches 41, 42) that allows the battery rack B of the battery bank 3 to be switched to a power converter of another battery bank, and a controller 5 that monitors the deterioration rate or years of use of the battery rack B and controls the power converter 2 and switch 4.
  • the controller 5 has a power route determination unit 6, and instructs the switch 4 to connect the power converter 2 based on the deterioration rate or years of use of the battery rack B.
  • additional battery rack installation positions 7 and additional battery rack wiring 8 required when adding a battery rack B are provided in advance from the time the secondary battery system 100 is in operation.
  • the additional battery rack installation positions 7 include additional battery rack installation position 71, which is the installation position of additional battery rack BE1, and additional battery rack installation position 72, which is the installation position of additional battery rack BE2.
  • Battery rack B21 is connected via a switch 41 that can be connected to either PCS21 (PCS#1) or PCS22 (PCS#2), and battery rack B22 is connected to PCS22 (PCS#2) and PCS23 (PCS#3) via a similar switch 42. That is, battery rack B21 is connected to one side of switch 41, and PCS21 and PCS22 are switchably connected to the other side. Battery rack B22 is connected to one side of switch 42, and PCS22 and PCS23 are switchably connected to the other side.
  • Battery rack B21 is basically connected to PCS22 (PCS#2) except when expansion is required, and is connected to PCS21 (PCS#1) when expansion is required.
  • battery rack B22 is basically connected to PCS22 (PCS#2) except when expansion is required, and is connected to PCS23 (PCS#3) when expansion is required. The determination of this timing will be discussed later.
  • the controller 5 also has the function of receiving the deterioration rate as well as operating information such as the battery voltage and temperature in each battery rack B from each battery rack B, and commanding the power converter 2 about the amount of power.
  • the controller 5 also has a power route determination unit 6 that selects the power route for each relay, and the power route is selected mainly based on these voltages, temperatures, and deterioration rates.
  • FIG. 2 is a flow diagram showing the connection change process S0 at the timing of expansion according to the first embodiment.
  • FIG. 3 is a flow diagram showing an example of the timing of expansion according to the first embodiment.
  • FIGS. 2 and 3 show flow diagrams in which the controller 5 switches the power route using the switch 4.
  • Process S0 judges whether the timing for expansion has passed (process S1).
  • a prerequisite for process S1 is that the previous power route is not a power route that assumes expansion. If the power route has already been switched to a route that assumes expansion, this calculation does not start.
  • Process S0 is assumed to start, for example, when the battery system is connected to the grid, but is not limited to this.
  • Process S1 judges whether it is the timing for expansion. This corresponds to the case where the administrator of the battery system specifies the timing for expansion. If it is the timing for expansion (process S1, Yes), proceed to S2. If it is not the timing for expansion (process S1, No), proceed to S5.
  • the controller 5 judges whether the difference in deterioration rate (SOH: State of Health) between the battery racks to be newly connected in parallel is within an allowable value.
  • SOH State of Health
  • battery rack B21 will be connected to the PCS#1 side, so battery racks B11, B12 and battery rack B21 are the targets. It calculates whether there is a difference in these SOHs and judges whether the parallel connection can be changed safely within the allowable value. If it is within the allowable value (process S2, Yes), proceed to process S3, and if it is not within the allowable value (process S2, No), proceed to S5.
  • SOH State of Health
  • the ratio of the current charge/discharge capacity to the charge/discharge capacity when new (capacity deterioration rate: SOHQ) is used as the SOH.
  • SOHQ capacity deterioration rate
  • SOHR resistance deterioration rate
  • the controller 5 determines whether the difference in state of charge (SOC) between the battery racks to be newly connected in parallel is within the allowable value. For example, battery rack B21 will be connected to the PCS#1 side, so battery racks B11, B12 and battery rack B21 are the targets. It calculates whether there is a difference in these SOCs and determines whether the parallel connection can be changed safely within the allowable value. If it is within the allowable value (process S3, Yes), proceed to process S4; if it is not within the allowable value (process S3, No), proceed to S5.
  • SOC state of charge
  • the controller 5 changes the power route and issues a command to the switch 41 to connect the battery rack B21 to the PCS21 (PCS#1) side, and issues a command to the switch 42 to connect the battery rack B22 to the PCS23 (PCS#3) side. Switches 41 and 42 that have received the command each switch their connections.
  • process S5 if the answer is No in any of processes S1 to S3, it is not the time for expansion or the safety of the connection cannot be ensured, so the status quo is maintained without switching. In other words, the power route is not changed, and the switch 41 of battery rack B21 is kept on the PCS22 (PCS#2) side, and the switch 42 of battery rack B22 is kept on the PCS22 (PCS#2) side.
  • step S10 the controller 5 determines whether the average SOH of the battery system is below a certain value (e.g., A% or less). If the average SOH is A% or less (step S10, Yes), the process proceeds to step S11, and if the average SOH is not A% or less (step S10, No), the process proceeds to step S15.
  • a certain value e.g., A% or less
  • process S11 the controller 5 determines whether the period of use is equal to or longer than a certain period (for example, B years or longer). If the period of use is equal to or longer than B years (process S11, Yes), the process proceeds to process S12. If the period of use is less than B years (process S11, No), the process proceeds to process S15. Batteries are generally added when the battery has deteriorated and no longer meets the required performance, or when the period during which addition is possible has expired. For this reason, the process is configured to switch based on these judgments. Subsequent processes S12 to S15 correspond to processes S2 to S5 in Figure 2.
  • a certain period for example, B years or longer.
  • an additional battery rack is connected to the additional battery rack installation position 7.
  • three existing batteries that have deteriorated to some extent are connected in parallel to PCS21 (PCS#1) and PCS23 (PCS#3), and a new additional battery rack is connected to PCS22 (PCS#2).
  • PCS21 PCS#1
  • PCS23 PCS23
  • PCS22 PCS#2
  • FIG. 4 there is no communication control line between the controller 5 and the manual switches 41A and 42A. Instead, the controller 5 has a communication function with the maintenance staff's information terminal 90.
  • the secondary battery system 100 has manual switches 41A, 42A that allow the battery rack B of the battery bank 3 to be switched to a power converter of another battery bank, and a controller 5 that monitors the deterioration or years of use of the battery rack B and controls the power converter 2.
  • the controller 5 determines that it is time to connect a power converter based on the deterioration rate or years of use of the battery rack B, it notifies the maintenance staff's information terminal 90 of the power converter to be connected.
  • the manual switches 41A and 42A can manually switch the power route in the same direction as in the first embodiment.
  • the battery rack B21 can select the power route between PCS#1 and #2
  • the battery rack B22 can select the power route between PCS#2 and #3.
  • the flow in Figure 3 can be manually performed to change the power route with a simple configuration that does not require any new control or controller functions.
  • FIG. 5 is a diagram showing a secondary battery system 100A according to the third embodiment, which allows multiple connection destinations to be selected.
  • the battery rack B, PCS 2, and additional battery rack installation position 7 are provided, and additional battery rack wiring 8 for expansion is prepared in advance, which is the same as in the first embodiment.
  • each battery rack B has a power route switch 110 that can be connected to any PCS 2
  • the controller 5A has a power route determination unit 6A that is a function for determining this power route.
  • One end of the power route switch 110 is connected to each battery rack B, and is connected to PCS#1 to 3 by a command from the controller 5A.
  • This changeover switch may be included in the battery rack B, and may be attached to the additional battery rack B.
  • FIG. 6 is a flow diagram showing a connection change process S20 taking into account the SOH difference at the time of addition according to the third embodiment.
  • Fig. 7 is a diagram showing a connection example taking into account the SOH difference at the time of addition according to the third embodiment.
  • FIG. 6 shows the control flow when the expansion timing is specified, as in FIG. 2.
  • the controller 5A determines whether it is the expansion timing (whether it has been exceeded), and if the expansion timing has been exceeded (process S21, Yes), the process proceeds to process S22, and if the expansion timing has not been exceeded (process S21, No), the process proceeds to process S26.
  • the controller 5A selects three battery racks B with similar SOH and proceeds to process S22.
  • the number of three is the number of sets assuming that the configuration of two battery racks B in parallel under the PCS is changed to three in parallel as in the first embodiment, and the power route before the expansion is changed, and may be any number depending on the expansion method. Note that the number of sets here is a unit of the number of battery racks B.
  • process S23 the controller 5A determines whether the SOH difference between the selected battery racks is equal to or less than the allowable value. If the SOH difference is equal to or less than the allowable value (process S23, Yes), the process proceeds to process S24, and if the SOH difference is not equal to or less than the allowable value (process S23, No), the process proceeds to process S26.
  • process S24 the controller 5A determines whether the SOC difference between the selected battery racks is equal to or less than the allowable value. If the SOC difference is equal to or less than the allowable value (process S24, Yes), the process proceeds to process S25. If the SOC difference is not equal to or less than the allowable value (process S24, No, the process proceeds to process S26.
  • process S25 the controller 5A issues a command to the power route switch 110 to switch the selected battery racks to parallel, since the combination to be connected in parallel has been selected and the SOH and SOC have been determined to be within a safe range.
  • process S26 the controller 5A maintains the current state without switching.
  • Table T7 in FIG. 7 shows the SOH of each battery rack, the connection destination PCS before the control in FIG. 6 is performed, and the connection destination PCS after the control.
  • the battery racks B11 and B12 are connected to PCS#1
  • the battery racks B21 and B22 are connected to PCS#2
  • the battery racks B31 and B32 are connected to PCS#3.
  • the SOH of 80 and 85 when selecting three sets during expansion, it is preferable to select three sets with SOH 80 and three sets with SOH 85 to reduce cross current and operate them under the same PCS.
  • the battery racks B11, B21, and B22 with SOH 80 will change their connection destination to PCS#1, and the battery racks B12, B31, and B32 with SOH 85 will change their connection destination to PCS#2.
  • PCS#3 will be in a state where no battery racks are connected, so two sets of expansion battery racks will be connected.
  • the connection will not be changed and the device will connect to the PCS that was connected before the control.
  • FIG. 8 is a flow diagram showing a connection change process S30 taking into account the SOH difference before the expansion according to the third embodiment.
  • Fig. 9 is a diagram showing an example of a connection taking into account the SOH difference before the expansion according to the third embodiment.
  • FIG. 8 shows an example in which a selection is made so that a pair of battery racks with similar SOHs are operated as much as possible even when the battery racks are not being expanded.
  • the controller 5A selects two pairs of battery racks with similar SOHs.
  • the reason for using two pairs in step S31, rather than three pairs in the control flow of FIG. 6, is that when an expansion is performed, the number of parallel connections must be changed from two to three, leaving one PCS free, but in FIG. 6, the total number of parallel connections is not changed because the control is performed in response to deterioration other than when the expansion is performed (for example, before the expansion).
  • step S32 the controller 5A determines whether the SOC difference between the selected battery racks is equal to or less than the allowable value. If the SOC difference is equal to or less than the allowable value (step S32, Yes), the process proceeds to step S33. If the SOC difference is not equal to or less than the allowable value (step S32, No), the process proceeds to step S34.
  • process S33 the controller 5A commands the power route switch 110 to switch so that the selected battery racks are connected in parallel.
  • process S34 no switching is performed and the current state is maintained. This control flow is explained in FIG. 9.
  • Table T9 in Figure 9 shows each battery rack and its respective SOH, just like Table T7 in Figure 7.
  • the PCSs to which they are connected before control are also as shown, and it can be seen that the SOH of the battery racks connected to each PCS was different before control.
  • battery rack B11 and battery rack B22 which have a similar SOH of 80, are connected to PCS#1
  • battery rack B12 and battery rack B32 which have a similar SOH of 85
  • PCS#2 Battery rack B21 and battery rack B31, which have a similar SOH of 90
  • PCS#3 which have a similar SOH of 90
  • Fig. 10 is a flow diagram showing a connection change process S40 in consideration of the average SOC before the expansion according to the third embodiment.
  • Fig. 11 is a diagram showing an example of a connection in consideration of the average SOC before the expansion according to the third embodiment.
  • step S41 the controller 5A selects a combination in which the average SOH of the battery rack groups is approximately the same.
  • step S42 it is determined whether the SOC difference between the selected battery racks is equal to or less than the allowable value. If the SOC difference is equal to or less than the allowable value (step S42, Yes), the process proceeds to step S43. If the SOC difference is not equal to or less than the allowable value (step S42, No), the process proceeds to step S44.
  • step S43 the controller 5A commands the power route switch 110 to switch so that the selected battery racks are connected in parallel. On the other hand, in step S44, no switching is performed and the current state is maintained. This control is described in FIG. 11.
  • Table T11 in FIG. 11 shows the SOH of each battery rack, similar to Table T9 in FIG. 9.
  • the SOH of the battery rack group before control is 80 and 85 for the battery rack group connected to PCS#1, so the average value is 82.5, the battery rack group under PCS#2 is 85, and the battery rack group under PCS#3 is 87.5.
  • the average SOH is different, so the capacity that can be used as a battery rack group is different.
  • FIG. 12 is a diagram showing a secondary battery system 100B according to the fourth embodiment when there are multiple expansion timings.
  • FIG. 12 shows a configuration of the first embodiment 1 expanded by two times, and the difference is that the controller 5B determines the total power route even in the system configuration expanded by two times.
  • the expansion timing of the expansion battery racks BE1 and BE2 is different from the expansion timing of the expansion battery racks BE3 and BE4. This is intended to spread out and flatten the investment timing by expanding the batteries in multiple stages. The method of determining the power route in this case will be described with reference to FIG. 13.
  • FIG. 13 is a flow diagram showing the connection change process S50 in the case where there are multiple expansion timings according to the fourth embodiment.
  • the controller 5B determines whether the first expansion timing has been exceeded. If the first expansion timing has been exceeded (process S51, Yes), the process proceeds to process S52, and if the first expansion timing has not been exceeded (process S51, No), the process proceeds to process S55 and the current state is maintained without switching.
  • process S52 if the second expansion timing has passed (process S52, Yes), the controller 5B proceeds to process S53, and if the second expansion timing has not passed (process S52, No), the controller 5B proceeds to process S54.
  • process S55 the initial power route has not been changed and the battery racks are connected to each PCS.
  • controller 5B commands battery rack B21 to switch to the PCS21 (PCS#1) side and commands battery rack B22 to switch to the PCS23 (PCS#3) side, while battery racks B51 and B52 remain in their current state without switching.
  • controller 5B commands battery rack B21 to switch to the PCS21 (PCS#1) side, commands battery rack B22 to switch to the PCS23 (PCS#3) side, commands battery rack B51 to switch to the PCS24 (PCS#4) side, and commands battery rack B52 to switch to the PCS26 (PCS#6) side.
  • Partial expansion like that of this embodiment can also be implemented with the same concept even in configurations like the second and third embodiments.
  • Fig. 14 is a diagram showing a connection change process S60 when a power converter according to the fifth embodiment fails.
  • the contents of ensuring redundancy by using the switch 4 used in the present embodiment will be described.
  • the configuration is the same as that of Fig. 1 of the first embodiment.
  • process S61 the controller 5 determines whether PCS#2 is functioning. If PCS#2 is functioning (process S61, Yes), the process proceeds to process S62, where the power route of battery racks B21 and B22 is not changed and the connection to PCS#2 is maintained. On the other hand, if PCS#2 is not functioning (process S61, No), the process proceeds to process S63, where the power route of battery racks B21 and B22 is changed to connect to PCS#1 and PCS#3, respectively. In this way, by controlling the power route so that it can be changed even in the event of a failure, etc., it is possible to improve the equipment operating rate.
  • FIG. 15 is a diagram showing a secondary battery system 100C in the case of adding a used battery according to the sixth embodiment.
  • the processing when the added battery is a used battery will be described.
  • the system configuration is similar to that of FIG. 5, but the difference is that the added used battery racks are installed at 71S, 72S, and 73S. If the added used battery racks BS1, BS2, and BS3 are used products of the same type and capacity as the existing battery racks when new, it is considered that the capacity is lower than when new, so it is assumed that three battery racks are added in parallel.
  • the control flow will be described with reference to FIG. 16 and FIG. 17.
  • FIG. 16 is a flow diagram showing the connection change process S70 when adding used batteries according to the sixth embodiment.
  • the start timing is the timing after adding a used battery rack.
  • the controller 5C selects a combination in which the average SOH of the battery rack group, including the used battery rack after the addition, is approximately the same, and proceeds to process S72.
  • process S72 the controller 5C determines whether the SOC difference between the selected battery racks is equal to or less than the allowable value. If the SOC difference between the selected battery racks is equal to or less than the allowable value (process S72, Yes), the controller 5C proceeds to process S73 and issues a command to switch the selected battery racks to a parallel connection.
  • FIG. 17 is a diagram showing an example of connections when adding used batteries according to the sixth embodiment.
  • Table T17 shows each battery rack and its SOH, the PCS to which it is connected before control, and the PCS to which it is connected after control.
  • the additional used battery racks BS1, BS2, and BS3 also contain used batteries, so the SOH has decreased and there is variation. Before control, no additional batteries have been added, so the batteries are not used to operate, but after control, the additional battery racks BS1, BS2, and BS3 will also be operated.
  • the battery racks with an SOH of 80 are battery racks B11, B22 and additional battery rack BS1
  • the battery racks with an SOH of 85 are battery racks B12, B32 and additional battery rack BS2
  • the battery racks with an SOH of 90 are battery racks B21, B31 and additional battery rack BS3, so these three combinations are the result. After control, these can be placed under the same PCS to suppress cross currents, etc.
  • the expansion methods of the first to fifth embodiments which implement control under a different PCS, are preferable; however, when adding second-hand batteries with the same capacity and SOH, it is possible to provide redundancy by considering all battery racks together.
  • the batteries are of the same type, so the degradation rate is used as the indicator, but when adding battery racks with different new capacity, it is possible to achieve the same effect by performing step S71 using the indicator capacity x current SOH capacity.
  • a secondary battery system including a battery bank 3 having a battery rack B with multiple battery cells connected in series and a power converter 2 for charging or discharging one or more parallel-connected battery racks B to or from a power system, the system including a switch 4 that enables the battery rack B of the battery bank 3 to be switched to a power converter of another battery bank, and a controller 5 that monitors the deterioration rate or years of use of the battery rack B and controls the power converter 2 and the switch 4, the controller 5 instructing the switch 4 to select a power converter to connect based on the deterioration rate or years of use of the battery rack B (see FIGS. 1 to 3).
  • This allows for an appropriate configuration when batteries with different performances, for example, expansion batteries and existing batteries, are mixed.
  • a secondary battery system including a battery bank 3 having a battery rack B with multiple battery cells connected in series and a power converter 2 for charging and discharging one or more parallel-connected battery racks B to and from a power system, the secondary battery system having a manual switch 4 that allows the battery rack B of the battery bank 3 to be switched to a power converter of another battery bank, and a controller 5 that monitors the deterioration rate or years of use of the battery rack B and controls the power converter 2, and when the controller 5 determines that it is time to change the connected power converter based on the deterioration rate or years of use of the battery rack B, it notifies the maintenance staff's information terminal 90 of the connected power converter (see FIG. 4).
  • the switch 4 is a switch capable of switching between multiple power converters, and the controller 5 can instruct the switch 4 which power converter to switch to (see Figures 1 and 5).
  • a mechanism e.g., additional battery rack installation position 7 and additional battery rack wiring 8 is installed in advance to allow power input from a newly installed battery rack based on a specified deterioration rate or number of years of use for a power converter that is no longer connected after the connected power converter is changed.
  • a mechanism e.g., additional battery rack installation position 7 and additional battery rack wiring 8 is installed in advance to allow power input from a newly installed battery rack based on a predetermined deterioration rate or number of years of use for a power converter that is no longer connected after the connected power converter is changed.
  • the controller 5 instructs the switch 4 to change the connection so that the difference in deterioration rates of the battery racks connected in parallel is equal to or less than a predetermined value (see Figures 8 and 9).
  • the controller 5 instructs the switch 4 to select the connection so that the total capacity of the battery racks connected to the power converter and the total capacity of the battery racks connected to other power converters is equal to or less than a predetermined value (see Figures 10 and 11).
  • the controller 5 instructs the switch 4 on the connection destination based on the deterioration rate or years of use of the battery rack B for each installation (see Figures 12 and 13).
  • the controller 5 notifies the information terminal 90 of the connection destination based on the deterioration rate or number of years of use of the battery rack B for each installation time (see FIG. 4). This allows the maintenance staff to accurately know when to switch the manual switch 4.
  • controller 5 detects that the connected power converter is not functioning, it instructs the switch 4 to change the connection so that the power converter is connected to a converter other than the connected power converter (see FIG. 14).
  • the controller 5 issues a command to change the connection to the switch 4 so that the SOH difference between the battery racks connected to the power converter, including the new batteries and the existing batteries, is equal to or less than a predetermined value (see Figures 15 to 17).
  • the controller 5 notifies the information terminal 90 of the connection destination so that the SOH difference between the battery racks connected to the power converter 2, combining the new batteries and the existing batteries, is equal to or less than a predetermined value. This allows the maintenance personnel to accurately know when to switch the manual switch 4.
  • a method for controlling a secondary battery in a secondary battery system 100 including a battery bank 3 having a battery rack B with multiple battery cells connected in series and a power converter 2 for charging or discharging one or more parallel-connected battery racks to a power system, the method including a switch 4 that enables the battery rack B of the battery bank 3 to be switched to a power converter of another battery bank, and a controller 5 that monitors the deterioration rate or years of use of the battery rack B and controls the power converter 2 and the switch 4, and the controller 5 instructs the switch 4 to select a power converter to connect based on the deterioration rate or years of use of the battery rack B (see Figures 1 to 3).
  • This allows for an appropriate configuration when batteries with different performances, such as additional batteries and existing batteries, are mixed.
  • This embodiment makes it possible to reduce costs when rearranging or expanding batteries and ensure redundancy in the event of a converter failure, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

二次電池システム(100)は、直列接続された複数の電池セルを有する電池ラック(B)と、単数もしくは複数の並列接続された電池ラック(B)が電力系統に対して充放電するための電力変換器(2)と、を有する電池バンク3を備える二次電池システムであって、電池バンク(3)が有する電池ラック(B)を、他の電池バンクの電力変換器に対して切り替え可能とする切替器(4)と、電池ラック(B)の劣化率または使用年数を監視し、電力変換器(2)及び切替器(4)を制御するコントローラ(5)と、を有し、コントローラ(5)は、電池ラック(B)の劣化率または使用年数に基づいて、接続する電力変換器(2)を切替器(4)に指令する。

Description

二次電池システム及び二次電池制御方法
 本発明は、二次電池システム及び二次電池制御方法に関する。
 近年再生可能エネルギーの増加に伴う系統不安定化の解決のため、大型の定置型蓄電池システムの実装が進んでいる。しかし、大規模な定置型蓄電池システムは導入に対する投資コストが大きく、また劣化により機器性能が変化するため一斉に導入するには障壁が大きい。そのため、徐々に蓄電池システムを増設し投資コストを平準化する手段が検討されている。
 この増設をする際には既設の劣化している電池と新品の電池を併用する必要があるが、設備導入当初から異なる性能の電池が増設されることを想定しておらず、新品の増設の際に電力配線の変更や配置の変更が必要となり、余分なコストを生じさせてしまう懸念がある。
 特許文献1の蓄電システムは、充放電可能な複数の電池ユニットが接続され、複数の電力変換器が前記電池ユニットに対して充放電を行うように構成される蓄電システムにおいて、複数の電池ユニットそれぞれに接続され、電池ユニットを前記複数の電力変換器に対して切り替え可能とするスイッチと、複数の電力変換器及び前記スイッチを制御するコントローラと、を有し、コントローラは、充放電に使用する電池ユニットと電力変換器を決定する組み合わせ決定部と、組み合わせ決定部が決定した電池ユニットを、電力変換器に接続するようにスイッチの開閉状態を制御するスイッチ制御部と、組み合わせ決定部が決定した電力変換器に対して充放電指令を出力する電力変換器制御部と、を有することが記載されている。
特開2015-159631号公報
 特許文献1では、複数の電池ユニットと複数の電力変換器との接続状態や並列数を変更できる事例が示されている。しかしながら、特許文献1では、劣化率によって接続状態や並列数の変更を行うものでもなく、性能の異なる電池、例えば増設電池と既設電池が混在した際の制御に関して記述がなく、劣化に差がある電池に対して制御ができず、横流が発生し過放電もしくは過充電になってしまう課題が存在している。
 本発明は、前記した課題を解決するためになされたものであり、性能の異なる電池、例えば増設電池と既設電池が混在した際の構成を適切にできる二次電池システム及び二次電池制御方法を提供することを目的とする。
 前記目的を達成するため、本発明の二次電池システムは、直列接続された複数の電池セルを有する電池ラックと、単数もしくは複数の並列接続された電池ラックが電力系統に対して充放電するための電力変換器と、を有する電池バンクを備える二次電池システムであって、前記電池バンクが有する電池ラックを、他の電池バンクの電力変換器に対して切り替え可能とする切替器と、前記電池ラックの劣化率または使用年数を監視し、前記電力変換器及び前記切替器を制御するコントローラと、を有し、前記コントローラは、前記電池ラックの劣化率または使用年数に基づいて、接続する電力変換器を前記切替器に指令することを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。
 本発明によれば、性能の異なる電池、例えば増設電池と既設電池が混在した際の構成を適切にできる。
第1実施形態に係る二次電池システムを示す図である。 第1実施形態に係る増設タイミングでの接続変更処理を示すフロー図である。 第1実施形態に係る増設タイミングの例を示すフロー図である。 第2実施形態に係るマニュアルの切替器を有する二次電池システムを示す図である。 第3実施形態に係る接続先を複数選択可能な二次電池システムを示す図である。 第3実施形態に係る増設タイミングでのSOH差を考慮した接続変更処理を示すフロー図である。 第3実施形態に係る増設タイミングでのSOH差を考慮した接続例を示す図である。 第3実施形態に係る増設前のSOH差を考慮した接続変更処理を示すフロー図である。 第3実施形態に係る増設前のSOH差を考慮した接続例を示す図である。 第3実施形態に係る増設前の平均SOCを考慮した接続変更処理を示すフロー図である。 第3実施形態に係る増設前の平均SOCを考慮した接続例を示す図である。 第4実施形態に係る増設タイミングが複数ある場合の二次電池システムを示す図である。 第4実施形態に係る増設タイミングが複数ある場合の接続変更処理を示すフロー図である。 第5実施形態に係る電力変換器が故障した場合の接続変更処理を示す図である。 第6実施形態に係る中古電池を増設する場合の二次電池システムを示す図である。 第6実施形態に係る中古電池を増設する場合の接続変更処理を示すフロー図である。 第6実施形態に係る中古電池を増設する場合の接続例を示す図である。
 以下、図面等を用いて、本発明の実施形態について詳細に説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更及び修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
<<第1実施形態>>
 図1は、第1実施形態に係る二次電池システム100を示す図である。本実施形態では、二次電池システムの増設に対応できるシステム構成に関して説明する。図1は大型の二次電池システムの構成を示しており、電池が直列接続された電池ラックBが2並列で直流を交流に変換する電力変換器(Power Conditioning System:PCS)2を介して負荷に繋がっている。この電力変換器2と電池ラックBをまとめて電池バンク3とし、負荷(不図示)に対して電池バンク3が3並列(電池バンク31,32,33)になっているとする。電池ラックB内の電池の直列数、電力変換器下の電池ラックの並列数、負荷に対するバンク数は任意の数でよい。以下、電力変換器を適宜PCSと称する。
 二次電池システム100は、電池バンク3が有する電池ラックBを、他の電池バンクの電力変換器に対して切り替え可能とする切替器4(切替器41,42)と、電池ラックBの劣化率または使用年数を監視し、電力変換器2及び切替器4を制御するコントローラ5と、を有し、コントローラ5は、電力ルート決定部6を有し、電池ラックBの劣化率または使用年数に基づいて、接続する電力変換器2を切替器4に指令する。また、電池ラックBを増設する際に必要となる増設電池ラック設置位置7及び増設電池ラック用配線8があらかじめ二次電池システム100の稼働時から備わっている。増設電池ラック設置位置7には、増設電池ラックBE1の設置位置である増設電池ラック設置位置71と、増設電池ラックBE2の設置位置である増設電池ラック設置位置72がある。
 電池ラックB21は、PCS21(PCS♯1)とPCS22(PCS♯2)のいずれにでも接続することが可能な切替器41を介して接続し、電池ラックB22は、PCS22(PCS♯2)とPCS23(PCS♯3)に対して同様な切替器42で接続されている。すなわち、切替器41の一方には、電池ラックB21が接続され、他方にはPCS21とPCS22が切り替え可能に接続されている。切替器42の一方には電池ラックB22が接続され、他方にはPCS22とPCS23が切り替え可能に接続されている。
 電池ラックB21は、増設等のタイミング以外にはPCS22(PCS♯2)に基本は繋がっており、増設等のタイミングはPCS21(PCS♯1)に繋がる。同様に電池ラックB22は、増設等のタイミング以外にはPCS22(PCS♯2)に基本は繋がっており、増設等のタイミングはPCS23(PCS♯3)に繋がる。このタイミング等の判断に関しては後述する。
 また、各電池ラックBから各電池ラックB内の電池電圧・温度等の稼働情報に加えて劣化率を受け取り電力変換器2に電力量を指令する機能を有しているコントローラ5は、この機能以外にも各リレーの電力ルートを選択する電力ルート決定部6を有しており、電力ルートは主にこれら電圧、温度、劣化率に基づいて選択される。
 図2は、第1実施形態に係る増設タイミングでの接続変更処理S0を示すフロー図である。図3は、第1実施形態に係る増設タイミングの例を示すフロー図である。図2~3は、コントローラ5が切替器4によって電力ルートを切り替えるフロー図を示す。
 まずは図2のフロー図(処理S0)を説明する。コントローラ5は、増設タイミングを超過しているか否かを判定する(処理S1)。処理S1の前提として前回の電力ルートが増設を想定した電力ルートではないことである。既に電力ルートが増設前提のルートに切り替わっている場合には、この演算はスタートしない。処理S0がスタートするのは例えば電池システムが系統に繋がる稼働のタイミングを想定するが、これに限らない。処理S1では増設タイミングであるかの判断がある。これは電池システムの管理者が増設のタイミングを指定する場合に対応している。増設タイミングである場合(処理S1,Yes)にはS2に進み、増設タイミングでない場合(処理S1,No)にはS5に進む。
 処理S2において、コントローラ5は、新たに並列接続される電池ラック間の劣化率(SOH:State of Health)差が許容値以下か否かを判定する。これは例えば電池ラックB21であればPCS♯1側に接続することになるため、電池ラックB11,B12及び電池ラックB21を対象としている。これらのSOHに差があるかを演算し、許容値以下で安全に並列接続を変えることができるかを判断している。許容値以下の場合(処理S2,Yes)は処理S3に進み、許容値以下でない場合(処理S2,No)はS5に進む。なお、本実施形態ではSOHとして、新品時の充放電容量に対する現在の充放電容量の割合(容量の劣化率:SOHQ)を用いている。SOHとしては他にも抵抗の劣化率を表すSOHRが知られている。
 処理S3において、コントローラ5は、新たに並列接続される電池ラック間の充電率(SOC:State Of Charge)差が許容値以下か否かを判定する。これは例えば電池ラックB21であればPCS♯1側に接続することになるため、電池ラックB11,B12及び電池ラックB21を対象としている。これらのSOCに差があるかを演算し、許容値以下で安全に並列接続を変えることができるかを判断している。許容値以下の場合(処理S3,Yes)は処理S4に進み、許容値以下でない場合(処理S3,No)はS5に進む。
 処理S4において、増設タイミングであること及び安全であることが確認できたため、コントローラ5は、電力ルートを変更し電池ラックB21をPCS21(PCS#1)側に接続するよう切替器41に切替え指令し、電池ラックB22をPCS23(PCS#3)側に接続するよう切替器42に切替え指令する。指令を受けた切替器41,42は、それぞれ接続を切替える。
 処理S5において、処理S1~S3のいずれかでNoの場合は増設タイミングではないもしくは接続の安全性が確保できない場合であるので、切替えをせずに現状維持する。すなわち、電力ルートは変更せず電池ラックB21の切替器41をPCS22(PCS#2)側に、電池ラックB22の切替器42をPCS22(PCS#2)側に維持する。
 図3では増設タイミングの具体例を示す。処理S10において、コントローラ5は、電池システムの平均SOHがある一定値以下(例えば、A%以下)であるかを判定している。平均SOHがA%以下の場合(処理S10,Yes)、処理S11に進み、平均SOHがA%以下でない場合(処理S10,No)、処理S15に進む。
 処理S11において、コントローラ5は、使用期間がある一定期間以上(例えば、B年以上)であるかを判定している。使用期間がB年以上である場合(処理S11,Yes)、処理S12に進み、使用期間がB年未満である場合(処理S11,No)、処理S15に進む。一般的に電池の増設は電池が劣化して性能を満足できなくなった場合や、増設可能期間よりも超過している場合に行う。そのため、これらを判断して切り替える構成としている。以降の処理S12~S15は、図2の処理S2~S5と対応している。
 これら図2や図3の電力ルート変更と並行して、もしくは変更後に、増設電池ラックを増設電池ラック設置位置7に対して接続する。このようにすることで、PCS21(PCS♯1)、PCS23(PCS♯3)には既設である程度劣化している電池が3並列、PCS22(PCS♯2)には増設の新品電池ラックが接続されることになる。新品電池ラック容量が既設の新品時容量と同じであった場合には、処理S10のAが67%であれば各PCS下にある電池容量に差分が生じず増設によって初期納入時点の性能を確保することが可能となる。なお、Aが67%とは、既設の新品時容量が2並列の場合を200%とし、それを3並列で構成するとすると、67%(≒200/3)となるためである。
 また、本実施形態の主である電力ルートの切替器4、電力ルート決定部6、増設を想定した増設電池ラック用配線8と増設電池ラック設置位置7の確保により、増設のタイミングでは増設電池ラックの設置工事のみとなるため、増設時の工事を削減することが可能である。
<<第2実施形態>>
 第2実施形態では電力ルートの切替がコントローラ5からの通信指令で駆動する切替器4ではなく、手動切替器41A,42A(マニュアルの切替器)の例を説明する。増設のタイミングで切り替えることが主であり、他のタイミングで駆動しない切替器であれば制御分のコストと信頼性を考慮する必要がある。そのため、人の手で駆動するマニュアルの切替器であっても同様の処理が可能である。図4でこの例に関して説明する。
 図4は、コントローラ5と手動切替器41A,42Aとの通信制御線を有していない。その代わりに、コントローラ5は、保守員の情報端末90との通信機能を有する。
 二次電池システム100は、電池バンク3が有する電池ラックBを、他の電池バンクの電力変換器に対して切り替え可能とする手動切替器41A,42Aと、電池ラックBの劣化または使用年数を監視し、電力変換器2を制御するコントローラ5と、を有し、コントローラ5は、電池ラックBの劣化率または使用年数に基づいて、接続する電力変換器の時期と判定した場合、該接続する電力変換器を保守員の情報端末90に通知する。
 手動切替器41A,42Aは、マニュアルにて電力ルートを第1実施形態と同様の方向に切り替えることが可能である。具体的には電池ラックB21はPCS♯1と♯2の電力ルートを選択でき、電池ラックB22はPCS♯2と♯3の電力ルートを選択できる。増設のタイミングでは、図3のフローを手動にて実施することで新たな制御やコントローラ機能無での単純な構成で電力ルートを変更することができる。
<<第3実施形態>>
 図5は、第3実施形態に係る接続先を複数選択可能な二次電池システム100Aを示す図である。第3実施形態では、電池ラックBがいずれのPCS(電力変換器)にも接続することが可能な構成に関して説明する。電池ラックBやPCS2、増設電池ラック設置位置7を設ける点、あらかじめ増設のための増設電池ラック用配線8を準備している点は実施例1と変わりないが、各電池ラックBはいずれのPCS2へも接続可能な電力ルートスイッチ110を有し、コントローラ5Aはこの電力ルートを決定する機能である電力ルート決定部6Aを有している。電力ルートスイッチ110の一端は各電池ラックBに接続されており、コントローラ5Aからの指令によりPCS♯1~3に接続される。また増設電池ラック設置位置7にもあらかじめ切替スイッチを用意しておくことで増設時の工事を簡便化することが可能である。この切替スイッチは電池ラックBに内包されていてもよいので、増設の電池ラックBに付随してもよい。
 次にこの電力ルートスイッチ110の制御フローを図6~図11で説明する。
<増設タイミングでのSOH差を考慮した接続変更処理>
 図6は、第3実施形態に係る増設タイミングでのSOH差を考慮した接続変更処理S20を示すフロー図である。図7は、第3実施形態に係る増設タイミングでのSOH差を考慮した接続例を示す図である。
 図6は、図2と同様増設タイミングを指定される場合の制御フローを示している。まず演算をスタートした後、処理S21で、コントローラ5Aは、増設タイミングであるか(超過しているか)を判定し、増設タイミングを超過している場合(処理S21,Yes)、処理S22に進み、増設タイミングを超過していない場合(処理S21,No)、処理S26に進む。
 処理S22において、コントローラ5Aは、SOHが近い電池ラックBを3組選択し、処理S22に進む。3組とは第1実施形態と同様PCS下に電池ラックBが2並列だった構成を3並列に変更し、増設前の電力ルート変更をすることを想定した組数であり、増設の方法によって任意であってよい。なお、ここで組数は電池ラックBの個数の単位である。
 次に、処理S23において、コントローラ5Aは、この選択した電池ラック間のSOH差が許容値以下かを判定する。SOH差が許容値以下の場合(処理S23,Yes)、処理S24に進み、SOH差が許容値以下でない場合(処理S23,No)、処理S26に進む。
 処理S24において、コントローラ5Aは、選択した電池ラック間のSOC差が許容値以下かを判定する。SOC差が許容値以下である場合(処理S24,Yes)、処理S25に進み、SOC差が許容値以下でない場合(処理S24,No、処理S26に進む。
 処理S25において、コントローラ5Aは、並列にする組み合わせが選択されており、SOHやSOCも安全な範囲内であると判断されているため、選択した電池ラックが並列になるように、電力ルートスイッチ110に切替指令する。一方、処理S26において、切替えをせずに現状維持する。
 図7の表T7には、各電池ラックのSOHと図6の制御を実施する制御前の接続先PCS、制御後の接続先PCSを示している。制御前は、それぞれ、電池ラックB11,B12はPCS#1に、電池ラックB21,B22はPCS#2に、電池ラックB31,B32はPCS#3に繋がっているとする。この中で図示されている通りSOHが80と85で差があるとすると、増設時に3組を選択する際には横流が小さくなるようにSOH80の3組とSOHが85の3組を選択し同じPCS下で運用することが好ましい。そのため、制御後にはSOHが80である電池ラックB11、電池ラックB21及び電池ラックB22がPCS#1に、SOHが85である電池ラックB12、電池ラックB31及び電池ラックB32がPCS#2に接続先を変更することになる。その後、PCS#3はどの電池ラックも繋がっていない状態になるため増設電池ラック2組が繋がることになる。一方、処理S26に進んだ場合には接続変更せずに、制御前の接続先PCSにそれぞれ繋がることになる。
<増設前のSOH差を考慮した接続変更処理>
 図8は、第3実施形態に係る増設前のSOH差を考慮した接続変更処理S30を示すフロー図である。図9は、第3実施形態に係る増設前のSOH差を考慮した接続例を示す図である。
 図8は、増設タイミング以外でもSOHが近い組でなるべく駆動するように選択した例である。まず、処理S31において、コントローラ5Aは、SOHが近い電池ラック2組を選択する。図6の制御フローでは3組であったが処理S31では2組な理由は、増設時には2並列を3並列に並列数を変更してPCSを一つあける必要があるが、図6は増設時以外(例えば、増設前)の劣化に応じた制御であるため並列総数の変更は行わないためである。次に処理S32において、コントローラ5Aは、選択した電池ラック間のSOC差が許容値以下であるかを判定する。SOC差が許容値以下である場合(処理S32,Yes)、処理S33に進み、SOC差が許容値以下でない場合(処理S32,No)、処理S34に進む。
 処理S33において、コントローラ5Aは、選択した電池ラックが並列接続になるように電力ルートスイッチ110に切替え指令する。一方、処理S34において、切替えはせずに現状維持となる。この制御フローに関して図9で説明する。
 図9の表T9には、図7の表T7と同様各電池ラックとそれぞれのSOHを示している。制御前の接続先PCSも記載の通りで、制御前には各PCSに接続されている電池ラックのSOHが異なる値となっていることがわかる。これを図8の制御フローで接続先を決定すると、SOHが80で同様である電池ラックB11と電池ラックB22がPCS#1に接続され、SOHが85で同様である電池ラックB12と電池ラックB32がPCS#2に接続され、SOHが90で同様である電池ラックB21と電池ラックB31がPCS#3に接続される。このように劣化率が近いもので並列構成に組み替えることで劣化率の差で生まれる横流等の不安全事象を抑制できる。
<増設前の平均SOCを考慮した接続変更処理>
 図10は、第3実施形態に係る増設前の平均SOCを考慮した接続変更処理S40を示すフロー図である。図11は、第3実施形態に係る増設前の平均SOCを考慮した接続例を示す図である。
 図10の制御フローは各PCS下の電池ラック群の合計容量を均一に保つことに有効である。まず、処理S41において、コントローラ5Aは、電池ラック群の平均SOHが同程度となる組み合わせを選択する。次に、処理S42において、選択した電池ラック間のSOC差が許容値以下か判定する。SOC差が許容値以下場合(処理S42,Yes)、処理S43に進み、SOC差が許容値以下でない場合(処理S42、No)、処理S44に進む。処理S43において、コントローラ5Aは、選択した電池ラックが並列接続になるように電力ルートスイッチ110に切替え指令する。一方、処理S44において、切替えをせずに現状維持する。この制御に関して図11で説明する。
 図11の表T11には、図9の表T9と同様各電池ラックのSOHが示されている。制御前の電池ラック群のSOHとは、例えばPCS#1に接続されている電池ラック群であれば、80と85であるので82.5が平均値となり、PCS#2下の電池ラック群は85、PCS#3下の電池ラック群は87.5となる。この制御前の状態では平均SOHが異なるため電池ラック群として使用できる容量は異なってしまう。これに対して図10の制御を実行することで電池ラックB11と電池ラックB21を並列とすることで平均SOHを85に、電池ラックB12と電池ラックB32を並列とすることで平均SOHを85に、電池ラックB22と電池ラックB32を並列にすることで平均SOHを85することが可能であるので、各PCS下の劣化率及び容量を均一に保つことが可能となる。このように容量を均一に保つことで各PCSが同じ出力で同じ運転をしたとしても過充電過放電になることがないため制御の簡便化及び安全性を保つことができる。
 以上、図5のような構成にすることで増設にも劣化率のばらつきにも柔軟に対応することが可能となる。
<<第4実施形態>>
 図12は、第4実施形態に係る増設タイミングが複数ある場合の二次電池システム100Bを示す図である。図12は、第1実施形態1の構成を2倍に拡張したものであり、差分としてコントローラ5Bが、2倍に拡張したシステム構成であっても全電力ルートの決定を実施する点である。また制御や運用面でも差分があり、増設電池ラックBE1,BE2の増設時期と、増設電池ラックBE3,BE4の増設時期が異なる。これは複数回に分けて電池増設を実施することで投資時期を分散し平坦化する狙いがある。この際の電力ルートの決定方法を図13で説明する。
 図13は、第4実施形態に係る増設タイミングが複数ある場合の接続変更処理S50を示すフロー図である。まず、コントローラ5B(図12参照)は、処理S51において、1回目の増設タイミングを超過しているか判定する。1回目の増設タイミングを超過している場合(処理S51,Yes)、処理S52に進み、1回目の増設タイミングを超過していない場合(処理S51,No)、処理S55に進み、切替えをせずに現状維持する。
 処理S52において、コントローラ5Bは、2回目の増設タイミングを超過している場合(処理S52,Yes)、処理S53に進み、2回目の増設タイミングを超過していない場合(処理S52,No)、処理S54に進む。
 処理S55において、初期の電力ルートから変更しておらずそれぞれのPCSに電池ラックが接続している状態である。
 処理S54において、コントローラ5Bは、電池ラックB21をPCS21(PCS#1)側に切替え指令し、電池ラックB22をPCS23(PCS#3)側に切替え指令し、電池ラックB51,B52は、切替えせずに現状維持する。
 処理S54では、PCS#2に接続していた電池ラックB21,B22が他のPCSに接続され、PCS#2が使用されていないため、増設電池ラックBE1,BE2を増設電池ラック設置位置71,72に設置しPCS#2に接続することで安全に1回目の増設が可能となる。
 処理S53において、コントローラ5Bは、電池ラックB21をPCS21(PCS#1)側に切替え指令し、電池ラックB22をPCS23(PCS#3)側に切替え指令し、電池ラックB51をPCS24(PCS#4)側に切替え指令し、電池ラックB52をPCS26(PCS#6)側に切替え指令する。
 処理S53では、PCS#5に接続していた電池ラックB51,B52が他のPCSに接続され、PCS#5が使用されていないため、増設電池ラックBE3,BE4を設置位置73,74に設置しPCS5に接続することで安全に2回目の増設が可能となる。このように複数の電力ルートを増設タイミングによって順次変更することで安全且つ増設の工事費を削減した増設が可能となる。
 本実施形態のような部分的な増設は第2実施形態や第3実施形態のような構成であっても同様の思想で実施することが可能である。
<<第5実施形態>>
 図14は、第5実施形態に係る電力変換器が故障した場合の接続変更処理S60を示す図である。第5実施形態では、本実施形態で使用する切替器4を使用して冗長性を確保する内容を説明する。構成としては第1実施形態の図1の構成と同様とする。
 図1の構成でPCS#2が故障や点検等で機能しなくなる場面が想定される。この時に初期の電力ルートのままだとPCS#2下の電池ラックB21,B22は使用されず設備稼働率が落ちてしまう。このような際には、電力ルートを変更し電池を使用することが望ましい。この際の制御を図14で説明する。なお、コントローラ5には、PCS2の故障検出機能を有する。
 処理S61において、コントローラ5は、PCS#2が機能しているかを判定する。PCS#2が機能している場合(処理S61,Yes)、処理S62に進み、電池ラックB21,B22の電力ルートは変更せずPCS#2側に接続を維持する。一方、PCS#2が機能していない場合(処理S61,No)、処理S63に進み、電池ラックB21、B22の電力ルートを変更して、それぞれPCS#1とPCS#3に接続する。このように故障等でも電力ルートが変更できるように制御することで設備稼働率向上が可能となる。
<<第6実施形態>>
 図15は、第6実施形態に係る中古電池を増設する場合の二次電池システム100Cを示す図である。本実施形態では増設電池が中古電池であった場合の処理に関して説明する。システム構成としては図5と似ているが、増設中古電池ラック設置位置71S,72S,73Sであることが変更点である。増設中古電池ラックBS1,BS2,BS3も既設電池ラックと同種で新品時には同容量であった中古品であるすると、新品時に比べて容量が低いと考えられるので、電池ラックを3並列分追加することを想定する。制御フローに関して図16、図17で説明する。
 図16は、第6実施形態に係る中古電池を増設する場合の接続変更処理S70を示すフロー図である。図16の処理S70において、スタートのタイミングは中古電池ラックを増設した後のタイミングである。まず、コントローラ5C(図15参照)は、処理S71にて増設後の中古電池ラックを含め電池ラック群の平均SOHが同程度となる組み合わせを選択し、処理S72に進む。
 処理S72において、コントローラ5Cは、選択した電池ラック間のSOC差が許容値以下かを判定する。選択した電池ラック間のSOC差が許容値以下の場合(処理S72,Yes)、処理S73に進み、選択した電池ラックが並列接続となるように切替え指令する。
 選択した電池ラック間のSOC差が許容値以下でない場合(処理S72,No)、処理S74に進み、SOC差が解消されるまでスイッチを変更せず、増設電池ラック無で動作を実施し、処理S71に戻る。これを図17で説明する。
 図17は、第6実施形態に係る中古電池を増設する場合の接続例を示す図である。表T17には、各電池ラックとSOH、制御前の接続先PCS、制御後の接続先PCSが示されている。今回は、増設中古電池ラックBS1,BS2,BS3も中古電池であるためSOHが減少しばらつきがある。制御前は増設をしていないため増設電池以外で駆動しているが、制御後は増設電池ラックBS1,BS2,BS3も含めて駆動することになる。
 図16の処理S71において、同程度のSOHの組み合わせを選択すると、SOHが80の電池ラックは、電池ラックB11,B22と増設電池ラックBS1であり、SOHが85の電池ラックは、電池ラックB12,B32と増設電池ラックBS2であり、SOHが90である電池ラックは、電池ラックB21,B31と増設電池ラックBS3であるため、この3つの組み合わせとなる。制御後はこれらを同じPCS下にすることで横流等を抑制することができる。
 このように増設電池ラックが既設電池と異種のものであれば(例えば増設電池ラックが新品である場合)、異なるPCS下で制御を実施する第1実施形態~第5実施形態の増設方法が好ましいが、同容量のSOHが同程度の中古品を増設する場合には全ての電池ラックを含めて考えることで冗長性を持たせることが可能である。
 本実施形態では同種の電池としているため劣化率を指標としてるが、新品時容量が異なる電池ラックを増設する場合には容量×SOHの現在の容量という指標で処理S71の処理を実施することで同様の効果を得ることも可能である。
 本実施形態の二次電池システム及び二次電池制御方法は、次の特徴を有する。
(1)直列接続された複数の電池セルを有する電池ラックBと、単数もしくは複数の並列接続された電池ラックBが電力系統に対して充放電するための電力変換器2と、を有する電池バンク3を備える二次電池システムであって、電池バンク3が有する電池ラックBを、他の電池バンクの電力変換器に対して切り替え可能とする切替器4と、電池ラックBの劣化率または使用年数を監視し、電力変換器2及び切替器4を制御するコントローラ5と、を有し、コントローラ5は、電池ラックBの劣化率または使用年数に基づいて、接続する電力変換器を切替器4に指令することを特徴とする(図1~図3参照)。これによれば、性能の異なる電池、例えば増設電池と既設電池が混在した際の構成を適切にできる。
(2)直列接続された複数の電池セルを有する電池ラックBと、単数もしくは複数の並列接続された電池ラックBが電力系統に対して充放電するための電力変換器2と、を有する電池バンク3を備える二次電池システムであって、電池バンク3が有する電池ラックBを、他の電池バンクの電力変換器に対して切り替え可能とするマニュアルの切替器4と、電池ラックBの劣化率または使用年数を監視し、電力変換器2を制御するコントローラ5と、を有し、コントローラ5は、電池ラックBの劣化率または使用年数に基づいて、接続する電力変換器の変更時期と判定した場合、該接続する電力変換器を保守員の情報端末90に通知することを特徴とする(図4参照)。
(3)(1)であって、切替器4は、複数の電力変換器に切替えが可能な切替器であり、コントローラ5は、どの電力変換器に切替えするかを切替器4に指令することができる(図1、図5参照)。
(4)(1)であって、接続する電力変換器を変更した後に接続がなくなった電力変換器に対して、所定の劣化率または使用年数に基づいて新規に設置する電池ラックからの電力入力が可能な機構(例えば、増設電池ラック設置位置7及び増設電池ラック用配線8)をあらかじめ設置している。
(5)(2)であって、接続する電力変換器を変更した後に接続がなくなった電力変換器に対して、所定の劣化率または使用年数に基づいて新規に設置する電池ラックからの電力入力が可能な機構(例えば、増設電池ラック設置位置7及び増設電池ラック用配線8)をあらかじめ設置している。
(6)(1)であって、コントローラ5は、接続先を変更する際に、接続変更後の電池ラック間の充電率もしくは劣化率が所定値以下である場合に、接続先を切替器4に変更指令する(図2参照)。
(7)(2)であって、コントローラ5は、接続先を変更する際に、接続変更後の電池ラック間の充電率もしくは劣化率が所定値以下である場合に、接続先を情報端末90に通知する。これにより、保守員は、マニュアルの切替器4の切替え時を的確に知ることができる。
(8)(3)であって、コントローラ5は、並列接続される電池ラックの劣化率の差分が所定値以下になるように接続を変更するように、接続先を切替器4に指令する(図8、図9参照)。
(9)(3)であって、コントローラ5は、電力変換器に接続される電池ラックの総容量と他の電力変換器に接続される電池ラックの総容量が所定値以下になるように、接続先を切替器4に指令する(図10、図11参照)。
(10)(1)であって、新規に設置する電池ラックの設置時期が複数回である場合に、コントローラ5は、設置時期ごとに、電池ラックBの劣化率または使用年数に基づいて、接続先を切替器4に指令する(図12、図13参照)。
(11)(2)であって、新規に設置する電池ラックの設置時期が複数回である場合に、
 コントローラ5は、設置時期ごとに、電池ラックBの劣化率または使用年数に基づいて、接続先を情報端末90に通知する(図4参照)。これにより、保守員は、マニュアルの切替器4の切替え時を的確に知ることができる。
(12)(1)であって、コントローラ5は、接続先の電力変換器が機能しないと検出した場合に、該電力変換器以外に接続されるように、接続先を切替器4に変更指令する(図14参照)。
(13)(2)であって、コントローラ5は、接続先の電力変換器が機能しないと検出した場合に、該電力変換器以外に接続されるように、接続先を情報端末90に通知する(図4、図14参照)。これにより、保守員は、マニュアルの切替器4の切替え時を的確に知ることができる。
(14)(1)、(3)、(4)、(6)、(8)、(9)、(10)、(12)であって、コントローラ5は、新規に設置する電池ラックが新品ではなく劣化しており、既設の電池ラックと同等に扱ってよい場合に、新規電池と既設電池を合わせて、電力変換器に接続する電池ラック間のSOH差が所定値以下になるように、接続先を切替器4に変更指令する(図15~図17参照)。
(15)(2)、(5)、(7)、(11)、(13)であって、コントローラ5は、新規に設置する電池ラックが新品ではなく劣化しており、既設の電池ラックと同等に扱ってよい場合に、新規電池と既設電池を合わせて、電力変換器2に接続する電池ラック間のSOH差が所定値以下になるように、接続先を情報端末90に通知する。これにより、保守員は、マニュアルの切替器4の切替え時を的確に知ることができる。
(16)直列接続された複数の電池セルを有する電池ラックBと、単数もしくは複数の並列接続された電池ラックが電力系統に対して充放電するための電力変換器2と、を有する電池バンク3を備える二次電池システム100の二次電池制御方法であって、電池バンク3が有する電池ラックBを、他の電池バンクの電力変換器に対して切り替え可能とする切替器4と、電池ラックBの劣化率または使用年数を監視し、電力変換器2及び切替器4を制御するコントローラ5と、を有し、コントローラ5は、電池ラックBの劣化率または使用年数に基づいて、接続する電力変換器を切替器4に指令する(図1~図3参照)。これによれば、性能の異なる電池、例えば増設電池と既設電池が混在した際の構成を適切にできる。
 本実施形態により、電池の再配置・増設時のコストの低減及び変換器故障等の際の冗長性の確保が可能である。
 2,21,22,23  PCS(電力変換器)
 3,31,32,33  電池バンク
 4,41,42  切替器
 41A,41A  手動切替器(マニュアルの切替器)
 5,5A,5B,5C  コントローラ
 6  電力ルート決定部
 7,71,72  増設電池ラック設置位置
 71S、72S、73S 増設中古電池ラック設置位置
 8  増設電池ラック用配線
 90 情報端末
 100,100A、100B,100C  二次電池システム
 110  電力ルートスイッチ(切替器)
 71,72 増設電池ラック設置位置
 B  電池ラック
 B11,B12,B22,B31,B32  電池ラック
 BE1,BE2,BE3,BE4  増設電池ラック
 BS1,BS2,BS3  増設中古電池ラック

Claims (16)

  1.  直列接続された複数の電池セルを有する電池ラックと、単数もしくは複数の並列接続された電池ラックが電力系統に対して充放電するための電力変換器と、を有する電池バンクを備える二次電池システムであって、
     前記電池バンクが有する電池ラックを、他の電池バンクの電力変換器に対して切り替え可能とする切替器と、
     前記電池ラックの劣化率または使用年数を監視し、前記電力変換器および前記切替器を制御するコントローラと、を有し、
     前記コントローラは、前記電池ラックの劣化率または使用年数に基づいて、接続する電力変換器を前記切替器に指令する
     ことを特徴とする二次電池システム。
  2.  直列接続された複数の電池セルを有する電池ラックと、単数もしくは複数の並列接続された電池ラックが電力系統に対して充放電するための電力変換器と、を有する電池バンクを備える二次電池システムであって、
     前記電池バンクが有する電池ラックを、他の電池バンクの電力変換器に対して切り替え可能とするマニュアルの切替器と、
     前記電池ラックの劣化率または使用年数を監視し、前記電力変換器を制御するコントローラと、を有し、
     前記コントローラは、前記電池ラックの劣化率または使用年数に基づいて、接続する電力変換器の変更時期と判定した場合、該接続する電力変換器を保守員の情報端末に通知する
     ことを特徴とする二次電池システム。
  3.  請求項1に記載の二次電池システムであって、
     前記切替器は、複数の電力変換器に切替えが可能な切替器であり、
     前記コントローラは、どの電力変換器に切替えするかを前記切替器に指令する
     ことを特徴とする二次電池システム。
  4.  請求項1に記載の二次電池システムであって、
     接続する電力変換器を変更した後に接続がなくなった電力変換器に対して、所定の劣化率または使用年数に基づいて新規に設置する電池ラックからの電力入力が可能な機構をあらかじめ設置している
     ことを特徴とする二次電池システム。
  5.  請求項2に記載の二次電池システムであって、
     接続する電力変換器を変更した後に接続がなくなった電力変換器に対して、所定の劣化率または使用年数に基づいて新規に設置する電池ラックからの電力入力が可能な機構をあらかじめ設置している
     ことを特徴とする二次電池システム。
  6.  請求項1に記載の二次電池システムであって、
     前記コントローラは、接続先を変更する際に、接続変更後の電池ラック間の充電率もしくは劣化率が所定値以下である場合に、接続先を前記切替器に変更指令する
     ことを特徴とする二次電池システム。
  7.  請求項2に記載の二次電池システムであって、
     前記コントローラは、接続先を変更する際に、接続変更後の電池ラック間の充電率もしくは劣化率が所定値以下である場合に、接続先を前記情報端末に通知する
     ことを特徴とする二次電池システム。
  8.  請求項3に記載の二次電池システムであって、
     前記コントローラは、並列接続される電池ラックの劣化率の差分が所定値以下になるように接続を変更するように、接続先を前記切替器に指令する
     ことを特徴とする二次電池システム。
  9.  請求項3に記載の二次電池システムであって、
     前記コントローラは、電力変換器に接続される電池ラックの総容量と他の電力変換器に接続される電池ラックの総容量が所定値以下になるように、接続先を前記切替器に指令する
     ことを特徴とする二次電池システム。
  10.  請求項1に記載の二次電池システムであって、
     新規に設置する電池ラックの設置時期が複数回である場合に、
     前記コントローラは、前記設置時期ごとに、前記電池ラックの劣化率または使用年数に基づいて、接続先を前記切替器に指令する
     ことを特徴とする二次電池システム。
  11.  請求項2に記載の二次電池システムであって、
     新規に設置する電池ラックの設置時期が複数回である場合に、
     前記コントローラは、前記設置時期ごとに、前記電池ラックの劣化率または使用年数に基づいて、接続先を前記情報端末に通知する
     ことを特徴とする二次電池システム。
  12.  請求項1に記載の二次電池システムであって、
     前記コントローラは、接続先の電力変換器が機能しないと検出した場合に、該電力変換器以外に接続されるように、接続先を前記切替器に変更指令する
     ことを特徴とする二次電池システム。
  13.  請求項2に記載の二次電池システムであって、
     前記コントローラは、接続先の電力変換器が機能しないと検出した場合に、該電力変換器以外に接続されるように、接続先を前記情報端末に通知する
     ことを特徴とする二次電池システム。
  14.  請求項1、3、4、6、8、9、10、12のいずれか1項に記載の二次電池システムであって、
     前記コントローラは、新規に設置する電池ラックが新品ではなく劣化しており、既設の電池ラックと同等に扱ってよい場合に、新規電池と既設電池を合わせて、前記電力変換器に接続する電池ラック間のSOH差が所定値以下になるように、接続先を前記切替器に変更指令する
     ことを特徴とする二次電池システム。
  15.  請求項2、5、7、11、13のいずれか1項に記載の二次電池システムであって、
     前記コントローラは、新規に設置する電池ラックが新品ではなく劣化しており、既設の電池ラックと同等に扱ってよい場合に、新規電池と既設電池を合わせて、前記電力変換器に接続する電池ラック間のSOH差が所定値以下になるように、接続先を前記情報端末に通知する
     ことを特徴とする二次電池システム。
  16.  直列接続された複数の電池セルを有する電池ラックと、単数もしくは複数の並列接続された電池ラックが電力系統に対して充放電するための電力変換器と、を有する電池バンクを備える二次電池システムの二次電池制御方法であって、
     前記電池バンクが有する電池ラックを、他の電池バンクの電力変換器に対して切り替え可能とする切替器と、
     前記電池ラックの劣化率または使用年数を監視し、前記電力変換器および前記切替器を制御するコントローラと、を有し、
     前記コントローラは、前記電池ラックの劣化率または使用年数に基づいて、接続する電力変換器を前記切替器に指令する
     ことを特徴とする二次電池制御方法。
PCT/JP2023/033784 2022-09-30 2023-09-15 二次電池システム及び二次電池制御方法 WO2024070780A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022157412A JP2024051315A (ja) 2022-09-30 2022-09-30 二次電池システム及び二次電池制御方法
JP2022-157412 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070780A1 true WO2024070780A1 (ja) 2024-04-04

Family

ID=90477499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033784 WO2024070780A1 (ja) 2022-09-30 2023-09-15 二次電池システム及び二次電池制御方法

Country Status (2)

Country Link
JP (1) JP2024051315A (ja)
WO (1) WO2024070780A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158397A (ja) * 2018-03-08 2019-09-19 東芝三菱電機産業システム株式会社 蓄電池システム
KR102151107B1 (ko) * 2019-03-19 2020-09-02 엘에스일렉트릭(주) 에너지 저장 시스템의 보호 배전반
WO2021162077A1 (ja) * 2020-02-12 2021-08-19 古河電気工業株式会社 蓄電池システムの劣化判定装置、蓄電池システムの劣化判定方法、蓄電池システム及び蓄電池監視装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158397A (ja) * 2018-03-08 2019-09-19 東芝三菱電機産業システム株式会社 蓄電池システム
KR102151107B1 (ko) * 2019-03-19 2020-09-02 엘에스일렉트릭(주) 에너지 저장 시스템의 보호 배전반
WO2021162077A1 (ja) * 2020-02-12 2021-08-19 古河電気工業株式会社 蓄電池システムの劣化判定装置、蓄電池システムの劣化判定方法、蓄電池システム及び蓄電池監視装置

Also Published As

Publication number Publication date
JP2024051315A (ja) 2024-04-11

Similar Documents

Publication Publication Date Title
EP3190682B1 (en) Power supply system and method
JP5587421B2 (ja) 電源システム
WO2012050004A1 (ja) 電源システム
WO2019239640A1 (ja) 蓄電池システムの制御装置および制御方法
JP2015159631A (ja) 蓄電システム、蓄電システムの制御装置および制御方法
CN111384718A (zh) 一种供电装置、供电系统及数据中心
KR101587333B1 (ko) 고신뢰성 배터리 에너지 저장 장치
US11451063B2 (en) Power supply system
JP2018182948A (ja) 電力制御システム
JP2019161706A (ja) 電力融通システム
JP2001112261A (ja) 交流電源装置
WO2024070780A1 (ja) 二次電池システム及び二次電池制御方法
KR20210016795A (ko) 에너지 허브 장치 및 에너지 관리 방법
JP2012090376A (ja) 電源システム
EP3654480B1 (en) Power conditioner, power system, and reactive power supressing method for power system
US11469611B2 (en) Power supply system
JP2001028846A (ja) 無停電電源装置
WO2022239103A1 (ja) 電力供給システム
WO2024116679A1 (ja) 蓄電池制御装置、及び蓄電システム
US11418055B1 (en) Energy storage system and power supply method thereof
WO2024048089A1 (ja) 電力システム
JP7567981B1 (ja) 充電装置
WO2023210327A1 (ja) 蓄電システム及び制御方法
JPH04299025A (ja) 直流電源装置
US20240332653A1 (en) Integrated Bi-Directional DC-DC Converter for Current Control in Li-Ion Modular Battery Monoblocks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872008

Country of ref document: EP

Kind code of ref document: A1