WO2017056503A1 - 蓄電システム、蓄電装置及び蓄電システムの制御方法 - Google Patents

蓄電システム、蓄電装置及び蓄電システムの制御方法 Download PDF

Info

Publication number
WO2017056503A1
WO2017056503A1 PCT/JP2016/004405 JP2016004405W WO2017056503A1 WO 2017056503 A1 WO2017056503 A1 WO 2017056503A1 JP 2016004405 W JP2016004405 W JP 2016004405W WO 2017056503 A1 WO2017056503 A1 WO 2017056503A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
power
storage
state
discharging
Prior art date
Application number
PCT/JP2016/004405
Other languages
English (en)
French (fr)
Inventor
哲也 竹中
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US15/763,413 priority Critical patent/US10637106B2/en
Priority to JP2017542758A priority patent/JP6559247B2/ja
Priority to EP16850681.4A priority patent/EP3358696B1/en
Publication of WO2017056503A1 publication Critical patent/WO2017056503A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage system, a power storage device, and a control method for the power storage system.
  • a power storage system includes a plurality of power storage devices that are connected to a system and supply power to a load, and a detector that detects a forward power flow from the system.
  • the plurality of power storage devices include a plurality of storage batteries that are charged with power supplied from the system, and a plurality of power control units that respectively control charging and discharging of the plurality of storage batteries.
  • Each said power control part sets the conditions which make each said storage battery start discharge based on the state of each said storage battery.
  • a power storage device is connected to a system and supplies power to a load.
  • the said electrical storage apparatus is provided with the storage battery which supplies electric power to the said load by discharge, and the electric power control part which controls charging / discharging of the said storage battery.
  • the power control unit sets conditions for causing the storage battery to start discharging based on the state of the storage battery.
  • a method for controlling a power storage system is a method for controlling a power storage system including a plurality of power storage devices each having a storage battery and a detector that detects a forward flow from the system.
  • the method for controlling the power storage system includes a step of setting a condition for causing each storage battery to start discharging based on the state of each storage battery.
  • the control method of the power storage system includes a step of discharging from each of the storage batteries according to the condition when a forward power flow is detected from the detector.
  • FIG. 4 is a sequence diagram illustrating an example of an operation of the power storage system according to the first embodiment of the present disclosure.
  • FIG. 6 is a sequence diagram illustrating an example of an operation of a power storage system according to a second embodiment of the present disclosure.
  • the power of the storage battery that does not use renewable energy may not be allowed to flow backward to the grid (electric power company).
  • the power storage device when connecting a power storage device having a storage battery to the grid, the power storage device is provided with a current sensor for detecting a current between the power grid and the grid in order to prevent a reverse flow from the power storage device to the grid.
  • the power storage device performs charge / discharge control of the storage battery so that a predetermined forward flow (current flowing from the grid to the customer facility) flows through the current sensor.
  • the power storage device stops discharging in order to prevent reverse flow.
  • the power storage device discharges the power to the storage battery and supplies it to a load such as an electric device in a consumer facility.
  • each power storage device when a plurality of power storage devices are connected between a system and a load and operated in parallel, each power storage device is provided with a current sensor corresponding to the own device.
  • Each power storage device controls charging / discharging of the storage battery of each power storage device so that a predetermined forward current flows through the current sensor corresponding to the power storage device.
  • the load-side power storage device tends to preferentially charge and discharge a lot.
  • the power storage device provided on the load side controls charging / discharging of the storage battery of its own device so that a predetermined forward current flows through the current sensor corresponding to the own device.
  • the current sensor of the power storage device provided on the grid side detects a predetermined forward flow already controlled by the power storage device on the load side, and does not discharge the storage battery. Therefore, in this case, the number of times the charge / discharge is repeated increases as the storage battery of the power storage device provided on the load side.
  • Storage batteries tend to deteriorate more quickly as the number of times charging and discharging are repeated. For example, when the power storage device provided on the load side preferentially charges and discharges, the storage battery of the power storage device provided on the load side may deteriorate faster. Thus, when a plurality of power storage devices are operated in parallel, if a current sensor is provided to prevent reverse power flow, the degree of deterioration of each storage battery may not be uniform.
  • a predetermined forward current that is a criterion for determining whether or not to discharge from the storage battery is referred to as a forward current threshold.
  • the forward power flow threshold value is described as 0 [W], but a value other than 0 [W] may be used as the forward power flow threshold value.
  • the power storage system 1 includes current sensors (detectors) 10 and 11 and power storage devices 20 and 21.
  • the power storage system 1 is used by being connected to the grid 70 and supplies power to the load 80.
  • the load 80 is, for example, an electric device or the like, and consumes power supplied from the power storage system 1 and the system 70.
  • the power storage system 1 illustrated in FIG. 1 includes two power storage devices 20 and 21.
  • the number of power storage devices included in the power storage system 1 may be three or more.
  • the solid line which connects each functional block shows a power line.
  • broken lines indicate control lines and signal lines.
  • the connection indicated by the control line and the signal line may be a wired connection or a wireless connection.
  • Current sensors 10 and 11 are provided at positions for detecting current values of the same forward flow and reverse flow in the current from the system 70.
  • current sensors 10 and 11 are provided between system 70 and power storage device 20.
  • Current sensors 10 and 11 detect values of forward flow from system 70 or reverse power flow to system 70, respectively, and transmit the detected values to power storage devices 20 and 21.
  • FIG 1 shows an example in which two current sensors 10 and 11 are provided between the grid 70 and the power storage device 20, but the number of current sensors provided between the grid 70 and the power storage device 20 is as follows. There may be one. When there is one current sensor provided between the system 70 and the power storage device 20, the one current sensor transmits the detected value to the power storage devices 20 and 21.
  • the power storage devices 20 and 21 are connected to the system 70 and supply power to the load 80.
  • the power storage device 20 includes a power conversion unit 30, a storage battery 40, a storage unit 50, and a power control unit 60.
  • the power storage device 21 includes a power conversion unit 31, a storage battery 41, a storage unit 51, and a power control unit 61.
  • the power conversion units 30 and 31 convert the DC power discharged by the storage batteries 40 and 41 into AC power and supply it to the load 80 when the storage batteries 40 and 41 are discharged based on the control of the power control units 60 and 61, respectively. To do. Moreover, the power conversion units 30 and 31 convert the AC power supplied from the system 70 into DC power based on the control of the power control units 60 and 61, respectively, and supply them to the storage batteries 40 and 41, respectively. Thereby, the storage batteries 40 and 41 are charged.
  • the power control units 60 and 61 control charging / discharging of the storage batteries 40 and 41 via the power conversion units 30 and 31, respectively.
  • the power control units 60 and 61 set conditions for causing the storage batteries 40 and 41 to start discharging based on the states of the storage batteries 40 and 41, respectively, and perform charge / discharge control of the storage batteries 40 and 41 according to the set conditions. Yes.
  • This process is performed by a control unit including a suitable processor included in the power control units 60 and 61. Details of this processing will be described later.
  • the storage batteries 40 and 41 supply DC power to the power converters 30 and 31, respectively, by discharging the charged power.
  • the storage batteries 40 and 41 are each charged with electric power supplied from the system 70.
  • the storage batteries 40 and 41 are, for example, a lithium ion storage battery, a nickel hydrogen battery, a lead storage battery, or the like.
  • the storage battery used for V2H may be used for the storage batteries 40 and 41.
  • the storage units 50 and 51 store information including information on the state of the storage batteries 40 and 41 and a program describing processing contents for realizing the functions of the power control units 60 and 61, respectively. Information including the state of the storage batteries 40 and 41 will be described later.
  • the condition for starting the discharge is a standby time from when the current sensors 10 and 11 detect the forward power flow until the storage batteries 40 and 41 start discharging.
  • the use frequency of each storage battery 40 and 41 is judged by the state of each storage battery 40 and 41, and the standby
  • the lower the frequency of use the shorter the standby time until the start of discharging, thereby discharging from a storage battery with a low frequency of use.
  • the power control unit 60 refers to the state of charge of the storage battery 40 stored in the storage unit 50.
  • Set the time short The state of charge being good means that the charge rate (remaining charge with respect to full charge) is high.
  • the power control unit 60 refers to the number of times of charging / discharging of the storage battery 40 stored in the storage unit 50, and the smaller the number of times of charging / discharging.
  • the standby time of the storage battery 40 is set short.
  • the power control unit 60 refers to the elapsed time of the storage battery 40 stored in the storage unit 50, and the elapsed time The longer the standby time of the storage battery 40 is set, the longer it is.
  • the power control unit 60 sets the standby time based on the total charge / discharge time in the storage battery 40, the total charge / discharge time is short with reference to the total charge / discharge time of the storage battery 40 stored in the storage unit 50.
  • the standby time of the storage battery 40 is set shorter.
  • the electric power control part 60 is any two or more of the charging state of the storage battery 40, the charging / discharging frequency of the storage battery 40, the elapsed time since the storage battery 40 performed last discharge, and the total charging / discharging time in the storage battery 40, for example.
  • the standby time may be set using a combination.
  • the power control unit 60 is set based on the standby time set based on the charge state and the charge / discharge number when the standby time is set by combining the charge state and the charge / discharge number.
  • Each waiting time is appropriately weighted. And after performing weighting, the electric power control part 60 calculates standby
  • the power control unit 60 periodically sets the standby time described above.
  • the electric power control parts 60 and 61 will wait for the waiting time set by each, if a forward power flow is detected from the value acquired from the current sensors 10 and 11, respectively. Then, the power control units 60 and 61 cause the storage batteries 40 and 41 to start discharging when the set standby time has elapsed.
  • the standby time may be set by the power control units 60 and 61 communicating with each other, and alternately setting a short standby time and a long standby time alternately.
  • HEMS Home Energy Management System
  • HEMS Home Energy Management System
  • the standby time in the power storage device 20 is set to 5 seconds by the processing of the power control units 60 and 61 described above (that is, the usage frequency of the storage battery 40 is Is lower than the frequency of use of the storage battery 41).
  • the standby time in the power storage device 21 is set to 10 seconds.
  • the forward power flow is expressed in watts [W], but current / power measurement and conversion can be appropriately performed by those skilled in the art.
  • the power control units 60 and 61 calculate the forward flow power value [W] based on the current value acquired from the current sensors 10 and 11 and the known voltage value, respectively.
  • each of current sensors 10 and 11 detects a forward power flow flowing through the own device (step S101), and transmits the detected value to power storage devices 20 and 21.
  • the power control units 60 and 61 of the power storage devices 20 and 21 detect that the forward power flow is flowing from the grid 70 based on the values acquired from the current sensors 10 and 11, respectively (steps S102 and S103). ). Then, the power storage device 20 waits for 5 seconds (step S104). The power storage device 21 waits for 10 seconds (step S105).
  • the power control unit 60 of the power storage device 20 causes the storage battery 40 of the power storage device 20 to start discharging (step S106) and supplies power to the load 80.
  • step S107 Current sensors 10 and 11 detect currents in their own devices (step S107), and transmit the detected values to power storage devices 20 and 21, respectively.
  • step S106 the electric power acquired through the current sensors 10 and 11 becomes 0 [W].
  • the power control unit 60 of the power storage device 20 is in a state where the power consumption of the load 80 and the power supplied from the power storage device 20 are balanced from 0 [W] acquired through the current sensor 10. Is detected (step S108).
  • the power control unit 61 of the power storage device 21 is also in a state where the power consumption of the load 80 and the power supplied from the power storage device 21 are balanced from 0 [W] acquired via the current sensor 11. This is detected (step S109).
  • the power storage device 20 whose standby time is set to be as short as 5 seconds is used. Power is supplied with priority.
  • each of current sensors 10 and 11 detects the value of forward current flowing through the own device (step S110), and transmits the detected value to power storage devices 20 and 21.
  • the power control units 60 and 61 of the power storage devices 20 and 21 detect that a forward power flow is flowing from the system 70 based on the values acquired via the current sensors 10 and 11, respectively (step S111). , S112). Then, power storage device 20 waits for 5 seconds (step S113). The power storage device 21 waits for 10 seconds (step S114).
  • the power control unit 60 of the power storage device 20 causes the storage battery 40 of the power storage device 20 to start discharging (step S115) and supplies power to the load 80.
  • the power control unit 61 of the power storage device 21 causes the storage battery 41 of the power storage device 21 to start discharging (step S116) and supplies power to the load 80.
  • Current sensors 10 and 11 detect currents in their own devices (step S117), and transmit the detected values to power storage devices 20 and 21, respectively.
  • the power acquired through the current sensors 10 and 11 is 0 [W] by the processing of steps S115 and S116.
  • the power consumption of the load 80 is large by the processing of steps S110 to S117, the power is supplied to the load 80 by both the power storage devices 20 and 21.
  • the storage battery 41 with high usage frequency is discharged, thereby reducing the amount of discharge power from the storage battery 41 with high usage frequency and discharging the storage battery 41.
  • the depth can be reduced. Thereby, progress of deterioration of the storage battery 41 with high use frequency can be delayed.
  • the storage battery 40 having a lower use frequency is started to start discharging based on the state of each of the storage batteries 40 and 41 without using another device or the like. Set a short standby time.
  • the electrical storage system 1 it will be used from the storage battery 40 with low use frequency, and the degree of degradation of the electrical storage apparatuses 20 and 21 can be averaged. Further, this improves the reliability of the power storage system 1 as a whole, and enables stable supply of power.
  • the power storage system 1 is used from a new power storage device with low usage frequency by the above-described processing. Therefore, even when a new power storage device is added to power storage system 1, the degree of deterioration of the power storage device of power storage system 1 can be averaged.
  • the above-described processing is performed by the power storage devices 20 and 21 themselves without using other devices. Therefore, in the electrical storage system 1, the increase in equipment cost by using another apparatus can be prevented.
  • the condition for starting the discharge is a forward flow threshold value for causing the storage battery to start discharging, and a power storage device that preferentially discharges is set based on the forward flow threshold value.
  • the use frequency of each storage battery 40, 41 is determined according to the state of each storage battery 40, 41, and the forward flow threshold value in each storage battery 40, 41 is set lower as the use frequency is lower.
  • the lower the frequency of use the lower the forward flow threshold value for starting discharge, so that the battery is discharged from the less frequently used battery.
  • the state of each storage battery 40, 41 the state of charge of each storage battery 40, 41, the number of times of charge / discharge of each storage battery 40, 41, and each storage battery 40, 41 performing previous discharge. Elapsed time, and total charge / discharge time of each storage battery 40, 41.
  • the forward flow threshold is set using these state examples will be described using the power control unit 60 as an example.
  • the power control unit 60 refers to the state of charge of the storage battery 40 stored in the storage unit 50.
  • the power control unit 60 refers to the number of times of charging / discharging of the storage battery 40 stored in the storage unit 50, and the number of times of charging / discharging is small.
  • the forward power flow threshold value of the storage battery 40 is set lower.
  • the power control unit 60 when the power control unit 60 sets the forward flow threshold based on the elapsed time since the storage battery 40 performed the previous discharge, the power control unit 60 refers to the elapsed time of the storage battery 40 stored in the storage unit 50 and determines the elapsed time. The longer the is, the lower the forward flow threshold of the storage battery 40 is set. Further, when the power control unit 60 sets the forward flow threshold based on the total charge / discharge time in the storage battery 40, the total charge / discharge time is referred to by referring to the total charge / discharge time of the storage battery 40 stored in the storage unit 50. The shorter the value is, the lower the forward flow threshold of the storage battery 40 is set.
  • the electric power control part 60 is any two or more of the charging state of the storage battery 40, the charging / discharging frequency of the storage battery 40, the elapsed time since the storage battery 40 performed last discharge, and the total charging / discharging time in the storage battery 40, for example.
  • the forward flow threshold may be set using a combination. For example, in the storage battery 40, when the power control unit 60 sets the forward flow threshold value by combining the charge state and the charge / discharge count, first, based on the forward flow threshold set based on the charge state and the charge / discharge count. Appropriate weighting is applied to each of the forward flow threshold values set in the above. Then, the power control unit 60 performs weighting and then adds them to calculate a forward flow threshold.
  • the power control unit 60 periodically sets the forward flow threshold described above.
  • the electric power control units 60 and 61 detect that the value of the forward flow acquired from the current sensors 10 and 11 is larger than the forward flow threshold value set by themselves, the electric power control units 60 and 61 discharge the storage batteries 40 and 41, respectively. Let it begin. In addition, when the power control units 60 and 61 detect that the value of the forward flow obtained from the current sensors 10 and 11 is smaller than the forward flow threshold set by themselves, Do not discharge.
  • the forward flow threshold value may be set such that the power control units 60 and 61 communicate with each other and alternately set a low forward flow threshold value and a high forward flow threshold value alternately.
  • HEMS may set a forward tidal flow threshold value.
  • the forward flow and the forward flow threshold are expressed in watts [W], but current / power measurement and conversion can be appropriately performed by those skilled in the art.
  • the forward flow threshold of the power storage device 20 is 70 [W] and the forward flow threshold of the power storage device 21 is 100 [W] by the processing of the power control units 60 and 61 described above. ] Is set.
  • the power control units 60 and 61 calculate the forward flow power value [W] based on the current value acquired from the current sensors 10 and 11 and the known voltage value, respectively.
  • each of current sensors 10 and 11 detects a forward current flowing through the device itself (step S201), and transmits the detected value to power storage devices 20 and 21.
  • the power control unit 60 of the power storage device 20 detects that the forward flow 80 [W] acquired via the current sensor 10 is larger than the forward flow threshold 70 [W] of the own device (step S202). ), Causing the storage battery 40 to start discharging (step S204). Further, the power control unit 61 of the power storage device 21 detects that the forward flow 80 [W] acquired via the current sensor 11 is in a state smaller than the forward flow threshold 100 [W] of the own device (step) S203), the battery 41 is not discharged.
  • the forward current 68 [W] flows through the current sensors 10 and 11 by the process of step S204. Then, each of current sensors 10 and 11 detects a forward current flowing through the own device (step S205), and transmits the detected value to power storage devices 20 and 21.
  • the power control units 60 and 61 of the power storage devices 20 and 21 are in a state in which the forward flow 68 [W] acquired via the current sensor 10 is smaller than the forward flow thresholds 70 [W] and 100 [W] of the own device. Is detected (steps S206 and S207). Thereby, the discharge from the storage batteries 40 and 41 is not performed.
  • each of current sensors 10 and 11 detects a forward current flowing in the own device (step S208), and transmits the detected value to power storage devices 20 and 21.
  • the power control unit 60 of the power storage device 20 detects that the forward current 200 [W] acquired via the current sensor 10 is larger than the forward current threshold 70 [W] of the own device (step S209). ), Causing the storage battery 40 to start discharging (step S211).
  • the power control unit 61 of the power storage device 21 also detects that the forward flow 200 [W] acquired via the current sensor 11 is larger than the forward flow threshold 100 [W] of the own device (step S210). ), Causing the storage battery 41 to start discharging (step S212).
  • the forward flow 68 [W] flows through the current sensors 10 and 11 by the processing of steps S211 and S212. Then, each of current sensors 10 and 11 detects a forward current flowing in the own device (step S213), and transmits the detected value to power storage devices 20 and 21.
  • the storage batteries 40 and 41 that are used less frequently start discharging based on the state of each of the storage batteries 40 and 41 without using other devices or the like.
  • Set the forward flow threshold to be low.
  • the power of the power storage device and the fuel cell device that do not use renewable energy cannot be reversely flowed to the grid (electric power company).
  • the present embodiment can also be applied to a case where the power of the power storage device, the fuel cell device, and the like can be reversely flowed to the grid (electric power company).
  • the control of the present disclosure is shown as a series of operations executed by a computer system or other hardware capable of executing program instructions.
  • the computer system and other hardware include, for example, a general-purpose computer, a PC (Personal Computer), a dedicated computer, a workstation, or other programmable data processing device.
  • the various operations are performed by dedicated circuitry (eg, individual logic gates interconnected to perform specific functions) implemented with program instructions (software).
  • program instructions software
  • various operations may be performed by logical blocks, program modules, and the like that are executed by one or more processors.
  • the one or more processors that execute logic blocks, program modules, and the like include, for example, one or more microprocessors, a CPU (Central Processing Unit), and a DSP (Digital Signal Processor).
  • the one or more processors include, for example, ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • the one or more processors may also include, for example, a controller, microcontroller, electronic device, other device designed to perform the functions described herein, and / or any combination thereof.
  • the illustrated embodiments are implemented, for example, by hardware, software, firmware, middleware, microcode, or any combination thereof.
  • the network used here includes the Internet, an ad hoc network, a LAN (Local Area Network), a cellular network, another network, or any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

複数の蓄電装置を並列運転させる場合に、他の装置等を使用せずに、各蓄電装置の劣化の度合いを平均化する。蓄電システムは、系統に接続され負荷に電力を供給する複数の蓄電装置と、系統からの順潮流を検出する検出器とを備える。複数の蓄電装置は、系統から供給される電力により充電される複数の蓄電池と、複数の蓄電池の充放電をそれぞれ制御する複数の電力制御部とを備える。各電力制御部は、各蓄電池の状態に基づいて、各蓄電池に放電を開始させる条件を設定する。

Description

蓄電システム、蓄電装置及び蓄電システムの制御方法 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2015-192188号(2015年9月29日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本発明は、蓄電システム、蓄電装置及び蓄電システムの制御方法に関する。
 近年、蓄電装置の出力をより安定化させるために、複数の蓄電装置を需要家施設等に設置させる要求が高まってきている。特許文献1に記載の蓄電システムでは、制御装置によって、各蓄電装置の蓄電池の充電状態(SOC(State Of Charge))及び放電回数の監視を行う。さらに、特許文献1に記載の蓄電システムでは、制御装置が、各蓄電池の状態に応じて、優先順位の高い蓄電池から順番に放電するように制御する。
特開2013-192327号公報
 本開示の一実施形態に係る蓄電システムは、系統に接続され負荷に電力を供給する複数の蓄電装置と、該系統からの順潮流を検出する検出器とを備える。前記複数の蓄電装置は、前記系統から供給される電力により充電される複数の蓄電池と、前記複数の蓄電池の充放電をそれぞれ制御する複数の電力制御部とを備える。前記各電力制御部は、前記各蓄電池の状態に基づいて、前記各蓄電池に放電を開始させる条件を設定する。
 本開示の一実施形態に係る蓄電装置は、系統に接続され負荷に電力を供給する。前記蓄電装置は、放電により前記負荷に電力を供給する蓄電池と、前記蓄電池の充放電を制御する電力制御部とを備える。前記電力制御部は、前記蓄電池の状態に基づいて、前記蓄電池に放電を開始させる条件を設定する。
 本開示の一実施形態に係る蓄電システムの制御方法は、蓄電池を有する複数の蓄電装置と、系統からの順潮流を検出する検出器とを備える蓄電システムの制御方法である。該蓄電システムの制御方法は、各蓄電池の状態に基づいて、前記各蓄電池に放電を開始させる条件を設定するステップを含む。さらに、蓄電システムの制御方法は、前記検出器から順潮流を検出すると、前記条件に応じて前記各蓄電池から放電を行うステップを含む。
本開示の第1の実施形態に係る蓄電システムの構成の一例を示す図である。 本開示の第1の実施形態に係る蓄電システムの動作の一例を示すシーケンス図である。 本開示の第2の実施形態に係る蓄電システムの動作の一例を示すシーケンス図である。
 需要家施設と電力事業者との契約内容によっては、再生可能エネルギーを利用していない蓄電池の電力を、系統(電力事業者)へ逆潮流できない場合がある。この場合、蓄電池を有する蓄電装置を系統へ接続する際、蓄電装置から系統への逆潮流を防止するため、蓄電装置には、系統との間の電流を検出するための電流センサが設けられる。そして、蓄電装置は、系統への逆潮流を防ぐために、電流センサに所定の順潮流(系統から需要家施設の方向に流れる電流)が流れるように蓄電池の充放電制御を行う。例えば、電流センサに流れる電流が所定の順潮流より小さい場合、蓄電装置は、逆潮流を防止するため、放電を停止する。また、例えば、電流センサに流れる電流が所定の順潮流より大きい場合、蓄電装置は、蓄電池に電力を放電させ、需要家施設の電気機器等の負荷に供給する。
 ここで、複数の蓄電装置を系統と負荷との間に接続して並列運転させる場合、各蓄電装置には、それぞれ、自装置に対応する電流センサが設けられる。そして、各蓄電装置は、自装置に対応する電流センサに所定の順潮流が流れるように、各蓄電装置の蓄電池の充放電を制御する。このとき、例えば、蓄電装置の電流センサの配置によって、負荷側の蓄電装置が優先的に充放電を多く行ってしまう傾向がある。例えば、負荷側に設けられた蓄電装置が、自装置に対応する電流センサに所定の順潮流が流れるように、自装置の蓄電池の充放電を制御したとする。そうすると、系統側に設けられた蓄電装置の電流センサは、既に負荷側の蓄電装置によって制御された所定の順潮流を検出することになり、蓄電池の放電を行わなくなる。従って、この場合、負荷側に設けられた蓄電装置の蓄電池ほど、充放電を繰り返す回数が多くなる。
 蓄電池は、充放電を繰り返す回数が多いほど、劣化が早く進行してしまう傾向がある。例えば、負荷側に設けられた蓄電装置が優先的に充放電を行う場合は、負荷側に設けられた蓄電装置の蓄電池ほど、劣化が早く進行するおそれがある。このように、複数の蓄電装置を並列運転させる場合に、逆潮流を防止するために電流センサを設けると、各蓄電池の劣化の度合いが均等にならないおそれがある。
 (第1の実施形態)
 まず、本開示の第1の実施形態について説明する。なお、以下では、上述の蓄電池から系統への逆潮流を防止する制御において、蓄電池から放電させるか否かの判断基準となる所定の順潮流を、順潮流閾値と称する。また、第1の実施形態では、順潮流閾値を0[W]として説明するが、順潮流閾値には0[W]以外の値を用いることも可能である。
 [システム構成]
 本開示の第1の実施形態に係る蓄電システム1は、図1に示すように、電流センサ(検出器)10,11と、蓄電装置20,21とを備える。蓄電システム1は、系統70に接続して用いられ、負荷80に電力を供給する。負荷80は、例えば電気機器等であり、蓄電システム1及び系統70から供給された電力を消費する。なお、図1に示す蓄電システム1は、2つの蓄電装置20,21を備えている。蓄電システム1が備える蓄電装置の数は、3つ以上であってもよい。また、図1において、各機能ブロックを結ぶ実線は電力線を示す。また、図1において、破線は制御線及び信号線を示す。制御線及び信号線が示す接続は、有線接続であってもよいし、無線接続であってもよい。
 電流センサ10,11は、系統70からの電流において、互いに同じ順潮流及び逆潮流の電流値を検出する位置に設けられる。図1において、電流センサ10,11は、系統70と蓄電装置20との間に設けられている。電流センサ10,11は、それぞれ、系統70からの順潮流又は系統70への逆潮流の値を検出し、その検出した値を、蓄電装置20,21に送信する。
 なお、図1では、系統70と蓄電装置20との間に2つの電流センサ10,11を設ける例が示されているが、系統70と蓄電装置20との間に設けられる電流センサの数は1つであってもよい。系統70と蓄電装置20との間に設けられる電流センサが1つである場合は、その1つの電流センサが、検出した値を、蓄電装置20,21に送信する。
 蓄電装置20,21は、系統70に接続され、負荷80に電力を供給する。蓄電装置20は、電力変換部30と、蓄電池40と、記憶部50と、電力制御部60とを有する。蓄電装置21は、電力変換部31と、蓄電池41と、記憶部51と、電力制御部61とを有する。
 電力変換部30,31は、それぞれ、電力制御部60,61の制御に基づき、蓄電池40,41に放電させる際、蓄電池40,41が放電した直流電力を交流電力に変換し、負荷80に供給する。また、電力変換部30,31は、それぞれ、電力制御部60,61の制御に基づき、系統70から供給される交流電力を直流電力に変換して、それぞれ、蓄電池40,41に供給する。これにより、蓄電池40,41が充電される。
 電力制御部60,61は、それぞれ、電力変換部30,31を介し、蓄電池40,41の充放電を制御する。電力制御部60,61は、それぞれ、蓄電池40,41の状態に基づき、蓄電池40,41に放電を開始させる条件を設定し、その設定した条件に従って、蓄電池40,41の充放電制御を行っている。なお、この処理は、電力制御部60,61が備える好適なプロセッサを含む制御部によって行われる。この処理の詳細については後述する。
 蓄電池40,41は、それぞれ、充電された電力を放電することにより、直流電力を、電力変換部30,31に供給する。また、蓄電池40,41は、それぞれ、系統70から供給される電力により充電される。蓄電池40,41は、例えば、リチウムイオン蓄電池、ニッケル水素電池及び鉛蓄電池等である。また、蓄電池40,41に、V2H(Vehicle to Home)に利用される蓄電池が、用いられてもよい。
 記憶部50,51は、それぞれ、蓄電池40,41の状態を含む情報、及び、電力制御部60,61の各機能を実現する処理内容を記述したプログラムを記憶している。蓄電池40,41の状態を含む情報については後述する。
 以下、電力制御部60,61による蓄電池40,41に放電を開始させる条件の設定処理について説明する。
 第1の実施形態において、上記放電を開始させる条件は、電流センサ10,11によって順潮流を検出してから各蓄電池40,41に放電を開始させるまでの待機時間である。第1の実施形態では、各蓄電池40,41の状態によって、各蓄電池40,41の使用頻度を判断し、この使用頻度が低いほど、各蓄電池40,41における待機時間を短く設定する。このように、使用頻度が低いほど、放電を開始するまでの待機時間を短く設定することで、使用頻度が低い蓄電池から放電されるようになる。ここで、各蓄電池40,41の状態の例として、各蓄電池40,41の充電状態、各蓄電池40,41の充放電回数、各蓄電池40,41が前回放電を行ってからの経過時間、各蓄電池40,41の総充放電時間が挙げられる。以下、これらの状態例を用いて待機時間を設定する例を、電力制御部60を例に説明する。
 電力制御部60は、例えば、蓄電池40の充電状態に基づいて待機時間を設定する場合、記憶部50に記憶されている蓄電池40の充電状態を参照し、充電状態が良いほど、蓄電池40の待機時間を短く設定する。なお、充電状態が良いとは、充電率(満充電に対する充電残量)が高いことである。また、電力制御部60は、例えば、蓄電池40の充放電回数に基づいて待機時間を設定する場合、記憶部50に記憶されている蓄電池40の充放電回数を参照し、充放電回数が少ないほど、蓄電池40の待機時間を短く設定する。また、電力制御部60は、蓄電池40が前回放電を行ってからの経過時間に基づいて待機時間を設定する場合、記憶部50に記憶されている蓄電池40の経過時間を参照し、経過時間が長いほど、蓄電池40の待機時間を短く設定する。また、電力制御部60は、蓄電池40における総充放電時間に基づいて待機時間を設定する場合、記憶部50に記憶されている蓄電池40の総充放電時間を参照し、総充放電時間が短いほど、蓄電池40の待機時間を短く設定する。
 なお、電力制御部60は、例えば、蓄電池40の充電状態、蓄電池40の充放電回数、蓄電池40が前回放電を行ってからの経過時間及び蓄電池40における総充放電時間のいずれか2つ以上の組み合わせを用いて、待機時間を設定してもよい。電力制御部60は、例えば、蓄電池40において、充電状態と充放電回数とを組み合わせて待機時間を設定する場合、充電状態に基づいて設定される待機時間と、充放電回数に基づいて設定される待機時間とに、それぞれ適切な重み付けする。そして、電力制御部60は、重み付けを行った後、それらを合算することにより、待機時間を算出する。
 また、電力制御部60は、上述の待機時間の設定を定期的に行う。
 そして、電力制御部60,61は、それぞれ、電流センサ10,11から取得した値から順潮流を検出すると、各自で設定した待機時間だけ待機する。そして、電力制御部60,61は、それぞれ、設定した待機時間が経過すると、蓄電池40,41に放電を開始させる。
 なお、待機時間の設定は、電力制御部60,61が互いに通信を行い、短い待機時間と長い待機時間とを定期的に交互に設定するようにしてもよい。また、HEMS(Home Energy Management System)が、各電力制御部60,61の待機時間を設定してもよい。
 以下、第1の実施形態に係る蓄電システム1の動作について説明する。
 [システム動作]
 以下では、蓄電池40,41の状態に基づき、上述の電力制御部60,61の処理によって、蓄電装置20における待機時間は5秒に設定されているものとする(つまり、蓄電池40の使用頻度の方が、蓄電池41の使用頻度よりも低いものとする)。また、蓄電装置21における待機時間は10秒に設定されているものとする。なお、図2では、順潮流をワット[W]により表記するが、電流/電力の測定・変換は当業者が適宜行うことができるものである。例えば、電力制御部60,61は、それぞれ、電流センサ10,11から取得した電流値と既知の電圧値とに基づき、順潮流の電力値[W]を算出する。
 負荷80の消費電力が増加し、電流センサ10,11には順潮流が流れるようになる。すると、電流センサ10,11は、それぞれ自装置に流れる順潮流を検出し(ステップS101)、その検出した値を蓄電装置20,21に送信する。
 その後、蓄電装置20,21の電力制御部60,61は、それぞれ、電流センサ10,11から取得した値によって、系統70から順潮流が流れている状態であることを検出する(ステップS102,S103)。すると、蓄電装置20は、5秒間待機する(ステップS104)。また、蓄電装置21は、10秒間待機する(ステップS105)。
 ステップS104の処理から5秒経過後、蓄電装置20の電力制御部60は、蓄電装置20の蓄電池40に放電を開始させ(ステップS106)、電力を負荷80に供給する。
 電流センサ10,11は、それぞれ自装置において電流を検出し(ステップS107)、その検出した値を蓄電装置20,21に送信する。ステップS106の処理により、電流センサ10,11を介して取得する電力は0[W]となる。
 その後、蓄電装置20の電力制御部60は、電流センサ10を介して取得した0[W]から、負荷80の消費電力と蓄電装置20から供給される電力とがバランスが取れた状態であることを検出する(ステップS108)。同様に、蓄電装置21の電力制御部61も、電流センサ11を介して取得した0[W]から、負荷80の消費電力と蓄電装置21から供給される電力とがバランスが取れた状態であることを検出する(ステップS109)。
 このようにステップS101~S109の処理によって、負荷80の消費電力が1つの蓄電装置20又は蓄電装置21からの供給電力で補える場合は、待機時間が5秒と短く設定されている蓄電装置20から優先的に電力が供給される。
 この後、負荷80の消費電力がさらに増加し、電流センサ10,11には再び順潮流が流れるようになる。すると、電流センサ10,11は、それぞれ自装置に流れる順潮流の値を検出し(ステップS110)、その検出した値を蓄電装置20,21に送信する。
 その後、蓄電装置20,21の電力制御部60,61は、それぞれ、電流センサ10,11を介して取得した値によって、系統70から順潮流が流れている状態であることを検出する(ステップS111,S112)。すると、蓄電装置20は、5秒間待機する(ステップS113)。また、蓄電装置21は、10秒間待機する(ステップS114)。
 ステップS113の処理から5秒経過後、蓄電装置20の電力制御部60は、蓄電装置20の蓄電池40に放電を開始させ(ステップS115)、電力を負荷80に供給する。
 また、ステップS114の処理から10秒経過後、蓄電装置21の電力制御部61は、蓄電装置21の蓄電池41に放電を開始させ(ステップS116)、電力を負荷80に供給する。
 電流センサ10,11は、それぞれ自装置において電流を検出し(ステップS117)、その検出した値を蓄電装置20,21に送信する。ステップS115,S116の処理により、電流センサ10,11を介して取得する電力は0[W]となる。
 このようにステップS110~S117の処理によって、負荷80の消費電力が大きい場合は、蓄電装置20,21の両方によって、負荷80に電力が供給される。またこの際、使用頻度の低い蓄電池40からの放電を行った後に、使用頻度の高い蓄電池41の放電を行うことで、使用頻度の高い蓄電池41からの放電電力量を少なくし、蓄電池41の放電深度を浅くすることができる。これにより、使用頻度の高い蓄電池41の劣化の進行を遅らせることができる。
 以上のように、第1の実施形態に係る蓄電システム1では、他の装置等を使用せずに、各蓄電池40,41の状態に基づき、使用頻度が低い蓄電池40ほど、放電を開始させるまでの待機時間を短く設定する。これにより、蓄電システム1では、使用頻度が低い蓄電池40から使用されるようになり、蓄電装置20,21の劣化の度合いを平均化することができる。さらにこれにより、蓄電システム1全体としての信頼性が向上し、電力の安定供給が可能になる。
 さらに、蓄電システム1に新規な蓄電装置を増設した場合であっても、蓄電システム1では、上述の処理により、使用頻度の低い新規な蓄電装置から使用されるようになる。これにより、蓄電システム1に新規な蓄電装置を増設した場合であっても、蓄電システム1の蓄電装置の劣化の度合いを平均化することができる。
 また、第1の実施形態に係る蓄電システム1では、上述の処理を、他の装置等を使用せずに蓄電装置20,21自身で行っている。そのため、蓄電システム1では、他の装置を使用することによる設備コストの増大を防ぐことができる。
 (第2の実施形態)
 第2の実施形態において、上記放電を開始させる条件は、蓄電池に放電を開始させる順潮流閾値であり、この順潮流閾値によって、優先的に放電を行う蓄電装置を設定する。
 [システム構成]
 第2の実施形態に係る蓄電システムは、第1の実施形態に係る蓄電システム1と同様の構成を採用できるため、以下では、図1を参照し、第1の実施形態との相違点について主に説明する。
 第2の実施形態では、各蓄電池40,41の状態によって、各蓄電池40,41の使用頻度を判断し、この使用頻度が低いほど、各蓄電池40,41における順潮流閾値を低く設定する。このように、使用頻度が低いほど、放電を開始させる順潮流閾値を低く設定することで、使用頻度が低い蓄電池から放電されるようになる。第1の実施形態と同様に、各蓄電池40,41の状態の例として、各蓄電池40,41の充電状態、各蓄電池40,41の充放電回数、各蓄電池40,41が前回放電を行ってからの経過時間、各蓄電池40,41の総充放電時間が挙げられる。以下、これらの状態例を用いて順潮流閾値を設定する例を、電力制御部60を例に説明する。
 電力制御部60は、例えば、蓄電池40の充電状態に基づいて順潮流閾値を設定する場合、記憶部50に記憶されている蓄電池40の充電状態を参照し、充電状態が高いほど、蓄電池40の順潮流閾値を低く設定する。また、電力制御部60は、例えば、蓄電池40の充放電回数に基づいて順潮流閾値を設定する場合、記憶部50に記憶されている蓄電池40の充放電回数を参照し、充放電回数が少ないほど、蓄電池40の順潮流閾値を低く設定する。また、電力制御部60は、蓄電池40が前回放電を行ってからの経過時間に基づいて順潮流閾値を設定する場合、記憶部50に記憶されている蓄電池40の経過時間を参照し、経過時間が長いほど、蓄電池40の順潮流閾値を低く設定する。また、電力制御部60は、蓄電池40における総充放電時間に基づいて順潮流閾値を設定する場合、記憶部50に記憶されている蓄電池40の総充放電時間を参照し、総充放電時間が短いほど、蓄電池40の順潮流閾値を低く設定する。
 なお、電力制御部60は、例えば、蓄電池40の充電状態、蓄電池40の充放電回数、蓄電池40が前回放電を行ってからの経過時間及び蓄電池40における総充放電時間のいずれか2つ以上の組み合わせを用いて、順潮流閾値を設定してもよい。電力制御部60は、例えば、蓄電池40において、充電状態と充放電回数とを組み合わせて順潮流閾値を設定する場合、まず、充電状態に基づいて設定される順潮流閾値と、充放電回数に基づいて設定される順潮流閾値とに、それぞれ適切な重み付けを行う。そして、電力制御部60は、重み付けを行った後、それらを合算することにより、順潮流閾値を算出する。
 また、電力制御部60は、上述の順潮流閾値の設定を定期的に行う。
 そして、電力制御部60,61は、それぞれ、電流センサ10,11から取得した順調流の値が、各自で設定した順潮流閾値より大きい状態であることを検出すると、蓄電池40,41に放電を開始させる。また、電力制御部60,61は、それぞれ、電流センサ10,11から取得した順潮流の値が、各自で設定した順潮流閾値より小さい状態であることを検出した場合、蓄電池40,41からの放電を行わない。
 なお、順潮流閾値の設定は、電力制御部60,61が互いに通信を行い、低い順潮流閾値と高い順潮流閾値とを定期的に交互に設定するようにしてもよい。また、HEMSが、順潮流閾値を設定してもよい。
 以下、第2の実施形態に係る蓄電システム1の動作について図3を用いて説明する。
 [システム動作]
 図3では、順潮流及び順潮流閾値をワット[W]により表記するが、電流/電力の測定・変換は当業者が適宜行うことができるものである。また、以下では、蓄電池40,41の状態に基づき、上述の電力制御部60,61の処理によって、蓄電装置20の順潮流閾値が70[W]、蓄電装置21の順潮流閾値が100[W]に設定されているものとする。例えば、電力制御部60,61は、それぞれ、電流センサ10,11から取得した電流値と既知の電圧値とに基づき、順潮流の電力値[W]を算出する。
 負荷80の消費電力が増加し、電流センサ10,11には、順潮流80[W]が流れるようになる。すると、電流センサ10,11は、それぞれ自装置に流れる順潮流を検出し(ステップS201)、その検出した値を蓄電装置20,21に送信する。
 その後、蓄電装置20の電力制御部60は、電流センサ10を介して取得する順潮流80[W]が、自装置の順潮流閾値70[W]より大きい状態であることを検出し(ステップS202)、蓄電池40に放電を開始させる(ステップS204)。また、蓄電装置21の電力制御部61は、電流センサ11を介して取得する順潮流80[W]が、自装置の順潮流閾値100[W]より小さい状態であることを検出するため(ステップS203)、蓄電池41からの放電を行わない。
 ステップS204の処理により、電流センサ10,11には順潮流68[W]が流れるようになる。すると、電流センサ10,11は、それぞれ自装置に流れる順潮流を検出し(ステップS205)、その検出した値を蓄電装置20,21に送信する。
 その後、蓄電装置20,21の電力制御部60,61は、電流センサ10を介して取得する順潮流68[W]が、自装置の順潮流閾値70[W],100[W]より小さい状態であることを検出する(ステップS206,S207)。これにより、蓄電池40,41からの放電は行われない。
 このようにステップS201~S207の処理によって、負荷80の消費電力が1つの蓄電装置20又は蓄電装置21からの供給電力で補える場合は、順潮流閾値が70[W]と低く設定されている蓄電装置20から優先的に電力が供給される。
 この後、負荷80の消費電力がさらに増加し、電流センサ10,11には順潮流200[W]が流れるようになる。すると、電流センサ10,11は、それぞれ自装置に流れる順潮流を検出し(ステップS208)、その検出した値を蓄電装置20,21に送信する。
 その後、蓄電装置20の電力制御部60は、電流センサ10を介して取得する順潮流200[W]が、自装置の順潮流閾値70[W]より大きい状態であることを検出し(ステップS209)、蓄電池40に放電を開始させる(ステップS211)。また、蓄電装置21の電力制御部61も、電流センサ11を介して取得する順潮流200[W]が、自装置の順潮流閾値100[W]より大きい状態であることを検出し(ステップS210)、蓄電池41に放電を開始させる(ステップS212)。
 ステップS211,S212の処理により、電流センサ10,11には順潮流68[W]が流れるようになる。すると、電流センサ10,11は、それぞれ自装置に流れる順潮流を検出し(ステップS213)、その検出した値を蓄電装置20,21に送信する。
 このようにステップS208~S213の処理によって、負荷80の消費電力が大きい場合は、蓄電装置20,21の両方によって、負荷80に電力が供給される。
 以上のように、第2の実施形態に係る蓄電システム1では、他の装置等を使用せずに、各蓄電池40,41の状態に基づき、使用頻度が低い蓄電池40,41ほど、放電を開始させる順潮流閾値を低く設定する。これにより、蓄電システム1では、使用頻度が低い蓄電池40から使用されるようになり、蓄電装置20,21の劣化の度合いを平均化することができる。さらにこれにより、蓄電システム1全体としての信頼性が向上し、電力の安定供給が可能になる。
 なお、第2の実施形態において、その他の効果についても、第1の実施形態と同様の効果を得ることができる。
 なお、上記では、需要家施設と電力事業者の間の契約内容によって、再生可能エネルギーを利用していない蓄電装置及び燃料電池装置等の電力を、系統(電力事業者)へ逆潮流させられない場合について説明した。しかしながら、本実施形態は、蓄電装置及び燃料電池装置等の電力を、系統(電力事業者)へ逆潮流させ得る場合についても適用可能である。
 本開示の一実施形態を諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形及び修正を行うことが容易であることに注意されたい。従って、これらの変形及び修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部及びステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。
 本開示内容の制御は、プログラム命令を実行可能なコンピュータシステムその他のハードウェアによって実行される、一連の動作として示される。コンピュータシステムその他のハードウェアには、例えば、汎用コンピュータ、PC(Personal Computer)、専用コンピュータ、ワークステーション、又はその他のプログラム可能なデータ処理装置が含まれる。各実施形態では、種々の動作は、プログラム命令(ソフトウェア)で実装された専用回路(例えば、特定機能を実行するために相互接続された個別の論理ゲート)によって実行されることに留意されたい。また、種々の動作は、1つ以上のプロセッサによって実行される論理ブロック及びプログラムモジュール等によっても実行されることに留意されたい。論理ブロック及びプログラムモジュール等を実行する一以上のプロセッサには、例えば、1つ以上のマイクロプロセッサ、CPU(Central Processing Unit)、DSP(Digital Signal Processor)が含まれる。また、一以上のプロセッサには、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)が含まれる。また、一以上のプロセッサには、例えば、コントローラ、マイクロコントローラ、電子機器、ここに記載する機能を実行可能に設計されたその他の装置、及び/又は、これらいずれかの組合せが含まれる。ここに示す実施形態は、例えば、ハードウェア、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード又はこれらいずれかの組合せによって実装される。
 ここで用いられるネットワークには、他に特段の断りがない限りは、インターネット、アドホックネットワーク、LAN(Local Area Network)、セルラーネットワーク、もしくは他のネットワーク又はこれらいずれかの組合せが含まれる。
 1 蓄電システム
 10,11 電流センサ(検出器)
 20,21 蓄電装置
 30,31 電力変換部
 40,41 蓄電池
 50,51 記憶部
 60,61 電力制御部
 70 系統
 80 負荷
 

Claims (15)

  1.  系統に接続され負荷に電力を供給する複数の蓄電装置と、
     前記系統からの順潮流を検出する検出器と、を備え、
      前記複数の蓄電装置は、
      前記系統から供給される電力により充電される複数の蓄電池と、
      前記複数の蓄電池の充放電をそれぞれ制御する複数の電力制御部と、を備え、
     前記各電力制御部は、前記各蓄電池の状態に基づいて、前記各蓄電池に放電を開始させる条件を設定する、蓄電システム。
  2.  前記条件は、順潮流を検出してから前記蓄電池に放電を開始させるまでの待機時間である、請求項1に記載の蓄電システム。
  3.  前記各蓄電池の状態は、前記各蓄電池の充電状態であり、前記各電力制御部は、前記充電状態が良いほど、前記待機時間を短く設定する、請求項2に記載の蓄電システム。
  4.  前記各蓄電池の状態は、前記各蓄電池の充放電回数であり、前記各電力制御部は、前記充放電回数が少ないほど、前記待機時間を短く設定する、請求項2に記載の蓄電システムの制御方法。
  5.  前記各蓄電池の状態は、前記各蓄電池が前回放電を行ってからの経過時間であり、前記各電力制御部は、前記経過時間が長いほど、前記待機時間を短く設定する、請求項2に記載の蓄電システム。
  6.  前記各蓄電池の状態は、前記各蓄電池における総充放電時間であり、前記各電力制御部は、前記総充放電時間が短いほど、前記待機時間を短く設定する、請求項2に記載の蓄電システム。
  7.  前記各蓄電池の状態は、前記各蓄電池の充電状態、前記各蓄電池の充放電回数、前記各蓄電池が前回放電を行ってからの経過時間及び前記各蓄電池における総充放電時間のいずれか2つ以上の組み合わせであり、前記各電力制御部は、前記待機時間を、前記組み合わせに基づき設定する、請求項2に記載の蓄電システム。
  8.  前記条件は、前記各蓄電池に放電を開始させる順潮流閾値である、請求項1に記載の蓄電システム。
  9.  前記各蓄電池の状態は、前記各蓄電池の充電状態であり、前記各電力制御部は、前記充電状態が高いほど、前記順潮流閾値を低く設定する、請求項8に記載の蓄電システム。
  10.  前記各蓄電池の状態は、前記各蓄電池の充放電回数であり、前記各電力制御部は、前記充放電回数が少ないほど、前記順潮流閾値を低く設定する、請求項8に記載の蓄電システム。
  11.  前記各蓄電池の状態は、前記各蓄電池が前回放電を行ってからの経過時間であり、前記各電力制御部は、前記経過時間が長いほど、前記順潮流閾値を低く設定する、請求項8に記載の蓄電システム。
  12.  前記各蓄電池の状態は、前記各蓄電池における総充放電時間であり、前記各電力制御部は、前記総充放電時間が短いほど、前記順潮流閾値を低く設定する、請求項8に記載の蓄電システム。
  13.  前記各蓄電池の状態は、前記各蓄電池の充電状態、前記各蓄電池の充放電回数、前記各蓄電池が前回放電を行ってからの経過時間及び前記各蓄電池における総充放電時間のいずれか2つ以上の組み合わせであり、前記各電力制御部は、前記順潮流閾値を、前記組み合わせに基づき設定する、請求項8に記載の蓄電システム。
  14.  系統に接続され負荷に電力を供給する蓄電装置であって、
     放電により前記負荷に電力を供給する蓄電池と、
     前記蓄電池の充放電を制御する電力制御部と、を備え、
     前記電力制御部は、前記蓄電池の状態に基づいて、前記蓄電池に放電を開始させる条件を設定する、蓄電装置。
  15.  蓄電池を有する複数の蓄電装置と、系統からの順潮流を検出する検出器とを備える蓄電システムの制御方法であって、
     各蓄電池の状態に基づいて、前記各蓄電池に放電を開始させる条件を設定するステップと、
     前記検出器は、から順潮流を検出すると、前記条件に応じて前記各蓄電池から放電を行うステップと、
    を含む蓄電システムの制御方法。
PCT/JP2016/004405 2015-09-29 2016-09-29 蓄電システム、蓄電装置及び蓄電システムの制御方法 WO2017056503A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/763,413 US10637106B2 (en) 2015-09-29 2016-09-29 Electricity storage system, electricity storage apparatus, and electricity storage system control method
JP2017542758A JP6559247B2 (ja) 2015-09-29 2016-09-29 蓄電システム、蓄電装置及び蓄電システムの制御方法
EP16850681.4A EP3358696B1 (en) 2015-09-29 2016-09-29 Electricity storage system, electricity storage device, and electricity storage system control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-192188 2015-09-29
JP2015192188 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017056503A1 true WO2017056503A1 (ja) 2017-04-06

Family

ID=58423060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004405 WO2017056503A1 (ja) 2015-09-29 2016-09-29 蓄電システム、蓄電装置及び蓄電システムの制御方法

Country Status (4)

Country Link
US (1) US10637106B2 (ja)
EP (1) EP3358696B1 (ja)
JP (1) JP6559247B2 (ja)
WO (1) WO2017056503A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118185A (ja) * 2017-12-27 2019-07-18 大和ハウス工業株式会社 電力供給システム
JP2019213361A (ja) * 2018-06-06 2019-12-12 住友電気工業株式会社 蓄電システム
WO2023210327A1 (ja) * 2022-04-27 2023-11-02 京セラ株式会社 蓄電システム及び制御方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020100008A1 (de) * 2020-01-02 2021-07-08 Innogy Se Elektrisches Versorgungssystem für ein Gebäude
US20220360107A1 (en) * 2021-05-10 2022-11-10 Electronics And Telecommunications Research Institute Method for controlling energy storage system and devices performing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099527A (ja) * 2006-10-16 2008-04-24 Tokyo Gas Co Ltd 電力系統に接続された自家発電設備における蓄電池設備および蓄電池設備の運転方法
WO2012132985A1 (ja) * 2011-03-25 2012-10-04 Necエナジーデバイス株式会社 蓄電システム及び二次電池制御方法
JP2014128152A (ja) * 2012-12-27 2014-07-07 Panasonic Corp 充放電制御装置、充放電制御システム、および、充放電制御方法
JP2016025732A (ja) * 2014-07-18 2016-02-08 ニチコン株式会社 電源システム、その制御方法および制御プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5924524B2 (ja) * 2012-03-13 2016-05-25 オムロン株式会社 蓄電池制御装置、蓄電池制御方法、プログラム、蓄電システム、および電源システム
JP5905118B2 (ja) * 2012-11-19 2016-04-20 株式会社日立製作所 蓄電池制御装置及び蓄電地制御方法
JP2015106962A (ja) * 2013-11-29 2015-06-08 株式会社デンソー 充放電制御装置及び充放電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099527A (ja) * 2006-10-16 2008-04-24 Tokyo Gas Co Ltd 電力系統に接続された自家発電設備における蓄電池設備および蓄電池設備の運転方法
WO2012132985A1 (ja) * 2011-03-25 2012-10-04 Necエナジーデバイス株式会社 蓄電システム及び二次電池制御方法
JP2014128152A (ja) * 2012-12-27 2014-07-07 Panasonic Corp 充放電制御装置、充放電制御システム、および、充放電制御方法
JP2016025732A (ja) * 2014-07-18 2016-02-08 ニチコン株式会社 電源システム、その制御方法および制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358696A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118185A (ja) * 2017-12-27 2019-07-18 大和ハウス工業株式会社 電力供給システム
JP7064330B2 (ja) 2017-12-27 2022-05-10 大和ハウス工業株式会社 電力供給システム
JP2019213361A (ja) * 2018-06-06 2019-12-12 住友電気工業株式会社 蓄電システム
WO2023210327A1 (ja) * 2022-04-27 2023-11-02 京セラ株式会社 蓄電システム及び制御方法

Also Published As

Publication number Publication date
JP6559247B2 (ja) 2019-08-14
EP3358696A1 (en) 2018-08-08
US10637106B2 (en) 2020-04-28
JPWO2017056503A1 (ja) 2018-03-15
US20180287217A1 (en) 2018-10-04
EP3358696B1 (en) 2020-05-06
EP3358696A4 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JP6559247B2 (ja) 蓄電システム、蓄電装置及び蓄電システムの制御方法
US20210210965A1 (en) Systems and methods for management and monitoring of energy storage and distribution
US9608443B2 (en) Energy storage system of uninterruptible power supply equipped with battery and method of driving the same
JP5857247B2 (ja) 電力管理システム
WO2012050014A1 (ja) 電力管理システム
US20140145669A1 (en) Simple and High Efficiency Balancing Circuits and Methods for Hybrid Batteries
US10031185B2 (en) Method for determining a state of charge and remaining operation life of a battery
CN104242397A (zh) 多电池快速充电电路及其充电方法
US10411476B2 (en) Power conversion apparatus, power conversion method, and power conversion system
KR20180049545A (ko) 멀티 충전이 가능한 배터리팩과 배터리팩 확장성을 고려한 에너지 저장 시스템
JP6582051B2 (ja) 電源装置、分散電源システム及びその制御方法
JP2017028883A (ja) 蓄電システム及び蓄電池制御方法
JP2009254055A (ja) 充電装置及び充電方法
KR20180049543A (ko) 배터리팩 확장성을 고려한 에너지 저장 시스템 및 그 제어 방법
JP6234049B2 (ja) バランス補正装置および蓄電システム
JP6384797B2 (ja) 電力変換装置および電力変換システム
TWI784737B (zh) 電池健康管理方法及電池健康管理裝置
JP6133110B2 (ja) バランス補正装置および蓄電システム
CN116819335A (zh) 电池寿命预测方法、装置、计算机设备及存储介质
JP2017042022A (ja) 蓄電制御装置、電力変換装置、蓄電システム、蓄電制御方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542758

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15763413

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016850681

Country of ref document: EP