WO2023210327A1 - 蓄電システム及び制御方法 - Google Patents

蓄電システム及び制御方法 Download PDF

Info

Publication number
WO2023210327A1
WO2023210327A1 PCT/JP2023/014558 JP2023014558W WO2023210327A1 WO 2023210327 A1 WO2023210327 A1 WO 2023210327A1 JP 2023014558 W JP2023014558 W JP 2023014558W WO 2023210327 A1 WO2023210327 A1 WO 2023210327A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage device
temperature
power
storage devices
Prior art date
Application number
PCT/JP2023/014558
Other languages
English (en)
French (fr)
Inventor
哲也 竹中
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023210327A1 publication Critical patent/WO2023210327A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present disclosure relates to a power storage system and a control method.
  • One aspect of the disclosure includes: two or more power storage devices connected in parallel to one power conversion device; a control unit that controls a connection state between each of the two or more power storage devices and the one power conversion device; The control unit sets a priority order regarding charging of the two or more power storage devices based on information regarding the temperature of each of the two or more power storage devices, and controls the connection state based on the priority order. It is a power storage system that is controlled.
  • One aspect of the disclosure includes a step A of setting priorities regarding charging of the two or more power storage devices based on information regarding the temperature of each of the two or more power storage devices connected in parallel to one power conversion device;
  • the control method includes step B of controlling a connection state between each of the two or more power storage devices and the one power conversion device based on the priority order.
  • FIG. 1 is a diagram showing a power storage system 100 according to an embodiment.
  • FIG. 2 is a diagram showing the controller 130 according to the embodiment.
  • FIG. 3 is a diagram for explaining connection state control according to the embodiment.
  • FIG. 4 is a diagram showing a control method according to the embodiment.
  • FIG. 5 is a diagram for explaining connection state control according to modification example 1.
  • FIG. 6 is a diagram for explaining connection state control according to modification example 1.
  • FIG. 7 is a diagram illustrating a control method according to modification example 1.
  • power storage system 100 includes two or more power storage devices 110, a PCS (Power Conditioning System) 120, and a controller 130. Each of two or more power storage devices 110 is connected in parallel to one PCS 120 by wiring 141.
  • PCS Power Conditioning System
  • power storage devices 110A and 110B are illustrated as power storage devices 110.
  • Wiring 141A connects power storage device 110A and PCS 120, and wiring 141B connects power storage device 110A and power storage device 110B.
  • one of the positive electrode and negative electrode wirings 141 is illustrated to simplify the explanation.
  • the power storage device 110 is a device that stores power.
  • power storage device 110 may include two or more power storage cells that store power. Two or more power storage cells may constitute a cell string connected to each other in series. Power storage device 110 may include two or more cell strings connected in parallel to each other.
  • the power storage device 110 has a discharge resistor connected to each of two or more power storage cells, and has a function (hereinafter referred to as , cell balance function). The voltage value of the power storage cell may be made uniform by repeatedly charging or discharging the power storage device 110.
  • power storage device 110 has an interface end 111 that outputs power from power storage device 110 or inputs power to power storage device 110.
  • power storage device 110A has an interface end 111A
  • power storage device 110B has an interface end 111B.
  • power storage device 110 includes a switch 112 for switching the connection state between power storage device 110 and PCS 120.
  • power storage device 110A has switch 112A
  • power storage device 110B has switch 112B.
  • power storage device 110 includes a sensor 113 that detects the temperature of power storage device 110.
  • power storage device 110A has a sensor 113A
  • power storage device 110B has a sensor 113B.
  • the PCS 120 is an example of a power conversion device.
  • PCS 120 converts DC power output from power storage device 110 into AC power.
  • PCS 120 converts AC power into DC power input to power storage device 110.
  • PCS120 has a DC/DC converter, an inverter, etc.
  • the controller 130 controls the PCS 120. Controller 130 is connected to PCS 120 wirelessly or by wire. Controller 130 is connected to power storage device 110 (eg, switch 112, sensor 113) wirelessly or wired.
  • the wireless method may be a method compliant with standards such as IEEE802.11a/b/g/n, ZigBee, Wi-SUN, and LTE.
  • the wired method may be a method compliant with standards such as IEEE802.3.
  • controller 130 A controller according to an embodiment will be described below. As shown in FIG. 2, the controller 130 includes an acquisition section 131 and a control section 132.
  • Acquisition unit 131 acquires information regarding the temperature of power storage device 110.
  • acquisition unit 131 may be connected to sensor 113 of power storage device 110 and acquire the temperature of power storage device 110 detected by sensor 113.
  • the control unit 132 may include at least one processor.
  • the at least one processor may be comprised of a single integrated circuit (IC) or a plurality of communicatively connected circuits (such as integrated circuits and/or discrete circuits).
  • Control unit 132 controls the discharging operation and charging operation of power storage device 110 by controlling PCS 120.
  • control unit 132 constitutes a control unit that controls the connection state between each of two or more power storage devices 110 and one PCS.
  • control unit 132 sets priorities regarding charging of two or more power storage devices 110 based on information regarding the temperature of each of two or more power storage devices 110.
  • the control unit 132 controls the connection state based on the priority order. Connection state control includes control to disconnect power storage device 110 with a low priority from PCS 120, and the like. Control of the connection state will be described later (see FIG. 3).
  • Connection state control Connection state control according to the embodiment will be described below.
  • power storage device 110A and power storage device 110B are connected in parallel to PCS 120 will be mainly described.
  • a case will be exemplified in which power storage device 110A and power storage device 110B have the same power storage capacity.
  • each of the charging rates of power storage device 110A and power storage device 110B has the characteristics shown below.
  • the charging rate may be expressed as a charging current (A) per unit time, or may be expressed as a C (Coulomb) rate. In the following, a case will be described in which the charging rate is expressed by charging current (A) per unit time.
  • the charge rate applicable to power storage device 110 is the first charge rate (e.g., 10 A), and the temperature of power storage device 110 is is less than or equal to the first threshold value (eg, 0° C.), the charging rate applicable to power storage device 110 is the second charging rate (eg, 1 A).
  • the second charging rate is a charging rate lower than the first charging rate.
  • the charging rate applicable to each of power storage device 110A and power storage device 110B is the first charging rate. Therefore, PCS 120 outputs a current that is twice the first charging rate, and supplies current corresponding to the first charging rate to each of power storage device 110A and power storage device 110B.
  • each of power storage device 110A and power storage device 110B is charged at the first charging rate until the entire SOC reaches the first threshold TH.
  • the first threshold TH is the first threshold for switching between CC (Constant Current) charging and CV (Constant Voltage) charging.
  • CC charging is a charging method that is applied when the SOC is lower than the first threshold TH
  • CV charging is a charging method that is applied when the SOC is higher than or equal to the first threshold TH.
  • case 2 in a case where the current temperature of power storage device 110A is higher than the first threshold value and the current temperature of power storage device 110B is lower than the first threshold value (hereinafter referred to as case 2), charging that can be applied to power storage device 110A Although the rate is the first charging rate, the charging rate applicable to power storage device 110B is the second charging rate. However, the charging rate of each of power storage device 110A and power storage device 110B cannot be individually controlled. Therefore, since the charging rate applicable to each of power storage device 110A and power storage device 110B is the second charging rate, PCS 120 outputs a current that is twice the second charging rate, and A current corresponding to the second charging rate is supplied to each of them.
  • controller 130 may perform first control to disconnect from PCS 120 a first power storage device whose current temperature is lower than a first threshold value among two or more power storage devices 110.
  • Case 3 For example, like Case 2, consider a case (hereinafter referred to as Case 3) in which the current temperature of power storage device 110A is higher than the first threshold and the current temperature of power storage device 110B is lower than the first threshold.
  • controller 130 executes first control to disconnect power storage device 110B, whose current temperature is lower than the first threshold, from PCS 120. According to the first control, since power storage device 110B is disconnected from PCS 120, the charging rate of power storage device 110 whose temperature is higher than the first threshold value can be set to the first charging rate.
  • the controller 130 disconnects the second power storage device from the PCS 120 and disconnects the second power storage device from the PCS 120 when the power storage capacity of the second power storage device other than the first power storage device among the two or more power storage devices 110 reaches a predetermined capacity. 1 Execute the second control to connect the power storage device to the PCS120.
  • controller 130 disconnects power storage device 110A from PCS 120 and executes second control to connect power storage device 110B to PCS 120.
  • the predetermined capacity may be a capacity at which the charging method of power storage device 110A is switched from CC charging to CV charging.
  • the predetermined capacity may be a capacity at which the SOC of power storage device 110A is 100%.
  • Control method A control method according to an embodiment will be described below. In the following, the operation of the controller 130 will be mainly explained.
  • controller 130 acquires the temperature of power storage device 110 detected by sensor 113 as information regarding the temperature of each of two or more power storage devices 110.
  • step S11 the controller 130 determines whether the first condition is satisfied.
  • the first condition may be a condition where there is a first power storage device whose current temperature is lower than the first threshold value and a second power storage device whose current temperature is higher than the first threshold value. If the first condition is not satisfied, controller 130 returns to step S10 without changing the connection state between power storage device 110 and PCS 120. Controller 130 executes the process of step S12 if the first condition is satisfied.
  • controller 130 sets priorities for charging the two or more power storage devices 110 based on information regarding the temperature of each of the two or more power storage devices 110.
  • step S13 the controller 130 controls the connection state based on the priority order. Specifically, the first control and second control described above are executed.
  • the priority is set such that charging of the second power storage device whose current temperature is higher than the first threshold is prioritized over charging of the first power storage device whose current temperature is lower than the first threshold.
  • controller 130 sets priorities regarding charging of two or more power storage devices 110 based on information regarding the temperature of each of two or more power storage devices 110. Controller 130 controls the connection state between power storage device 110 and PCS 120 based on the priority. According to such a configuration, it is possible to suppress a decrease in the charging rate of the power storage system 100 as a whole while taking into account the restriction imposed by the charging rate of the first power storage device whose current temperature is lower than the first threshold value. .
  • the charging time of the power storage system 100 as a whole can be shortened.
  • the second control described above since the second control described above is executed, charging of the first power storage device whose current temperature is lower than the first threshold value can also be appropriately executed.
  • Modification Example 1 a case will be described in which the rate of current that can be supplied by PCS 120 (hereinafter referred to as supplyable rate) is smaller than the overall charging rate of two or more power storage devices 110.
  • a possible example of such a case is a case where power storage system 100 is charged by a distributed power source such as a solar battery device during self-sustaining operation in which power storage system 100 is disconnected from the power grid.
  • each of the charging rates of power storage device 110A and power storage device 110B has the characteristics shown below.
  • the charge rate applicable to power storage device 110 is the first charge rate (e.g., 10 A)
  • the temperature of power storage device 110 is is less than or equal to the first threshold value (eg, 0° C.)
  • the charging rate applicable to power storage device 110 is the second charging rate (eg, 1 A).
  • the second charging rate is a charging rate lower than the first charging rate.
  • the supply rate of PCS 120 (for example, 10A) is smaller than the overall charging rate (for example, 20A) of power storage device 110A and power storage device 110B.
  • the supplyable rate shall be higher than the second charging rate.
  • controller 130 controls power storage device 10A and power storage device 10B without disconnecting power storage device 10A and power storage device 10B from PCS 120. Charging of each device 10B is performed. PCS 120 outputs a current corresponding to the supplyable rate, and each of power storage device 10A and power storage device 10B is charged at a rate that is half the supplyable rate (control 1A). Controller 130 executes first control to disconnect power storage device 10B from PCS 120 at time T1. Therefore, charging of power storage device 10A is performed at the supplyable rate (control 1B).
  • Controller 130 executes second control to disconnect power storage device 110A from PCS 120 and connect power storage device 110B to PCS 120 when the power storage capacity of power storage device 110A reaches a predetermined capacity. Therefore, charging of power storage device 10B is performed at the second charging rate (control 1C).
  • option 1 is an option in line with the embodiment described above.
  • controller 130 executes third control to disconnect power storage devices 10A other than power storage device 10B whose future temperature is predicted to be lower than the first threshold value from PCS 120. Therefore, until time T1, charging of power storage device 10B is performed at the supplyable rate (control 2A). Controller 130 disconnects power storage device 10B from PCS 120 and connects power storage device 110A to PCS 120 at time T1. Therefore, after time T1, charging of power storage device 110B is performed at the supplyable rate (control 2B).
  • option 2 may be expressed as follows.
  • the controller 130 performs a third control (Fig. Execute control 2A) shown in 6.
  • Controller 130 disconnects the third power storage device from PCS 120 when the power storage capacity of the third power storage device reaches a predetermined capacity or when the current temperature of the third power storage device becomes lower than the first threshold.
  • a fourth control (control 2B shown in FIG. 6) is executed to connect the fourth power storage device to the PCS 120.
  • Control method The control method according to Modification Example 1 will be described below. In the following, the operation of the controller 130 will be mainly explained.
  • controller 130 acquires the temperature of power storage device 110 detected by sensor 113 as information regarding the temperature of each of two or more power storage devices 110.
  • step S21 the controller 130 determines whether the second condition is satisfied.
  • the second condition may be a condition in which there is a third power storage device whose future temperature is predicted to be lower than the first threshold, and the supply rate of the PCS 120 is lower than the charging rate of the power storage system 100. . If the predetermined condition is not met, controller 130 returns to step S20 without changing the connection state between power storage device 110 and PCS 220. Controller 130 executes the process of step S22 if the predetermined condition is satisfied.
  • controller 130 sets priorities regarding charging of two or more power storage devices 110 based on information regarding the temperature of each of two or more power storage devices 110.
  • step S23 the controller 130 controls the connection state based on the priority order. Specifically, the third control and fourth control described above are executed.
  • the priority is set so that charging of the third power storage device whose future temperature is predicted to be lower than the first threshold value is given priority over charging of the fourth power storage device other than the third power storage device. be done.
  • controller 130 sets priorities regarding charging of two or more power storage devices 110 based on information regarding the temperature of each of two or more power storage devices 110. Controller 130 controls the connection state between power storage device 110 and PCS 120 based on the priority. According to such a configuration, the charging rate of the entire power storage system 100 is suppressed from decreasing while taking into account the constraints imposed by the charging rate of the third power storage device whose future temperature is predicted to be lower than the first threshold value. can do.
  • the charging rate applicable to power storage device 110 is the first charging rate (for example, 10A), and the power storage device A case is assumed in which the charging rate applicable to power storage device 110 is the second charging rate (for example, 1A) when the temperature of power storage device 110 is equal to or higher than the second threshold value (for example, 60° C.).
  • the second charging rate is a charging rate lower than the first charging rate.
  • the first power storage device is the power storage device 110 whose current temperature is lower than the first threshold value.
  • the first power storage device may be power storage device 110 whose current temperature is higher than the second threshold (for example, 60° C.).
  • controller 130 may perform first control to disconnect a first power storage device among two or more power storage devices 110 whose current temperature is higher than the second threshold value from PCS 120.
  • the controller 130 disconnects the second power storage device from the PCS 120 and disconnects the first power storage device.
  • a second control connected to the PCS 120 may also be executed.
  • the third power storage device is power storage device 110 whose future temperature is predicted to be lower than the first threshold.
  • the third power storage device may be power storage device 110 whose current temperature is predicted to be higher than the second threshold (for example, 60° C.).
  • controller 130 performs the third control to disconnect from the PCS 120 a fourth power storage device other than the third power storage device whose future temperature is predicted to be higher than the second threshold based on the information regarding the temperature among the two or more power storage devices 110. may be executed. Controller 130 disconnects the third power storage device from PCS 120 when the power storage capacity of the third power storage device reaches a predetermined capacity or when the current temperature of the third power storage device becomes higher than a third threshold. At the same time, a fourth control is executed to connect the fourth power storage device to the PCS 120.
  • the temperature detected by sensor 113 is used as information regarding the temperature of each of two or more power storage devices 110.
  • the information regarding temperature may be a value that directly indicates temperature, or may be a value that indicates a change that is correlated with a temperature change (for example, a resistance value of a sensor with respect to a temperature value).
  • the resistance value of the sensor may have a proportional relationship to the temperature value, or the resistance value of the sensor may be determined by a table showing the relationship to the temperature value.
  • the installation location of each of the two or more power storage devices 110 may be used, the temperature of each of the installation location of the two or more power storage devices 110 may be used, and the temperature of the two or more power storage devices 110 may be used.
  • 110 solar radiation may be used, and each air volume and wind direction of two or more power storage devices 110 may be used.
  • the installation location may be a value indicating longitude/latitude, a value associated with a predetermined place name or point, or a value indicating the direction of the power storage device 110 in the area where the power storage system 100 is installed. Good too.
  • the temperature may be a value of a temperature sensor that has a correlation with the temperature.
  • the solar radiation may be a value of an optical sensor that has a correlation with the solar radiation.
  • the air volume may be a wind speed value.
  • the wind direction may be a directional value indicating the wind direction.
  • the wind volume and wind direction may be values of a wind speed sensor that have a correlation with the wind volume and wind direction.
  • the installation location may be known to power storage system 100, or may be input by an operator or the like.
  • the temperature and solar radiation may be obtained from an external server such as a weather server. In such a case, the temperature of power storage device 110 may be read as the temperature estimated from information regarding temperature.
  • the first power storage device may be read as a power storage device whose current temperature is assumed to be lower than the first threshold value or whose current temperature is assumed to be higher than the second threshold value.
  • Power storage system 100 includes two power storage devices 110 is illustrated. However, the above disclosure is not limited thereto. Power storage system 100 may include three or more power storage devices 110.
  • the charging rate characteristics of power storage devices 110 may be different for each power storage device 110.
  • the charging rate may be different for each power storage device 110.
  • the first threshold value and the second threshold value for determining charging rate switching may be different for each power storage device 110.
  • connection state control based on priorities.
  • the connection state control based on the priority is performed for the entire power storage system 100 in consideration of the charging rate of the first power storage device whose current temperature is lower than the first threshold value or whose current temperature is higher than the second threshold value. Any control that switches the connection state so as to shorten the charging time may be used.
  • the control of the connection state based on the priority takes into consideration the charging rate of the third power storage device, which is predicted to have a future temperature lower than the first threshold value or a future temperature higher than the second threshold value. , any control may be used as long as the connection state is switched so as to shorten the charging time of the power storage system 100 as a whole.
  • the embodiment (first control and second control) may be combined with modification example 1 (third control and fourth control).
  • the embodiment (first control and second control) and modification example 1 (third control and fourth control) may be combined so that the charging time of the electricity storage system 100 as a whole is shortened. good.
  • controller 130 may set priorities for charging two or more power storage devices when charging power storage device 110. Controller 130 may periodically set priorities for charging two or more power storage devices. Controller 130 may select the type of information regarding temperature when setting priorities. The type of information regarding temperature may be set in controller 130 at the design stage or factory shipment stage of power storage system 100.
  • each of the two or more power storage devices is connected in parallel to one power conversion device.
  • the charging rate of each of the two or more power storage devices depends on the temperature of each of the two or more power storage devices.
  • the inventors focused on the above-mentioned points, and when two or more power storage devices connected in parallel to one PCS include a power storage device whose temperature is lower than a threshold value, the overall charging rate of the two or more power storage devices was found to decrease.
  • a power storage system and a control method are provided that make it possible to improve the overall charging rate of two or more power storage devices in a case where two or more power storage devices are connected in parallel to one PCS. can be provided.
  • a first feature is that two or more power storage devices are connected in parallel to one power conversion device, and a control unit that controls a connection state between each of the two or more power storage devices and the one power conversion device;
  • the control unit sets a priority order regarding charging of the two or more power storage devices based on information regarding the temperature of each of the two or more power storage devices, and controls the connection state based on the priority order. It is a power storage system that is controlled.
  • a second feature is that in the first feature, the information regarding the temperature includes the temperature of each of the two or more power storage devices, the installation location of each of the two or more power storage devices, and the temperature of each of the two or more power storage devices.
  • the power storage system includes one or more information selected from temperature and solar radiation of each of the two or more power storage devices.
  • a third feature is that in the first feature or the second feature, the control unit controls a first power storage device, of the two or more power storage devices, whose current temperature is lower than the first threshold based on the information regarding the temperature.
  • the power storage system executes first control to disconnect the power converter from the one power conversion device.
  • a fourth feature is that in any one of the first to third features, the control unit determines that the current temperature of the two or more power storage devices is lower than a second threshold based on the temperature information.
  • the power storage system executes first control to disconnect a high power first power storage device from the one power conversion device.
  • a fifth feature is that in the third feature or the fourth feature, the control unit may cause the storage capacity of a second power storage device other than the first power storage device to reach a predetermined capacity among the two or more power storage devices.
  • the power storage system is configured to perform second control to disconnect the second power storage device from the one power conversion device and connect the first power storage device to the one power conversion device when
  • a sixth feature is that in any one of the first to fourth features, the control unit determines that a future temperature of the two or more power storage devices is lower than a first threshold value based on information regarding the temperature.
  • the power storage system executes third control to disconnect a fourth power storage device other than the third power storage device whose power is predicted to decrease from the one power conversion device.
  • a seventh feature is that in any one of the first to sixth features, the control unit determines that a future temperature of the two or more power storage devices is lower than a second threshold based on the temperature information.
  • the power storage system executes third control to disconnect a fourth power storage device other than the third power storage device whose power is predicted to increase from the one power conversion device.
  • An 8-1 feature is that in the sixth feature, when the power storage capacity of the third power storage device reaches a predetermined capacity, or the current temperature of the third power storage device 1.
  • a power storage system that executes fourth control to disconnect the third power storage device from the one power conversion device and connect the fourth power storage device to the one power conversion device when the power storage device becomes lower than the one power conversion device. be.
  • An 8-2 feature is that in the seventh feature, when the power storage capacity of the third power storage device reaches a predetermined capacity, or when the current temperature of the third power storage device 2.
  • a power storage system that executes fourth control that disconnects the third power storage device from the one power conversion device and connects the fourth power storage device to the one power conversion device when the power storage device becomes higher than a second threshold. be.
  • a ninth feature is step A of setting priorities for charging the two or more power storage devices based on information regarding the temperature of each of the two or more power storage devices connected in parallel to one power conversion device;
  • the control method includes step B of controlling a connection state between each of the two or more power storage devices and the one power conversion device based on the priority order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

蓄電システムは、1つの電力変換装置に並列で接続された2以上の蓄電装置と、前記2以上の蓄電装置の各々と前記1つの電力変換装置との接続状態を制御する制御部と、を備え、前記制御部は、前記2以上の蓄電装置の各々の温度に関する情報に基づいて、前記2以上の蓄電装置の充電に関する優先順位を設定し、前記優先順位に基づいて、前記接続状態を制御する。

Description

蓄電システム及び制御方法
 本開示は、蓄電システム及び制御方法に関する。
 従来、1つの電力変換装置(PCS; Power Conditioning System)に対して2以上の蓄電装置が並列で接続された蓄電システムが知られている。このような蓄電システムにおいて、2以上の蓄電装置の電圧差が小さくなるように、各蓄電装置と負荷との間に設けられたスイッチを制御する技術が提案されている(例えば、特許文献1)。
国際公開第2013/121849号パンフレット
 開示の一態様は、1つの電力変換装置に並列で接続された2以上の蓄電装置と、前記2以上の蓄電装置の各々と前記1つの電力変換装置との接続状態を制御する制御部と、を備え、前記制御部は、前記2以上の蓄電装置の各々の温度に関する情報に基づいて、前記2以上の蓄電装置の充電に関する優先順位を設定し、前記優先順位に基づいて、前記接続状態を制御する、蓄電システムである。
 開示の一態様は、1つの電力変換装置に並列で接続された2以上の蓄電装置の各々の温度に関する情報に基づいて、前記2以上の蓄電装置の充電に関する優先順位を設定するステップAと、前記優先順位に基づいて、前記2以上の蓄電装置の各々と前記1つの電力変換装置との接続状態を制御するステップBと、を備える、制御方法である。
図1は、実施形態に係る蓄電システム100を示す図である。 図2は、実施形態に係るコントローラ130を示す図である。 図3は、実施形態に係る接続状態の制御を説明するための図である。 図4は、実施形態に係る制御方法を示す図である。 図5は、変更例1に係る接続状態の制御を説明するための図である。 図6は、変更例1に係る接続状態の制御を説明するための図である。 図7は、変更例1に係る制御方法を示す図である。
 以下において、実施形態について図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。但し、図面は模式的なものである。
 [実施形態]
 (蓄電システム)
 以下において、実施形態に係る蓄電システムについて説明する。図1に示すように、蓄電システム100は、2以上の蓄電装置110と、PCS(Power Conditioning System)120と、コントローラ130と、を有する。2以上の蓄電装置110のそれぞれは、配線141によって1つのPCS120に対して並列で接続される。
 図1では、蓄電装置110として、蓄電装置110A及び蓄電装置110Bが例示されている。配線141Aは、蓄電装置110AとPCS120とを接続しており、配線141Bは、蓄電装置110Aと蓄電装置110Bとを接続する。図1では、説明簡略化のために、正極及び負極のいずれか一方の配線141が例示されている。
 蓄電装置110は、電力を蓄積する装置である。具体的には、蓄電装置110は、電力を蓄積する2以上の蓄電セルを有していてもよい。2以上の蓄電セルは、互いに直列で接続されるセルストリングを構成してもよい。蓄電装置110は、互いに並列で接続される2以上のセルストリングを有していてもよい。蓄電装置110は、2以上の蓄電セルのそれぞれに接続された放電抵抗を有しており、蓄電セルから放電抵抗への放電によって、2以上の蓄電セルの電圧値のバラツキを抑制する機能(以下、セルバランス機能)を有していてもよい。蓄電セルの電圧値は、蓄電装置110の充電又は放電を繰り返すことによって均一化されてもよい。
 図1において、蓄電装置110は、蓄電装置110から電力を出力し、又は、蓄電装置110に電力を入力するインタフェース端111を有する。例えば、蓄電装置110Aは、インタフェース端111Aを有しており、蓄電装置110Bは、インタフェース端111Bを有する。
 図1において、蓄電装置110は、蓄電装置110とPCS120との接続状態を切り替えるためのスイッチ112を有する。例えば、蓄電装置110Aは、スイッチ112Aを有しており、蓄電装置110Bは、スイッチ112Bを有する。
 図1において、蓄電装置110は、蓄電装置110の温度を検出するセンサ113を有する。例えば、蓄電装置110Aは、センサ113Aを有しており、蓄電装置110Bは、センサ113Bを有する。
 PCS120は、電力変換装置の一例である。PCS120は、蓄電装置110から出力されるDC電力をAC電力に変換する。PCS120は、蓄電装置110に入力されるDC電力にAC電力を変換する。PCS120は、DC/DCコンバータ、インバータなどを有する。
 コントローラ130は、PCS120を制御する。コントローラ130は、無線又は有線でPCS120と接続される。コントローラ130は、無線又は有線で蓄電装置110(例えば、スイッチ112、センサ113)と接続される。無線方式は、IEEE802.11a/b/g/n、ZigBee、Wi-SUN、LTEなどの規格に準拠する方式であってもよい。有線方式は、IEEE802.3などの規格に準拠する方式であってもよい。
 (コントローラ)
 以下において、実施形態に係るコントローラについて説明する。図2に示すように、コントローラ130は、取得部131と、制御部132と、を有する。
 取得部131は、蓄電装置110の温度に関する情報を取得する。例えば、取得部131は、蓄電装置110のセンサ113と接続されており、センサ113で検出された蓄電装置110の温度を取得してもよい。
 制御部132は、少なくとも1つのプロセッサを含んでもよい。少なくとも1つのプロセッサは、単一の集積回路(IC)によって構成されてもよく、通信可能に接続された複数の回路(集積回路及び又はディスクリート回路(discrete circuits)など)によって構成されてもよい。
 制御部132は、PCS120を制御することによって蓄電装置110の放電動作及び充電動作を制御する。実施形態では、制御部132は、2以上の蓄電装置110の各々と1つのPCSとの接続状態を制御する制御部を構成する。
 具体的には、制御部132は、2以上の蓄電装置110の各々の温度に関する情報に基づいて、2以上の蓄電装置110の充電に関する優先順位を設定する。制御部132は、優先順位に基づいて、接続状態を制御する。接続状態の制御は、優先順位が低い蓄電装置110をPCS120から切り離す制御などを含む。接続状態の制御については後述する(図3を参照)。
 (接続状態の制御)
 以下において、実施形態に係る接続状態の制御について説明する。以下においては、蓄電装置110A及び蓄電装置110BがPCS120に並列で接続されるケースについて主として説明する。蓄電装置110A及び蓄電装置110Bの蓄電容量が同じであるケースについて例示する。
 ここで、蓄電装置110A及び蓄電装置110Bの各々の充電レートは、以下に示す特性を有する。充電レートは、単位時間当たりの充電電流(A)で表されてもよく、C(Coulomb)レートで表されてもよい。以下においては、充電レートは、単位時間当たりの充電電流(A)で表されるケースについて説明する。
 例えば、蓄電装置110の温度が第1閾値(例えば、0℃)よりも高い場合に、蓄電装置110に適用可能な充電レートは第1充電レート(例えば、10A)であり、蓄電装置110の温度が第1閾値(例えば、0℃)以下である場合に、蓄電装置110に適用可能な充電レートは第2充電レート(例えば、1A)である。第2充電レートは、第1充電レートよりも小さい充電レートである。
 このような前提下において、蓄電装置110A及び蓄電装置110Bの双方がPCS120に繋がっている状態について考える。
 第1に、蓄電装置110A及び蓄電装置110Bの双方の温度が第1閾値よりも高いケース(以下、ケース1)では、蓄電装置110A及び蓄電装置110Bの各々に適用可能な充電レートが第1充電レートであるため、PCS120は、第1充電レート×2倍の電流を出力し、蓄電装置110A及び蓄電装置110Bの各々に第1充電レートに相当する電流を供給する。
 ここで、蓄電システム100(すなわち、蓄電装置110A及び蓄電装置110B)の全体のSOC(State Of Charge)(以下、全体SOC)が0%である状態で充電を開始するケースを想定すると、図3に示すように、全体SOCが第1閾値THに達するまで、蓄電装置110A及び蓄電装置110Bの各々の充電は、第1充電レートで実行される。
 第1閾値THは、CC(Constant Current)充電とCV(Constant Voltage)充電とを切り替える第1閾値である。なお、CC充電は、SOCが第1閾値THよりも低い状態で適用される充電方式であり、CV充電は、SOCが第1閾値TH以上である状態で適用される充電方式である。
 第2に、蓄電装置110Aの現在の温度が第1閾値よりも高く、蓄電装置110Bの現在の温度が第1閾値よりも低いケース(以下、ケース2)では、蓄電装置110Aに適用可能な充電レートは第1充電レートであるが、蓄電装置110Bに適用可能な充電レートは第2充電レートである。しかしながら、蓄電装置110A及び蓄電装置110Bの各々の充電レートを個別に制御することができない。従って、蓄電装置110A及び蓄電装置110Bの各々に適用可能な充電レートが第2充電レートであるため、PCS120は、第2充電レート×2倍の電流を出力し、蓄電装置110A及び蓄電装置110Bの各々に第2充電レートに相当する電流を供給する。
 ここで、全体SOCが0%である状態で充電を開始するケースを想定すると、図3に示すように、蓄電システム100の全体として充電時間がケース1よりも長期化する。
 実施形態では、上述したケース2について着目し、コントローラ130は、以下に示す動作を実行する。
 第1に、コントローラ130は、2以上の蓄電装置110のうち、現在の温度が第1閾値よりも低い第1蓄電装置をPCS120から切り離す第1制御を実行してもよい。
 例えば、ケース2と同様に、蓄電装置110Aの現在の温度が第1閾値よりも高く、蓄電装置110Bの現在の温度が第1閾値よりも低いケース(以下、ケース3)について考える。ケース3では、コントローラ130は、現在の温度が第1閾値よりも低い蓄電装置110BをPCS120から切り離す第1制御を実行する。第1制御によれば、蓄電装置110BがPCS120から切り離されるため、温度が第1閾値よりも高い蓄電装置110の充電レートを第1充電レートに設定することができる。
 ここで、全体SOCが0%である状態で充電を開始するケースを想定すると、図3に示すように、蓄電装置110Aの蓄電容量が所定容量(例えば、全体SOCの50%)となるまで、蓄電装置110Aの充電が第1充電レートで実行される。従って、蓄電システム100の全体として充電時間をケース2よりも短縮化することができる。
 第2に、コントローラ130は、2以上の蓄電装置110のうち、第1蓄電装置以外の第2蓄電装置の蓄電容量が所定容量となった場合に、第2蓄電装置をPCS120から切り離すとともに、第1蓄電装置をPCS120に繋げる第2制御を実行する。
 例えば、上述したケース3について考える。ケース3では、コントローラ130は、蓄電装置110B以外の蓄電装置110Aの蓄電容量が所定容量となった場合に、蓄電装置110AをPCS120から切り離すとともに、蓄電装置110BをPCS120に繋げる第2制御を実行する。所定容量は、蓄電装置110Aの充電方式がCC充電からCV充電に切り替わる容量であってもよい。所定容量は、蓄電装置110AのSOCが100%である容量であってもよい。
 ここで、全体SOCが0%である状態で充電を開始するケースを想定すると、図3に示すように、蓄電装置110Aの蓄電容量が所定容量(例えば、全体SOCの50%)となった後において、蓄電装置110Bの充電が第2充電レートで実行される。従って、蓄電装置110Bの充電についても適切に実行することができる。
 (制御方法)
 以下において、実施形態に係る制御方法について説明する。以下においては、コントローラ130の動作について主として説明する。
 図4に示すように、ステップS10において、コントローラ130は、2以上の蓄電装置110の各々の温度に関する情報として、センサ113で検出された蓄電装置110の温度を取得する。
 ステップS11において、コントローラ130は、第1条件が満たされるか否かを判定する。第1条件は、現在の温度が第1閾値よりも低い第1蓄電装置が存在し、かつ、第1閾値よりも高い温度を有する第2蓄電装置が存在する条件であってもよい。コントローラ130は、第1条件が満たされない場合には、蓄電装置110とPCS120との間の接続状態を変更することなく、ステップS10の処理に戻る。コントローラ130は、第1条件が満たされる場合には、ステップS12の処理を実行する。
 ステップS12において、コントローラ130は、2以上の蓄電装置110の各々の温度に関する情報に基づいて、2以上の蓄電装置110の充電に関する優先順位を設定する。
 ステップS13において、コントローラ130は、優先順位に基づいて、接続状態を制御する。具体的には、上述した第1制御及び第2制御が実行される。
 実施形態では、優先順位は、現在の温度が第1閾値よりも高い第2蓄電装置の充電が現在の温度が第1閾値よりも低い第1蓄電装置の充電よりも優先されるように設定される。
 (作用及び効果)
 実施形態では、コントローラ130は、2以上の蓄電装置110の各々の温度に関する情報に基づいて、2以上の蓄電装置110の充電に関する優先順位を設定する。コントローラ130は、優先順位に基づいて、蓄電装置110とPCS120との間の接続状態を制御する。このような構成によれば、現在の温度が第1閾値よりも低い第1蓄電装置の充電レートによる制約を考慮しながら、蓄電システム100の全体として充電レートが低下することを抑制することができる。
 例えば、実施形態では、上述した第1制御が実行されるため、蓄電システム100の全体として充電時間を短縮することができる。実施形態では、上述した第2制御が実行されるため、現在の温度が第1閾値よりも低い第1蓄電装置の充電も適切に実行することができる。
 [変更例1]
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について主として説明する。
 変更例1では、PCS120が供給可能な電流のレート(以下、供給可能レート)が2以上の蓄電装置110の全体の充電レートよりも小さいケースについて説明する。このようなケースとしては、蓄電システム100が電力系統から解列された自立運転において、太陽電池装置などの分散電源によって蓄電システム100の充電が実行されるケースなどが考えられる。
 以下においては、蓄電装置110A及び蓄電装置110BがPCS120に並列で接続されるケースについて主として説明する。蓄電装置110A及び蓄電装置110Bの蓄電容量が同じであるケースについて例示する。
 ここで、蓄電装置110A及び蓄電装置110Bの各々の充電レートは、以下に示す特性を有する。例えば、蓄電装置110の温度が第1閾値(例えば、0℃)よりも高い場合に、蓄電装置110に適用可能な充電レートは第1充電レート(例えば、10A)であり、蓄電装置110の温度が第1閾値(例えば、0℃)以下である場合に、蓄電装置110に適用可能な充電レートは第2充電レート(例えば、1A)である。第2充電レートは、第1充電レートよりも小さい充電レートである。
 さらに、PCS120の供給可能レート(例えば、10A)が蓄電装置110A及び蓄電装置110Bの全体の充電レート(例えば、20A)よりも小さいケースについて例示する。但し、供給可能レートは、第2充電レートよりも大きいものとする。
 このような前提下において、図5及び図6に示すように、時刻T1において蓄電装置110Bの温度が第1閾値よりも低くなると予測されるケースについて説明する。図5及び図6では、全体SOCが0%である状態で充電を開始するケースを想定する。このようなケースにおいて、コントローラ130が実行する動作としては、以下に示すオプションが考えられる。
 オプション1では、コントローラ130は、時刻T1までは、蓄電装置10A及び蓄電装置10Bの温度が第1閾値よりも高いため、蓄電装置10A及び蓄電装置10BをPCS120から切り離すことなく、蓄電装置10A及び蓄電装置10Bの各々の充電が実行される。PCS120は、供給可能レートに相当する電流を出力し、蓄電装置10A及び蓄電装置10Bの各々の充電は、供給可能レートの半分のレートで実行される(制御1A)。コントローラ130は、時刻T1において、蓄電装置10BをPCS120から切り離す第1制御を実行する。従って、蓄電装置10Aの充電は供給可能レートで実行される(制御1B)。コントローラ130は、蓄電装置110Aの蓄電容量が所定容量となった場合に、蓄電装置110AをPCS120から切り離すとともに、蓄電装置110BをPCS120に繋げる第2制御を実行する。従って、蓄電装置10Bの充電は、第2充電レートで実行される(制御1C)。
 このように、オプション1は、上述した実施形態に沿ったオプションである。
 オプション2では、コントローラ130は、将来の温度が第1閾値よりも低くなると予測される蓄電装置10B以外の蓄電装置10AをPCS120から切り離す第3制御を実行する。従って、時刻T1までは、蓄電装置10Bの充電が供給可能レートで実行される(制御2A)。コントローラ130は、時刻T1において、蓄電装置10BをPCS120から切り離すとともに、蓄電装置110AをPCS120に繋げる。従って、時刻T1以降において、蓄電装置110Bの充電が供給可能レートで実行される(制御2B)。
 このように、オプション2では、将来の温度が第1閾値よりも低くなると予測される蓄電装置10Bの充電が蓄電装置10Aよりも優先されるため、蓄電システム100の全体として充電時間をオプション1よりも短縮化することができる。
 なお、オプション2は、以下のように表されてもよい。コントローラ130は、2以上の蓄電装置110のうち、温度に関する情報によって将来の温度が第1閾値よりも低くなると予測される第3蓄電装置以外の第4蓄電装置をPCS120から切り離す第3制御(図6に示す制御2A)を実行する。コントローラ130は、第3蓄電装置の蓄電容量が所定容量となった場合に、又は、第3蓄電装置の現在の温度が第1閾値よりも低くなった場合に、第3蓄電装置をPCS120から切り離すとともに、第4蓄電装置をPCS120に繋げる第4制御(図6に示す制御2B)を実行する。
 (制御方法)
 以下において、変更例1に係る制御方法について説明する。以下においては、コントローラ130の動作について主として説明する。
 図7に示すように、ステップS20において、コントローラ130は、2以上の蓄電装置110の各々の温度に関する情報として、センサ113で検出された蓄電装置110の温度を取得する。
 ステップS21において、コントローラ130は、第2条件が満たされるか否かを判定する。第2条件は、将来の温度が第1閾値よりも低くなると予測される第3蓄電装置が存在し、かつ、PCS120の供給可能レートが蓄電システム100の充電レートよりも小さい条件であってもよい。コントローラ130は、所定条件が満たされない場合には、蓄電装置110とPCS220との間の接続状態を変更することなく、ステップS20の処理に戻る。コントローラ130は、所定条件が満たされる場合には、ステップS22の処理を実行する。
 ステップS22において、コントローラ130は、2以上の蓄電装置110の各々の温度に関する情報に基づいて、2以上の蓄電装置110の充電に関する優先順位を設定する。
 ステップS23において、コントローラ130は、優先順位に基づいて、接続状態を制御する。具体的には、上述した第3制御及び第4制御が実行される。
 変更例1では、優先順位は、将来の温度が第1閾値よりも低くなると予測される第3蓄電装置の充電が第3蓄電装置以外の第4蓄電装置の充電よりも優先されるように設定される。
 (作用及び効果)
 変更例1では、コントローラ130は、2以上の蓄電装置110の各々の温度に関する情報に基づいて、2以上の蓄電装置110の充電に関する優先順位を設定する。コントローラ130は、優先順位に基づいて、蓄電装置110とPCS120との間の接続状態を制御する。このような構成によれば、将来の温度が第1閾値よりも低くなると予測される第3蓄電装置の充電レートによる制約を考慮しながら、蓄電システム100の全体として充電レートが低下することを抑制することができる。
 例えば、変更例1では、上述した第3制御が実行されるため、蓄電システム100の全体として充電時間を短縮することができる。実施形態では、上述した第4制御が実行されるため、第3蓄電装置以外の第4蓄電装置の充電も適切に実行することができる。
 [変更例2]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態及び変更例1に対する相違点について主として説明する。
 変更例2では、蓄電装置110の温度が第2閾値(例えば、60℃)よりも低い場合に、蓄電装置110に適用可能な充電レートは第1充電レート(例えば、10A)であり、蓄電装置110の温度が第2閾値(例えば、60℃)以上である場合に、蓄電装置110に適用可能な充電レートは第2充電レート(例えば、1A)であるケースについて想定する。第2充電レートは、第1充電レートよりも小さい充電レートである。
 第1に、実施形態では、第1蓄電装置は、現在の温度が第1閾値よりも低い蓄電装置110である。これに対して、変更例2では、第1蓄電装置は、現在の温度が第2閾値(例えば、60℃)よりも高い蓄電装置110であってもよい。
 すなわち、コントローラ130は、2以上の蓄電装置110のうち、現在の温度が第2閾値よりも高い第1蓄電装置をPCS120から切り離す第1制御を実行してもよい。コントローラ130は、2以上の蓄電装置110のうち、第1蓄電装置以外の第2蓄電装置の蓄電容量が所定容量となった場合に、第2蓄電装置をPCS120から切り離すとともに、第1蓄電装置をPCS120に繋げる第2制御を実行してもよい。
 第2に、変更例1では、第3蓄電装置は、将来の温度が第1閾値よりも低くなると予測される蓄電装置110である。これに対して、変更例2では、第3蓄電装置は、現在の温度が第2閾値(例えば、60℃)よりも高くなると予測される蓄電装置110であってもよい。
 すなわち、コントローラ130は、2以上の蓄電装置110のうち、温度に関する情報によって将来の温度が第2閾値よりも高くなると予測される第3蓄電装置以外の第4蓄電装置をPCS120から切り離す第3制御を実行してもよい。コントローラ130は、第3蓄電装置の蓄電容量が所定容量となった場合に、又は、第3蓄電装置の現在の温度が第3閾値よりも高くなった場合に、第3蓄電装置をPCS120から切り離すとともに、第4蓄電装置をPCS120に繋げる第4制御を実行する。
 [その他の実施形態]
 本開示は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 上述した開示では、2以上の蓄電装置110の各々の温度に関する情報として、センサ113によって検出された温度を用いるケースについて例示した。温度に関する情報は、直接的に温度を示す値であってもよく、温度変化と相関がある変化を示す値(例えば、温度の値に対するセンサの抵抗値)であってもよい。センサの抵抗値は、温度の値に対して比例関係を有していてもよく、センサの抵抗値は、温度の値との関係を示すテーブルによって定められてもよい。さらに、温度に関する情報として、2以上の蓄電装置110の各々の設置場所が用いられてもよく、2以上の蓄電装置110の各々の設置場所の気温が用いられてもよく、2以上の蓄電装置110の各々の日射が用いられてもよく、2以上の蓄電装置110の各々の風量及び風向が用いられてもよい。設置場所は、経度・緯度を示す値、予め定められた地名や地点と対応付けられた数値であってもよく、蓄電システム100が設置されるエリアにおける蓄電装置110の方位を示す値であってもよい。気温は、気温と相関を有する温度センサの値であってもよい。日射は、日射と相関を有する光センサの値であってもよい。風量は、風速値であってもよい。風向は、風向を示す方角の値であってもよい。風量及び風向は、風量及び風向と相関を有する風速センサの値であってもよい。設置場所は、蓄電システム100にとって既知であってもよく、オペレータ等によって入力されてもよい。気温、日射は、気象サーバなどの外部サーバから取得されてもよい。このようなケースにおいて、蓄電装置110の温度は、温度に関する情報によって推定される温度と読み替えてもよい。第1蓄電装置は、現在の温度が第1閾値よりも低い又は現在の温度が第2閾値よりも高いと想定される蓄電装置と読み替えられてもよい。
 上述した開示では、蓄電システム100が2つの蓄電装置110を有するケースについて例示した。しかしながら、上述した開示はこれに限定されるものではない。蓄電システム100は、3以上の蓄電装置110を有していてもよい。
 上述した開示では特に触れていないが、蓄電装置110の充電レートの特性は、蓄電装置110毎に異なっていてもよい。例えば、充電レートは、蓄電装置110毎に異なっていてもよい。充電レートの切り替えを判定するための第1閾値及び第2閾値は、蓄電装置110毎に異なっていてもよい。
 上述した開示では、優先順位に基づいた接続状態の制御として、第1制御、第2制御、第3制御及び第4制御について例示した。しかしながら、上述した開示はこれに限定されるものではない。優先順位に基づいた接続状態の制御は、現在の温度が第1閾値よりも低い又は現在の温度が第2閾値よりも高い第1蓄電装置の充電レートを考慮して、蓄電システム100の全体として充電時間を短縮するように接続状態を切り替える制御であればよい。或いは、優先順位に基づいた接続状態の制御は、将来の温度が第1閾値よりも低くなる又は将来の温度が第2閾値よりも高くなると予測される第3蓄電装置の充電レートを考慮して、蓄電システム100の全体として充電時間を短縮するように接続状態を切り替える制御であればよい。
 上述した開では特に触れていないが、実施形態(第1制御及び第2制御)は、変更例1(第3制御及び第4制御)と組み合わされてもよい。このようなケースにおいて、蓄電システム100の全体として充電時間が短縮されるように、実施形態(第1制御及び第2制御)及び変更例1(第3制御及び第4制御)が組み合わされてもよい。
 上述した開示では特に触れていないが、コントローラ130は、蓄電装置110の充電を実行するときに、2以上の蓄電装置の充電に関する優先順位を設定してもよい。コントローラ130は、2以上の蓄電装置の充電に関する優先順位を定期的に設定してもよい。コントローラ130は、優先順位を設定するときに、温度に関する情報の種類を選択してもよい。温度に関する情報の種類は、蓄電システム100の設計段階又は工場出荷段階でコントローラ130に設定されてもよい。
 上述した開示は、以下に示す課題及び効果を有していてもよい。
 上述したように、1つの電力変換装置に対して2以上の蓄電装置を並列で接続するケースが想定される。2以上の蓄電装置の各々の充電レートは、2以上の蓄電装置の各々の温度に依存する。
 しかしながら、2以上の蓄電装置が1つのPCSに並列で接続された状態において、2以上の蓄電装置の各々の充電レートを個別に制御することができないため、2以上の蓄電装置の各々の充電レートは、最も低い温度の蓄電装置の充電レートによって制約を受ける。
 発明者等は、上述した点について着目し、1つのPCSに並列で接続された2以上の蓄電装置が閾値よりも低い温度の蓄電装置を含む場合に、2以上の蓄電装置の全体として充電レートが低下することを見出した。
 上述した開示によれば、2以上の蓄電装置が1つのPCSに並列で接続されるケースにおいて、2以上の蓄電装置の全体の充電レートの向上を図ることを可能とする蓄電システム及び制御方法を提供することができる。
 [付記]
 上述した開示は以下のように表されてもよい。
 第1の特徴は、1つの電力変換装置に並列で接続された2以上の蓄電装置と、前記2以上の蓄電装置の各々と前記1つの電力変換装置との接続状態を制御する制御部と、を備え、前記制御部は、前記2以上の蓄電装置の各々の温度に関する情報に基づいて、前記2以上の蓄電装置の充電に関する優先順位を設定し、前記優先順位に基づいて、前記接続状態を制御する、蓄電システムである。
 第2の特徴は、第1の特徴において、前記温度に関する情報は、前記2以上の蓄電装置の各々の温度、前記2以上の蓄電装置の各々の設置場所、前記2以上の蓄電装置の各々の気温、及び、前記2以上の蓄電装置の各々の日射の中から選択された1以上の情報を含む、蓄電システムである。
 第3の特徴は、第1の特徴又は第2の特徴において、前記制御部は、前記2以上の蓄電装置のうち、前記温度に関する情報によって現在の温度が第1閾値よりも低い第1蓄電装置を前記1つの電力変換装置から切り離す第1制御を実行する、蓄電システムである。
 第4の特徴は、第1の特徴乃至第3の特徴のいずれか1つにおいて、前記制御部は、前記2以上の蓄電装置のうち、前記温度に関する情報によって現在の温度が第2閾値よりも高い第1蓄電装置を前記1つの電力変換装置から切り離す第1制御を実行する、蓄電システムである。
 第5の特徴は、第3の特徴又は第4の特徴において、前記制御部は、前記2以上の蓄電装置のうち、前記第1蓄電装置以外の第2蓄電装置の蓄電容量が所定容量となった場合に、前記第2蓄電装置を前記1つの電力変換装置から切り離すとともに、前記第1蓄電装置を前記1つの電力変換装置に繋げる第2制御を実行する、蓄電システムである。
 第6の特徴は、第1の特徴乃至第4の特徴のいずれか1つにおいて、前記制御部は、前記2以上の蓄電装置のうち、前記温度に関する情報によって将来の温度が第1閾値よりも低くなると予測される第3蓄電装置以外の第4蓄電装置を前記1つの電力変換装置から切り離す第3制御を実行する、蓄電システムである。
 第7の特徴は、第1の特徴乃至第6の特徴のいずれか1つにおいて、前記制御部は、前記2以上の蓄電装置のうち、前記温度に関する情報によって将来の温度が第2閾値よりも高くなると予測される第3蓄電装置以外の第4蓄電装置を前記1つの電力変換装置から切り離す第3制御を実行する、蓄電システムである。
 第8-1の特徴は、第6の特徴において、前記制御部は、前記第3蓄電装置の蓄電容量が所定容量となった場合に、又は、前記第3蓄電装置の現在の温度が前記第1閾値よりも低くなった場合に、前記第3蓄電装置を前記1つの電力変換装置から切り離すとともに、前記第4蓄電装置を前記1つの電力変換装置に繋げる第4制御を実行する、蓄電システムである。
 第8-2の特徴は、第7の特徴において、前記制御部は、前記第3蓄電装置の蓄電容量が所定容量となった場合に、又は、前記第3蓄電装置の現在の温度が前記第2閾値よりも高くなった場合に、前記第3蓄電装置を前記1つの電力変換装置から切り離すとともに、前記第4蓄電装置を前記1つの電力変換装置に繋げる第4制御を実行する、蓄電システムである。
 第9の特徴は、1つの電力変換装置に並列で接続された2以上の蓄電装置の各々の温度に関する情報に基づいて、前記2以上の蓄電装置の充電に関する優先順位を設定するステップAと、前記優先順位に基づいて、前記2以上の蓄電装置の各々と前記1つの電力変換装置との接続状態を制御するステップBと、を備える、制御方法である。
 100…蓄電システム、110…蓄電装置、111…インタフェース端、112…スイッチ、113…センサ、120…PCS、130…コントローラ、131…取得部、132…制御部、141…配線

Claims (9)

 1つの電力変換装置に並列で接続された2以上の蓄電装置と、
 前記2以上の蓄電装置の各々と前記1つの電力変換装置との接続状態を制御する制御部と、を備え、
 前記制御部は、
 前記2以上の蓄電装置の各々の温度に関する情報に基づいて、前記2以上の蓄電装置の充電に関する優先順位を設定し、
 前記優先順位に基づいて、前記接続状態を制御する、蓄電システム。
 前記温度に関する情報は、前記2以上の蓄電装置の各々の温度、前記2以上の蓄電装置の各々の設置場所、前記2以上の蓄電装置の各々の気温、及び、前記2以上の蓄電装置の各々の日射の中から選択された1以上の情報を含む、請求項1に記載の蓄電システム。
 前記制御部は、前記2以上の蓄電装置のうち、前記温度に関する情報によって現在の温度が第1閾値よりも低い第1蓄電装置を前記1つの電力変換装置から切り離す第1制御を実行する、請求項1に記載の蓄電システム。
 前記制御部は、前記2以上の蓄電装置のうち、前記温度に関する情報によって現在の温度が第2閾値よりも高い第1蓄電装置を前記1つの電力変換装置から切り離す第1制御を実行する、請求項1に記載の蓄電システム。
 前記制御部は、前記2以上の蓄電装置のうち、前記第1蓄電装置以外の第2蓄電装置の蓄電容量が所定容量となった場合に、前記第2蓄電装置を前記1つの電力変換装置から切り離すとともに、前記第1蓄電装置を前記1つの電力変換装置に繋げる第2制御を実行する、請求項3に記載の蓄電システム。
 前記制御部は、前記2以上の蓄電装置のうち、前記温度に関する情報によって将来の温度が第1閾値よりも低くなると予測される第3蓄電装置以外の第4蓄電装置を前記1つの電力変換装置から切り離す第3制御を実行する、請求項1に記載の蓄電システム。
 前記制御部は、前記2以上の蓄電装置のうち、前記温度に関する情報によって将来の温度が第2閾値よりも高くなると予測される第3蓄電装置以外の第4蓄電装置を前記1つの電力変換装置から切り離す第3制御を実行する、請求項1に記載の蓄電システム。
 前記制御部は、前記第3蓄電装置の蓄電容量が所定容量となった場合に、又は、前記第3蓄電装置の現在の温度が前記第1閾値よりも低くなった場合に、前記第3蓄電装置を前記1つの電力変換装置から切り離すとともに、前記第4蓄電装置を前記1つの電力変換装置に繋げる第4制御を実行する、請求項6に記載の蓄電システム。
 1つの電力変換装置に並列で接続された2以上の蓄電装置の各々の温度に関する情報に基づいて、前記2以上の蓄電装置の充電に関する優先順位を設定するステップAと、
 前記優先順位に基づいて、前記2以上の蓄電装置の各々と前記1つの電力変換装置との接続状態を制御するステップBと、を備える、制御方法。
PCT/JP2023/014558 2022-04-27 2023-04-10 蓄電システム及び制御方法 WO2023210327A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022073770 2022-04-27
JP2022-073770 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023210327A1 true WO2023210327A1 (ja) 2023-11-02

Family

ID=88518422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014558 WO2023210327A1 (ja) 2022-04-27 2023-04-10 蓄電システム及び制御方法

Country Status (1)

Country Link
WO (1) WO2023210327A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072762A1 (ja) * 2006-12-14 2008-06-19 Toyota Jidosha Kabushiki Kaisha 電源システムおよびそれを備える車両、ならびにその制御方法
WO2011043172A1 (ja) * 2009-10-05 2011-04-14 日本碍子株式会社 制御装置、制御装置網及び制御方法
JP2013118807A (ja) * 2011-12-05 2013-06-13 Samsung Sdi Co Ltd エネルギー貯蔵システム及びその制御方法
WO2013121849A1 (ja) * 2012-02-16 2013-08-22 日本電気株式会社 調整装置、組電池装置および調整方法
WO2017056503A1 (ja) * 2015-09-29 2017-04-06 京セラ株式会社 蓄電システム、蓄電装置及び蓄電システムの制御方法
JP2021150988A (ja) * 2020-03-16 2021-09-27 トヨタ自動車株式会社 電力管理装置、及び電力管理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072762A1 (ja) * 2006-12-14 2008-06-19 Toyota Jidosha Kabushiki Kaisha 電源システムおよびそれを備える車両、ならびにその制御方法
WO2011043172A1 (ja) * 2009-10-05 2011-04-14 日本碍子株式会社 制御装置、制御装置網及び制御方法
JP2013118807A (ja) * 2011-12-05 2013-06-13 Samsung Sdi Co Ltd エネルギー貯蔵システム及びその制御方法
WO2013121849A1 (ja) * 2012-02-16 2013-08-22 日本電気株式会社 調整装置、組電池装置および調整方法
WO2017056503A1 (ja) * 2015-09-29 2017-04-06 京セラ株式会社 蓄電システム、蓄電装置及び蓄電システムの制御方法
JP2021150988A (ja) * 2020-03-16 2021-09-27 トヨタ自動車株式会社 電力管理装置、及び電力管理方法

Similar Documents

Publication Publication Date Title
US9013152B2 (en) Power stabilization system and power stabilizing method
JP5028517B2 (ja) 直流給電システム
KR102308628B1 (ko) 하이브리드 전력변환 시스템 및 이를 이용하는 최대 효율 결정 방법
AU2012380449B2 (en) Power supply system
JP5169186B2 (ja) 電源装置
WO2012128252A1 (ja) 蓄電システム
JP2015159631A (ja) 蓄電システム、蓄電システムの制御装置および制御方法
JP2010068558A (ja) 充電装置および充電方法
JP6149278B2 (ja) 電力システムおよびその制御方法
KR20150135843A (ko) 하이브리드 에너지 저장 시스템 및 그 제어 방법
JP6982820B2 (ja) 制御指令システム、及び電力変換システム
WO2023210327A1 (ja) 蓄電システム及び制御方法
JP2016181976A (ja) 電源装置
KR20180099279A (ko) 에너지 저장 장치를 포함하는 에너지 저장 시스템
JP2016140206A (ja) 電力供給機器、電力供給システム、および電力供給方法
JPWO2019053824A1 (ja) ソーラ発電所用の電力調整装置、発電システム及びソーラ発電所用の電力調整方法
KR20180099277A (ko) 에너지 저장 장치를 포함하는 무정전 전원 공급 시스템
CN114731048A (zh) 非均流ups装置、分流方法及ups并机系统
WO2015075415A1 (en) Charging bus
JP2020088985A (ja) パワーコンディショナ装置
KR20200125094A (ko) 하이브리드 충방전 시스템
TW201608795A (zh) 充電方法及其適用之充電系統
US20240047978A1 (en) Power storage system
JP7310427B2 (ja) 蓄電システム及びその制御方法
KR100991244B1 (ko) 연료전지의 전력 제어방법 및 그의 연료전지시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796072

Country of ref document: EP

Kind code of ref document: A1