WO2024070554A1 - 磁気記録媒体 - Google Patents

磁気記録媒体 Download PDF

Info

Publication number
WO2024070554A1
WO2024070554A1 PCT/JP2023/032607 JP2023032607W WO2024070554A1 WO 2024070554 A1 WO2024070554 A1 WO 2024070554A1 JP 2023032607 W JP2023032607 W JP 2023032607W WO 2024070554 A1 WO2024070554 A1 WO 2024070554A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
servo
magnetic tape
recording medium
average
Prior art date
Application number
PCT/JP2023/032607
Other languages
English (en)
French (fr)
Inventor
実 山鹿
貴広 高山
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024070554A1 publication Critical patent/WO2024070554A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B15/00Driving, starting or stopping record carriers of filamentary or web form; Driving both such record carriers and heads; Guiding such record carriers or containers therefor; Control thereof; Control of operating function
    • G11B15/02Control of operating function, e.g. switching from recording to reproducing
    • G11B15/05Control of operating function, e.g. switching from recording to reproducing by sensing features present on or derived from record carrier or container
    • G11B15/093Control of operating function, e.g. switching from recording to reproducing by sensing features present on or derived from record carrier or container by sensing driving condition of record carrier, e.g. travel, tape tension
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B15/00Driving, starting or stopping record carriers of filamentary or web form; Driving both such record carriers and heads; Guiding such record carriers or containers therefor; Control thereof; Control of operating function
    • G11B15/18Driving; Starting; Stopping; Arrangements for control or regulation thereof
    • G11B15/43Control or regulation of mechanical tension of record carrier, e.g. tape tension
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/02Driving or moving of heads
    • G11B21/10Track finding or aligning by moving the head ; Provisions for maintaining alignment of the head relative to the track during transducing operation, i.e. track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/02Containers; Storing means both adapted to cooperate with the recording or reproducing means
    • G11B23/04Magazines; Cassettes for webs or filaments
    • G11B23/08Magazines; Cassettes for webs or filaments for housing webs or filaments having two distinct ends
    • G11B23/107Magazines; Cassettes for webs or filaments for housing webs or filaments having two distinct ends using one reel or core, one end of the record carrier coming out of the magazine or cassette
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/30Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture with provision for auxiliary signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/29Structure or manufacture of unitary devices formed of plural heads for more than one track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/584Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • This technology relates to magnetic recording media.
  • tape-type magnetic recording media With high total capacity are being incorporated into cloud systems.
  • Current tape-type magnetic recording media have a narrower environmental temperature range for actual operation and storage than HDDs (Hard Disk Drives) and semiconductor memory, so there is a demand for expanding the environmental temperature range for actual operation and storage of tape-type magnetic recording media. It is believed that if tape-type magnetic recording media could be used in the same temperature environment as HDDs and semiconductor memory, the range of uses for tape-type magnetic recording media would be greatly expanded.
  • Patent Document 1 proposes a tape-type magnetic recording medium that can correct width changes by adjusting the longitudinal tension of the tape-type magnetic recording medium using a recording and playback device, even if the width dimension of the tape-type magnetic recording medium changes due to environmental changes.
  • the present technology aims to provide a tape-like magnetic recording medium and a cartridge equipped with the same that can correct changes in the width of the magnetic recording medium by adjusting the running tension of the magnetic recording medium, even when the magnetic recording medium is stored or run in a high-temperature environment.
  • the present technology relates to a tape-shaped magnetic recording medium having a magnetic layer having a plurality of servo bands in which a plurality of servo patterns adjacent to each other in a width direction are recorded, the absolute value of the average width change of the magnetic recording medium before and after being left standing for 40 hours in an environment of a temperature of 50° C. and a relative humidity of 40% RH with a tension of 0.55 N per 1 ⁇ 2 inch of width applied in the longitudinal direction of the magnetic recording medium is 170 ppm or less; And, the average tension response to tension in the longitudinal direction in an environment of a temperature of 50° C.
  • the magnetic recording medium has a mean difference over the entire length of the magnetic recording medium between two adjacent servo band pitches in the plurality of servo bands of 100 nm or less.
  • the magnetic recording medium according to the present technology may have an average tension response of 715 ppm/N or more and 15,000 ppm/N or less.
  • the absolute value of the average width change may be 140 ppm or less.
  • a magnetic recording medium according to the present technology sequentially comprises a substrate, an underlayer, and a magnetic layer, and the substrate can include polyesters.
  • the polyesters may include at least one selected from the group consisting of polyethylene terephthalate and polyethylene naphthalate.
  • the average thickness of the substrate can be 4.4 ⁇ m or less.
  • the magnetic layer can be a vacuum thin film.
  • the magnetic layer can be a coating film.
  • the magnetic layer may contain magnetic powder.
  • the magnetic powder may include ⁇ iron oxide magnetic powder, hexagonal ferrite magnetic powder, or Co-containing spinel ferrite magnetic powder.
  • the average thickness of the magnetic layer can be 90 nm or less.
  • the underlayer may have an average thickness of 1.0 ⁇ m or less.
  • the average thickness of the magnetic recording medium can be 5.3 ⁇ m or less.
  • the squareness ratio of the magnetic layer in the longitudinal direction of the magnetic recording medium can be 35% or less.
  • the magnetic layer can have five or more servo bands.
  • the width of the servo band can be 98 ⁇ m or less.
  • the magnetic layer is configured so that a plurality of data tracks can be formed, and the width of the data tracks can be 1100 nm or less.
  • the Young's modulus can be 8 GPa or less.
  • the present technology is a method for manufacturing a magnetic recording medium in which a plurality of servo patterns adjacent to each other in a width direction of the magnetic recording medium are recorded on a magnetic layer of the magnetic recording medium, the method comprising the steps of: running the magnetic recording medium; and individually adjusting the temperatures of a plurality of recording portions of a servo write head;
  • the present invention provides a method for manufacturing a magnetic recording medium, in which the plurality of servo patterns are recorded on the magnetic layer by the plurality of recording portions.
  • the present technology provides a cartridge including the magnetic recording medium and a storage unit configured to be able to write adjustment information for adjusting the tension applied to the magnetic recording medium in the longitudinal direction.
  • FIG. 2 is an exploded perspective view showing an example of a configuration of a cartridge according to a first embodiment of the present technology.
  • 1 is a cross-sectional view showing an example of a configuration of a magnetic recording medium.
  • FIG. 2 is a schematic diagram of the magnetic recording medium as viewed from above (the magnetic layer side). 2 is an enlarged view showing a recording track in a data band of the magnetic recording medium.
  • FIG. 3 is an enlarged view showing a part of a servo pattern written in a servo band of the magnetic recording medium.
  • FIG. FIG. 2 is a perspective view showing an example of a particle shape.
  • FIG. 2 is a diagram showing an example of a TEM photograph of a magnetic layer.
  • FIG. 2 is a diagram showing an example of a TEM photograph of a magnetic layer.
  • FIG. 2 is a perspective view showing a configuration of a measuring device.
  • FIG. 1 is a schematic diagram illustrating an example of the configuration of a tape drive device.
  • 2 is a schematic diagram of the drive head in the tape drive device as viewed from below (the tape running surface).
  • FIG. 4 is a diagram showing a state when a first drive head portion of the drive head is recording/reproducing a data signal.
  • FIG. 1A is a schematic plan view showing an example of servo pattern arrangement
  • FIG. 1B is a diagram showing the reproduced waveform.
  • 1A is a schematic diagram showing an example of the configuration of a servo pattern in which first servo band identification information is embedded, and FIG.
  • 1B is a schematic diagram showing an example of the configuration of a servo pattern in which second servo band identification information is embedded.
  • 4A and 4B are diagrams showing a reproduced waveform of a first servo pattern and a reproduced waveform of a second servo pattern, respectively;
  • FIG. 2 is an explanatory diagram of a drive head tracking a data band.
  • 11A and 11B are diagrams for explaining a method of measuring a servo trace line.
  • 1 is a schematic front view showing a servo pattern recording device according to an embodiment of the present technology;
  • FIG. 2 is a partially enlarged view showing a part of the servo pattern recording device.
  • 2 is a perspective view showing a schematic configuration of a servo write head in the servo pattern recording device.
  • FIG. 2 is a schematic cross-sectional view of a main part of the servo write head.
  • 2 is a schematic plan view of a main part of the servo write head.
  • FIG. 2 is a block diagram showing a configuration of a drive unit in the servo pattern recording device.
  • FIG. 5A and 5B are schematic diagrams respectively showing a recording signal waveform (A) of a first servo subframe in a first pulse signal and a recording signal waveform (B) of the first servo subframe in a second pulse signal.
  • 2 is a perspective view showing a pair of guide rollers for guiding the running of a magnetic tape in the servo pattern recording device.
  • FIG. 1 is a schematic cross-sectional view of a main part of the servo write head.
  • 2 is a schematic plan view of a main part of the servo write head.
  • FIG. 2 is a block diagram showing a configuration of a drive unit in the servo pattern recording device.
  • FIG. 1 is a graph showing an experimental result comparing servo band pitches of each data band measured on the same magnetic tape.
  • 1 shows an experimental result showing the relationship between the magnitude of the recording current of the servo pattern and the servo band pitch.
  • the graph shows the results of an experiment that shows the relationship between the magnitude of the recording current, the temperature change of the servo write head, and the running time of the magnetic tape.
  • the graph shows the results of an experiment that shows the change in servo band pitch when the recording current is alternately changed between a current value that is -20% of the reference current and a current value that is +20% of the recording current.
  • FIG. 2 is a schematic perspective view showing a configuration of a servo write head equipped with a blower unit.
  • FIG. 11 is a result of an experiment showing how the servo pattern pitch changes depending on whether or not a cooling gas (air) is introduced.
  • This figure shows the maximum value (max) and minimum value (min) of the servo band pitch, which is the distance between two adjacent servo bands, as well as the difference between these maximum and minimum values (servo band pitch difference: SBD), and is the result of an experiment conducted without cooling the servo write head.
  • 33 is a diagram similar to FIG. 32 showing the results of an experiment conducted while cooling the servo write head.
  • 33 is a diagram similar to FIG. 32 showing the results of another experiment performed while cooling the servo write head.
  • 2 is a schematic plan view of a servo write head having a plurality of grooves.
  • FIG. 4 is an enlarged perspective view showing the groove in detail.
  • 36 is a schematic plan view showing a modified example of the configuration of the servo write head shown in FIG. 35.
  • FIG. 11 is a cross-sectional view showing an example of a configuration of a magnetic tape according to a second embodiment of the present technology.
  • FIG. 1 is a schematic diagram showing a configuration of a sputtering apparatus.
  • FIG. 11 is a cross-sectional view showing an example of a configuration of a magnetic tape according to a third embodiment of the present technology.
  • FIG. 11 is an exploded perspective view showing an example of a configuration of a cartridge according to a modified example of the first embodiment of the present technology.
  • 4 is a graph showing the measurement results of the amount of change in width of the magnetic tape according to Example 1.
  • 1 is a graph showing an estimated width change over 10 years in each of the examples and comparative examples.
  • 11 is a schematic diagram for explaining a method of calculating the movement angle of a drive head that
  • First embodiment (example of coated magnetic tape) (1) Cartridge configuration (2) Magnetic tape configuration (3) Magnetic tape manufacturing method (4) Tape drive device configuration (5) Servo pattern recording device configuration (6) Effects 2.
  • Second embodiment (example of vacuum thin film type magnetic tape) (1) Structure of the magnetic tape (2) Structure of the sputtering device (3) Manufacturing method of the magnetic tape (4) Function and effect 3.
  • Third embodiment (another example of a vacuum thin film type magnetic tape) (1) Structure of the magnetic tape (2) Function and effect 4. Modifications 5. Examples
  • the measurement is performed in an environment of 25°C ⁇ 2°C and 50% RH ⁇ 5% RH.
  • the numerical ranges indicated using “from” indicate ranges that include the numerical values stated before and after “from” as the minimum and maximum values, respectively.
  • FIG. 1 is an exploded perspective view showing a tape cartridge 10 according to an embodiment of the present technology.
  • the tape cartridge 10 will be described by taking an example of a tape cartridge conforming to the LTO standard.
  • the tape cartridge 10 comprises a cartridge case 11, a tape reel 13, and a magnetic tape MT.
  • the cartridge case 11 is constructed by connecting an upper shell 11a and a lower shell 11b with a number of screw members.
  • a single tape reel 13 wound with the magnetic tape MT is rotatably housed inside the cartridge case 11.
  • a chucking gear (not shown) is formed in an annular shape in the center of the bottom of the tape reel 13, which engages with the spindle 31 (see FIG. 10) of the tape drive device 30.
  • This chucking gear is exposed to the outside through an opening 14 formed in the center of the lower shell 11b.
  • a ring-shaped metal plate 15 is fixed to the inner circumference of this chucking gear, which is magnetically attracted to the spindle 31.
  • a reel spring 16, a reel lock member 17, and a spider 18 are arranged between the inner surface of the upper shell 11a and the tape reel 13. These constitute a reel lock mechanism that prevents the tape reel 13 from rotating when the cartridge 10 is not in use.
  • a tape pull-out opening 19 for pulling out one end of the magnetic tape MT to the outside is provided on one side wall of the cartridge case 11.
  • a sliding door 20 for opening and closing the tape pull-out opening 19 is disposed inside this side wall.
  • the sliding door 20 is configured to slide in a direction that opens the tape pull-out opening 19 against the biasing force of a torsion spring 21 by engaging with a tape loading mechanism (not shown) of the tape drive device 30.
  • a leader pin 22 is fixed to one end of the magnetic tape MT.
  • the leader pin 22 is configured to be detachable from a pin holding portion 23 provided on the inside side of the tape withdrawal opening 19.
  • the pin holding portion 23 is equipped with elastic holders 24 that elastically hold the upper and lower ends of the leader pin 22 on the inner surface of the top wall (inner surface of the upper shell 11a) and the inner surface of the bottom wall (inner surface of the lower shell 11b) of the cartridge case 11.
  • a safety tab 25 for preventing the accidental erasure of information recorded on the magnetic tape MT, as well as a cartridge memory 9 that can contactlessly read and write the contents of the data recorded on the magnetic tape MT and information about the magnetic tape MT.
  • FIG. 2 is a cross-sectional view showing an example of the structure of the magnetic tape MT.
  • the magnetic tape MT includes a long substrate 41, an underlayer 42 provided on one main surface (first main surface) of the substrate 41, a magnetic layer 43 provided on the underlayer 42, and a back layer 44 provided on the other main surface (second main surface) of the substrate 41.
  • the underlayer 42 and the back layer 44 are provided as necessary and may not be required.
  • the magnetic tape MT may be a perpendicular recording type magnetic recording medium or a longitudinal recording type magnetic recording medium. From the viewpoint of improving running performance, the magnetic tape MT preferably contains a lubricant.
  • the lubricant may be included in at least one layer of the underlayer 42 and the magnetic layer 43.
  • the magnetic tape MT may be one that complies with the LTO standard, or one that complies with a standard other than the LTO standard.
  • the width of the magnetic tape MT may be 1/2 inch, or may be wider than 1/2 inch. If the magnetic tape MT complies with the LTO standard, the width of the magnetic tape MT is 7 1/2 inches.
  • the magnetic tape MT may have a configuration that allows the width of the magnetic tape MT to be kept constant or nearly constant by adjusting the tension applied to the magnetic tape MT in the longitudinal direction during running using a recording and playback device (drive).
  • the magnetic tape MT is long and runs in the longitudinal direction during recording and playback.
  • the magnetic tape MT is preferably used in a recording and playback device equipped with a ring-type head as a recording head.
  • the magnetic tape MT is preferably used in a recording and playback device configured to be able to record data with a data track width of 1100 nm or less or 900 nm or less.
  • the substrate 41 is a non-magnetic support that supports the underlayer 42 and the magnetic layer 43.
  • the substrate 41 has a long film shape.
  • the upper limit of the average thickness of the substrate 41 is, for example, 4.4 ⁇ m or less, preferably 4.2 ⁇ m or less, more preferably 4.0 ⁇ m or less, even more preferably 3.8 ⁇ m or less, particularly preferably 3.6 ⁇ m or less, and most preferably 3.4 ⁇ m or less.
  • the upper limit of the average thickness of the substrate 41 is 4.4 ⁇ m or less, the recording capacity that can be recorded in one data cartridge can be increased compared to that of a general magnetic tape.
  • the lower limit of the average thickness of the substrate 41 is preferably 3 ⁇ m or more, more preferably 3.2 ⁇ m or more. When the lower limit of the average thickness of the substrate 41 is 3 ⁇ m or more, the strength reduction of the substrate 41 can be suppressed.
  • the average thickness of the substrate 41 is determined as follows. First, the magnetic tape MT contained in the cartridge 10 is unwound, and the magnetic tape MT is cut into lengths of 250 mm from each of the ranges of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m in the longitudinal direction from the connection 21 between the magnetic tape MT and the leader tape LT to prepare three samples.
  • "longitudinal direction" in “longitudinal direction from the connection 21 between the magnetic tape MT and the leader tape LT” means the direction from one end on the leader tape LT side to the other end on the opposite side.
  • each sample i.e., the undercoat layer 42, the magnetic layer 43, and the back layer 44
  • a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid.
  • the thickness of each sample (substrate 41) is measured at five positions using a Mitutoyo Laser Hologram (LGH-110C) as a measuring device, and the average thickness of the substrate 41 is calculated by arithmetically averaging these measurements (a total of 15 sample thicknesses). Note that the five measurement positions are selected randomly from each sample so that they are different positions in the longitudinal direction of the magnetic tape MT.
  • the substrate 41 includes, for example, at least one of polyesters, polyolefins, cellulose derivatives, vinyl resins, and other polymer resins.
  • the substrate 41 includes two or more of the above materials, the two or more materials may be mixed, copolymerized, or laminated.
  • the base 41 contains polyesters.
  • the storage modulus E' in the longitudinal direction of the base 41 can be reduced to preferably 9.0 GPa or less, more preferably 7.5 GPa or less, even more preferably 6.0 GPa or less, particularly preferably 5.5 GPa or less, and most preferably 4.5 GPa or less. Therefore, by adjusting the longitudinal tension of the magnetic tape MT while it is running using the recording and playback device, it is particularly easy to control the width of the magnetic tape MT to be constant or nearly constant.
  • the polyesters include, for example, at least one of PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PBT (polybutylene terephthalate), PBN (polybutylene naphthalate), PCT (polycyclohexylene dimethylene terephthalate), PEB (polyethylene-p-oxybenzoate), and polyethylene bisphenoxycarboxylate.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • PBN polybutylene naphthalate
  • PCT polycyclohexylene dimethylene terephthalate
  • PEB polyethylene-p-oxybenzoate
  • polyethylene bisphenoxycarboxylate polyethylene bisphenoxycarboxylate.
  • the base 41 includes two or more types of polyesters, the two or more types of polyesters may be mixed, copolymerized, or laminated. At least one of the ends and side chains of the polyester
  • polyesters in the substrate 41 can be confirmed, for example, as follows. First, the magnetic tape MT contained in the cartridge 10 is unwound, and the magnetic tape MT is cut out from a range of 30 to 40 m in the longitudinal direction from the connection 21 between the magnetic tape MT and the leader tape LT to prepare a sample, after which the layers of the sample other than the substrate 41 are removed. Next, an IR spectrum of the sample (substrate 41) is obtained by infrared absorption spectrometry (IR). Based on this IR spectrum, it can be confirmed that the substrate 41 contains polyesters.
  • IR infrared absorption spectrometry
  • the polyolefins include, for example, at least one of PE (polyethylene) and PP (polypropylene).
  • the cellulose derivatives include, for example, at least one of cellulose diacetate, cellulose triacetate, CAB (cellulose acetate butyrate) and CAP (cellulose acetate propionate).
  • the vinyl resins include, for example, at least one of PVC (polyvinyl chloride) and PVDC (polyvinylidene chloride).
  • polymer resins include, for example, at least one of PA (polyamide, nylon), aromatic PA (aromatic polyamide, aramid), PI (polyimide), aromatic PI (aromatic polyimide), PAI (polyamideimide), aromatic PAI (aromatic polyamideimide), PBO (polybenzoxazole, e.g.
  • Zylon (registered trademark)), polyether, PEK (polyetherketone), PEEK (polyetheretherketone), polyetherester, PES (polyethersulfone), PEI (polyetherimide), PSF (polysulfone), PPS (polyphenylene sulfide), PC (polycarbonate), PAR (polyarylate), and PU (polyurethane).
  • the substrate 41 may be biaxially stretched in the longitudinal and width directions.
  • the polymer resin contained in the substrate 41 is preferably oriented in a direction oblique to the width direction of the substrate 41.
  • the magnetic layer 43 is a recording layer for recording signals by magnetization patterns.
  • the magnetic layer 43 may be a coating film.
  • the magnetic layer 43 may be a perpendicular recording type recording layer or a longitudinal recording type recording layer.
  • the magnetic layer 43 includes, for example, magnetic powder, a binder, a lubricant, and carbon.
  • the magnetic layer 43 may further include at least one additive selected from antistatic agents, abrasives, hardeners, rust inhibitors, and non-magnetic reinforcing particles, as necessary.
  • the magnetic layer 43 may have a surface having an uneven shape.
  • the magnetic layer 43 has multiple data bands d (data bands d0 to d3) that are long in the longitudinal direction (X-axis direction) in which data is written, and multiple servo bands s (servo bands s0 to s4) that are long in the longitudinal direction in which servo patterns 6 are written.
  • the servo bands s are arranged at positions that sandwich each data band d in the width direction (Y-axis direction). It is preferable that the magnetic layer 43 has five or more servo bands s.
  • the ratio of the area of the servo band s to the total surface area of the magnetic layer 43 is typically 4.0% or less.
  • the width of the servo band s is, for example, 98 ⁇ m or less for a 1/2 inch tape width.
  • the ratio of the area of the servo band s to the total surface area of the magnetic layer 43 can be measured, for example, by developing the magnetic tape MT using a developer such as a ferricolloid developer, and then observing the developed magnetic tape MT with an optical microscope.
  • the number of data bands d is four, and the number of servo bands s is five. Note that the number of data bands d and the number of servo bands s can be changed as appropriate.
  • the data band d includes a plurality of recording tracks 5 that are long in the longitudinal direction and aligned in the width direction.
  • the number of recording tracks 5 included in one data band d is, for example, about 1000 to 2500. Data is recorded along these recording tracks 5 within the recording tracks 5.
  • the length of one bit in the longitudinal direction of the data recorded in the data band d is, for example, 48 nm or less.
  • the servo band s includes a servo pattern 6 of a predetermined shape that is recorded by a servo pattern recording device (see FIG. 18) described later.
  • the number of recording tracks 5 increases with each generation of LTO-standard magnetic tape MT, dramatically improving recording capacity.
  • the original LTO-1 had 384 recording tracks 5, but the number of recording tracks 5 in LTO-2 to LTO-8 is 512, 704, 896, 1280, 2176, 3584, and 6656, respectively.
  • data recording capacity was 100GB (gigabytes) in LTO-1, but is 200GB, 400GB, 800GB, 1.5TB (terabytes), 2.5TB, 6.0TB, and 12TB, respectively, in LTO-2 to LTO-8.
  • the number of recording tracks 5 and the recording capacity are not particularly limited and can be changed as appropriate.
  • a magnetic tape with an overall Young's modulus of the tape (Young's modulus in the longitudinal direction of the tape) of 8 GPa or less is applied as the magnetic tape MT.
  • FIG. 4 is an enlarged view showing the recording track 5 in the data band d.
  • the recording tracks 5 are long in the longitudinal direction, aligned in the width direction, and each track has a predetermined recording track width (track pitch) Wd in the width direction.
  • This recording track width Wd is set to 2.0 ⁇ m or less in LTO-8. Note that such a recording track width Wd can be measured, for example, by developing the magnetic layer 43 of the magnetic tape MT using a developer such as a ferric colloid developer, and then observing the developed magnetic layer 43 of the magnetic tape MT with an optical microscope.
  • the drive head in order to ignore fluctuations during tape running, the drive head is set in a Read While Write state, and the recording track width Wd can be measured from the output change when the azimuth of the drive head is changed.
  • FIG. 5 is an enlarged view showing a part of the servo pattern 6 written in the servo band s.
  • the servo pattern 6 includes a plurality of stripes that are inclined at a predetermined azimuth angle ⁇ with respect to the width direction (Y-axis direction), the details of which will be described later.
  • the plurality of stripes are classified into a first stripe group 61 that is inclined clockwise with respect to the width direction (Y-axis direction) and a second stripe group 62 that is inclined counterclockwise with respect to the width direction.
  • the first stripe group 61 and the second stripe group 62 typically include four or five stripes.
  • the shape of the servo pattern 6 can be measured, for example, by developing the magnetic layer 43 of the magnetic tape MT using a developing solution such as a ferric colloid developing solution, and then observing the developed magnetic layer 43 of the magnetic tape MT with an optical microscope.
  • a developing solution such as a ferric colloid developing solution
  • servo trace lines T which are lines traced on the servo pattern 6 by a servo read head 132 (see FIG. 11), which will be described later, are shown by dashed lines.
  • the servo trace lines T are set along the longitudinal direction (X-axis direction) and are also set at a predetermined interval Ps in the width direction.
  • the number of servo trace lines T per servo band s is, for example, about 30 to 60.
  • the spacing Ps between two adjacent servo trace lines T is the same as the recording track width Wd, and is, for example, 2.0 ⁇ m or less.
  • the spacing Ps between two adjacent servo trace lines T is a value that determines the recording track width Wd. In other words, when the spacing Ps between the servo trace lines T is narrowed, the recording track width Wd becomes smaller and the number of recording tracks 5 included in one data band d increases. As a result, the data recording capacity increases.
  • the upper limit of the average thickness of the magnetic layer 43 is preferably 90 nm or less, more preferably 80 nm or less, even more preferably 70 nm or less, particularly preferably 60 nm or less, and most preferably 50 nm or less. If the upper limit of the average thickness of the magnetic layer 43 is 90 nm or less, when a ring-type head is used as the recording head, the effect of the demagnetizing field can be reduced, and even better electromagnetic conversion characteristics can be obtained.
  • the lower limit of the average thickness of the magnetic layer 43 is preferably 35 nm or more. If the lower limit of the average thickness of the magnetic layer 43 is 35 nm or more, output can be ensured when an MR head is used as the reproducing head, and therefore even better electromagnetic conversion characteristics can be obtained.
  • the average thickness of the magnetic layer 43 is obtained as follows. First, the magnetic tape MT contained in the cartridge 10 is unwound, and the magnetic tape MT is cut into 250 mm lengths from the longitudinal range of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m from the connection 21 between the magnetic tape MT and the leader tape LT to prepare three samples. Next, each sample is processed by the FIB method or the like to be thinned. When the FIB method is used, a carbon layer and a tungsten layer are formed as protective films as a pretreatment for observing the TEM image of the cross section described later.
  • the carbon layer is formed by deposition on the surface of the magnetic tape MT on the magnetic layer 43 side and the surface on the back layer 44 side, and the tungsten layer is further formed on the surface on the magnetic layer 43 side by deposition or sputtering.
  • the thinning is performed along the length direction (longitudinal direction) of the magnetic tape MT. That is, this slicing creates a cross section that is parallel to both the longitudinal and thickness directions of the magnetic tape MT.
  • the thickness of the magnetic layer 43 is measured at 10 positions on each thinned sample.
  • the 10 measurement positions on each thinned sample are randomly selected from each sample so that they are different positions in the longitudinal direction of the magnetic tape MT.
  • the average value obtained by arithmetically averaging the measured values of each obtained thinned sample (a total of 30 thicknesses of the magnetic layer 43) is defined as the average thickness [nm] of the magnetic layer 43.
  • the magnetic powder includes a plurality of magnetic particles.
  • the magnetic particles are, for example, particles containing a metal oxide (hereinafter referred to as “metal oxide particles”).
  • the metal oxide particles are, for example, particles containing hexagonal ferrite (hereinafter referred to as “hexagonal ferrite particles”), particles containing epsilon-type iron oxide ( ⁇ iron oxide) (hereinafter referred to as “ ⁇ iron oxide particles”), or particles containing Co-containing spinel ferrite (hereinafter referred to as "cobalt ferrite particles”).
  • the magnetic powder is preferentially crystalline oriented in the perpendicular direction of the magnetic tape MT.
  • the perpendicular direction (thickness direction) of the magnetic tape MT means the thickness direction of the magnetic tape MT in a flat state.
  • the hexagonal ferrite particles have, for example, a plate shape such as a hexagonal plate shape or a column shape such as a hexagonal column shape (however, the thickness or height is smaller than the major axis of the plate surface or bottom surface).
  • the hexagonal plate shape includes a substantially hexagonal plate shape.
  • the hexagonal ferrite preferably contains at least one of Ba, Sr, Pb, and Ca, more preferably at least one of Ba and Sr.
  • the hexagonal ferrite may specifically be, for example, barium ferrite or strontium ferrite.
  • the barium ferrite may further contain at least one of Sr, Pb, and Ca in addition to Ba.
  • the strontium ferrite may further contain at least one of Ba, Pb, and Ca in addition to Sr.
  • the hexagonal ferrite has an average composition represented by the general formula MFe12O19 .
  • M is, for example, at least one metal selected from Ba, Sr, Pb, and Ca, preferably at least one metal selected from Ba and Sr.
  • M may be a combination of Ba and one or more metals selected from the group consisting of Sr, Pb, and Ca.
  • M may also be a combination of Sr and one or more metals selected from the group consisting of Ba, Pb, and Ca.
  • a part of Fe may be substituted with another metal element.
  • the average particle size of the magnetic powder is preferably 13 nm or more and 22 nm or less, more preferably 13 nm or more and 19 nm or less, even more preferably 13 nm or more and 18 nm or less, particularly preferably 14 nm or more and 17 nm or less, and most preferably 14 nm or more and 16 nm or less.
  • the average particle size of the magnetic powder is 22 nm or less, even better electromagnetic conversion characteristics (e.g., SNR) can be obtained in a high recording density magnetic tape MT.
  • the average particle size of the magnetic powder is 13 nm or more, the dispersibility of the magnetic powder is further improved, and even better electromagnetic conversion characteristics (e.g., SNR) can be obtained.
  • the average aspect ratio of the magnetic powder is preferably 1.0 or more and 3.0 or less, more preferably 1.5 or more and 2.8 or less, and even more preferably 1.8 or more and 2.7 or less.
  • the average aspect ratio of the magnetic powder is within the range of 1.0 or more and 3.0 or less, aggregation of the magnetic powder can be suppressed.
  • the magnetic powder is vertically oriented in the process of forming the magnetic layer 43, the resistance applied to the magnetic powder can be suppressed. Therefore, the vertical orientation of the magnetic powder can be improved.
  • the average particle size and average aspect ratio of the magnetic powder can be determined as follows. First, the magnetic tape MT housed in the cartridge 10 is unwound, and the magnetic tape MT is cut out from a range of 30 to 40 m in the longitudinal direction from the connection part 21 between the magnetic tape MT and the leader tape LT. Next, the cut magnetic tape MT is processed by the FIB method or the like to be thinned. When the FIB method is used, a carbon layer and a tungsten layer are formed as protective films as a pretreatment for observing the TEM image of the cross section described later.
  • the carbon layer is formed by deposition on the surface of the magnetic tape MT on the magnetic layer 43 side and the surface on the back layer 44 side, and the tungsten layer is further formed by deposition or sputtering on the surface on the magnetic layer 43 side.
  • the thinning is performed along the length direction (longitudinal direction) of the magnetic tape MT. In other words, the thinning forms a cross section parallel to both the longitudinal direction and the thickness direction of the magnetic tape MT.
  • the cross section of the obtained thin sample is observed using a transmission electron microscope (Hitachi High-Technologies Corporation H-9500) at an acceleration voltage of 200 kV and a total magnification of 500,000 times in the thickness direction of the magnetic layer 43 so that the entire magnetic layer 43 is included, and a TEM photograph is taken.
  • the TEM photographs are prepared in such a way that 50 particles can be extracted that allow the plate diameter DB and plate thickness DA (see Figure 7) shown below to be measured.
  • the thickness or height of the particle observed in the above TEM photograph is plate-like or columnar (however, the thickness or height is smaller than the major axis of the plate surface or bottom surface) as shown in Figure 6, the major axis of the plate surface or bottom surface of the particle is taken as the plate diameter DB value.
  • the thickness or height of the particle observed in the above TEM photograph is taken as the plate thickness DA value.
  • the thickness or height of a particle is not constant within a single particle, the thickness or height of the maximum particle is taken as the plate thickness DA.
  • 50 particles are selected from the TEM photograph based on the following criteria. Particles that are partially outside the field of view of the TEM photograph are not measured, and only particles that have a clear outline and exist in isolation are measured. If there are overlapping particles, those with a clear boundary between them and whose overall shape can be determined are measured as individual particles, but particles with unclear boundaries and whose overall shape cannot be determined are not measured as their shape cannot be determined.
  • FIG. 7 and 8 show an example of a TEM photograph.
  • the particles indicated by the arrows a and d are selected because the plate thickness (thickness or height) DA of the particle can be clearly confirmed.
  • the plate thickness DA of each of the selected 50 particles is measured.
  • the plate thickness DA thus obtained is arithmetically averaged to obtain the average plate thickness DA ave .
  • the average plate thickness DA ave is the average particle plate thickness.
  • the plate diameter DB of each magnetic powder is measured.
  • 50 particles whose plate diameter DB of the particle can be clearly confirmed are selected from the TEM photograph taken. For example, in FIG. 7 and FIG.
  • the particles indicated by the arrows b and c are selected because the plate diameter DB can be clearly confirmed.
  • the plate diameter DB of each of the selected 50 particles is measured.
  • the plate diameter DB thus obtained is simply averaged (arithmetic averaged) to obtain the average plate diameter DB ave .
  • the average plate diameter DB ave is the average particle size.
  • the average aspect ratio of the particles ( DBave / DAave ) is calculated from the average plate thickness DAave and the average plate diameter DBave .
  • the average particle volume of the magnetic powder is preferably 500 nm3 or more and 2500 nm3 or less, more preferably 500 nm3 or more and 1600 nm3 or less, even more preferably 500 nm3 or more and 1500 nm3 or less, particularly preferably 600 nm3 or more and 1200 nm3 or less, and most preferably 600 nm3 or more and 1000 nm3 or less.
  • the average particle volume of the magnetic powder is 2500 nm3 or less, the same effect as when the average particle size of the magnetic powder is 22 nm or less can be obtained.
  • the average particle volume of the magnetic powder is 500 nm3 or more, the same effect as when the average particle size of the magnetic powder is 13 nm or more can be obtained.
  • the average particle volume of the magnetic powder is calculated as follows. First, the average plate thickness DA ave and the average plate diameter DB ave are calculated as described above in relation to the method for calculating the average particle size of the magnetic powder. Next, the average volume V of the magnetic powder is calculated using the following formula.
  • the ⁇ -iron oxide particles are hard magnetic particles that can obtain high coercivity even in the case of fine particles.
  • the ⁇ -iron oxide particles are spherical or cubic.
  • the term “spherical” includes “approximately spherical”.
  • the term “cubic” includes “approximately cubic”. Since the ⁇ -iron oxide particles have the above-mentioned shape, when the ⁇ -iron oxide particles are used as the magnetic particles, the contact area between the particles in the thickness direction of the magnetic tape MT can be reduced and the aggregation between the particles can be suppressed compared to when hexagonal plate-shaped barium ferrite particles are used as the magnetic particles. Therefore, the dispersibility of the magnetic particles can be improved, and further excellent electromagnetic conversion characteristics (e.g., SNR) can be obtained.
  • SNR electromagnetic conversion characteristics
  • the ⁇ -iron oxide particles may have a composite particle structure. More specifically, the ⁇ -iron oxide particles include an ⁇ -iron oxide portion and a portion having soft magnetism or a portion having a higher saturation magnetization ⁇ s and a smaller coercive force Hc than ⁇ -iron oxide (hereinafter referred to as the "soft magnetic portion, etc.”).
  • the ⁇ -iron oxide portion contains ⁇ -iron oxide.
  • the ⁇ -iron oxide contained in the ⁇ -iron oxide portion preferably has ⁇ -Fe 2 O 3 crystals as a main phase, and more preferably is made of single-phase ⁇ -Fe 2 O 3 .
  • the soft magnetic portion is in contact with at least a portion of the ⁇ -iron oxide portion. Specifically, the soft magnetic portion may partially cover the ⁇ -iron oxide portion, or may cover the entire periphery of the ⁇ -iron oxide portion.
  • the soft magnetic portion (the magnetic portion having a higher saturation magnetization ⁇ s and a smaller coercive force Hc than ⁇ -iron oxide) includes, for example, a soft magnetic material such as ⁇ -Fe, a Ni-Fe alloy, or an Fe-Si-Al alloy.
  • ⁇ -Fe may be obtained by reducing the ⁇ -iron oxide contained in the ⁇ -iron oxide portion.
  • the portion having soft magnetic properties may contain, for example, Fe 3 O 4 , ⁇ -Fe 2 O 3 , or spinel ferrite.
  • the coercive force Hc of the ⁇ -iron oxide portion alone can be kept high to ensure thermal stability, while the coercive force Hc of the ⁇ -iron oxide particle (composite particle) as a whole can be adjusted to a coercive force Hc suitable for recording.
  • the ⁇ iron oxide particles may contain an additive instead of the structure of the composite particles, or may have the structure of the composite particles and contain an additive. In this case, part of the Fe in the ⁇ iron oxide particles is replaced with the additive.
  • the additive is a metal element other than iron, preferably a trivalent metal element, more preferably at least one selected from the group consisting of Al, Ga and In, and even more preferably at least one selected from the group consisting of Al and Ga.
  • the ⁇ -iron oxide containing the additive is an ⁇ -Fe2 - xMxO3 crystal (wherein M is a metal element other than iron, preferably a trivalent metal element, more preferably at least one element selected from the group consisting of Al, Ga and In, and even more preferably at least one element selected from the group consisting of Al and Ga; x is, for example, 0 ⁇ x ⁇ 1).
  • M is a metal element other than iron, preferably a trivalent metal element, more preferably at least one element selected from the group consisting of Al, Ga and In, and even more preferably at least one element selected from the group consisting of Al and Ga; x is, for example, 0 ⁇ x ⁇ 1).
  • the average particle size of the magnetic particles is preferably 10 nm to 20 nm, more preferably 10 nm to 18 nm, even more preferably 10 nm to 16 nm, particularly preferably 10 nm to 15 nm, and most preferably 10 nm to 14 nm.
  • the area with a size of 1/2 the recording wavelength becomes the actual magnetization area. Therefore, by setting the average particle size of the magnetic particles to half or less of the shortest recording wavelength, even better electromagnetic conversion characteristics (e.g., SNR) can be obtained.
  • the average particle size of the magnetic particles is 20 nm or less, even better electromagnetic conversion characteristics (e.g., SNR) can be obtained in a high recording density magnetic tape MT (e.g., a magnetic tape MT configured to be able to record signals at the shortest recording wavelength of 40 nm or less).
  • a high recording density magnetic tape MT e.g., a magnetic tape MT configured to be able to record signals at the shortest recording wavelength of 40 nm or less.
  • the average particle size of the magnetic particles is 10 nm or more, the dispersibility of the magnetic particles is further improved, and even better electromagnetic conversion characteristics (e.g., SNR) can be obtained.
  • the average aspect ratio of the magnetic particles is preferably 1.0 to 3.0, more preferably 1.0 to 2.5, even more preferably 1.0 to 2.1, and particularly preferably 1.0 to 1.8.
  • the average aspect ratio of the magnetic particles is within the range of 1.0 to 3.0, aggregation of the magnetic particles can be suppressed.
  • the magnetic particles are vertically oriented in the process of forming the magnetic layer 43, the resistance applied to the magnetic particles can be suppressed. Therefore, the vertical orientation of the magnetic particles can be improved.
  • the average particle size and average aspect ratio of the magnetic particles can be found as follows. First, the magnetic tape MT housed in the cartridge 10 is unwound, and the magnetic tape MT is cut out at a position 30 to 40 m in the longitudinal direction from the connection between the magnetic tape MT and the leader tape LT. Next, the magnetic tape MT to be measured is processed and sliced by the FIB (Focused Ion Beam) method or the like. When the FIB method is used, a carbon layer and a tungsten layer are formed as protective layers as a pretreatment for observing the cross-sectional TEM image described later.
  • FIB Fluorused Ion Beam
  • the carbon layer is formed by deposition on the surface of the magnetic tape MT on the magnetic layer 43 side and the surface on the back layer 44 side, and the tungsten layer is further formed on the surface on the magnetic layer 43 side by deposition or sputtering.
  • the slices are made along the length of the magnetic tape MT. That is, this slicing creates a cross section that is parallel to both the longitudinal and thickness directions of the magnetic tape MT.
  • the cross section of the obtained thin sample is observed with a transmission electron microscope (H-9500 manufactured by Hitachi High-Technologies Corporation) at an acceleration voltage of 200 kV and a total magnification of 500,000 times so that the entire magnetic layer 43 is included in the thickness direction of the magnetic layer 43, and a TEM image is taken.
  • 50 particles whose particle shape can be clearly confirmed are selected from the taken TEM image, and the long axis length DL and short axis length DS of each particle are measured.
  • the long axis length DL means the maximum distance between two parallel lines drawn from all angles so as to be in contact with the contour of each particle (so-called maximum Feret diameter).
  • the short axis length DS means the maximum length of the particle in the direction perpendicular to the long axis (DL) of the particle.
  • the long axis lengths DL of the measured 50 particles are simply averaged (arithmetic average) to obtain the average long axis length DL ave .
  • the average long axis length DL ave thus obtained is the average particle size of the magnetic particles.
  • the minor axis lengths DS of the 50 particles are simply averaged (arithmetic mean) to determine the average minor axis length DSave .
  • the average aspect ratio of the particles ( DLave / DSave ) is then calculated from the average major axis length DLave and the average minor axis length DSave .
  • the average particle volume of the magnetic particles is preferably 500 nm3 or more and 4000 nm3 or less, more preferably 500 nm3 or more and 3000 nm3 or less, even more preferably 500 nm3 or more and 2000 nm3 or less, particularly preferably 600 nm3 or more and 1600 nm3 or less, and most preferably 600 nm3 or more and 1300 nm3 or less. Since the noise of a magnetic tape MT is generally inversely proportional to the square root of the number of particles (i.e., proportional to the square root of the particle volume), by making the particle volume smaller, it is possible to obtain even better electromagnetic conversion characteristics (e.g., SNR).
  • SNR electromagnetic conversion characteristics
  • the average particle volume of the magnetic particles is 4000 nm3 or less, it is possible to obtain even better electromagnetic conversion characteristics (e.g., SNR) in the same way as when the average particle size of the magnetic particles is 20 nm or less.
  • the average particle volume of the magnetic particles is 500 nm3 or more, it is possible to obtain the same effect as when the average particle size of the magnetic particles is 10 nm or more.
  • the average volume of the magnetic particles is obtained as follows. First, the magnetic tape MT contained in the cartridge 10 is unwound, and the magnetic tape MT is cut out at a position 30 to 40 m in the longitudinal direction from the connection between the magnetic tape MT and the leader tape LT. Next, the cut magnetic tape MT is processed by the FIB (Focused Ion Beam) method or the like to be thinned. When the FIB method is used, a carbon film and a tungsten thin film are formed as protective films as a pretreatment for observing the TEM image of the cross section described later.
  • FIB Fluorused Ion Beam
  • the carbon film is formed by deposition on the surface of the magnetic tape MT on the magnetic layer 43 side and the surface on the back layer 44 side, and the tungsten thin film is further formed by deposition or sputtering on the surface on the magnetic layer 43 side.
  • the thinning is performed along the length direction (longitudinal direction) of the magnetic tape MT. In other words, the thinning forms a cross section parallel to both the longitudinal direction and the thickness direction of the magnetic tape MT.
  • the obtained thin sample is observed in cross section in the thickness direction of the magnetic layer 43 at an acceleration voltage of 200 kV and a total magnification of 500,000 times to include the entire magnetic layer 43, and a TEM image is obtained.
  • the magnification and acceleration voltage may be adjusted appropriately depending on the type of device.
  • 50 particles whose particle shapes are clear are selected from the TEM image taken, and the side length DC of each particle is measured.
  • the side lengths DC of the 50 particles measured are simply averaged (arithmetic average) to obtain the average side length DC ave .
  • the average volume V ave (particle volume) of the magnetic particles is calculated from the following formula using the average side length DC ave .
  • V ave DC ave 3
  • the cobalt ferrite particles preferably have uniaxial crystal anisotropy.
  • the cobalt ferrite particles have uniaxial crystal anisotropy, so that the magnetic powder can be preferentially crystal oriented in the perpendicular direction of the magnetic tape MT.
  • the cobalt ferrite particles have, for example, a cubic shape. In this specification, the cubic shape includes an almost cubic shape.
  • the Co-containing spinel ferrite may further contain at least one of Ni, Mn, Al, Cu, and Zn in addition to Co.
  • the Co-containing spinel ferrite has, for example, an average composition represented by the following formula.
  • Co x M y Fe 2 O Z (In the formula, M is, for example, at least one metal selected from Ni, Mn, Al, Cu, and Zn.
  • x is a value within the range of 0.4 ⁇ x ⁇ 1.0.
  • y is a value within the range of 0 ⁇ y ⁇ 0.3.
  • x and y satisfy the relationship of (x+y) ⁇ 1.0.
  • z is a value within the range of 3 ⁇ z ⁇ 4.
  • a part of Fe may be substituted with another metal element.
  • the average particle size of the magnetic powder is preferably 8 nm or more and 16 nm or less, more preferably 8 nm or more and 13 nm or less, and even more preferably 8 nm or more and 10 nm or less.
  • the average particle size of the magnetic powder is 16 nm or less, it is possible to obtain even better electromagnetic conversion characteristics (e.g., SNR) in a high recording density magnetic tape MT.
  • the average particle size of the magnetic powder is 8 nm or more, the dispersibility of the magnetic powder is further improved, and even better electromagnetic conversion characteristics (e.g., SNR) can be obtained.
  • the method of calculating the average particle size of the magnetic powder is the same as the method of calculating the average particle size of the magnetic powder when the magnetic powder contains ⁇ iron oxide particles.
  • the average aspect ratio of the magnetic powder is preferably 1.0 to 2.5, more preferably 1.0 to 2.1, and even more preferably 1.0 to 1.8.
  • the average aspect ratio of the magnetic powder is within the range of 1.0 to 2.5, aggregation of the magnetic powder can be suppressed.
  • the magnetic powder is vertically oriented in the process of forming the magnetic layer 43, the resistance applied to the magnetic powder can be suppressed. Therefore, the vertical orientation of the magnetic powder can be improved.
  • the method of calculating the average aspect ratio of the magnetic powder is the same as the method of calculating the average aspect ratio of the magnetic powder when the magnetic powder contains ⁇ iron oxide particles.
  • the average particle volume of the magnetic powder is preferably 500 nm3 or more and 4000 nm3 or less, more preferably 600 nm3 or more and 2000 nm3 or less, and even more preferably 600 nm3 or more and 1000 nm3 or less.
  • the average particle volume of the magnetic powder is 4000 nm3 or less, the same effect as when the average particle size of the magnetic powder is 16 nm or less can be obtained.
  • the average particle volume of the magnetic powder is 500 nm3 or more, the same effect as when the average particle size of the magnetic powder is 8 nm or more can be obtained.
  • the method of calculating the average particle volume of the magnetic component is the same as the method of calculating the average particle volume when the ⁇ iron oxide particles have a cubic shape.
  • binder examples include thermoplastic resins, thermosetting resins, and reactive resins.
  • thermoplastic resin examples include vinyl chloride, vinyl acetate, vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinylidene chloride copolymers, vinyl chloride-acrylonitrile copolymers, acrylic acid ester-acrylonitrile copolymers, acrylic acid ester-vinyl chloride-vinylidene chloride copolymers, acrylic acid ester-acrylonitrile copolymers, acrylic acid ester-vinylidene chloride copolymers, methacrylic acid ester-vinylidene chloride copolymers, methacrylic acid ester-vinyl chloride copolymers, methacrylic acid ester-ethylene copolymers, polyvinyl fluoride, vinylidene chloride-acrylonitrile copolymers, acrylonitrile-butadiene copolymers, polyamide resins, polyvinyl fluoride, vinyliden
  • thermosetting resins examples include phenolic resins, epoxy resins, polyurethane curing resins, urea resins, melamine resins, alkyd resins, silicone resins, polyamine resins, and urea formaldehyde resins.
  • all of the above-mentioned binders may contain polar functional groups such as -SO 3 M, -OSO 3 M, -COOM, P ⁇ O(OM) 2 (wherein M represents a hydrogen atom or an alkali metal such as lithium, potassium, or sodium), side-chain amines having terminal groups represented by -NR1R2 or -NR1R2R3 + X - , and main-chain amines represented by >NR1R2 + X - (wherein R1, R2, and R3 represent a hydrogen atom or a hydrocarbon group, and X- represents a halogen element ion such as fluorine, chlorine, bromine, or iodine, an inorganic ion, or an organic ion), -OH, -SH, -CN, and an epoxy group.
  • the amount of these polar functional groups introduced into the binder is preferably 10 -1 mol/g or more and 10 -8 mol/g
  • the lubricant contains at least one selected from, for example, a fatty acid and a fatty acid ester, and preferably both a fatty acid and a fatty acid ester.
  • a lubricant in the magnetic layer 43 and in particular the inclusion of both a fatty acid and a fatty acid ester in the magnetic layer 43, contributes to improving the running stability of the magnetic tape MT.
  • the fatty acid may preferably be a compound represented by the following general formula (1) or (2).
  • the fatty acid may contain either a compound represented by the following general formula (1) or a compound represented by the following general formula (2), or may contain both.
  • the fatty acid ester may preferably be a compound represented by the following general formula (3) or (4).
  • the fatty acid ester may contain either a compound represented by the following general formula (3) or a compound represented by the following general formula (4), or may contain both.
  • the lubricant contains either one or both of the compounds shown in general formula (1) and (2), and either one or more of the compounds shown in general formula (3) and (4), or (5), making it possible to suppress an increase in the dynamic friction coefficient caused by repeated recording or playback of the magnetic tape MT.
  • k is an integer selected from the range of 14 or more and 22 or less, more preferably from the range of 14 or more and 18 or less.
  • the carbon contained in the magnetic layer 43 may function as an antistatic agent, a lubricant, etc. A part of the carbon contained in the magnetic layer 43 is exposed from the surface of the magnetic layer 43. The unevenness of the surface of the magnetic layer 43 may be formed by carbon, an abrasive, etc.
  • the carbon is specifically carbon particles.
  • the carbon particles include, for example, one or more selected from the group consisting of carbon black, acetylene black, ketjen black, carbon nanotubes, and graphene.
  • antistatic agent examples include natural surfactants, nonionic surfactants, and cationic surfactants.
  • abrasive examples include acicular ⁇ -iron oxide obtained by dehydrating and annealing raw materials such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, silicon carbide, chromium oxide, cerium oxide, ⁇ -iron oxide, corundum, silicon nitride, titanium carbide, titanium oxide, silicon dioxide, tin oxide, magnesium oxide, tungsten oxide, zirconium oxide, boron nitride, zinc oxide, calcium carbonate, calcium sulfate, barium sulfate, molybdenum disulfide, and magnetic iron oxide, and if necessary, those obtained by surface-treating these with aluminum and/or silica.
  • raw materials such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, silicon carbide, chromium oxide, cerium oxide, ⁇ -iron oxide, corundum, silicon nitride, titanium carbide, titanium oxide, silicon dioxide, tin oxide, magnesium oxide, tungsten oxide, zi
  • Examples of the curing agent include polyisocyanates.
  • Examples of the polyisocyanates include aromatic polyisocyanates such as an adduct of tolylene diisocyanate (TDI) and an active hydrogen compound, and aliphatic polyisocyanates such as an adduct of hexamethylene diisocyanate (HMDI) and an active hydrogen compound.
  • the weight average molecular weight of these polyisocyanates is preferably in the range of 100 to 3,000.
  • anti-rust examples include phenols, naphthols, quinones, heterocyclic compounds containing a nitrogen atom, heterocyclic compounds containing an oxygen atom, and heterocyclic compounds containing a sulfur atom.
  • Non-magnetic reinforcing particles examples include aluminum oxide ( ⁇ , ⁇ or ⁇ alumina), chromium oxide, silicon oxide, diamond, garnet, emery, boron nitride, titanium carbide, silicon carbide, titanium carbide, titanium oxide (rutile or anatase type titanium oxide), and the like.
  • the underlayer 42 serves to reduce the unevenness of the surface of the base 41 and adjust the unevenness of the surface of the magnetic layer 43.
  • the underlayer 42 is a non-magnetic layer containing non-magnetic powder, a binder, and a lubricant.
  • the underlayer 42 supplies the lubricant to the surface of the magnetic layer 43.
  • the underlayer 42 may further contain at least one additive selected from the group consisting of an antistatic agent, a hardener, and an anti-rust agent, as necessary.
  • the upper limit of the average thickness of the underlayer 42 is preferably 1.0 ⁇ m or less, more preferably 0.9 ⁇ m or less, even more preferably 0.8 ⁇ m or less, particularly preferably 0.7 ⁇ m or less, and most preferably 0.6 ⁇ m or less. If the upper limit of the average thickness of the underlayer 42 is 1.0 ⁇ m or less, the thickness of the magnetic tape MT can be reduced, so that the recording capacity that can be recorded in one data cartridge can be increased compared to that of a general magnetic tape. If the average thickness of the underlayer 42 is 1.0 ⁇ m or less, the elasticity of the magnetic tape MT due to external forces is further increased, so that the width of the magnetic tape MT can be further adjusted by adjusting the tension.
  • the lower limit of the average thickness of the underlayer 42 is preferably 0.3 ⁇ m or more. If the lower limit of the average thickness of the underlayer 42 is 0.3 ⁇ m or more, the deterioration of the function as the underlayer 42 can be suppressed.
  • the average thickness of the underlayer 42 is determined in the same manner as the average thickness of the magnetic layer 43. However, the magnification of the TEM image is appropriately adjusted according to the thickness of the underlayer 42.
  • the non-magnetic powder includes at least one of inorganic particle powder and organic particle powder.
  • the non-magnetic powder may also include carbon powder such as carbon black.
  • One type of non-magnetic powder may be used alone, or two or more types of non-magnetic powder may be used in combination.
  • the inorganic particles include, for example, metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides, etc.
  • the shape of the non-magnetic powder may be, for example, various shapes such as needle-like, spherical, cubic, plate-like, etc., but is not limited to these shapes.
  • Binding agent, lubricant The binder and lubricant are the same as those in the magnetic layer 43 described above.
  • the antistatic agent, hardener and rust inhibitor are the same as those in the magnetic layer 43 described above.
  • the back layer 44 contains a binder and a non-magnetic powder.
  • the back layer 44 may further contain at least one additive selected from the group consisting of a lubricant, a hardener, and an antistatic agent, if necessary.
  • the binder and the non-magnetic powder are the same as those in the underlayer 42 described above.
  • the hardener and the antistatic agent are the same as those in the magnetic layer 43 described above.
  • the average particle size of the non-magnetic powder is preferably 10 nm or more and 150 nm or less, more preferably 15 nm or more and 110 nm or less.
  • the average particle size of the non-magnetic powder is determined in the same manner as the average particle size of the magnetic powder described above.
  • the non-magnetic powder may contain non-magnetic powder having two or more particle size distributions.
  • the upper limit of the average thickness of the back layer 44 is preferably 0.6 ⁇ m or less. If the upper limit of the average thickness of the back layer 44 is 0.6 ⁇ m or less, the thickness of the underlayer 42 and the base 41 can be kept thick even if the average thickness of the magnetic tape MT is 5.3 ⁇ m or less, so that the running stability of the magnetic tape MT within the recording and reproducing device can be maintained.
  • the lower limit of the average thickness of the back layer 44 is not particularly limited, but is, for example, 0.2 ⁇ m or more.
  • the average thickness t b of the back layer 44 is obtained as follows. First, the average thickness t T of the magnetic tape MT is measured. The method for measuring the average thickness t T is as described in the "Average Thickness of Magnetic Tape" below. Next, the magnetic tape MT housed in the cartridge 10 is unwound, and the magnetic tape MT is cut into 250 mm lengths from the range of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m in the longitudinal direction from the connection portion 21 between the magnetic tape MT and the leader tape LT, respectively, to prepare three samples. Next, the back layer 44 of each sample is removed with a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid.
  • MEK methyl ethyl ketone
  • the absolute value of the average width change amount ⁇ A of the magnetic tape MT before and after being left for 40 hours in an environment of a temperature of 50° C. and a relative humidity of 40% RH with a tension of 0.55 N applied in the longitudinal direction per 1 ⁇ 2 inch of the width of the magnetic tape MT is 0 ppm or more and 170 ppm or less, preferably 0 ppm or more and 140 ppm or less, more preferably 0 ppm or more and 70 ppm or less, and even more preferably 0 ppm or more and 40 ppm or less.
  • a high temperature environment refers to an environment of 35°C or higher and 50°C or lower.
  • the absolute value of the average width change ⁇ A of the magnetic tape MT is 170 ppm or less, so in addition to deformation of the magnetic tape MT caused by the environment, creep deformation in high-temperature environments can be reduced. Therefore, width changes in the magnetic tape MT can be corrected by adjusting the running tension of the magnetic tape MT.
  • the absolute value of the average width change ⁇ A may be set to a desired value by selecting at least one of the base 41 and the underlayer 42.
  • the absolute value of the average width change ⁇ A may be set to a desired value by selecting at least one of the thickness of the base 41 and the material of the base 41.
  • the absolute value of the average width change ⁇ A may also be set to a desired value by adjusting the stretching strength in the width direction and length direction of the base 41.
  • the absolute value of the average width change ⁇ A may also be set to a desired value by selecting the type of the magnetic layer 43 from among a coated film and a sputtered film.
  • the absolute value of the average width change ⁇ A may be set to a desired value by providing a distortion relaxation process after the calendar process and before the cutting process, and adjusting the environmental temperature and storage time in the distortion relaxation process (e.g., storing for 48 hours in an environment at a temperature of 65°C).
  • the absolute value of the average width change ⁇ A may be set to a desired value by providing a distortion relaxation process after the demagnetization process and before the servo pattern writing process, and adjusting the environmental temperature and storage time in the distortion relaxation process (e.g., storing for 48 hours in an environment at a temperature of 55°C).
  • the absolute value of the average width change amount ⁇ A may be set to a desired value, or by selecting two or more, the absolute value of the average width change amount ⁇ A may be set to a desired value.
  • the absolute value of the average width change ⁇ A of the magnetic tape MT is found as follows. First, the 1/2 inch wide magnetic tape MT housed in the cartridge 10 is unwound, and three samples of 250 mm are cut from the magnetic tape MT in the longitudinal direction from the connection 21 between the magnetic tape MT and the leader tape LT in the ranges of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m, respectively, to obtain three samples.
  • the absolute values of the width change amount ⁇ A of the above three samples are obtained as follows.
  • a measuring device shown in FIG. 9 is prepared, incorporating a digital dimension measuring device LS-7000 manufactured by Keyence Corporation, and the sample 10S is set on the measuring device. Specifically, one end of a long sample (magnetic tape MT) 10S is fixed by a fixing part 231.
  • the sample 10S is placed on five support members 232 1 to 232 5 that are substantially cylindrical and rod-like.
  • the sample 10S is placed on the five support members 232 1 to 232 5 so that the back surface of the sample 10S is in contact with the five support members 232 1 to 232 5.
  • All of the five support members 232 1 to 232 5 are made of stainless steel SUS304, and their surface roughness Rz (maximum height) is 0.15 ⁇ m to 0.3 ⁇ m.
  • the arrangement of the five rod-shaped support members 232 1 to 232 5 will be described with reference to FIG. 9. As shown in FIG. 9, the sample 10S is placed on the five support members 232 1 to 232 5.
  • the five support members 232 1 to 232 5 are hereinafter referred to as the "first support member 232 1 ,” the “second support member 232 2 ,” the “third support member 232 3 “ (having the slit 232A), the "fourth support member 232 4 ,” and the “fifth support member 232 5 “ (closest to the weight 233) from the side closest to the fixed portion 231.
  • the diameter of each of the five first to fifth support members 232 1 to 232 5 is 7 mm.
  • the distance d1 between the first support member 232 1 and the second support member 232 2 (particularly the distance between the central axes of these support members) is 20 mm.
  • the distance d2 between the second support member 2322 and the third support member 2323 is 30 mm.
  • the distance d3 between the third support member 2323 and the fourth support member 2324 is 30 mm.
  • the distance d4 between the fourth support member 2324 and the fifth support member 2325 is 20 mm.
  • the three support members 232 2 to 232 4 are arranged such that the portion of the sample 10S placed between the second support member 232 2 , the third support member 232 3 , and the fourth support member 232 4 forms a plane that is approximately perpendicular to the direction of gravity.
  • the third support member 232 3 is fixed so as not to rotate, but the other four, the first, second, fourth and fifth support members 232 1 , 232 2 , 232 4 , and 232 5 are all rotatable. Since the support member 232 3 is fixed so as not to rotate as described above, the contact angle between the support 232 3 and the sample 10S is made shallow in consideration of reducing friction between the support 232 3 and the sample 10S.
  • the sample 10S is held on the support members 232 1 to 232 5 so as not to move in the width direction of the sample 10S.
  • the support member 232 3 which is located between the light emitter 234 and the light receiver 235 and located approximately in the center between the fixing part 231 and the part where the load is applied, is provided with a slit 232A.
  • Light L is irradiated from the light emitter 234 to the light receiver 235 through the slit 232A.
  • the slit width of the slit 232A is 1 mm, and the light L can pass through the slit 232A without being blocked by the frame of the slit 232A.
  • a weight 233 is attached to the other end of the sample 10S to apply a load of 0.55N per 1/2 inch of the width of the sample 10S. That is, the load applied to the sample 10S is set to 0.55N when the width is 1/2 inch, and a load proportional to the width is set when the width is not 1/2 inch.
  • the sample 10S is left to stand in the above room temperature environment for 30 minutes. After leaving it to stand for 30 minutes, the temperature inside the chamber is raised, and when the inside of the chamber reaches the specified environment (temperature 50°C, relative humidity 40% RH), the measurement of the width of the sample 10S is started. While maintaining the inside of the chamber in the above specified environment (temperature 50°C, relative humidity 40% RH), the measurement of the width of the sample 10S is continued until 40 hours have passed since the start of the measurement.
  • the measuring device irradiates light L from the light emitter 234 to the light receiver 235 with a load of 0.55 N applied in the specified environment, and measures the width of the sample 10S to which a load is applied in the longitudinal direction. The width is measured when the sample 10S is not curled.
  • the light emitter 234 and the light receiver 235 are provided in the digital dimension measuring instrument LS-7000.
  • the absolute value of the width change amount ⁇ A of the sample 10S after 40 hours from the start of the measurement is calculated based on the width of the sample 10S after 1 hour from the start of the measurement (i.e., after 1 hour from the time when the inside of the chamber becomes the specified environment). That is, the absolute value of the width change amount ⁇ A of the sample 10S is obtained by subtracting the width of the sample 10S after 1 hour from the width of the sample 10S after 40 hours.
  • the positive or negative value of the width change amount ⁇ A of the sample 10S indicates the direction of the width change.
  • the width change amount ⁇ A When the width change amount ⁇ A is positive, it indicates that the width of the sample 10S has changed in the direction of widening, and when it is negative, it indicates that the width of the sample 10S has changed in the direction of narrowing.
  • the absolute values of the width change amount ⁇ A of the three samples 10S calculated as described above are arithmetically averaged to obtain the absolute value of the average width change amount ⁇ A of the magnetic tape MT.
  • the lower limit of the average tension response ⁇ W to the tension in the longitudinal direction in an environment of a temperature of 50° C. and a relative humidity of 40% RH is 700 ppm/N or more, preferably 715 ppm/N or more, more preferably 750 ppm/N or more, and even more preferably 800 ppm/N or more.
  • the average tension response ⁇ W is less than 700 ppm/N, the average tension response ⁇ W in a high-temperature environment is low, so that it becomes difficult to correct the creep change of the magnetic tape MT when the magnetic tape MT wound in the cartridge 10 is stored in a high-temperature environment for a long period of time and the creep change of the magnetic tape MT when the magnetic tape MT is run in a high-temperature environment for a long period of time by adjusting the running tension.
  • a high-temperature environment refers to an environment of 35° C. or more and 50° C. or less.
  • the upper limit of the average tension response ⁇ W is preferably 20,000 ppm/N or less, 15,000 ppm/N or less, more preferably 8,000 ppm/N or less, 5,000 ppm/N or less, 4,000 ppm/N or less, 3,000 ppm/N or less, or 2,000 ppm/N or less. If the average tension response ⁇ W is 15,000 ppm/N or less, even if there is variation in the tension control of the recording/playback device, the amount of change in the width of the magnetic tape MT in response to the variation can be reduced.
  • the average tension response ⁇ W may be set to a desired value by selecting at least one of the substrate 41 and the underlayer 42.
  • the average tension response ⁇ W may be set to a desired value by selecting at least one of the thickness of the substrate 41 and the material of the substrate 41.
  • the average tension response ⁇ W may also be set to a desired value by adjusting the stretching strength in the width direction and the length direction of the substrate 41. For example, by increasing the stretching in the width direction of the substrate 41, the average tension response ⁇ W decreases, and conversely, by increasing the stretching in the length direction of the substrate 41, the average tension response ⁇ W increases.
  • the average tension response ⁇ W may also be set to a desired value by selecting the type of the magnetic layer 43 from among a coating film and a sputtered film.
  • the average tension response ⁇ W may also be set to a desired value by providing a strain relaxation process after the calendar process and before the cutting process, and adjusting the environmental temperature and storage time in the strain relaxation process (e.g., storing for 48 hours in an environment at a temperature of 65°C).
  • the average tension response ⁇ W may also be set to a desired value by providing a strain relaxation process after the demagnetization process and before the servo pattern writing process, and adjusting the environmental temperature and storage time in the strain relaxation process (e.g., storing for 48 hours in an environment at a temperature of 55°C).
  • the average tension responsiveness ⁇ W may be set to a desired value, or by selecting two or more, the average tension responsiveness ⁇ W may be set to a desired value.
  • the average tension response ⁇ W is determined as follows. First, the 1/2 inch wide magnetic tape MT housed in the cartridge 10 is unwound, and three new samples of 250 mm length are cut from the ranges of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m from the connection 21 between the magnetic tape MT and the leader tape LT, respectively, to create three samples. In other words, when measuring the average width change ⁇ A, a new sample is cut out in addition to the sample that was cut out. The measuring device used for the measurement is the same as that used to measure the average width change ⁇ A of the magnetic recording medium described above.
  • the tension response ⁇ W of the three samples is calculated as follows. Loads of 0.2 N, 0.6 N, and 1.0 N are applied in the longitudinal direction of sample 10S, in that order, and the width of sample 10S is measured at loads of 0.2 N, 0.6 N, and 1.0 N. Next, the tension response ⁇ W is calculated using the following formula. Note that the measurement when a load of 0.6 N is applied is performed to check whether any abnormalities have occurred in the measurement (in particular to check that these three measurement results are linear), and this measurement result is not used in the following formula.
  • D (0.2 N) and D (1.0 N) respectively indicate the width of sample 10S when loads of 0.2 N and 1.0 N are applied in the longitudinal direction of sample 10S.
  • the average tension response ⁇ W is calculated by arithmetically averaging the tension responses ⁇ W of the three samples calculated as described above.
  • the value of the load applied to sample 10S is the value when the width of the magnetic tape MT (sample 10S) is 1/2 inch. If the width of the magnetic tape MT (sample 10S) is not 1/2 inch, a load proportional to the width is applied.
  • the tension responses ⁇ W of the three samples are calculated under conditions where a load proportional to the width is applied, and the average tension response ⁇ W is calculated by arithmetically averaging them.
  • the width of sample 10S when each load is applied is measured as follows. First, a measuring device as shown in Figure 9 is prepared, incorporating a Keyence digital dimension measuring device LS-7000 as the measuring device, and sample 10S is set on this measuring device.
  • the specific configuration of the measuring device is the same as that of the method for measuring the absolute value of the average width change ⁇ A described above.
  • the specific procedure for setting sample 10S on the measuring device is also the same as that of the method for measuring the absolute value of the average width change ⁇ A described above.
  • the measuring device is placed in a chamber controlled to a constant environment of 50°C temperature and 40% RH, and then a weight 233 for applying a load of 0.2 N is attached to the other end of sample 10S, and sample 10S is left to stand in the above environment for 2 hours. After leaving it to stand for 2 hours, the width of sample 10S is measured. Next, the weight for applying a load of 0.2 N is changed to a weight 233 for applying a load of 0.6 N, and 5 minutes after the change, the width of sample 10S is measured. Finally, the weight is changed to a weight 233 for applying a load of 1.0 N, and 5 minutes after the change, the width of sample 10S is measured.
  • the load applied to the sample 10S in the longitudinal direction can be changed by adjusting the weight of the weight 233.
  • the load is adjusted in proportion to the width of the magnetic tape MT.
  • the upper limit of the average storage modulus in the longitudinal direction of the substrate 41 in an environment at a temperature of 50° C. is preferably 9.0 GPa or less, more preferably 7.5 GPa or less, even more preferably 6.0 GPa or less, particularly preferably 5.5 GPa or less, and most preferably 4.5 GPa or less.
  • the magnetic tape MT has high elasticity in response to tension in the longitudinal direction in a high-temperature environment, and therefore the average tension response ⁇ W can be improved.
  • the lower limit of the average storage modulus in the longitudinal direction of the substrate 41 in an environment at a temperature of 50°C is preferably 3.0 GPa or more, and more preferably 3.5 GPa or more. If the upper limit of the storage modulus is 3.0 GPa or more, it is possible to prevent the elasticity of the magnetic tape MT from becoming excessively high in response to tension in the longitudinal direction. Therefore, it is possible to prevent a decrease in running stability.
  • the average longitudinal storage modulus of the magnetic tape MT is a value that indicates the resistance of the magnetic tape MT to longitudinal expansion and contraction due to external forces; the larger this value, the more difficult it is for the magnetic tape MT to longitudinal expansion and contraction due to external forces, and the smaller this value, the more easily the magnetic tape MT can longitudinally expand and contract due to external forces.
  • the average storage modulus in the longitudinal direction of the magnetic tape MT is a value related to the longitudinal direction of the magnetic tape MT, it also correlates with the difficulty of the magnetic tape MT to expand and contract in the width direction. In other words, the larger this value, the more difficult it is for the magnetic tape MT to expand and contract in the width direction due to external forces, and the smaller this value, the more easily the magnetic tape MT can expand and contract in the width direction due to external forces. Therefore, from the perspective of tension adjustment, it is advantageous for the average storage modulus in the longitudinal direction of the magnetic tape MT to be small as described above, 9.0 GPa or less.
  • the average storage modulus of the magnetic tape MT in the longitudinal direction is determined as follows. First, the 1/2 inch wide magnetic tape MT housed in the cartridge 10 is unwound, and the magnetic tape MT is punched out to the specified size from each of the ranges of 10m to 20m, 30m to 40m, and 50m to 60m in the longitudinal direction from the connection 21 between the magnetic tape MT and the leader tape LT to obtain three samples. Next, the storage modulus E' of the substrate 41 in the longitudinal direction in an environment at a temperature of 50°C is measured for each of the three samples. Next, the average storage modulus of the substrate 41 in the longitudinal direction in an environment at a temperature of 50°C is determined by arithmetically averaging the storage modulus E' of the three measured samples.
  • the storage modulus E' is measured by dynamic viscoelasticity measurement.
  • the dynamic viscoelasticity measurement is a temperature-dependent measurement, and is specifically performed as follows.
  • the magnetic tape MT is punched out using a puncher to obtain a sample having a length of 22.0 mm in the longitudinal direction of the tape and a width of 4.0 mm in the transverse direction. Both longitudinal ends of the sample are clamped to the measuring section of a dynamic viscoelasticity measuring device (RSAII, manufactured by TA Instruments).
  • the dynamic viscoelasticity measurement is then performed under the following measurement conditions.
  • Measurement temperature range -10°C to 140°C Temperature rise rate: 2°C/min Amplitude: Stretch and shrink with an amplitude of 0.1% of the initial length of the tape Measurement frequency: 10 Hz
  • Test Type "Strain-Controlled” Measurement Type: "Dynamic" Environment in which the device is placed: Temperature 25°C, relative humidity 50% RH Humidity control of the measurement section: None More detailed settings regarding the measurement conditions of the above device are as follows. That is, as described below, in the above measurement, the tension is adjusted so that it does not become 0 or less, and the strain is adjusted so that it does not fall below the lower limit value of the transducer.
  • Option setting Delay Before Test: OFF Auto Tension Mode Static Force Tracking Dynamic Force Auto Tension Direction Tension Initial Static Force 10.0g Static>Dynamic Force by 5.0% Minimum Static Force 1.0g Auto Tension Sensitivity 1.0g Auto Strain Max Applied Strain 0.1% Maximum Allowed Force 100.0g Min allowed force 2.0g Strain Adjustment 3.0% Meas Ops: Default setting
  • the value of the storage modulus E' at each measurement temperature can be obtained.
  • the storage modulus E' at a measurement temperature of 50°C can also be obtained.
  • the tendency of the change in the storage modulus E' with temperature change can be read.
  • the storage modulus E' of the magnetic tape MT can be adjusted, for example, by changing the type of material forming the substrate 41 and/or the composition and combination of the magnetic layer 43, underlayer 42, and back layer 44 (particularly the underlayer 42, which is often the thickest of these three layers).
  • the storage modulus E' can be adjusted by using PEN, PET, or PEEK as the material forming the base 41.
  • the shape of the graph plotting the storage modulus E' against temperature changes can be changed by selecting these resins.
  • the storage modulus E' can be adjusted, for example, by changing the type of resin component contained in the paint forming the magnetic layer 43, the underlayer 42, and the back layer 44 (particularly the underlayer 42) and/or adjusting the resin composition.
  • the storage modulus E' can be adjusted by adjusting the glass transition temperature Tg of the binder that can be contained in these layers.
  • the binder contains, for example, a polyurethane-based resin. More preferably, the underlayer 42 contains a polyurethane-based resin, which makes it easier to adjust the storage modulus E'.
  • the glass transition temperature Tg of the polyurethane-based resin contained in the underlayer 42 is preferably 10°C or higher and 140°C or lower, more preferably 30°C or higher and 130°C or lower, even more preferably 30°C or higher and 120°C or lower, and particularly preferably 55°C or higher and 120°C or lower. If the glass transition temperature Tg is too low, there is a possibility that adhesion may occur during storage at high temperatures. If the glass transition temperature Tg is too high, surface smoothing (calendaring) processing may become difficult.
  • the upper limit of the average thickness (average total thickness) tT of the magnetic tape MT is preferably 5.3 ⁇ m or less, more preferably 5.1 ⁇ m or less, even more preferably 4.9 ⁇ m or less, particularly preferably 4.6 ⁇ m or less, and most preferably 4.4 ⁇ m or less.
  • the lower limit of the average thickness tT of the magnetic tape MT is not particularly limited, but is, for example, 3.5 ⁇ m or more.
  • the average thickness t T of the magnetic tape MT is obtained as follows. First, the magnetic tape MT housed in the cartridge 10 is unwound, and the magnetic tape MT is cut into 250 mm lengths from the ranges of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m in the longitudinal direction from the joint 21 between the magnetic tape MT and the leader tape LT, respectively, to prepare three samples. Next, the thickness of each sample is measured at five positions using a Mitutoyo Laser Hologram (LGH-110C) as a measuring device, and the measured values (a total of 15 sample thicknesses) are arithmetically averaged to calculate the average thickness t T [ ⁇ m]. The five measurement positions are selected randomly from each sample so that they are different positions in the longitudinal direction of the magnetic tape MT.
  • LGH-110C Mitutoyo Laser Hologram
  • the average value of the arithmetic mean roughness Ra of the surface of the magnetic layer 43 is 1.9 nm or less, preferably 1.6 nm or less, and more preferably 1.3 nm or less.
  • the lower limit of the average value of the arithmetic mean roughness Ra of the surface of the magnetic layer 43 is preferably 1.0 nm or more, and more preferably 1.2 nm or more.
  • the average value of the arithmetic mean roughness R a is obtained as follows. First, the magnetic tape MT housed in the cartridge 10 is unwound, and the magnetic tape MT is cut into 250 mm lengths from the ranges of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m in the longitudinal direction from the joint 21 between the magnetic tape MT and the leader tape LT, respectively, to prepare three samples. Next, the surface of the magnetic layer 43 of each sample is observed with an AFM (Atomic Force Microscope) to obtain an AFM image of 40 ⁇ m x 40 ⁇ m.
  • AFM Anatomic Force Microscope
  • the AFM used is a Nano Scope IIIa D3100 manufactured by Digital Instruments, and the cantilever is made of single crystal silicon (Note 1), and the measurement is performed with a tapping frequency tuning of 200 Hz to 400 Hz.
  • the data used is subjected to filtering using Flatten order 2 and planefit order 3 XY as image processing.
  • the average value of the surface roughness Rb of the back surface is Rb ⁇ 6.0 [nm].
  • the average value of the surface roughness Rb of the back surface is in the above range, even more excellent electromagnetic conversion characteristics can be obtained.
  • the average value of the surface roughness Rb of the back surface is obtained as follows. First, the magnetic tape MT contained in the cartridge 10 is unwound, and the magnetic tape MT is cut into 100 mm lengths from the range of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m in the longitudinal direction from the joint 21 between the magnetic tape MT and the leader tape LT, respectively, to prepare three samples. Next, the sample is placed on a slide glass so that the surface to be measured (the surface on the magnetic layer side) faces up, and the end of the sample is fixed with mending tape. The surface shape is measured using a VertScan as a measuring device, and the surface roughness Rb of the back surface is obtained from the following formula based on the standard of ISO 25178.
  • the measurement conditions are as follows. Equipment: Non-contact roughness meter using optical interference (VertScan R5500GL-M100-AC, a non-contact surface and layer cross-sectional shape measurement system manufactured by Ryoka Systems Co., Ltd.) Objective lens: 20x Measurement area: 640 x 480 pixels (field of view: approx. 237 ⁇ m x 178 ⁇ m field of view) Measurement mode: phase Wavelength filter: 520 nm CCD: 1/3 inch Noise reduction filter: Smoothing 3x3 Surface correction: Correction using quadratic polynomial approximation surface Measurement software: VS-Measure Version 5.5.2 Analysis software: VS-viewer Version 5.5.5
  • the surface roughness is measured at five positions in the longitudinal direction of the magnetic tape MT as described above, and the average of the arithmetic mean roughnesses Sa (nm) automatically calculated from the surface profiles obtained at each position is taken as the surface roughness Rb (nm) of the back surface.
  • the five measurement positions are selected randomly from each sample so that they are different positions in the longitudinal direction of the magnetic tape MT.
  • the surface roughnesses Rb obtained from the three samples are arithmetically averaged to calculate the average surface roughness Rb .
  • the upper limit of the average value of the coercive force Hc2 of the magnetic layer 43 in the longitudinal direction of the magnetic tape MT is preferably 3000 Oe or less, more preferably 2000 Oe or less, even more preferably 1900 Oe or less, and particularly preferably 1800 Oe or less. If the average value of the coercive force Hc2 of the magnetic layer 43 in the longitudinal direction of the magnetic tape MT is 3000 Oe or less, sufficient electromagnetic conversion characteristics can be obtained even at high recording density.
  • the lower limit of the average value of the coercive force Hc2 of the magnetic layer 43 measured in the longitudinal direction of the magnetic tape MT is preferably 1000 Oe or more. If the average value of the coercive force Hc2 of the magnetic layer 43 measured in the longitudinal direction of the magnetic tape MT is 1000 Oe or more, demagnetization due to leakage flux from the recording head can be suppressed.
  • the average value of the coercive force Hc2 is obtained as follows. First, the magnetic tape MT contained in the cartridge 10 is unwound, and the magnetic tape MT is cut out to a length of 250 mm from each of the ranges of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m in the longitudinal direction from the connection part 21 between the magnetic tape MT and the leader tape LT. Each cut magnetic tape MT is layered in three pieces with double-sided tape so that the longitudinal direction of the magnetic tape MT is the same, and then punched out with a ⁇ 6.39 mm punch to prepare a measurement sample.
  • the M-H loop of the measurement sample (whole magnetic tape MT) corresponding to the longitudinal direction (running direction) of the magnetic tape MT is measured using a vibrating sample magnetometer (VSM).
  • VSM vibrating sample magnetometer
  • the coatings (undercoat layer 42, magnetic layer 43, back layer 44, etc.) of the magnetic tape MT cut out above are wiped off with acetone or ethanol, etc., leaving only the substrate 41.
  • Three of the obtained substrates 41 are then stacked with double-sided tape and punched out with a ⁇ 6.39 mm punch to prepare a sample for background correction (hereinafter simply referred to as the "correction sample").
  • the MH loop of the correction sample (substrate 41) corresponding to the longitudinal direction of the substrate 41 (the longitudinal direction of the magnetic tape MT) is then measured using a VSM.
  • a high-sensitivity vibration sample magnetometer "VSM-P7-15 type" manufactured by Toei Industry Co., Ltd. is used.
  • the measurement conditions are as follows: measurement mode: full loop, maximum magnetic field: 15 kOe, magnetic field step: 40 bits, time constant of locking amp: 0.3 sec, waiting time: 1 sec, number of MH averages: 20.
  • background correction is performed by subtracting the M-H loop of the correction sample (substrate 41) from the M-H loop of the measurement sample (entire magnetic tape MT), and the M-H loop after background correction is obtained.
  • the measurement and analysis program attached to the "VSM-P7-15" is used for this background correction calculation.
  • the coercive force Hc2 is obtained from the obtained M-H loop after background correction. Note that the measurement and analysis program attached to the "VSM-P7-15" is used for this calculation.
  • the average squareness ratio S1 of the magnetic layer 43 in the perpendicular direction of the magnetic tape MT is preferably 65% or more, more preferably 70% or more, even more preferably 75% or more, particularly preferably 80% or more, and most preferably 85% or more.
  • the average squareness ratio S1 is 65% or more, the perpendicular orientation of the magnetic powder is sufficiently high, and therefore, even more excellent electromagnetic conversion characteristics can be obtained.
  • the average squareness ratio S1 in the vertical direction of the magnetic tape MT is obtained as follows. First, the magnetic tape MT contained in the cartridge 10 is unwound, and the magnetic tape MT is cut out to a length of 250 mm from the range of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m in the longitudinal direction from the connection part 21 between the magnetic tape MT and the leader tape LT. Each cut magnetic tape MT is layered in three pieces with double-sided tape so that the longitudinal direction of the magnetic tape MT is the same, and then punched out with a ⁇ 6.39 mm punch to create a measurement sample.
  • the M-H loop of the measurement sample (the entire magnetic tape MT) corresponding to the vertical direction (thickness direction) of the magnetic tape MT is measured using a VSM.
  • the coatings (undercoat layer 42, magnetic layer 43, back layer 44, etc.) of the magnetic tape MT cut out above are wiped off with acetone or ethanol, etc., leaving only the substrate 41.
  • Three of the obtained substrates 41 are then stacked with double-sided tape, and punched out with a ⁇ 6.39 mm punch to prepare a sample for background correction (hereinafter simply referred to as the "correction sample").
  • the M-H loop of the correction sample (substrate 41) corresponding to the perpendicular direction of the substrate 41 (perpendicular direction of the magnetic tape MT) is measured using a VSM.
  • a high-sensitivity vibration sample magnetometer "VSM-P7-15 type" manufactured by Toei Industry Co., Ltd. is used.
  • the measurement conditions are as follows: measurement mode: full loop, maximum magnetic field: 15 kOe, magnetic field step: 40 bits, time constant of locking amp: 0.3 sec, waiting time: 1 sec, number of MH averages: 20.
  • background correction is performed by subtracting the M-H loop of the correction sample (substrate 41) from the M-H loop of the measurement sample (entire magnetic tape MT), to obtain the M-H loop after background correction.
  • the measurement and analysis program included with the "VSM-P7-15" is used to calculate this background correction.
  • the average squareness ratio S2 of the magnetic layer 43 in the longitudinal direction (running direction) of the magnetic tape MT is preferably 35% or less, more preferably 30% or less, even more preferably 25% or less, particularly preferably 20% or less, and most preferably 15% or less. If the average squareness ratio S2 is 35% or less, the magnetic powder will have a sufficiently high vertical orientation, resulting in even better electromagnetic conversion characteristics.
  • the average squareness ratio S2 in the longitudinal direction of the magnetic tape MT is determined in the same manner as the average squareness ratio S1, except that the M-H loop is measured in the longitudinal direction (running direction) of the magnetic tape MT and the substrate 41.
  • the upper limit of the average Young's modulus in the longitudinal direction of the magnetic tape MT is preferably 9.0 GPa or less, more preferably 8.0 GPa or less, even more preferably 7.5 GPa or less, and particularly preferably 7.1 GPa or less.
  • the average Young's modulus in the longitudinal direction of the magnetic tape MT is 9.0 GPa or less, the elasticity of the magnetic tape MT due to external forces is further increased, so that the adjustment of the width of the magnetic tape MT by tension adjustment becomes even easier. Therefore, off-track can be further appropriately suppressed, and data recorded on the magnetic tape MT can be reproduced more accurately.
  • the lower limit of the average Young's modulus in the longitudinal direction of the magnetic tape MT is preferably 3.0 GPa or more, more preferably 4.0 GPa or more.
  • the lower limit of the average Young's modulus in the longitudinal direction of the magnetic tape MT is 3.0 GPa or more, the decrease in running stability can be suppressed.
  • the average Young's modulus of the magnetic tape MT in the longitudinal direction is a value that indicates the resistance of the magnetic tape MT to expansion and contraction in the longitudinal direction due to external forces; the larger this value, the more difficult it is for the magnetic tape MT to expand and contract in the longitudinal direction due to external forces, and the smaller this value, the more easily the magnetic tape MT can expand and contract in the longitudinal direction due to external forces.
  • the average Young's modulus in the longitudinal direction of the magnetic tape MT is a value related to the longitudinal direction of the magnetic tape MT, it also correlates with the difficulty of the magnetic tape MT to expand and contract in the width direction. In other words, the larger this value, the more difficult it is for the magnetic tape MT to expand and contract in the width direction due to external forces, and the smaller this value, the more easily the magnetic tape MT can expand and contract in the width direction due to external forces. Therefore, from the perspective of tension adjustment, it is advantageous for the average Young's modulus in the longitudinal direction of the magnetic tape MT to be small as described above, 9.0 GPa or less.
  • the average Young's modulus in the longitudinal direction of the magnetic tape MT is determined as follows. First, the magnetic tape MT contained in the cartridge 10 is unwound, and three samples are obtained by cutting the magnetic tape MT to a length of 180 mm from each of the ranges of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m in the longitudinal direction from the connection 21 between the magnetic tape MT and the leader tape LT. Next, the Young's modulus in the longitudinal direction of each of the three samples is measured, and the average Young's modulus in the longitudinal direction of the magnetic tape MT is determined by arithmetically averaging these measured values.
  • the Young's modulus of each sample is measured using a tensile tester (Shimadzu Corporation, AG-100D) as follows. A jig capable of fixing the tape width (1/2 inch) is attached to the tensile tester, and the top and bottom of the tape width are fixed. The distance (length of the tape between the chucks) is set to 100 mm. After chucking the tape sample, stress is gradually applied in the direction in which the sample is pulled (longitudinal direction of the sample). The pulling speed is set to 0.1 mm/min. From the change in stress and the amount of elongation at this time, the Young's modulus is calculated using the following formula.
  • E(GPa) (( ⁇ N/S)/( ⁇ x/L)) ⁇ 10 ⁇ N: Change in stress (N) S: Cross-sectional area of the test piece (mm 2 ) ⁇ x: Elongation (mm) L: Distance between gripping jigs (mm)
  • the cross-sectional area S of the measurement sample is the cross-sectional area before the tensile operation, and is calculated by multiplying the width (1/2 inch) of the measurement sample by the thickness of the measurement sample.
  • the range of tensile stress when performing the measurement is set to the linear region tensile stress range depending on the thickness of the magnetic tape MT, etc.
  • the stress range is set to 0.5 N to 1.0 N, and the stress change ( ⁇ N) and elongation ( ⁇ x) at this time are used for calculation.
  • the above Young's modulus measurement is performed at 25°C ⁇ 2°C and 50% RH ⁇ 5% RH.
  • the average Young's modulus in the longitudinal direction of the substrate 41 is preferably 7.8 GPa or less, more preferably 7.0 GPa or less, even more preferably 6.6 GPa or less, and particularly preferably 6.4 GPa or less.
  • the average Young's modulus in the longitudinal direction of the substrate 41 is 7.8 GPa or less, the elasticity of the magnetic tape MT due to external force is further increased, so that the adjustment of the width of the magnetic tape MT by tension adjustment becomes easier. Therefore, off-track can be further appropriately suppressed, and data recorded on the magnetic tape MT can be reproduced more accurately.
  • the lower limit of the average Young's modulus in the longitudinal direction of the substrate 41 is preferably 2.5 GPa or more, more preferably 3.0 GPa or more.
  • the lower limit of the average Young's modulus in the longitudinal direction of the substrate 41 is 2.5 GPa or more, the decrease in running stability can be suppressed.
  • the average Young's modulus in the longitudinal direction of the substrate 41 is determined as follows. First, the magnetic tape MT contained in the cartridge 10 is unwound, and the magnetic tape MT is cut to a length of 180 mm from each of the ranges of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m in the longitudinal direction from the connection 21 between the magnetic tape MT and the leader tape LT to prepare three samples. Next, the underlayer 42, magnetic layer 43, and back layer 44 are removed from each cut sample to obtain the substrate 41. Using the substrates 41 of these three samples, the average Young's modulus in the longitudinal direction of the substrate 41 is determined in the same manner as the average Young's modulus in the longitudinal direction of the magnetic tape MT.
  • the thickness of the base 41 accounts for more than half of the total thickness of the magnetic tape MT. Therefore, the average Young's modulus in the longitudinal direction of the base 41 correlates with the difficulty of the magnetic tape MT to expand and contract due to an external force; the larger this value, the less likely the magnetic tape MT is to expand and contract in the width direction due to an external force, and the smaller this value, the more likely the magnetic tape MT is to expand and contract in the width direction due to an external force.
  • the average Young's modulus of the substrate 41 in the longitudinal direction is a value related to the longitudinal direction of the magnetic tape MT, it also correlates with the difficulty of the magnetic tape MT to expand and contract in the width direction. In other words, the larger this value, the more difficult it is for the magnetic tape MT to expand and contract in the width direction due to external forces, and the smaller this value, the more easily the magnetic tape MT can expand and contract in the width direction due to external forces. Therefore, from the perspective of tension adjustment, it is advantageous for the average Young's modulus of the substrate 41 in the longitudinal direction to be small, as described above, at 7.8 GPa or less.
  • a paint for forming the undercoat layer is prepared by kneading and dispersing non-magnetic powder, binder, etc. in a solvent.
  • a paint for forming the magnetic layer is prepared by kneading and dispersing magnetic powder, binder, lubricant, carbon, etc. in a solvent.
  • the following solvents, dispersing devices, and kneading devices can be used to prepare the paint for forming the magnetic layer and the paint for forming the undercoat layer.
  • Solvents used in preparing the above-mentioned paints include, for example, ketone-based solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; alcohol-based solvents such as methanol, ethanol, and propanol; ester-based solvents such as methyl acetate, ethyl acetate, butyl acetate, propyl acetate, ethyl lactate, and ethylene glycol acetate; ether-based solvents such as diethylene glycol dimethyl ether, 2-ethoxyethanol, tetrahydrofuran, and dioxane; aromatic hydrocarbon-based solvents such as benzene, toluene, and xylene; and halogenated hydrocarbon-based solvents such as methylene chloride, ethylene chloride, carbon tetrachloride, chloroform, and chlorobenzene. These may be used alone or
  • the kneading device used in the above-mentioned paint preparation may be, for example, a continuous twin-screw kneader, a continuous twin-screw kneader capable of dilution in multiple stages, a kneader, a pressure kneader, a roll kneader, etc., but is not limited to these devices.
  • the dispersing device used in the above-mentioned paint preparation may be, for example, a roll mill, a ball mill, a horizontal sand mill, a vertical sand mill, a spike mill, a pin mill, a tower mill, a pearl mill (for example, the "DCP Mill” manufactured by Eirich), a homogenizer, an ultrasonic dispersing machine, etc., but is not limited to these devices.
  • the underlayer forming paint is applied to one main surface of the substrate 41 and dried to form the underlayer 42.
  • the magnetic layer forming paint is applied to the underlayer 42 and dried to form the magnetic layer 43 on the underlayer 42.
  • the magnetic powder may be magnetically oriented in the thickness direction of the substrate 41, for example, by a solenoid coil.
  • the magnetic powder may be magnetically oriented in the running direction (longitudinal direction) of the substrate 41, and then magnetically oriented in the thickness direction of the substrate 41, for example, by a solenoid coil.
  • the vertical orientation degree (i.e., squareness ratio S1) of the magnetic powder can be further improved.
  • a back layer 44 is formed on the other main surface of the substrate 41. This results in a magnetic tape MT.
  • the squareness ratios S1 and S2 are set to the desired values by, for example, adjusting the strength of the magnetic field applied to the coating film of the magnetic layer-forming paint, the concentration of the solids in the magnetic layer-forming paint, and the drying conditions (drying temperature and drying time) of the coating film of the magnetic layer-forming paint.
  • the strength of the magnetic field applied to the coating film is preferably two to three times the coercive force of the magnetic powder.
  • the magnetic tape MT is wound into a roll, and then the magnetic tape MT is subjected to a heat treatment in this state to harden the underlayer 42 and the magnetic layer 43 .
  • the magnetic tape MT is cut to a predetermined width (for example, 1/2 inch width). In this manner, the magnetic tape MT is obtained.
  • the magnetic tape MT may be demagnetized, and then a plurality of servo patterns adjacent to each other in the width direction of the magnetic tape MT may be written on the magnetic layer 43 of the magnetic tape MT.
  • the magnetic tape MT may be run, the temperatures of the plurality of recording parts of the servo write head may be individually adjusted, and a plurality of servo patterns may be written on the magnetic layer 43 by the plurality of recording parts.
  • the tape drive device 30 is a data recording/reproducing device capable of recording data on the magnetic tape MT and reproducing data recorded on the magnetic tape MT.
  • the tape drive device 30 is configured to be capable of loading a cartridge 10.
  • the tape drive device 30 is configured to be capable of loading one cartridge 10, but may be configured to be capable of loading multiple cartridges 10 simultaneously.
  • the tape drive device 30 includes a spindle 31, a take-up reel 32, a spindle drive device 33, a reel drive device 34, a plurality of guide rollers 35, a drive head 36, a reader/writer 37, and a control device 38.
  • the tape drive device 30 may further include a thermometer 39, a hygrometer 40, etc.
  • the spindle 31 has a head portion that engages with the chucking gear of the tape reel 13 through an opening 14 formed in the lower shell 11b of the cartridge 10.
  • the spindle 31 lifts the tape reel 13 a predetermined distance against the biasing force of the reel spring 16, and releases the reel lock function of the reel lock member 17.
  • the tape reel 13 is rotatably supported inside the cartridge case 11 by the spindle 31.
  • the spindle drive unit 33 rotates the spindle 31 in response to commands from the control unit 38.
  • the take-up reel 32 is configured to be able to secure the tip (leader pin 22) of the magnetic tape MT that is pulled out of the cartridge 10 via a tape loading mechanism (not shown).
  • the multiple guide rollers 35 guide the magnetic tape MT so that the tape path formed between the cartridge 10 and the take-up reel 32 has a predetermined relative positional relationship with the drive head 36.
  • the reel drive unit 34 rotates the take-up reel 32 in response to commands from the control unit 38.
  • the spindle 31 and take-up reel 32 rotate by the spindle drive device 33 and reel drive device 34, and the magnetic tape MT runs.
  • the magnetic tape MT can run back and forth in the forward direction indicated by arrow A1 in FIG. 10 (the direction in which it unwinds from the tape reel 13 side to the take-up reel 32 side), and in the reverse direction indicated by arrow A2 (the direction in which it rewinds from the take-up reel 32 side to the tape reel 13 side).
  • the tension in the longitudinal direction (X-axis direction) of the magnetic tape MT during data recording/playback can be adjusted by controlling the rotation of the spindle 31 by the spindle drive device 33 and the rotation of the take-up reel 32 by the reel drive device 34. Adjustment of the tension of the magnetic tape MT may be performed by controlling the movement of the guide roller 35, a tension control unit including a dancer roller, etc., instead of (or in addition to) controlling the rotation of the spindle 31 and take-up reel 32.
  • the tension of the magnetic tape MT when it is running is typically set to the same value (hereinafter also referred to as the reference tension) as the tension when the servo pattern 6 is recorded on the magnetic tape MT by the servo pattern recording device 100 described below.
  • the tape drive device 30 by configuring the tape drive device 30 to be tension adjustable, it is also possible to accommodate changes in the width dimension of the magnetic tape MT caused by internal distortion of the magnetic tape MT or changes over time. Specifically, if the width dimension of the magnetic tape MT changes in the direction of widening, the tension is adjusted higher than the reference tension, and if the servo band pitch changes in the direction of narrowing, the tension is adjusted lower than the reference tension.
  • Information regarding the reference tension when recording the servo pattern and the width dimension of the magnetic tape MT at the reference tension is stored in the cartridge memory 9.
  • the reader/writer 37 is configured to be able to record management information in the cartridge memory 9 in response to a command from the control device 38.
  • the reader/writer 37 is also configured to be able to read management information from the cartridge memory 9 in response to a command from the control device 38.
  • the management information includes product information of the tape cartridge 10 and the magnetic tape MT, usage history information, and an overview of the information recorded on the magnetic tape MT.
  • the product information includes manufacturing information, the number of recording tracks 5 of the magnetic tape MT, unique information such as an ID, etc.
  • the usage history information includes the access date and time, address information, communication history with the reader/writer 37, and the presence or absence of abnormalities during loading/unloading into the tape drive device 30.
  • the ISO 14443 method is used as the communication method between the reader/writer 37 and the cartridge memory 9.
  • the control device 38 includes, for example, a control unit, a memory unit, a communication unit, etc.
  • the control unit is composed of, for example, a CPU (Central Processing Unit), etc., and performs overall control of each part of the tape drive device 30 according to a program stored in the memory unit.
  • CPU Central Processing Unit
  • the storage unit includes a non-volatile memory in which various data and programs are recorded, and a volatile memory used as a working area for the control unit.
  • the above-mentioned various programs may be read from a portable recording medium such as an optical disk or semiconductor memory, or may be downloaded from a server device on a network.
  • the storage unit temporarily or non-temporarily stores information from the cartridge memory 9 read from the reader/writer 37, the outputs of the thermometer 39 and the hygrometer 40, etc.
  • the communication unit is configured to be capable of communicating with other devices such as a PC (Personal Computer) and a server device.
  • the drive head 36 is configured to be capable of recording data onto the magnetic tape MT in response to commands from the control device 38.
  • the drive head 36 is also configured to be capable of reproducing data written onto the magnetic tape MT in response to commands from the control device 38.
  • the drive head 36 is composed of a head unit having, for example, two servo read heads and multiple data write/read heads.
  • Figure 11 is a schematic diagram of the drive head 36 as seen from the bottom (tape running surface).
  • the drive head 36 includes a first drive head portion 36a and a second drive head portion 36b.
  • the first drive head portion 36a and the second drive head portion 36b are configured symmetrically in the X'-axis direction (the running direction of the magnetic tape MT (the X-axis direction in FIG. 3)).
  • the first drive head portion 36a and the second drive head portion 36b are configured to be movable in the Y'-axis direction (the width direction of the magnetic tape MT (the Y-axis direction in FIG. 3)).
  • the first drive head unit 36a is a drive head used when the magnetic tape MT is running in the forward direction (direction A1 in FIG. 10).
  • the second drive head unit 36b is a drive head used when the magnetic tape MT is running in the reverse direction (direction A2 in FIG. 10).
  • the first drive head unit 36a and the second drive head unit 36b are basically configured in the same way, so the first drive head unit 36a will be described as a representative example.
  • the first drive head unit 36a has a head body 131, two servo read heads 132, and multiple data write/read heads 133.
  • the servo read head 132 is configured to be able to reproduce servo signals by reading the magnetic flux generated from the magnetic information recorded on the servo band s of the magnetic tape MT using an MR element (MR: Magneto Resistive effect) or the like. In other words, the servo read head 132 reproduces the servo signal by reading the servo pattern 6 recorded on the servo band s.
  • MR Magneto Resistive effect
  • the servo read heads 132 are provided on both ends of the width direction (Y'-axis direction in FIG. 11) of the head body 131, one on each side.
  • MR elements include anisotropic magnetoresistive effect elements (AMR: Anisotropic Magneto Resistive effect), giant magnetoresistive effect elements (GMR: Giant Magneto Resistive effect), tunnel magnetoresistive effect elements (TMR: Tunnel Magneto Resistive effect), etc.
  • the servo read head pitch P1 which is the distance in the width direction (Y'-axis direction) between the two servo read heads 132, is set to the center value (2858.8 ⁇ m) of the standard value of the distance (servo band pitch) between two adjacent servo bands s on the magnetic tape MT.
  • the data write/read heads 133 are arranged at equal intervals along the width direction (Y'-axis direction).
  • the data write/read heads 133 are also arranged at a position sandwiched between two servo read heads 132.
  • the number of data write/read heads 133 is, for example, about 20 to 40, but this number is not particularly limited, and in this embodiment, there are 32 (32 channels).
  • the data write/read head 133 includes a data write head 134 and a data read head 135.
  • the data write head 134 is configured to be capable of recording a data signal on the data band d of the magnetic tape MT by the magnetic field generated from the magnetic gap.
  • the data read head 135 is configured to be capable of reproducing the data signal by reading the magnetic field generated from the magnetic information recorded on the data band d of the magnetic tape MT using an MR element or the like.
  • MR elements include anisotropic magnetoresistance elements (AMR), giant magnetoresistance elements (GMR), and tunnel magnetoresistance elements (TMR).
  • the data write head 134 is positioned to the left of the data read head 135 (upstream when the magnetic tape 1 flows in the forward direction).
  • the data write head 134 is positioned to the right of the data read head 135 (upstream when the magnetic tape MT flows in the reverse direction).
  • the data read head 135 is capable of reproducing a data signal immediately after the data write head 134 writes the data signal to the magnetic tape MT.
  • the data signal written by the data write head 134 of the first drive head unit 36a may be reproduced by the data read head 135 of the second drive head unit 36b.
  • FIG. 12 is a diagram showing the state when the first drive head unit 36a is recording/reproducing a data signal. Note that the example shown in FIG. 12 shows the state when the magnetic tape MT is running in the forward direction (A1 direction).
  • one of the two servo read heads 132 is positioned on one of the two adjacent servo bands s and reads the servo pattern 6 on this servo band s.
  • the other of the two servo read heads 132 is positioned on the other of the two adjacent servo bands s and reads the servo pattern 6 on this servo band s.
  • the control device 38 determines whether the servo read head 132 is accurately tracing the desired servo trace line T (see FIG. 5) based on the reproduced waveform of the servo pattern 6.
  • the first stripe group 61 and the second stripe group 62 in the servo pattern 6 are inclined in opposite directions with respect to the width direction (Y-axis direction). Therefore, on the upper servo trace line T, the distance in the longitudinal direction (X-axis direction) between the first stripe group 61 and the second stripe group 62 is relatively narrow. On the other hand, on the lower servo trace line T, the distance in the longitudinal direction (X-axis direction) between the first stripe group 61 and the second stripe group 62 is relatively wide.
  • the current position of the servo read head 132 in the width direction (Y-axis direction) relative to the magnetic tape MT can be found.
  • the control device 38 can therefore determine whether the servo read head 132 is accurately tracing the target servo trace line T based on the reproduced waveform of the servo pattern 6. If the servo read head 132 is not accurately tracing the target servo trace line T, the control device 38 moves the drive head 36 in the width direction (Y' axis direction) to adjust the position or tracking of the drive head 36. The method of measuring the servo trace line T traced by the servo read head 132 will be described later (see Figures 16 and 17).
  • the data write/read head 133 adjusts its position to follow the servo trace line T and records a data signal in the recording track 5.
  • the magnetic tape MT When the magnetic tape MT has been completely pulled out from the tape cartridge 10, the magnetic tape MT now runs in the reverse direction (A2 direction).
  • the second drive head portion 36b is used as the drive head 36.
  • the servo trace line T used is the servo trace line T adjacent to the previous servo trace line T.
  • a data signal is recorded by the data write head 134 of the second drive head portion 36b on the recording track 5 adjacent to the recording track 5 on which the data signal was previously recorded.
  • the magnetic tape MT is made to travel back and forth many times, with the running direction changed between forward and reverse, while data signals are recorded on the recording tracks 5.
  • the first drive head unit 36a or the second drive head unit 36b contains 32 data write/read heads 133.
  • the servo pattern 6 has a data structure that complies with the "ECMA-319 standard.”
  • Fig. 13A is a schematic plan view showing an example of the arrangement of the servo pattern 6, and
  • Fig. 13B is a diagram showing the reproduced waveform.
  • the servo pattern includes multiple azimuthal slope patterns of two or more different shapes.
  • the position of the servo read head 132 is recognized based on the time interval between reading two slope patterns of different shapes and the time interval between reading two slope patterns of the same shape. Based on the position of the servo read head 132 thus recognized, the position of the drive head 36 in the width direction (Y-axis direction) of the magnetic tape MT is controlled (see Figures 11 and 12).
  • the servo pattern 6 forms a servo frame SF having a first servo subframe SSF1 and a second servo subframe SSF2.
  • the servo frames SF are arranged in the longitudinal direction of the magnetic tape MT at predetermined intervals along the longitudinal direction of the tape.
  • Each servo frame SF encodes one bit, either "1" or "0.” In other words, one servo frame SF corresponds to one bit.
  • the first servo subframe SSF1 is composed of an A burst 6a and a B burst 6b.
  • the A burst 6a is composed of five straight line patterns (corresponding to the first stripe group 61 in FIG. 5) that are inclined in a first direction relative to the longitudinal direction of the tape
  • the B burst 6b is composed of five straight line patterns (corresponding to the second stripe group 62 in FIG. 5) that are inclined in a second direction opposite to the first direction relative to the longitudinal direction of the tape.
  • the second servo subframe SSF2 is composed of a C burst 6c and a D burst 6d.
  • the C burst 6c is composed of four straight line patterns inclined in the first direction (corresponding to the first stripe group 61 in FIG. 5)
  • the D burst 6d is composed of four straight line patterns inclined in the second direction (corresponding to the second stripe group 62 in FIG. 5).
  • the length of the servo frame SF and each servo subframe SSF1, SSF2, and the arrangement interval of the inclined portions that incline each burst 6a to 6d can be set arbitrarily according to the type and specifications of the magnetic tape, etc.
  • the reproduced waveform of the servo pattern 6 typically exhibits a burst waveform as shown in FIG. 13(B), where signal S6a corresponds to A burst 6a, signal S6b corresponds to B burst 6b, signal S6c corresponds to C burst 6c, and signal S6d corresponds to D burst 6d.
  • a position error signal is generated by reading the servo patterns 6 on two servo bands adjacent to one data band, and the recording/playback head is appropriately positioned relative to the recording track in that data band.
  • the servo patterns 6 are read from a magnetic tape MT running at a predetermined speed, and the ratio of the distance (time interval) AC between A burst 6a and C burst 6c, which are arrays of inclined patterns of the same shape, to the distance (time interval) AB between A burst 6a and B burst 6b, which are arrays of inclined patterns of different shapes (or the ratio of the distance CA between C burst 6c and A burst 6a to the distance CD between C burst 6c and D burst 6d) is calculated, and the drive head 36 is moved in the tape width direction (Y' axis direction) so that this value becomes a set value determined for each recording track (see FIG. 12).
  • a different combination of servo band identification information is written for each data band in each servo band s (s0 to s4).
  • the combination of servo band identification information obtained from two servo bands s2 and s3 adjacent to the data band d0 is different from the combination of servo band identification information obtained from servo bands s1 and s2 adjacent to the data band d1, the combination of servo band identification information obtained from servo bands s3 and s4 adjacent to the data band d2, and the combination of servo band identification information obtained from two servo bands s0 and s1 adjacent to the data band d3.
  • the servo band identification information obtained from two servo bands adjacent to one data band different from the servo band identification information obtained from two servo bands adjacent to another data band, it is possible to identify each individual data band.
  • servo band identification information is embedded in the servo bands.
  • the servo band identification information is multiple-bit information, typically 4 bits, but may be 8 bits or multiple bits other than 4 bits and 8 bits.
  • the two types of servo bands include a first servo band in which first servo band identification information is recorded, and a second servo band in which second servo band identification information is recorded.
  • the first servo band identification information is 4-bit information (e.g., "1001")
  • the second servo band identification information is 4-bit information (e.g., "0111") that is different from the first servo band identification information.
  • the combination of the codes "0" and “1" constituting the first and second servo band identification information is identified from the reproduced waveform of the servo pattern 6.
  • the reproduced waveform of the servo pattern 6 corresponds to a modulated wave of the codes "0" and "1”
  • the first and second servo band identification information is read out by demodulating the reproduced waveform and combining, for example, four bits.
  • the first and second servo band identification information will be described below with reference to Figures 14 and 15.
  • both the first servo pattern 601 and the second servo pattern 602 are composed of a combination of two types of servo frames SF including a servo frame SF1 representing one code (e.g., "1") and a servo frame SF0 representing the other code (e.g., "0").
  • Each servo frame SF1, SF0 is common in that it has a servo frame SF consisting of a first servo subframe SSF1 and a second servo subframe SSF2 as a constituent unit, but the first servo subframe SSF1 (A burst 6a and B burst 6b) is different from each other.
  • the five slope patterns that respectively constitute A burst 6a and B burst 6b are respectively positioned such that the second and fourth slope portions are respectively biased towards the third slope portion. Therefore, for the A burst 6a and the B burst 6b in the servo frame SF0, the distance between the second and third slopes, and between the third and fourth slopes, is the smallest, and the distance between the first and second slopes, and between the fourth and fifth slopes, is the largest.
  • Figures 15(A) and (B) show the reproduced waveforms SP1 and SP2 of the first servo pattern 601 and the second servo pattern 602, respectively.
  • the reproduced waveforms of each servo frame SF1 and SF0 are composed of burst signals having peaks at positions corresponding to the slopes of each of the burst portions 6a to 6d.
  • the configurations of the A burst 6a and the B burst 6b are different from those of the A burst 6a and the B burst 6b of servo frame SF1, so that the peak positions of the burst signals S6a and S6b are shifted corresponding to the intervals between the different slopes.
  • the servo frame SF1 shown in Figure 15(A) represents one bit "1”
  • the servo frame SF0 shown in Figure 15(B) represents another bit "0”.
  • the servo band pitch is an index indicating the distance between two servo bands (servo bands s2, s3) adjacent to one data band (for example, data band d0). More specifically, the servo band pitch refers to the distance between the center of the servo pattern recorded in one of the two servo bands and the center of the servo pattern recorded in the other servo band. In the following description, the servo band pitch may also be used to mean the difference from the servo read head pitch P1 (see FIG. 11).
  • the average value of the difference between two adjacent servo band pitches in a plurality of servo bands over the entire length of the magnetic tape MT is 100 nm or less, preferably 95 nm or less, more preferably 90 nm or less, and even more preferably 85 nm or less.
  • the servo band pitch is measured by the tape drive device 30.
  • the drive head 36 tracks the data band d0 sandwiched between the servo band s2 and the servo band s3, as shown in FIG. 16.
  • the method of measuring the servo band pitch using the tape drive device 30 is as described above, in which the magnetic tape MT is run by the tape drive device 30, the servo trace lines T on each servo band of the two servo read heads 132 are measured, and the servo band pitch is measured from the relative position of each measured servo trace line T with respect to the servo pattern 6.
  • the spacing between the servo trace lines T shown by solid lines in FIG. 16 indicates the servo band pitch (servo read head pitch P1, which is the spacing between the two servo read heads 132 of the drive head 36) when the width of the magnetic tape MT does not change. Also, the spacing between the servo trace lines T shown by dashed lines in FIG. 16 corresponds to the servo band pitch (P2) when the width of the magnetic tape MT increases.
  • FIG. 17 is a diagram explaining a method for measuring the servo trace line T.
  • the tape drive device 30 outputs a servo playback signal having a waveform according to the position of the servo trace line T relative to the servo pattern 6 (see FIG. 15).
  • the distance AC between A burst and C burst, which are arrays of inclination patterns of the same shape, and the distance AB between A burst and B burst, which are arrays of inclination patterns of different shapes are calculated, and the position of the servo trace line T of each servo read head 132 is measured using the following formula [Equation 4].
  • is the azimuth angle of each of the inclination patterns, which corresponds to the angle ⁇ in FIG. 5, and is set to 12° in this example.
  • the distance AC may be the distance AC1 between the first slope portions of the A burst and the C burst, the distance AC2 between their second slope portions, the distance AC3 between their third slope portions, or the distance AC4 between their fourth slope portions.
  • These distances AC (AC1 to AC4) refer to the distances between the positions (upper peak positions) that indicate the maximum positive amplitude values in the servo playback waveform.
  • the distance AB may be the distance AB1 between the first inclined portions of the A burst and the B burst, the distance AB2 between their second inclined portions, the distance AB3 between their third inclined portions, or the distance AB4 between their fourth inclined portions.
  • distance AB1 when distance AC1 is adopted, distance AB1 is adopted, when distance AC2 is adopted, distance AB2 is adopted, when distance AC3 is adopted, distance AB3 is adopted, and when distance AC4 is adopted, distance AB4 is adopted.
  • the servo band pitch is calculated from the difference in the values representing the position of each servo trace line T on the servo pattern, which is calculated from the ratio of distances AB and AC, using the above formula [4].
  • the difference is taken between the measurement value of the servo band on the tape edge side (servo band s3) and the measurement value of the servo band on the tape center side (servo band s2).
  • the positive or negative value indicates the direction of change in the tape width, with a positive value corresponding to a narrowing of the servo band pitch and a negative value corresponding to a widening of the servo band pitch. If the difference is zero, it means that there is no change in the tape width.
  • the servo band pitch is preferably determined from the difference between a large number of servo frames, and may be, for example, the average of measured values calculated from the difference between 100 and 100,000 servo frames.
  • the tape tension during measurement is the tension during recording of the servo pattern 6 (reference tension, for example, 0.55 N), and the measurement is performed at a constant tension over the entire length of the magnetic tape MT.
  • the method of measuring the servo trace line T is not limited to the above example.
  • the distance CA between the C burst and the A burst and the distance CD between the C burst and the D burst may be calculated, and the position of the servo trace line T may be measured using the following formula [5].
  • the distance CA may be the distance CA1 between the first inclined portions of the C burst and the A burst, the distance CA2 between their second inclined portions, the distance CA3 between their third inclined portions, or the distance CA4 between their fourth inclined portions.
  • These distances CA (CA1 to CA4) refer to the distances between the positions that indicate the maximum positive amplitude values in the servo playback waveform.
  • the distance CD may be the distance CD1 between the first inclined portions of the C burst and the D burst, the distance CD2 between their second inclined portions, the distance CD3 between their third inclined portions, or the distance CD4 between their fourth inclined portions.
  • distance CD1 when distance CA1 is adopted, distance CD1 is adopted, when distance CA2 is adopted, distance CD2 is adopted, when distance CA3 is adopted, distance CD3 is adopted, and when distance CA4 is adopted, distance CD4 is adopted.
  • the servo band pitch may be measured by using the average value of the measurement value obtained using the formula [4] and the measurement value obtained using the formula [5].
  • the distance between the positions (lower peak positions) showing the maximum negative value of the amplitude in the servo reproduction waveform may be used as the distances AC and AB in the formula [4] and the distances CA and CD in the formula [5].
  • the average value of the distance between the positions (upper peak positions) showing the maximum positive value of the amplitude in the servo reproduction waveform and the distance between the positions (lower peak positions) showing the maximum negative value may be used as the distances AC and AB in the formula [4] and the distances CA and CD in the formula [5].
  • the distance AB is 38.5 ⁇ m and the distance AC is 76 ⁇ m in the servo band s2, and the distance AB is 37.5 ⁇ m and the distance AC is 76 ⁇ m in the servo band s3.
  • x (76/2 tan 12°) 90.5641 [ ⁇ m]
  • x (76/2 tan 12°) 88.2118 [ ⁇ m].
  • the distance AB is 38 ⁇ m and the distance AC is 76 ⁇ m for both servo band s2 and servo band s3.
  • the distance is 89.3880 [ ⁇ m] for both servo band s2 and servo band s3, and the difference between them is 0 [ ⁇ m].
  • the servo band pitch in this case is the same as the servo read head pitch P1.
  • the tape drive device 30 controls the tension of the magnetic tape MT so that the measured servo pattern pitch becomes equal to the servo read head pitch P1.
  • servo signals are read from two servo bands that sandwich one data band from which data is to be recorded or reproduced, and a determination is made from each read servo signal as to whether the pitch of these two servo bands is wider or narrower than the servo read head pitch P1. If the servo band pitch is wider than the servo read head pitch P1, the tension is increased, and if the servo band pitch is narrower than the servo read head pitch P1, the tension is decreased. In this way, by adjusting the magnitude of the tension according to the magnitude of the servo band pitch, it is possible to stably perform the desired tracking control for the data band.
  • the tape drive device 30 acquires the relationship between the servo band pitch and tension for one data band by running the tape once back and forth, and records the acquired data in the cartridge memory 9.
  • the tape drive device 30 similarly applies the relationship between the servo band pitch and tension measured for the one data band when recording and reproducing data for other data bands.
  • the longitudinal direction (Y'-axis direction) of the drive head 36 may be arranged to be inclined at a predetermined angle ⁇ (azimuth angle ⁇ ) with respect to the width direction (Y-axis direction) of the magnetic tape MT.
  • the azimuth angle ⁇ of the drive head 36 is adjusted to accommodate variations in the width of the magnetic tape MT.
  • the azimuth angle ⁇ of the drive head 36 is made smaller, and conversely, when the width of the magnetic tape MT becomes relatively narrower, the azimuth angle ⁇ of the drive head 36 is made larger.
  • the control device 38 acquires information on the width of the magnetic tape MT from a width measurement unit (not shown) (or predicts the width of the magnetic tape MT from a servo signal), and adjusts the azimuth angle ⁇ of the drive head 36 by an angle adjustment unit (not shown) based on the information on the width of the magnetic tape MT.
  • Fig. 18 is a schematic front view showing a servo pattern recording device 100 according to an embodiment of the present technology.
  • Fig. 19 is a partially enlarged view showing a part of the servo pattern recording device 100.
  • the servo pattern recording device 100 comprises, in order from the upstream side in the transport direction of the magnetic tape MT, a feed roller 111, a pre-processing unit 112, a servo write head 113, a reproducing head unit 114, and a take-up roller 115.
  • the servo pattern recording device 100 further comprises a drive unit 120 and a controller 130.
  • the controller 130 has a control unit that comprehensively controls each unit of the servo pattern recording device 100, a memory unit that stores various programs and data required for processing by the control unit, a display unit that displays data, an input unit for inputting data, etc.
  • the feed roller 111 is capable of rotatably supporting the rolled magnetic tape MT (before the servo pattern 6 is recorded).
  • the feed roller 111 is rotated in response to the drive of a drive source such as a motor, and feeds out the magnetic tape MT downstream in response to the rotation.
  • the winding roller 115 is capable of rotatably supporting the rolled magnetic tape MT (after the servo pattern 6 is recorded).
  • the winding roller 115 rotates in synchronization with the delivery roller 111 in response to the drive of a driving source such as a motor, and winds up the magnetic tape MT on which the servo pattern 6 is recorded as it rotates.
  • the delivery roller 111 and the winding roller 115 are capable of moving the magnetic tape MT at a constant speed on the transport path.
  • the servo write head 113 is arranged, for example, on the upper side (magnetic layer 43 side) of the magnetic tape MT.
  • the servo write head 113 may also be arranged on the lower side (substrate 41 side) of the magnetic tape MT.
  • the servo write head 113 generates a magnetic field at a predetermined timing in response to a square wave pulse signal, and applies the magnetic field to a part of the magnetic layer 43 (after pre-processing) of the magnetic tape MT.
  • the servo write head 113 magnetizes a portion of the magnetic layer 43 in the first direction to record the servo pattern 6 on the magnetic layer 43 (see the black arrows in FIG. 19 for the magnetization direction).
  • the servo write head 113 is capable of recording the servo pattern 6 on each of the five servo bands s0 to s4 when the magnetic layer 43 passes below the servo write head 113.
  • the first direction which is the magnetization direction of the servo pattern 6, includes a vertical component perpendicular to the top surface of the magnetic layer 43. That is, in this embodiment, because the magnetic layer 43 contains vertically oriented or non-oriented magnetic powder, the servo pattern 6 recorded in the magnetic layer 43 includes a vertical magnetization component.
  • the pre-processing unit 112 is arranged, for example, upstream of the servo write head 113, below the magnetic tape MT (towards the substrate 41).
  • the pre-processing unit 112 may also be arranged above the magnetic tape MT (towards the magnetic layer 43).
  • the pre-processing unit 112 includes a permanent magnet 112a that can rotate around the Y'-axis direction (width direction of the magnetic tape MT) in FIG. 15 as the central axis of rotation.
  • the shape of the permanent magnet 112a is, for example, a cylindrical shape or a polygonal prism shape, but is not limited to these.
  • the permanent magnet 112a Before the servo pattern 6 is recorded by the servo write head 113, the permanent magnet 112a applies a magnetic field to the entire magnetic layer 43 using a DC magnetic field, thereby demagnetizing the entire magnetic layer 43. This allows the permanent magnet 112a to magnetize the magnetic layer 43 in advance in a second direction opposite to the magnetization direction of the servo pattern 6 (see the white arrow in Figure 19). In this way, by making the two magnetization directions opposite each other, the reproduced waveform of the servo signal obtained by reading the servo pattern 6 can be made symmetrical in the up and down directions ( ⁇ ).
  • the rotation angle of the permanent magnet 112a may be set arbitrarily, the entire magnetic layer 43 may be demagnetized, and then the servo pattern 6 may be recorded on the magnetic layer 43, and the rotation angle of the permanent magnet 112a centered on the width direction of the magnetic tape MT may be adjusted based on the inclination of the reproduced waveform.
  • the reproducing head unit 114 is disposed on the upper side (magnetic layer 43 side) of the magnetic tape MT, downstream of the servo write head 113.
  • the reproducing head unit 114 reads the servo pattern 6 from the magnetic layer 43 of the magnetic tape MT, which has been preprocessed by the preprocessing unit 112 and on which the servo pattern 6 has been recorded by the servo write head 113.
  • the reproduced waveform of the servo pattern 6 read by the reproducing head unit 114 is displayed on the screen of the display unit.
  • the reproducing head unit 114 detects magnetic flux generated from the surface of the servo band s when the magnetic layer 43 passes under the reproducing head unit 114. The magnetic flux detected at this time becomes the reproduced waveform of the servo pattern 6 as a servo signal.
  • FIG. 20 is a perspective view showing the general configuration of the servo write head 113
  • FIG. 21 is a schematic cross-sectional view of the main parts of the servo write head 113
  • FIG. 22 is a schematic plan view of the main parts of the servo write head 113.
  • the servo write head 113 has multiple magnetic cores h0-h4 for recording servo patterns 6 on each servo band s0-s4 of the magnetic tape MT, and an adhesive layer hs that bonds between each of the magnetic cores h0-h4.
  • Each of the magnetic cores h0 to h4 has a head block 402 made of a soft magnetic material such as sendust, permalloy, or ferrite, and a coil 70 wound around the head block 402.
  • Each of the magnetic cores h0 to h4 constitutes a recording section 401 arranged corresponding to each of the servo bands s0 to s4 of the magnetic tape MT, and has a magnetic gap g for recording a servo pattern 6 on each servo band s.
  • the magnetic gap g consists of a pair of straight lines ("/" and " ⁇ ") that are inclined in opposite directions, one straight line "/" records the A burst 6a and C burst 6c, and the other straight line “ ⁇ ” records the B burst 6b and D burst 6d.
  • the magnetic gaps g of each head block h1 to h5 are arranged so as to be aligned on an axis parallel to the longitudinal direction (Y' direction) of the servo write head 113.
  • the arrangement interval of the magnetic gaps g is the center-to-center distance in the longitudinal pattern width Pw of the servo write head 113, and its size is the servo read head pitch P1.
  • Each magnetic core h0 to h4 is magnetically separated from each other, and is configured to be able to record different types of servo patterns 6 simultaneously in two or more servo bands.
  • FIG. 23 is a block diagram showing the configuration of the drive unit 120.
  • the drive unit 120 has a converter 121 that converts servo information into pulse information based on the output from the controller 130 (see FIG. 18), a signal generating unit 122 that generates a pulse signal based on the output of the converter 121, and an amplifier 123 that amplifies the generated pulse signal.
  • a plurality of signal generating units 122 and amplifiers 123 are provided corresponding to each of the magnetic cores h0 to h4, and are configured to be able to output a unique pulse signal to each of the coils 70 wound around the magnetic cores h0 to h4.
  • the controller 130 has a memory that stores data regarding the positions of the servo bands where the first servo band identification information should be recorded (in this example, servo bands s0, s1, and s4) and the positions of the servo bands where the second servo band identification information should be recorded (in this example, servo bands s2 and s3).
  • the controller 130 controls the drive unit 120 based on the data stored in the memory.
  • the converter 121 outputs information corresponding to the servo band identification information to be recorded in each of the servo bands s0 to s4 to the signal generating units 122 corresponding to each of the magnetic cores h0 to h4.
  • the converter 121 outputs a first pulse signal PS1 for recording a first servo pattern 601 (FIG. 14A) including the first servo band identification information in the magnetic cores h0, h1, and h4 corresponding to the servo bands s0, s1, and s4, and outputs a second pulse signal PS2 for recording a second servo pattern 602 (FIG. 14B) including the second servo band identification information in the head blocks h2 and h3 corresponding to the servo bands s2 and s3.
  • the first and second pulse signals PS1 and PS2 include a first pulse group SPF1 consisting of five pulse groups and a second pulse group SPF2 consisting of four pulse groups.
  • the first pulse group SPF1 is a signal for recording each slope portion of the A burst 6a
  • the second pulse group SPF2 is a signal for recording each slope portion of the B burst 6b.
  • the first pulse signal PS1 and the second pulse signal PS2 have different rise times for the second and fourth pulses in the first pulse group SPF1, with the second pulse of pulse signal PS2 rising later than the pulse signal PS1, and the fourth pulse rising earlier.
  • the first pulse signal PS1 and the second pulse signal PS2 are each transmitted to the magnetic cores h0 to h4 in the same phase (same timing).
  • the first servo pattern 601 (first servo band identification information) is recorded in the same phase on the servo bands s0, s1, and s4
  • the second servo pattern 602 (second servo band identification information) is recorded in the same phase on the servo bands s2 and s3.
  • the tape drive device 30 is configured to be able to change the tension applied to the magnetic tape MT while it is running in order to accommodate changes in the width dimension of the magnetic tape MT. Specifically, the tension is increased when the width dimension of the magnetic tape MT changes in the widening direction, and is decreased when the width dimension of the magnetic tape MT changes in the narrowing direction. In this way, the magnitude of the tension is adjusted in response to changes in the width dimension of the magnetic tape MT, making it possible to stably perform the desired tracking control.
  • the variation in the width dimension of the magnetic tape MT occurs uniformly for the servo band pitch of each data band.
  • the first cause of differences in the servo band pitch of each data band is misalignment of the magnetic gap g formed in each magnetic core h0 to h4 of the servo write head 113.
  • the magnetic gap g is formed using photolithography technology, so the dimensional accuracy is relatively high, but dimensional errors on the submicron level can occur.
  • FIG. 25 shows a pair of guide rollers 141, 142 that guide the magnetic tape MT in the servo pattern recording device 100.
  • the axes of the guide rollers 141, 142 are set parallel to each other, which allows uniform tension to act across the width of the magnetic tape MT.
  • dashed line in FIG. 25 shows a pair of guide rollers 141, 142 that guide the magnetic tape MT in the servo pattern recording device 100.
  • FIG. 26 shows a comparison of servo band pitches of each data band measured on the same magnetic tape.
  • the horizontal axis is the tape length
  • the vertical axis is the servo band pitch.
  • the servo band pitch on the vertical axis is shown as the difference with the servo read head pitch P1 (2858.8 ⁇ m) as the reference value (Ref).
  • the servo band pitch can be measured using the tape drive device 30 as described with reference to FIG. 16 and FIG. 17.
  • d0 means the distance between the two servo bands s2 and s3 adjacent to the data band d0 (servo band pitch s2/s3)
  • d1 means the distance between the two servo bands s1 and s2 adjacent to the data band d1 (servo band pitch s1/s2).
  • d2 means the distance between the two servo bands s3 and s4 adjacent to data band d2 (servo band pitch s3/s4)
  • d3 means the distance between the two servo bands s0 and s1 adjacent to data band d0 (servo band pitch s0/s1).
  • the servo band pitch spreads from data band d3 to d2, and when the servo band pitch (s0/s1) of data band d3 is the maximum value and the servo band pitch (s3/s4) of data band d2 is the minimum value, the maximum change in servo band pitch, expressed as the difference (absolute value) between the maximum value and the minimum value for the same tape length, was approximately 0.13 ⁇ m on average.
  • servo band pitch depends on tape tension, so the variation in servo band pitch in each data band may be related to the tension distribution across the width of the magnetic tape. For example, it is assumed that due to a deviation in the parallelism of guide rollers 141, 142 shown in Figure 25, the tension during servo pattern recording was lower than the tension during playback near data band d3 (tension is applied during playback, narrowing the width) and higher near data band d2 (tension is relaxed during playback, widening the width).
  • the tension distribution across the width of the magnetic tape is thought to be related to factors such as the non-uniformity of the strain stress in the magnetic tape and slight deviations in the parallelism of the guide rollers located upstream and downstream of the servo write head.
  • factors such as the non-uniformity of the strain stress in the magnetic tape and slight deviations in the parallelism of the guide rollers located upstream and downstream of the servo write head.
  • the servo pattern recording device 100 of this embodiment further includes a temperature adjustment section 80 as shown in FIG.
  • the temperature adjustment unit 80 is configured to be able to individually raise the temperature of each of the magnetic cores h0 to h4 constituting the recording unit 401 of the servo write head 113.
  • the temperature adjustment unit 80 is configured as a part of the drive unit 120, and adjusts the temperature of each of the recording units 401 (magnetic cores h0 to h4) of the servo write head 113 individually within a predetermined temperature range based on a command from the controller 130.
  • the temperature adjustment unit 80 is configured to be able to individually adjust the temperature of each of the recording units 401 so that the average value of the difference in servo band pitch over the entire length of the tape is equal to or less than a predetermined value (for example, equal to or less than 100 nm).
  • the temperature adjustment unit 80 has a heating mechanism.
  • the heating mechanism includes a power adjustment unit that can individually adjust the power supplied to the coils 70 of each of the magnetic cores h0 to h4.
  • This power adjustment unit corresponds to an amplifier 123 ( Figure 23) that amplifies the pulse signal, which is the servo information, sent to each coil 70.
  • the inventors focused on the recording current (power supplied to the coils 70) of the servo pattern 6 supplied to the coils 70 of each magnetic core h0 to h4 of the servo write head 113 as a parameter for changing the servo band pitch, and confirmed that the servo band pitch changes by just under 100 nm when the value of the recording current changes.
  • Figure 27 shows the results of an experiment that shows the relationship between the recording current value and the servo band pitch.
  • the horizontal axis is the tape length and the vertical axis is the servo band pitch.
  • the servo band pitch changes depending on the current value (recording current value) when recording the servo pattern.
  • the recording current value is set to a reference value (Ref (1.8A)) for tape lengths of 0 to 200m
  • the recording current value is set to a value 20% smaller than the reference value (-20%) for tape lengths of 200m to 400m
  • the recording current value is set to a value 20% larger than the reference value (+20%) for tape lengths of 400m to 600m
  • the recording current value is alternately changed between -20% and +20% every 200m to record the servo band pitch.
  • the cause of the change in servo band pitch is the thermal expansion of the head blocks 402 of each of the magnetic cores h0 to h4 that make up the servo write head 113 due to Joule heat from the coil 70.
  • the thermal expansion of the head blocks 402 changes the arrangement spacing of the magnetic gaps g between adjacent head blocks 402. Therefore, by adjusting the amount of thermal expansion of the head blocks 402, it is possible to adjust the arrangement spacing between adjacent magnetic gaps g, that is, the servo band pitch, on the order of submicrons.
  • the magnetic cores h0 to h4 are made of ferrite material.
  • the linear expansion coefficient is 11.7 ⁇ 10 ⁇ 6 [1/°C]
  • a temperature change of 3°C results in a dimensional change of 100 nm (11.7 ⁇ 10 ⁇ 6 ⁇ 3°C ⁇ 2.8588 mm).
  • the reference value (Ref) of the recording current is 1.8 A
  • a temperature change of 7°C or more was confirmed in the head block 402 of each of the magnetic cores h0 to h4.
  • the difference from the result of FIG. 27, in which the maximum change in servo band pitch is about 100 nm, is presumably due to the effect of cooling of the head block 402 due to contact with the running magnetic tape MT.
  • Figure 27 show that the servo band pitch changes depending on the magnitude of the recording current.
  • the larger the recording current value the greater the change in servo band pitch.
  • Figure 28 shows the results of an experiment on the relationship between the magnitude of the recording current, the temperature change in the head block 402, and the running time of the magnetic tape. As shown in Figure 28, for the same tape running time, the larger the recording current value, the greater the amount of temperature rise in the head block. There is also a tendency for the temperature of the head block to rise slightly as the tape running time becomes longer.
  • the recording current value is a parameter for the change in servo band pitch.
  • the magnitude of the recording current was made different between the set of servo bands s0 and s1 and the set of servo bands s3 and s4, and the change in servo band pitch for data bands d2 and d3 was measured when servo pattern 6 was recorded on each of the servo bands. The measurement results are shown in Figure 29.
  • FIG. 29 shows the change in servo band pitch for data bands d2 and d3 when the recording current for servo pattern 6 is alternately changed between a value smaller than the reference current value (-20%) and a value higher than the reference current value (+20%) over a tape length range of 200 m, similar to the experiment in FIG. 27. What differs from the experiment in FIG.
  • the recording current value for servo bands s0 and s1 is -20% of the reference current value
  • the recording current value for servo bands s3 and s4 is set to +20% of the reference current value
  • the recording current value for servo bands s0 and s1 is +20% of the reference current value
  • the recording current value for servo bands s3 and s4 is set to -20% of the reference current value.
  • the experiment also used the magnetic tape for which the experimental results in FIG. 26 were obtained.
  • the recording current value in data bands d1 and d4 other than data bands d2 and d3 may be set as the reference current value.
  • the magnitude of the recording current may also be optimized for data bands d1 and d4 to further reduce the variation in servo band pitch between each data band. Optimizing the magnitude of the recording current includes making the recording current supplied to the coil 70 of at least one of the magnetic cores h0 to h4 larger than the recording current supplied to the coil 70 of the other magnetic cores.
  • the servo pattern 6 is recorded in each servo band s over a predetermined tape length (e.g., 200 m or more) at a constant recording current value (e.g., reference current value), and then the servo band pitch for each recorded data band is measured by the tape drive device 30.
  • a predetermined tape length e.g. 200 m or more
  • the servo band pitch for each recorded data band is measured by the tape drive device 30.
  • the recording current value supplied to the coil 70 for each magnetic core h0 to h4 is optimized so that the servo band pitch between the data bands is minimized (e.g., 100 nm or less).
  • the recording current value is set by adjusting the amplification factor of the amplifier 123 of the drive unit 120 in the servo pattern recording device 100. Then, the servo pattern 6 is recorded in each servo band s of the magnetic tape MT at the adjusted recording current value.
  • the temperature adjustment unit 80 may have a cooling mechanism capable of individually cooling each of the magnetic cores h0 to h4 constituting the recording unit 401 of the servo write head 113.
  • the cooling mechanism has an air blowing unit 90 configured to be capable of individually cooling the coils 70 or head blocks 402 of each of the magnetic cores h0 to h4.
  • Figure 30 is a schematic perspective view showing the configuration of a servo write head 113 equipped with a blower unit 90.
  • the blower unit 90 has a blower block 91 arranged on the opposite side of the recording surface where the magnetic gap g of the servo write head 113 is formed, and a pair of positioning blocks 92L, 92R that support both ends of the servo write head 113 in the longitudinal direction (Y' direction) and position the blower block 91 relative to the servo write head 113.
  • the blower block 91 is provided with multiple gas outlets 91a that face the coils 70 of each of the magnetic cores h0 to h4 in the Z'-axis direction.
  • One of the pair of positioning blocks 92L, 92R, the positioning block 92L, is provided with a gas inlet 92a that can introduce cooling gas.
  • the gas inlet 92a passes through the inside of the positioning block 92L and the inside of the blower block 92 and is connected to the multiple gas outlets 91a.
  • the coils 70 of each of the magnetic cores h0 to h4 are cooled by the cooling gas ejected from the gas outlets 92a, suppressing thermal expansion caused by the rise in temperature of the head block 402 due to Joule heat of the coils 70.
  • the cooling gas is typically air, but gases such as nitrogen may also be used.
  • the temperature of the cooling gas is typically room temperature, but it may be gas cooled to below room temperature.
  • a nozzle with a directional gas ejection direction may be added to the gas ejection port 92a so that each gas ejection port 92a corresponds to each coil 70 individually.
  • a windshield shield plate 93 may be placed around the head block 402 to prevent the cooling gas ejected from the gas ejection port 92a from going around the head block 402 and being blown onto the magnetic tape MT running on the recording section 401 (see FIG. 30) of the servo write head 113.
  • the blower unit 90 may be configured to uniformly cool the coils 70 of each of the magnetic cores h0 to h4, or may be configured to be able to individually adjust the amount of gas ejected to each of the coils 70 so as to create a temperature gradient in each of the magnetic cores h0 to h4.
  • the blower unit 90 further has a valve mechanism 94 capable of individually adjusting the amount of cooling gas ejected from each gas outlet 91a.
  • the valve mechanism 94 is configured to individually split the cooling gas introduced from the gas inlet 92a to be ejected from each gas outlet 92a, and to adjust the amount of cooling gas ejected for each gas outlet 91a.
  • the adjustment of the amount of cooling gas ejected by the valve mechanism 94 is performed by the controller 130 of the servo pattern recording device 100.
  • Figure 31 shows the results of an experiment that shows how the servo pattern pitch changes with and without the introduction of cooling gas (air), with the horizontal axis showing the tape length and the vertical axis showing the amount of change from the reference value of the servo band pitch (P1: 2858.8 ⁇ m).
  • the servo band pitch between two servo bands s3 and s4 adjacent to data band d2 was measured.
  • Adjusting the flow rate of cooling gas includes making the flow rate of cooling gas supplied to the coils 70 of at least one of the magnetic cores h0 to h4 greater than the flow rate of cooling gas supplied to the coils 70 of the other magnetic cores.
  • Figures 32 to 34 show the experimental results of producing a magnetic tape MT on which a servo pattern 6 was recorded in each servo band by supplying a constant recording current to the coil 70 of each magnetic core h0 to h4, and showing the maximum value (max) and minimum value (min) of the servo band pitch, which is the distance between two adjacent servo bands, as well as the difference between these maximum and minimum values (servo band pitch difference: SBD).
  • FIG. 32 shows the experimental results when a servo pattern was recorded without cooling the servo write head 113 with cooling gas
  • FIG. 33 shows the experimental results when a servo pattern was recorded while cooling the servo write head 113 with cooling gas at a flow rate of 3 L/min
  • FIG. 34 shows the experimental results when a servo pattern was recorded while cooling the servo write head 113 with cooling gas at a flow rate of 10 L/min.
  • the horizontal axis represents the tape length
  • the vertical axis on the left represents the amount of change from the reference value (P1: 2858.8 ⁇ m) of the maximum and minimum values of the servo pattern pitch.
  • the vertical axis on the right represents the difference in servo band pitch of the servo pattern pitch.
  • the cooling gas flow rate is determined, for example, by recording a servo pattern 6 on each servo band s over a predetermined tape length (e.g., 200 m or more) at a constant recording current value (e.g., reference current value), and then measuring the servo band pitch for each recorded data band with the tape drive device 30.
  • a predetermined tape length e.g. 200 m or more
  • a constant recording current value e.g., reference current value
  • the amount of cooling gas ejected from each gas ejection port 92a is adjusted by the valve mechanism 94 so that the cooling gas flow rate is set, and the servo pattern 6 is recorded on each servo band s of the magnetic tape MT.
  • FIG. 35 is a schematic plan view of a servo write head 113A having the multiple grooves.
  • the servo write head 113A has a recording section 401 that records a servo pattern on the magnetic tape MT using the magnetic gaps g of each of the magnetic cores h0 to h4.
  • the recording section 401 has a first region 411 that corresponds to a position where the magnetic gaps g are provided in the length direction (Y' direction, width direction of the magnetic tape MT), and a second region 412 that corresponds to a position where the magnetic gaps g are not provided in the length direction.
  • the second region 412 has a plurality of grooves 95 that cross from one end of the width direction (X' direction, length direction of the magnetic tape MT) perpendicular to the length direction to the other end of the width direction.
  • the second region 412 is located between each of the magnetic cores h0 to h4, which have the first region 411, and the groove portion 95 is formed between the magnetic gaps g of each of the magnetic cores h0 to h4.
  • Figure 36 is an enlarged perspective view showing the details of the groove portion 95.
  • the multiple grooves 95 are arranged at intervals in the length direction (Y'-axis direction) of the recording section 401, and are formed linearly parallel to the width direction (X'-axis direction) of the recording section 401.
  • the grooves 95 are formed as square grooves G1 having flat bottoms.
  • a flat top T1 is formed between two adjacent square grooves G1.
  • the depth of the square groove G1 is about 1 ⁇ m
  • the groove width at the bottom of the square groove G1 is about 5 ⁇ m
  • the width (top) of the top T1 is about 5 ⁇ m
  • the arrangement pitch (pitch) of the square grooves G1 is about 10 ⁇ m.
  • each part is not limited to the above example, and for example, the groove width at the bottom of the square groove G1 can be appropriately set between 5 ⁇ m to 20 ⁇ m, and the arrangement pitch of the square grooves G1 can be appropriately set between 10 ⁇ m to 25 ⁇ m.
  • the servo write head 113A has multiple grooves 95 in the second region 412, so that the amount of air flowing through the second region 412 can be increased while the magnetic tape MT is running, causing the magnetic tape MT to float from the second region 412. This allows the magnetic tape MT to run almost without contact with the second region 412 while being stably in contact with the first region 411 having the magnetic gap g, thereby reducing friction between the recording section 401 and the magnetic tape MT and improving the accuracy of recording the servo pattern 7.
  • the magnetic tape MT can be lifted from the second region 412, the temperature rise of the servo write head 113A caused by the heat of friction caused by contact with the magnetic tape MT is suppressed. Furthermore, because the air flowing between the multiple grooves 95 provides a cooling effect for the second region 412, a heat dissipation effect can be obtained for the first region 411 having the magnetic gap g. This makes it possible to reduce the variation in the servo band pitch.
  • FIG. 37 is a schematic plan view of a servo write head 113B showing a modified example of FIG. 35.
  • This servo write head 113B differs from the servo write head 113A of FIG. 35 in that the second region 412 has two cutout portions 96 that face each other in the width direction (X' axis direction).
  • Each cutout 96 is formed by cutting out an end of the second region 412 in the width direction (X' axis direction) in an arc shape.
  • the shape of the cutout 96 is not limited to an arc shape, and may be rectangular or triangular, for example.
  • the multiple grooves 95 are formed on the surface of the second region 412 so as to be sandwiched between the cutouts 96 in the width direction.
  • the second region 412 has its width dimension narrowed by the cutout 96.
  • the second region 412 is shaped so that it is constricted in the center of its length (Y'-axis direction). This makes it easier for air to flow into the second region 412 from the cutout 96 located upstream in the tape running direction, and makes it easier for air to pass between the second region 412 and the magnetic tape MT. This makes it easier for the magnetic tape MT to float from the second region 412, further enhancing the cooling effect of the servo write head 113B.
  • the average width change ⁇ A of the magnetic tape MT before and after being left for 40 hours in an environment of a temperature of 50° C. and a relative humidity of 40% RH with a tension of 0.55 N applied in the longitudinal direction is 170 ppm or less, so that in addition to deformation of the magnetic tape MT caused by the environment, creep deformation of the magnetic tape MT in a high-temperature environment can be sufficiently suppressed for a long period of time (e.g., 10 years). As a result, even when the magnetic tape MT is stored or run in a high-temperature environment for a long period of time (e.g., 10 years), the width change of the magnetic tape MT can be suppressed.
  • the average tension response to longitudinal tension in an environment with a temperature of 50°C and a relative humidity of 40% RH is 700 ppm/N or more, so width changes in the magnetic tape MT can be effectively corrected in high-temperature environments.
  • the change in width of the magnetic tape MT can be corrected by adjusting the running tension of the magnetic tape MT.
  • the magnetic tape MT according to the first embodiment can be used in a tape drive device 30 that can accommodate changes in the width of the magnetic tape MT by adjusting the azimuth angle ⁇ of the drive head 36.
  • the tape drive device 30 typically, when the width of the magnetic tape MT becomes relatively wider, the azimuth angle ⁇ of the drive head 36 is made smaller, and conversely, when the width of the magnetic tape MT becomes relatively narrower, the azimuth angle ⁇ of the drive head 36 is made larger. This allows the servo pattern 6 of the magnetic tape MT to be read accurately even when the width of the magnetic tape MT changes. Therefore, even when the width of the magnetic tape MT changes in a high-temperature environment, the width change can be accommodated by adjusting the azimuth angle ⁇ of the drive head 36.
  • the magnetic tape MT is a coated magnetic tape in which the underlayer and magnetic layer are produced by a coating process (wet process), but the magnetic tape may be a vacuum thin-film type magnetic tape in which the underlayer and magnetic layer are produced by a vacuum thin-film production technique (dry process) such as sputtering.
  • dry process a vacuum thin-film production technique
  • the magnetic tape MT1 is a perpendicular recording type magnetic recording medium, and includes a film-like substrate 511, a soft magnetic underlayer (hereinafter referred to as "SUL") 512, a first seed layer 513A, a second seed layer 513B, a first underlayer 514A, a second underlayer 514B, and a magnetic layer 515 as a recording layer.
  • SUL 512, the first and second seed layers 513A and 513B, the first and second underlayers 514A and 514B, and the magnetic layer 515 are vacuum thin films such as sputtered films.
  • the SUL 512, the first and second seed layers 513A, 513B, and the first and second underlayers 514A, 514B are provided between one major surface (hereinafter referred to as the "surface") of the substrate 511 and the magnetic layer 515, and are stacked in the following order from the substrate 511 toward the magnetic layer 515: SUL 512, first seed layer 513A, second seed layer 513B, first underlayer 514A, second underlayer 514B.
  • the magnetic tape MT1 may further include a protective layer 516 provided on the magnetic layer 515 and a lubricating layer 517 provided on the protective layer 516, if necessary.
  • the magnetic tape MT1 may further include a back layer 518 provided on the other main surface (hereinafter referred to as the "reverse surface") of the substrate 511, if necessary.
  • the longitudinal direction of the magnetic tape MT1 (the longitudinal direction of the substrate 511) (the longitudinal direction of the substrate 511) will be referred to as the MD (Machine Direction) direction.
  • the machine direction means the relative movement direction of the recording and reproducing heads with respect to the magnetic tape MT1, i.e., the direction in which the magnetic tape MT1 runs during recording and reproducing.
  • the magnetic tape MT1 according to the second embodiment is suitable for use as a storage medium for data archives, the demand of which is expected to increase in the future.
  • This magnetic tape MT1 can achieve an areal recording density of 50 Gb/ in2 or more, which is 10 times or more than that of current coating-type magnetic recording media for storage.
  • a general linear recording type data cartridge is configured using the magnetic tape MT1 having such an areal recording density, a large capacity recording capacity of 100 TB or more can be achieved per data cartridge.
  • the magnetic tape MT1 according to the second embodiment is suitable for use in a recording and reproducing device (a recording and reproducing device for recording and reproducing data) having a ring-type recording head and a Giant Magnetoresistive (GMR) type or Tunneling Magnetoresistive (TMR) type reproducing head.
  • the magnetic tape MT1 according to the second embodiment preferably uses a ring-type recording head as a servo signal writing head.
  • a data signal is vertically recorded on the magnetic layer 515, for example, by a ring-type recording head.
  • a servo signal is vertically recorded on the magnetic layer 515, for example, by a ring-type recording head.
  • the average thickness t T , average width change ⁇ A, and average tension response of the magnetic tape MT1 in the second embodiment are similar to those in the first embodiment.
  • the base 511 is similar to the base 41 in the first embodiment.
  • the SUL 512 includes a soft magnetic material in an amorphous state.
  • the soft magnetic material includes at least one of a Co-based material and an Fe-based material.
  • the Co-based material includes, for example, CoZrNb, CoZrTa, or CoZrTaNb.
  • the Fe-based material includes, for example, FeCoB, FeCoZr, or FeCoTa.
  • SUL512 is a single layer SUL and is provided directly on the substrate 511.
  • the average thickness of SUL512 is preferably 10 nm or more and 50 nm or less, and more preferably 20 nm or more and 30 nm or less.
  • the average thickness of SUL512 is determined in the same manner as for magnetic layer 43 in the first embodiment.
  • the average thicknesses of layers other than SUL512 i.e., the average thicknesses of first and second seed layers 513A, 513B, first and second underlayers 514A, 514B, and magnetic layer 515
  • the magnification of the TEM image is appropriately adjusted according to the thickness of each layer.
  • the first seed layer 513A includes an alloy containing Ti and Cr, and is in an amorphous state.
  • the alloy may further include O (oxygen).
  • the oxygen may be impurity oxygen contained in trace amounts in the first seed layer 513A when the first seed layer 513A is formed by a film forming method such as a sputtering method.
  • alloy means at least one of a solid solution, a eutectic, and an intermetallic compound containing Ti and Cr.
  • Amorphous state means that a halo is observed by X-ray diffraction or electron beam diffraction, etc., and the crystal structure cannot be identified.
  • the atomic ratio of Ti to the total amount of Ti and Cr contained in the first seed layer 513A is preferably in the range of 30 atomic % or more and less than 100 atomic %, and more preferably 50 atomic % or more and less than 100 atomic %. If the atomic ratio of Ti is less than 30%, the (100) plane of the body-centered cubic lattice (bcc) structure of Cr will become oriented, and there is a risk that the orientation of the first and second underlayers 514A and 514B formed on the first seed layer 513A will decrease.
  • the atomic ratio of Ti is determined as follows. While ion milling the magnetic tape MT1 from the magnetic layer 515 side, a depth profile analysis (depth profile measurement) of the first seed layer 513A is performed by Auger Electron Spectroscopy (AES). Next, the average composition (average atomic ratio) of Ti and Cr in the film thickness direction is determined from the obtained depth profile. Next, the atomic ratio of Ti is determined using the obtained average composition of Ti and Cr.
  • the atomic ratio of O to the total amount of Ti, Cr and O contained in the first seed layer 513A is preferably 15 atomic % or less, more preferably 10 atomic % or less. If the atomic ratio of O exceeds 15 atomic %, TiO2 crystals are generated, which affects the crystal nucleation of the first and second underlayers 514A and 514B formed on the first seed layer 513A, and the orientation of the first and second underlayers 514A and 514B may be reduced.
  • the atomic ratio of O is determined using the same analysis method as the atomic ratio of Ti.
  • the alloy contained in the first seed layer 513A may further contain an element other than Ti and Cr as an additive element.
  • the additive element may be, for example, one or more elements selected from the group consisting of Nb, Ni, Mo, Al, W, etc.
  • the average thickness of the first seed layer 513A is preferably 2 nm or more and 15 nm or less, and more preferably 3 nm or more and 10 nm or less.
  • the second seed layer 513B contains, for example, NiW or Ta, and has a crystalline state.
  • the average thickness of the second seed layer 513B is preferably 3 nm or more and 20 nm or less, more preferably 5 nm or more and 15 nm or less.
  • the first and second seed layers 513A and 513B have a crystal structure similar to that of the first and second underlayers 514A and 514B, and are not seed layers provided for the purpose of crystal growth, but are seed layers that improve the vertical orientation of the first and second underlayers 514A and 514B due to the amorphous state of the first and second seed layers 513A and 513B.
  • the first and second underlayers 514A and 514B preferably have the same crystal structure as the magnetic layer 515.
  • the first and second underlayers 514A and 514B preferably contain a material having a hexagonal close-packed (hcp) structure similar to the Co-based alloy, and the c-axis of the structure is preferably oriented perpendicular to the film surface (i.e., in the film thickness direction). This is because it enhances the orientation of the magnetic layer 515 and can relatively well match the lattice constants of the second underlayer 514B and the magnetic layer 515.
  • the material having the hexagonal close-packed (hcp) structure it is preferable to use a material containing Ru, specifically, Ru alone or a Ru alloy.
  • Ru alloy for example, Ru alloy oxides such as Ru-SiO 2 , Ru-TiO 2 or Ru-ZrO 2 can be mentioned.
  • the first and second underlayers 514A and 514B can be made of similar materials. However, the intended effects of the first and second underlayers 514A and 514B are different. Specifically, the second underlayer 514B has a film structure that promotes the granular structure of the magnetic layer 515 that is the layer above it, and the first underlayer 514A has a film structure with high crystal orientation. To obtain such a film structure, it is preferable to use different film formation conditions, such as sputtering conditions, for the first and second underlayers 514A and 514B.
  • different film formation conditions such as sputtering conditions
  • the average thickness of the first underlayer 514A is preferably 3 nm to 15 nm, more preferably 5 nm to 10 nm.
  • the average thickness of the second underlayer 514B is preferably 7 nm to 40 nm, more preferably 10 nm to 25 nm.
  • the magnetic layer 515 is a perpendicular magnetic recording layer in which the magnetic material is oriented perpendicularly.
  • the magnetic layer 515 may be a vacuum thin film such as a sputtered film.
  • the magnetic layer 515 is preferably a granular magnetic layer containing a Co-based alloy. This granular magnetic layer is composed of ferromagnetic crystal grains containing a Co-based alloy and non-magnetic grain boundaries (non-magnetic material) surrounding the ferromagnetic crystal grains.
  • this granular magnetic layer is composed of columns (columnar crystals) containing a Co-based alloy and non-magnetic grain boundaries (e.g., oxides such as SiO2) surrounding the columns and magnetically separating each column.
  • the magnetic layer 515 can be formed with a structure in which each column is magnetically separated.
  • the Co-based alloy has a hexagonal close-packed (hcp) structure, with its c-axis oriented perpendicular to the film surface (film thickness direction).
  • hcp hexagonal close-packed
  • the CoCrPt-based alloy is not particularly limited, and the CoCrPt alloy may further contain an additive element.
  • the additive element include one or more elements selected from the group consisting of Ni, Ta, etc.
  • the non-magnetic grain boundaries surrounding the ferromagnetic crystal grains contain a non-magnetic metal material.
  • the metal includes a semi-metal.
  • at least one of a metal oxide and a metal nitride can be used as the non-magnetic metal material, and from the viewpoint of maintaining the granular structure more stably, it is preferable to use a metal oxide.
  • the metal oxide there is a metal oxide containing at least one element selected from the group consisting of Si, Cr, Co, Al, Ti, Ta, Zr, Ce, Y, and Hf, and a metal oxide containing at least Si oxide (i.e., SiO 2 ) is preferable.
  • the metal oxide examples include SiO 2 , Cr 2 O 3 , CoO, Al 2 O 3 , TiO 2 , Ta 2 O 5 , ZrO 2 , or HfO 2 .
  • the metal nitride there is a metal nitride containing at least one element selected from the group consisting of Si, Cr, Co, Al, Ti, Ta, Zr, Ce, Y, and Hf.
  • metal nitrides include SiN, TiN, and AlN.
  • the CoCrPt alloy contained in the ferromagnetic crystal grains and the Si oxide contained in the non-magnetic grain boundaries have an average composition shown in the following formula (1), because this can suppress the influence of the demagnetizing field and realize a saturation magnetization Ms that can ensure sufficient reproduction output, thereby achieving further improvement in the recording and reproduction characteristics.
  • x, y, and z are values within the ranges of 69 ⁇ X ⁇ 75, 10 ⁇ y ⁇ 16, and 9 ⁇ Z ⁇ 12, respectively.
  • the above composition can be determined as follows. While ion milling the magnetic tape MT1 from the magnetic layer 515 side, AES is used to perform a depth direction analysis of the magnetic layer 515, and the average composition (average atomic ratio) of Co, Pt, Cr, Si, and O in the film thickness direction is determined.
  • the upper limit of the average thickness of the magnetic layer 515 is, for example, 90 nm or less, preferably 80 nm or less, more preferably 70 nm or less, even more preferably 60 nm or less, and particularly preferably 50 nm or less, 20 nm or less, or 15 nm or less.
  • the lower limit of the average thickness of the magnetic layer 515 is preferably 9 nm or more. When the average thickness of the magnetic layer 515 is 9 nm or more and 90 nm or less, the electromagnetic conversion characteristics can be improved.
  • the protective layer 516 includes, for example, a carbon material or silicon dioxide (SiO2), and preferably includes a carbon material from the viewpoint of the film strength of the protective layer 516.
  • the carbon material include graphite, diamond-like carbon (DLC), and diamond.
  • the lubricating layer 517 includes at least one type of lubricant.
  • the lubricating layer 517 may further include various additives, such as a rust inhibitor, as necessary.
  • examples of the lubricant include the same lubricant as that used in the magnetic layer 43 in the first embodiment.
  • the lubricant may not only be held as the lubricating layer 517 on the surface of the magnetic tape MT1 as described above, but may also be contained and held in layers such as the magnetic layer 515 and protective layer 516 that make up the magnetic tape MT1.
  • the back layer 518 is similar to the back layer 44 in the first embodiment.
  • the sputtering device 620 is a continuous winding type sputtering device used to form the SUL 512, the first seed layer 513A, the second seed layer 513B, the first underlayer 514A, the second underlayer 514B, and the magnetic layer 515, and includes a film forming chamber 621, a drum 622 which is a metal can (rotating body), cathodes 623a to 623f, a supply reel 624, a take-up reel 625, and a plurality of guide rolls 627a to 627c, 628a to 628c.
  • the sputtering device 620 is, for example, a DC (direct current) magnetron sputtering type device, but the sputtering type is not limited to this type.
  • the film-forming chamber 621 is connected to a vacuum pump (not shown) via an exhaust port 626, and the atmosphere in the film-forming chamber 621 is set to a predetermined vacuum level by the vacuum pump.
  • a rotatable drum 622, a supply reel 624, and a take-up reel 625 are arranged inside the film-forming chamber 621.
  • a plurality of guide rolls 627a to 627c are provided inside the film-forming chamber 621 for guiding the transport of the substrate 511 between the supply reel 624 and the drum 622, and a plurality of guide rolls 628a to 628c are provided for guiding the transport of the substrate 511 between the drum 622 and the take-up reel 625.
  • the substrate 511 unwound from the supply reel 624 is wound onto the take-up reel 625 via the guide rolls 627a to 627c, the drum 622, and the guide rolls 628a to 628c.
  • the drum 622 has a cylindrical shape, and the long substrate 511 is transported along the cylindrical peripheral surface of the drum 622.
  • the drum 622 is provided with a cooling mechanism (not shown), and is cooled to, for example, about ⁇ 20° C. during sputtering.
  • a plurality of cathodes 623a to 623f are arranged facing the peripheral surface of the drum 622. Targets are set on each of these cathodes 623a to 623f.
  • targets for forming the SUL 512, the first seed layer 513A, the second seed layer 513B, the first underlayer 514A, the second underlayer 514B, and the magnetic layer 515 are set on the cathodes 623a, 623b, 623c, 623d, 623e, and 623f, respectively.
  • These cathodes 623a-623f simultaneously deposit multiple types of films, namely, SUL 512, first seed layer 513A, second seed layer 513B, first underlayer 514A, second underlayer 514B, and magnetic layer 515.
  • the SUL 512, the first seed layer 513A, the second seed layer 513B, the first underlayer 514A, the second underlayer 514B and the magnetic layer 515 can be continuously formed by the roll-to-roll method.
  • the magnetic tape MT1 according to the second embodiment can be manufactured, for example, as follows.
  • the SUL 512, the first seed layer 513A, the second seed layer 513B, the first underlayer 514A, the second underlayer 514B, and the magnetic layer 515 are sequentially deposited on the surface of the substrate 511.
  • the deposition is performed as follows. First, the deposition chamber 621 is evacuated to a predetermined pressure. Then, the targets set on the cathodes 623a to 623f are sputtered while introducing a process gas such as Ar gas into the deposition chamber 621. As a result, the SUL 512, the first seed layer 513A, the second seed layer 513B, the first underlayer 514A, the second underlayer 514B, and the magnetic layer 515 are sequentially deposited on the surface of the traveling substrate 511.
  • a process gas such as Ar gas
  • the atmosphere in film formation chamber 621 during sputtering is set to, for example, about 1 ⁇ 10 ⁇ 5 Pa to 5 ⁇ 10 ⁇ 5 Pa.
  • the film thickness and characteristics of SUL 512, first seed layer 513A, second seed layer 513B, first underlayer 514A, second underlayer 514B and magnetic layer 515 can be controlled by adjusting the tape line speed for winding up substrate 511, the pressure of process gas such as Ar gas introduced during sputtering (sputtering gas pressure), input power, etc.
  • the protective layer 516 is formed, for example, by chemical vapor deposition (CVD) or physical vapor deposition (PVD).
  • a paint for forming the back layer is prepared by kneading and dispersing a binder, inorganic particles, a lubricant, etc. in a solvent.
  • the paint for forming the back layer is applied to the back surface of the substrate 511 and dried to form the back layer 518 on the back surface of the substrate 511.
  • a lubricant is applied onto protective layer 516 to form lubricant layer 517.
  • Various application methods such as gravure coating and dip coating can be used to apply the lubricant.
  • magnetic tape MT1 is cut to a predetermined width. In this manner, magnetic tape MT1 shown in FIG. 38 is obtained.
  • the change in width of the magnetic tape MT1 can be corrected by adjusting the running tension of the magnetic tape MT1. Also, even if the width of the magnetic tape MT1 changes in a high-temperature environment, the width change can be accommodated by adjusting the azimuth angle ⁇ of the drive head 36.
  • FIG. 40 is a cross-sectional view showing an example of the configuration of a vacuum thin film type magnetic tape MT2 according to a third embodiment of the present technology.
  • the magnetic tape MT2 includes a substrate 511, an SUL 512, a seed layer 731, a first underlayer 732A, a second underlayer 732B, and a magnetic layer 515. Note that in the third embodiment, the same reference numerals are used to designate the same parts as in the second embodiment, and the description thereof will be omitted.
  • the SUL 512, seed layer 731, first and second underlayers 732A and 732B are provided between one major surface of the substrate 511 and the magnetic layer 515, and are stacked in the order of SUL 512, seed layer 731, first underlayer 732A, and second underlayer 732B from the substrate 511 toward the magnetic layer 515.
  • the seed layer 731 contains Cr, Ni, and Fe, has a face-centered cubic lattice (fcc) structure, and is preferentially oriented so that the (111) plane of this face-centered cubic structure is parallel to the surface of the base 511.
  • the preferential orientation means a state in which the diffraction peak intensity from the (111) plane of the face-centered cubic lattice structure is greater than the diffraction peaks from other crystal planes in a ⁇ -2 ⁇ scan of an X-ray diffraction method, or a state in which only the diffraction peak intensity from the (111) plane of the face-centered cubic lattice structure is observed in a ⁇ -2 ⁇ scan of an X-ray diffraction method.
  • the intensity ratio of the X-ray diffraction of the seed layer 731 is preferably 60 cps/nm or more, more preferably 70 cps/nm or more, and even more preferably 80 cps/nm or more.
  • the intensity ratio of the X-ray diffraction of the seed layer 731 is a value (I/D (cps/nm)) obtained by dividing the intensity I (cps) of the X-ray diffraction of the seed layer 731 by the average thickness D (nm) of the seed layer 731.
  • the Cr, Ni, and Fe contained in the seed layer 731 preferably have an average composition represented by the following formula (2).
  • CrX NiYFe100 -Y ) 100-X ...
  • X is within the range of 10 ⁇ X ⁇ 45, and Y is within the range of 60 ⁇ Y ⁇ 90.
  • X is within the above range
  • Y is within the range of 60 ⁇ Y ⁇ 90.
  • the (111) orientation of the face-centered cubic lattice structure of Cr, Ni, and Fe is improved, and a better SNR can be obtained.
  • Y is within the above range
  • the (111) orientation of the face-centered cubic lattice structure of Cr, Ni, and Fe is improved, and a better SNR can be obtained.
  • the average thickness of the seed layer 731 is preferably 5 nm or more and 40 nm or less. By setting the average thickness of the seed layer 731 within this range, the (111) orientation of the face-centered cubic lattice structure of Cr, Ni, and Fe can be improved, and a better SNR can be obtained.
  • the average thickness of the seed layer 731 is determined in the same manner as the magnetic layer 43 in the first embodiment. However, the magnification of the TEM image is appropriately adjusted according to the thickness of the seed layer 731.
  • the first underlayer 732A contains Co and O having a face-centered cubic lattice structure, and has a columnar (columnar crystal) structure.
  • the first underlayer 732A containing Co and O has substantially the same effect (function) as the second underlayer 732B containing Ru.
  • the concentration ratio of the average atomic concentration of O to the average atomic concentration of Co is 1 or more. When the concentration ratio is 1 or more, the effect of providing the first underlayer 732A is improved, and a better SNR can be obtained.
  • the direction of the inclination is preferably the longitudinal direction of the long magnetic tape MT2.
  • the longitudinal direction is preferable for the following reasons.
  • the magnetic tape MT2 according to this embodiment is a so-called magnetic recording medium for linear recording, and the recording tracks are parallel to the longitudinal direction of the magnetic tape MT2.
  • the magnetic tape MT2 according to this embodiment is also a so-called perpendicular magnetic recording medium, and from the viewpoint of recording characteristics, it is preferable that the crystal orientation axis of the magnetic layer 515 is vertical, but the influence of the inclination of the column structure of the first underlayer 732A may cause the crystal orientation axis of the magnetic layer 515 to be inclined.
  • a configuration in which the crystal orientation axis of the magnetic layer 515 is inclined in the longitudinal direction of the magnetic tape MT2 can reduce the influence of the inclination of the crystal orientation axis on the recording characteristics compared to a configuration in which the crystal orientation axis of the magnetic layer 515 is inclined in the width direction of the magnetic tape MT2.
  • the inclination angle of the column structure is preferably greater than 0° and equal to or less than 60°.
  • the change in the tip shape of the columns contained in the first underlayer 732A is large and becomes approximately triangular, which tends to enhance the effect of the granular structure, reduce noise, and improve the SNR.
  • the inclination angle exceeds 60° the change in the tip shape of the columns contained in the first underlayer 732A is small and it is difficult to obtain an approximately triangular shape, which tends to weaken the low-noise effect.
  • the average grain size of the columnar structure is 3 nm or more and 13 nm or less. If the average grain size is less than 3 nm, the average grain size of the columnar structure contained in the magnetic layer 515 will be small, and there is a risk that the ability of current magnetic materials to retain records will decrease. On the other hand, if the average grain size is 13 nm or less, noise can be suppressed and a better SNR can be obtained.
  • the average thickness of the first underlayer 732A is preferably 10 nm or more and 150 nm or less. If the average thickness of the first underlayer 732A is 10 nm or more, the (111) orientation of the face-centered cubic lattice structure of the first underlayer 732A is improved, and a better SNR can be obtained. On the other hand, if the average thickness of the first underlayer 732A is 150 nm or less, the column particle size can be prevented from increasing. Therefore, noise can be suppressed and a better SNR can be obtained.
  • the average thickness of the first underlayer 732A is determined in the same manner as the magnetic layer 43 in the first embodiment. However, the magnification of the TEM image is appropriately adjusted according to the thickness of the first underlayer 732A.
  • the second underlayer 732B preferably has the same crystal structure as the magnetic layer 515.
  • the second underlayer 732B preferably contains a material having a hexagonal close-packed (hcp) structure similar to the Co-based alloy, and the c-axis of the structure is preferably oriented perpendicular to the film surface (i.e., in the film thickness direction). This is because it enhances the orientation of the magnetic layer 515 and can relatively well match the lattice constants of the second underlayer 732B and the magnetic layer 515.
  • a material having a hexagonal close-packed structure it is preferable to use a material containing Ru, specifically, Ru alone or a Ru alloy.
  • Ru alloy for example, Ru alloy oxides such as Ru-SiO 2 , Ru-TiO 2 , or Ru-ZrO 2 can be mentioned.
  • the average thickness of the second underlayer 732B may be thinner than that of an underlayer in a typical magnetic recording medium (e.g., an underlayer containing Ru), and can be, for example, 1 nm or more and 5 nm or less. Since the seed layer 731 and the first underlayer 732A having the above-mentioned configuration are provided under the second underlayer 732B, a good SNR can be obtained even if the average thickness of the second underlayer 732B is as thin as described above.
  • the average thickness of the second underlayer 732B is determined in the same manner as the magnetic layer 43 in the first embodiment. However, the magnification of the TEM image is appropriately adjusted according to the thickness of the second underlayer 732B.
  • the average thickness t T , average width change ⁇ A, and average tension response of the magnetic tape MT2 in the third embodiment are similar to those in the first embodiment.
  • the change in width of the magnetic tape MT2 can be corrected by adjusting the running tension of the magnetic tape MT2. Also, even if the width of the magnetic tape MT2 changes in a high-temperature environment, the change in width can be accommodated by adjusting the azimuth angle ⁇ of the drive head 36.
  • the magnetic tape MT2 includes a seed layer 731 and a first underlayer 732A between the substrate 511 and the second underlayer 732B.
  • the seed layer 731 contains Cr, Ni, and Fe, has a face-centered cubic lattice structure, and is preferentially oriented so that the (111) plane of this face-centered cubic structure is parallel to the surface of the substrate 511.
  • the first underlayer 732A contains Co and O, and has a columnar structure in which the ratio of the average atomic concentration of O to the average atomic concentration of Co is 1 or more, and the average grain size is 3 nm or more and 13 nm or less. This makes it possible to realize a magnetic layer 515 with good crystal orientation and high coercivity by reducing the thickness of the second underlayer 732B and using as little Ru, an expensive material, as possible.
  • the Ru contained in the second underlayer 732B has the same hexagonal close-packed lattice structure as Co, the main component of the magnetic layer 515. Therefore, Ru has the effect of improving the crystal orientation of the magnetic layer 515 and promoting granularity at the same time.
  • the first underlayer 732A and the seed layer 731 are provided under the second underlayer 732B.
  • the first underlayer 732A containing inexpensive CoO with a face-centered cubic lattice structure achieves almost the same effect (function) as the second underlayer 732B containing Ru. Therefore, the thickness of the second underlayer 732B can be made thin.
  • the seed layer 731 containing Cr, Ni and Fe is provided.
  • the magnetic tape cartridge 10 is a one-reel type cartridge, but it may be a two-reel type cartridge.
  • FIG 41 is an exploded perspective view showing an example of the configuration of a two-reel type cartridge 321.
  • the cartridge 321 comprises an upper half 302 made of synthetic resin, a transparent window member 323 that fits into and is fixed to a window portion 302a opened on the upper surface of the upper half 302, a reel holder 322 that is fixed to the inside of the upper half 302 and prevents the reels 306 and 307 from floating up, a lower half 305 that corresponds to the upper half 302, the reels 306 and 307 that are stored in the space formed by combining the upper half 302 and the lower half 305, the magnetic tape MT wound on the reels 306 and 307, a front lid 309 that closes the front opening formed by combining the upper half 302 and the lower half 305, and a back lid 309A that protects the magnetic tape MT exposed at this front opening.
  • Reels 306 and 307 are used to wind magnetic tape MT.
  • Reel 306 comprises a lower flange 306b having a cylindrical hub portion 306a in the center around which magnetic tape MT is wound, an upper flange 306c of approximately the same size as lower flange 306b, and a reel plate 311 sandwiched between hub portion 306a and upper flange 306c.
  • Reel 307 has the same configuration as reel 306.
  • the window member 323 has mounting holes 323a at positions corresponding to the reels 306 and 307 for attaching reel holders 322, which are reel holding means for preventing the reels from floating up.
  • the magnetic tape MT is the same as the magnetic tape MT in the first embodiment.
  • the magnetic tape MT1 according to the second embodiment may further include an underlayer between the substrate 511 and the SUL 512. Since the SUL 512 has an amorphous state, it does not play a role in promoting epitaxial growth of the layer formed on the SUL 512, but it is required not to disturb the crystal orientation of the first and second underlayers 514A and 514B formed on the SUL 512.
  • the soft magnetic material has a fine structure that does not form columns, but if the influence of degassing such as moisture from the substrate 511 is large, the soft magnetic material may become coarse and disturb the crystal orientation of the first and second underlayers 514A and 514B formed on the SUL 512.
  • an underlayer having an amorphous state which contains an alloy containing Ti and Cr, between the substrate 511 and the SUL 512, as described above.
  • this underlayer a configuration similar to that of the first seed layer 513A of the second embodiment can be adopted.
  • the magnetic tape MT1 does not have to include at least one of the second seed layer 513B and the second underlayer 514B. However, from the viewpoint of improving the SNR, it is more preferable to include both the second seed layer 513B and the second underlayer 514B.
  • the magnetic tape MT1 may be provided with an APC-SUL (Antiparallel Coupled SUL) instead of a single-layer SUL.
  • APC-SUL Antiparallel Coupled SUL
  • the average width change ⁇ A, the average tension response ⁇ W, the average thickness of the substrate, the average thickness of the magnetic tape, the average thickness of the magnetic layer, the average thickness of the underlayer, the average thickness of the back layer, and the squareness ratio S2 in the longitudinal direction are values determined by the measurement method described in the first embodiment.
  • Example 1 (SUL film formation process) First, a CoZrNb layer (SUL) having an average thickness of 10 nm was formed on one main surface of a long polymer film as a non-magnetic support under the following film formation conditions: A PEN film having an average thickness of 3.8 ⁇ m, an average longitudinal storage modulus of 5.5 GPa in an environment at a temperature of 50° C., and an average longitudinal Young's modulus of 6.3 GPa was used as the polymer film. Film formation method: DC magnetron sputtering method Target: CoZrNb target Gas type: Ar Gas pressure: 0.1 Pa
  • Step of forming first seed layer a TiCr layer (first seed layer) having an average thickness of 5 nm was formed on the CoZrNb layer under the following film formation conditions.
  • Sputtering method DC magnetron sputtering method
  • Target TiCr target Ultimate vacuum: 5 ⁇ 10 ⁇ 5 Pa
  • Gas type Ar Gas pressure: 0.5 Pa
  • Step of forming second seed layer a NiW layer (second seed layer) having an average thickness of 10 nm was formed on the TiCr layer under the following film formation conditions.
  • Sputtering method DC magnetron sputtering method
  • Target NiW target Ultimate vacuum: 5 ⁇ 10 ⁇ 5 Pa
  • Gas type Ar Gas pressure: 0.5 Pa
  • Step of forming the first underlayer a Ru layer (first underlayer) having an average thickness of 10 nm was formed on the NiW layer under the following film formation conditions.
  • Sputtering method DC magnetron sputtering method
  • Target Ru target Gas type: Ar Gas pressure: 0.5 Pa
  • Step of forming second underlayer a Ru layer (second underlayer) having an average thickness of 20 nm was formed on the Ru layer under the following film formation conditions.
  • Sputtering method DC magnetron sputtering method
  • Target Ru target Gas type: Ar Gas pressure: 1.5 Pa
  • the magnetic tape obtained as described above was cut into a width of 1/2 inch (12.65 mm), thereby obtaining the desired long magnetic tape (average thickness 4.2 ⁇ m).
  • the servo pattern included a first servo pattern and a second servo pattern that were asymmetric with respect to the width direction of the magnetic tape.
  • the servo patterns in adjacent servo bands had a phase difference.
  • Example 1 a sputtered film was used as the magnetic layer, a PEN film was used as the polymer film, and the average width change ⁇ A and average tension response ⁇ W were set to the values shown in Table 1 by adjusting the stretching strength of the PEN film in the width and length directions.
  • Example 2 As the polymer film, a reinforced PET film was used, which has an average thickness of 3.8 ⁇ m, an average longitudinal storage modulus of 3.9 GPa at a temperature of 50° C., and an average longitudinal Young's modulus of 4.6 GPa.
  • the reinforced PET film means a PET film reinforced by adding polyamide.
  • a sputtered film was used as the magnetic layer
  • a reinforced PET film was used as the polymer film
  • the average width change ⁇ A and average tension response ⁇ W were set to the values shown in Table 1 by adjusting the stretching strength in the width direction and the longitudinal direction of the reinforced PET film.
  • Example 2 the same procedure as in Example 1 was repeated to obtain a magnetic tape having an average thickness of 4.2 ⁇ m.
  • Example 3 (Preparation process of paint for forming magnetic layer)
  • the magnetic layer coating material was prepared as follows. First, the first composition having the following composition was mixed with an extruder. Next, the mixed first composition and the second composition having the following composition were added to a stirring tank equipped with a disperser and premixed. Then, the mixture was further mixed with a sand mill and filtered to prepare the magnetic layer coating material.
  • Aluminum oxide powder 6 parts by mass ( ⁇ -Al 2 O 3 , average particle size 0.1 ⁇ m)
  • the paint for forming the undercoat layer was prepared as follows. First, the third composition having the following composition was mixed with an extruder. Next, the mixed third composition and the fourth composition having the following composition were added to a stirring tank equipped with a disperser and premixed. Then, further mixing was performed with a dyno mill and filtering was performed to prepare the paint for forming the undercoat layer.
  • Carbon black 30 parts by mass (manufactured by Asahi Carbon Co., Ltd., product name: #80)
  • n-Butyl stearate 2 parts by mass Methyl ethyl ketone: 108.2 parts by mass Toluene: 108.2 parts by mass
  • Cyclohexanone 100.0 parts by mass
  • the paint for forming the back layer was prepared as follows. The following raw materials were mixed in a stirring tank equipped with a disperser and filtered to prepare the paint for forming the back layer.
  • Carbon black manufactured by Asahi Carbon Co., Ltd., product name: #80
  • Polyester polyurethane 100 parts by mass
  • Methyl ethyl ketone 500 parts by weight
  • Toluene 400 parts by weight
  • Cyclohexanone 100 parts by weight
  • the base layer was formed by applying the base layer-forming paint onto the substrate and drying it.
  • the application conditions were adjusted so that the average thickness of the base layer after calendaring was 0.8 ⁇ m.
  • PEN with an average thickness of 4.0 ⁇ m was used as the polymer film.
  • the magnetic layer-forming paint was applied onto the underlayer and dried to form a magnetic layer on the underlayer.
  • the application conditions were adjusted so that the average thickness of the magnetic layer after calendaring would be 0.08 ⁇ m.
  • the magnetic layer-forming paint was drying, the magnetic powder was magnetically oriented in the thickness direction of the polymer film by a neodymium magnet.
  • the drying conditions (drying temperature and drying time) of the magnetic layer-forming paint were adjusted, and the squareness ratio in the longitudinal direction was set to 33%.
  • a back layer was formed by applying a paint for forming a back layer to the other main surface of the PEN film on which the underlayer and magnetic layer were formed, and then drying it. At this time, the application conditions were adjusted so that the average thickness of the back layer after calendaring was 0.32 ⁇ m. In this way, a magnetic tape was obtained.
  • the magnetic tape was wound into a roll, and then subjected to a heat treatment in this state to harden the underlayer and the magnetic layer.
  • the magnetic tape obtained as described above was cut into a width of 1/2 inch (12.65 mm), thereby obtaining the desired long magnetic tape (average thickness 5.2 ⁇ m).
  • the servo pattern included a first servo pattern and a second servo pattern that were asymmetric with respect to the width direction of the magnetic tape.
  • the servo patterns in adjacent servo bands had a phase difference.
  • Example 3 a coating film was used as the magnetic layer, a PEN film was used as the polymer film, and the average width change ⁇ A and average tension response ⁇ W were set to the values shown in Table 1 by adjusting the stretching strength of the PEN film in the width direction and length direction.
  • Example 4 The stretching strength of the PEN film in the width direction and the length direction was adjusted, and further, after the calendaring process, a strain relaxation treatment (maintained in a 60° C. environment for 48 hours) was performed, whereby the average width change ⁇ A and the average tension response ⁇ W were set to the values shown in Table 1. Other than the above, the same procedure as in Example 3 was repeated to obtain a magnetic tape having an average thickness of 5.2 ⁇ m.
  • the polymer film used was a PET film having an average thickness of 4.8 ⁇ m, an average longitudinal storage modulus of 3.9 GPa in an environment at a temperature of 50° C., and an average longitudinal Young's modulus of 4.7 GPa.
  • a sputtered film was used as the magnetic layer
  • a PET film was used as the polymer film
  • the average width change ⁇ A and average tension response ⁇ W were set to the values shown in Table 1 by adjusting the stretching strength of the PET film in the width direction and longitudinal direction.
  • the same procedure as in Example 1 was repeated to obtain a magnetic tape having an average thickness of 5.2 ⁇ m.
  • Example 3 The polymer film used was a reinforced PET film having an average thickness of 4.6 ⁇ m. By adjusting the stretching strength in the transverse and longitudinal directions of the reinforced PET film, the average width change ⁇ A and the average tension response ⁇ W were set to the values shown in Table 1. Other than the above, the same procedure as in Example 3 was repeated to obtain a magnetic tape having an average thickness of 5.6 ⁇ m.
  • Example 4 As the polymer film, a reinforced PET film having an average thickness of 4.0 ⁇ m was used. By adjusting the stretching strength in the transverse and longitudinal directions of the reinforced PET film, the average width change ⁇ A and the average tension response ⁇ W were set to the values shown in Table 1. Other than the above, the same procedure as in Example 3 was repeated to obtain a magnetic tape having an average thickness of 5.2 ⁇ m.
  • each of the magnetic recording tapes of Examples 1 to 4 and Comparative Examples 1 to 4 was evaluated. Specifically, for each of the magnetic recording tapes, the average width change ⁇ A, the average tension response ⁇ W, the average thickness of the magnetic tape, the average thickness of the substrate, the squareness ratio S2 of the magnetic layer in the longitudinal direction of the magnetic tape, and the average Young's modulus in the longitudinal direction of the magnetic tape were measured. These were determined by the measurement method described in 1. (2) above. These measurement results are shown in Table 1. Also, Figure 42 is a graph showing the measurement results of the width change of the magnetic tape of Example 1.
  • the servo band pitch difference was measured using the measurement method described in 1. (4) above.
  • the amount of width change over an estimated 10 years, the tension required to adjust for the width change over an estimated 10 years, and the movement angle of the drive head arranged at an angle were calculated. These calculation methods are described below.
  • FIG. 43 is a graph showing the width change amount assuming 10 years in each embodiment and comparative example.
  • FIG. 44 is a schematic diagram for explaining a method for calculating the movement angle of a tilted drive head, which is the movement angle of the drive head required to deal with an assumed width change over 10 years.
  • the left side of Fig. 44 shows the distance (h) between the two servo read heads of the drive head, the servo band pitch (SP), and the tilt angle (10°) of the drive head for the initial (before width change) magnetic tape.
  • Cos10° SP/h.
  • Examples 1 to 4 are magnetic tapes that satisfy the conditions that the absolute value of the average width change ⁇ A is 170 ppm or less, the average tension response ⁇ W is 700 ppm/N or more, and the average difference over the entire length of the magnetic recording medium between two adjacent servo band pitches in multiple servo bands is 100 nm or less. Comparative Examples 1 to 4 are magnetic tapes that do not satisfy these conditions.
  • the absolute value of the amount of width change over 10 years does not exceed 500 ppm, so it is believed that the expected width change after 10 years can be accommodated by adjusting the angle of the drive head. Therefore, it is believed that the magnetic tape of this technology can accommodate width changes in the magnetic tape by adjusting the angle of the drive head, even if the magnetic tape is stored or run in a high-temperature environment for a long period of time (e.g., 10 years).
  • the present technology is not limited to the above embodiments and variations, and various variations based on the technical ideas of the present technology are possible.
  • the configurations, methods, processes, shapes, materials, and numerical values, etc., given in the above embodiments and variations are merely examples, and different configurations, methods, processes, shapes, materials, and numerical values, etc., may be used as necessary.
  • the configurations, methods, processes, shapes, materials, and numerical values, etc., of the above embodiments and variations can be combined with each other as long as they do not deviate from the spirit of the present technology.
  • the present technology can also adopt the following configuration.
  • a tape-shaped magnetic recording medium having a magnetic layer having a plurality of servo bands on which a plurality of servo patterns adjacent in a width direction are recorded, the absolute value of the average width change of the magnetic recording medium before and after being left stationary for 40 hours in an environment of a temperature of 50° C. and a relative humidity of 40% RH with a tension of 0.55 N per 1 ⁇ 2 inch of width applied to the magnetic recording medium in the longitudinal direction is 170 ppm or less, and the average tension response to the tension in the longitudinal direction in an environment of a temperature of 50° C.
  • a magnetic recording medium in which an average difference between two adjacent servo band pitches in the plurality of servo bands over the entire length of the magnetic recording medium is 100 nm or less.
  • the magnetic recording medium according to [1], wherein the average tension response is 715 ppm/N or more and 15,000 ppm/N or less.
  • the magnetic recording medium according to [1] or [2], wherein the absolute value of the average width change is 140 ppm or less.
  • the magnetic layer is configured to be capable of forming a plurality of data tracks, and the width of the data tracks is 1100 nm or less.
  • a method for manufacturing a magnetic recording medium having a plurality of servo patterns recorded on a magnetic layer of the magnetic recording medium comprising the steps of: running the magnetic recording medium; and individually adjusting the temperatures of a plurality of recording portions of a servo write head;
  • a method for manufacturing a magnetic recording medium comprising: recording the plurality of servo patterns on the magnetic layer by the plurality of recording portions.
  • a cartridge comprising: a magnetic recording medium according to [1]; and a storage unit configured to be able to write adjustment information for adjusting the tension applied to the magnetic recording medium in the longitudinal direction.
  • MT magnetic tape 5 recording track 6 servo pattern 9 cartridge memory 10 tape cartridge 10S sample 11 cartridge case 11a upper shell 11b lower shell 13 tape reel 14 opening 15 metal plate 16 reel spring 17 reel lock member 18 spider 19 tape outlet 20 slide door 21 torsion spring 22 leader pin 23 pin holder 24 elastic holder 25 safety tab 30 tape drive device 31 spindle 32 take-up reel 33 spindle drive device 34 reel drive device 35 guide roller 36 drive head 36a first drive head 36b second drive head 37 reader/writer 38 control device 39 thermometer 40 hygrometer 41 substrate 42 undercoat layer 43 magnetic layer 44 back layer 70 coil 80 temperature adjustment section 91 ventilation block 91a gas outlet 92a Gas outlet 92L Positioning block 92R Positioning block 93 Shield plate 94 Valve mechanism 95 Groove 96 Notch G1 Square groove T1 Top 100 Servo pattern recording device 111 Feed roller 112 Pre-processing section 112a Permanent magnet 113 Servo write head 114 Reproducing head section 115 Winding roller 120 Drive section 121 Converter 122 Signal generating section 123

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

磁気記録媒体を高温環境下で保存や走行した場合にも、磁気記録媒体の走行テンションの調整により磁気記録媒体の幅変化を補正可能なテープ状の磁気記録媒体およびそれを備えるカートリッジを提供することを目的とする。 幅方向に隣接する複数のサーボパターンが記録される複数のサーボバンドを有する磁性層を有するテープ状の磁気記録媒体であって、 前記磁気記録媒体の幅1/2インチあたり0.55Nのテンションが長手方向に加えられた状態で温度50℃、相対湿度40%RHの環境下に40時間静置される前後の磁気記録媒体の平均幅変化量の絶対値が170ppm以下であり、かつ、温度50℃、相対湿度40%RHの環境下における、長手方向のテンションに対する平均テンション応答性が700ppm/N以上であり、 前記複数のサーボバンドにおいて隣接する2つのサーボバンドピッチの磁気記録媒体全長にわたる差の平均値が100nm以下である磁気記録媒体。

Description

磁気記録媒体
 本技術は、磁気記録媒体に関する。
 アーカイブの需要が高まり、総容量の高いテープ状の磁気記録媒体がクラウドシステムに組み込まれるようになっている。現在のテープ状の磁気記録媒体は、実走行や保管の環境温度範囲がHDD(Hard Disk Drive)や半導体メモリ等より狭いため、テープ状の磁気記録媒体の実走行や保管の環境温度範囲を拡張することが望まれている。テープ状の磁気記録媒体がHDDや半導体メモリ等と同様の温度環境で使用できるようになると、テープ状の磁気記録媒体の使用範囲が大きく広がると考えられている。
 テープ状の磁気記録媒体では、環境変化により磁気記録媒体の幅方向の寸法が大きく変化すると、オフトラックが発生し、安定した記録再生特性を確保することが困難になる。特許文献1では、環境変化によりテープ状の磁気記録媒体の幅方向の寸法が変化しても、記録再生装置によりテープ状の磁気記録媒体の長手方向のテンションを調整することで、幅変化を補正可能なテープ状の磁気記録媒体が提案されている。
特開2020-173882号公報
 HDDでは、一般的に動作保証環境の上限温度として50℃が想定されているが、従来のテープ状の磁気記録媒体では、このような高温環境での保存や走行は想定されていない。特許文献1でも、このような高温環境での保存や走行は想定されていない。このため、従来のテープ状の磁気記録媒体を高温環境下で保存や走行した場合、テープ状の幅変化が走行テンションの調整により補正可能な範囲を超え、幅変化の補正が困難になる虞がある。
 以上のような事情に鑑み、本技術は、磁気記録媒体を高温環境下で保存や走行した場合にも、磁気記録媒体の走行テンションの調整により磁気記録媒体の幅変化を補正可能なテープ状の磁気記録媒体およびそれを備えるカートリッジを提供することを目的とする。
 本技術は、幅方向に隣接する複数のサーボパターンが記録される複数のサーボバンドを有する磁性層を有するテープ状の磁気記録媒体であって、
 前記磁気記録媒体の幅1/2インチあたり0.55Nのテンションが長手方向に加えられた状態で温度50℃、相対湿度40%RHの環境下に40時間静置される前後の磁気記録媒体の平均幅変化量の絶対値が170ppm以下であり、
 かつ、温度50℃、相対湿度40%RHの環境下における、長手方向のテンションに対する平均テンション応答性が700ppm/N以上であり、
 前記複数のサーボバンドにおいて隣接する2つのサーボバンドピッチの磁気記録媒体全長にわたる差の平均値が100nm以下である磁気記録媒体を提供する。
 本技術に従う、磁気記録媒体は、前記平均テンション応答性が、715ppm/N以上15000ppm/N以下でありうる。
 本技術に従う、磁気記録媒体は、前記平均幅変化量の絶対値が、140ppm以下でありうる。
 本技術に従う、磁気記録媒体は、基体と、下地層と、磁性層とを順次備え、前記基体は、ポリエステル類を含みうる。
 本技術に従う、磁気記録媒体において、前記ポリエステル類は、ポリエチレンテレフタレートおよびポリエチレンナフタレートからなる群より選ばれた少なくとも1種を含みうる。
 本技術に従う、磁気記録媒体において、前記基体の平均厚みは、4.4μm以下でありうる。
 本技術に従う、磁気記録媒体において、前記磁性層は、真空薄膜でありうる。
 本技術に従う、磁気記録媒体において、前記磁性層は、塗布膜でありうる。
 本技術に従う、磁気記録媒体において、前記磁性層は、磁性粉を含みうる。
 本技術に従う、磁気記録媒体において、前記磁性粉は、ε酸化鉄磁性粉、六方晶フェライト磁性粉またはCo含有スピネルフェライト磁性粉を含みうる。
 本技術に従う、磁気記録媒体において、前記磁性層の平均厚みは、90nm以下でありうる。
 本技術に従う、磁気記録媒体において、前記下地層の平均厚みは、1.0μm以下でありうる。
 本技術に従う、磁気記録媒体において、前記磁気記録媒体の平均厚みは、5.3μm以下でありうる。
 本技術に従う、磁気記録媒体において、前記磁気記録媒体の長手方向における前記磁性層の角形比は、35%以下でありうる。
 本技術に従う、磁気記録媒体において、前記磁性層は、5以上のサーボバンドを有しうる。
 本技術に従う、磁気記録媒体において、前記サーボバンドの幅は、98μm以下でありうる。
 本技術に従う、磁気記録媒体において、前記磁性層は、複数のデータトラックを形成可能に構成され、前記データトラックの幅は、1100nm以下でありうる。
 本技術に従う、磁気記録媒体において、ヤング率は8GPa以下でありうる。
 本技術は、磁気記録媒体の磁性層に磁気記録媒体幅方向に隣接する複数のサーボパターンが記録された磁気記録媒体の製造方法であって、前記磁気記録媒体を走行させ、サーボライトヘッドの複数の記録部の温度を個別に調整し、
 前記複数の記録部によって前記磁性層に前記複数のサーボパターンを記録する磁気記録媒体の製造方法を提供する。
 本技術は、前記磁気記録媒体と、前記磁気記録媒体の長手方向にかかるテンションを調整するための調整情報を書き込み可能に構成された記憶部とを備えるカートリッジを提供する。
本技術の第1の実施形態に係るカートリッジの構成の一例を示す分解斜視図である。 磁気記録媒体の構成の一例を示す断面図である。 上記磁気記録媒体を上方(磁性層側)からみた模式図である。 上記磁気記録媒体のデータバンドにおける記録トラックを示す拡大図である。 上記磁気記録媒体のサーボバンドに書き込まれたサーボパターンの一部を示す拡大図である。 粒子の形状の一例を示す斜視図である。 磁性層のTEM写真の一例を示す図である。 磁性層のTEM写真の一例を示す図である。 測定装置の構成を示す斜視図である。 テープドライブ装置の構成の一例を示す概略図である。 上記テープドライブ装置におけるドライブヘッドを下側(テープ走行面)から見た概略図である。 上記ドライブヘッドにおける第1のドライブヘッド部がデータ信号の記録/再生を行っているときの様子を示す図である。 (A)はサーボパターンの配置例を示す概略平面図、(B)はその再生波形を示す図である。 第1のサーボバンド識別情報が埋め込まれるサーボパターン(A)及び第2のサーボバンド識別情報が埋め込まれるサーボパターン(B)の構成例を示す概略図である。 第1のサーボパターンの再生波形(A)及び第2のサーボパターンの再生波形(B)をそれぞれ示す図である。 データバンドをドライブヘッドがトラッキングする説明図である。 サーボトレースラインの測定方法を説明する図である。 本技術の一実施形態に係るサーボパターン記録装置を示す概略正面図である。 上記サーボパターン記録装置の一部を示す部分拡大図である。 上記サーボパターン記録装置におけるサーボライトヘッドの構成を概略的に示す斜視図である。 上記サーボライトヘッドの要部の概略断面図である。 上記サーボライトヘッドの要部の概略平面図である。 上記サーボパターン記録装置における駆動部の構成を示すブロック図である。 第1のパルス信号における第1サーボサブフレームの記録信号波形(A)及び第2のパルス信号における第1サーボサブフレームの記録信号波形をそれぞれ示す模式図である。 上記サーボパターン記録装置における磁気テープの走行をガイドする一対のガイドローラを概略的に示す斜視図である。 同一の磁気テープについて測定した各データバンドのサーボバンドピッチを比較して示す一実験結果である。 サーボパターンの記録電流の大きさとサーボバンドピッチとの関係を示す一実験結果である。 上記記録電流の大きさとサーボライトヘッドの温度変化と磁気テープの走行時間との関係を示す一実験結果である。 上記記録電流を基準電流の-20%の電流値と記録電流の+20%の電流値で交互に変化させたときのサーボバンドピッチの変化を示す一実験結果である。 送風ユニットを備えたサーボライトヘッドの構成を示す概略斜視図である。 冷却ガス(エアー)の導入の有無によるサーボパターンピッチの変化の様子を示す一実験結果である。 隣接する2つのサーボバンド間の間隔であるサーボバンドピッチの最大値(max)および最小値(min)、ならびにこれら最大値と最小値との差分(サーボバンドピッチ差:SBD)を示す図であって、サーボライトヘッドを冷却せずに行った実験結果である。 図32と同様な図であって、サーボライトヘッドを冷却しながら行った一実験結果である。 図32と同様な図であって、サーボライトヘッドを冷却しながら行った他の実験結果である。 複数の溝部を有するサーボライトヘッドの概略平面図である。 上記溝部の詳細を示す拡大斜視図である。 図35に示すサーボライトヘッドの構成の変形例を示す概略平面図である。 本技術の第2の実施形態に係る磁気テープの構成の一例を示す断面図である。 スパッタ装置の構成を示す概略図である。 本技術の第3の実施形態に係る磁気テープの構成の一例を示す断面図である。 本技術の第1の実施形態の変形例に係るカートリッジの構成の一例を示す分解斜視図である。 実施例1に係る磁気テープの幅変化量の測定結果を示すグラフである。 各実施例および比較例における10年を想定した幅変化量を示すグラフである。 傾斜して配置されたドライブヘッドの移動角度の算出方法を説明するための模式図である。
 以下、本技術を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、本技術の範囲がこれらの実施形態のみに限定されることはない。
 本技術について、以下の順序で説明を行う。
1.第1の実施形態(塗布型の磁気テープの例)
(1)カートリッジの構成
(2)磁気テープの構成
(3)磁気テープの製造方法
(4)テープドライブ装置の構成
(5)サーボパターン記録装置の構成
(6)作用効果
2.第2の実施形態(真空薄膜型の磁気テープの例)
(1)磁気テープの構成
(2)スパッタ装置の構成
(3)磁気テープの製造方法
(4)作用効果
3.第3の実施形態(真空薄膜型の磁気テープの他の例)
(1)磁気テープの構成
(2)作用効果
4.変形例
5.実施例
 本明細書において、測定方法の説明に関して測定環境が特に記載のない場合、測定は25℃±2℃、50%RH±5%RHの環境下にて行われるものとする。また、本明細書において、「から」を用いて示された数値範囲は、「から」の前後に記載された数値をそれぞれ最小値および最大値として含む範囲を示す。
1.第1の実施形態(塗布型の磁気テープの例)
(1)カートリッジの構成
 図1は本技術の一実施形態に係るテープカートリッジ10を示す分解斜視図である。本実施形態の説明では、テープカートリッジ10として、LTO規格に準拠するテープカートリッジを例に挙げて説明する。
 図1に示すように、テープカートリッジ10は、カートリッジケース11と、テープリール13と、磁気テープMTとを備えている。カートリッジケース11は、上シェル11aと下シェル11bとを複数本のネジ部材により結合することで構成されている。カートリッジケース11の内部には、磁気テープMTを巻装した単一のテープリール13が回転可能に収容されている。
 テープリール13の底部中央には、テープドライブ装置30のスピンドル31(図10参照)と係合するチャッキングギヤ(図示略)が環状に形成されている。このチャッキングギヤは、下シェル11bの中央に形成された開口部14を介して外部へ露出している。このチャッキングギヤの内周側には、スピンドル31と磁気的に吸着される環状の金属プレート15が固定されている。
 上シェル11aの内面とテープリール13との間には、リールスプリング16、リールロック部材17及びスパイダ18が配置されている。これらにより、カートリッジ10の非使用時におけるテープリール13の回転を抑止するリールロック機構が構成される。
 カートリッジケース11の一側壁部には、磁気テープMTの一端を外部へ引き出すためのテープ引出し口19が設けられている。この側壁部の内方には、テープ引出し口19を開閉するスライドドア20が配置されている。スライドドア20は、テープドライブ装置30のテープローディング機構(不図示)との係合によりトーションバネ21の付勢力に抗してテープ引出し口19を開放する方向にスライドするように構成される。
 磁気テープMTの一端部には、リーダーピン22が固着されている。リーダーピン22は、テープ引出し口19の内方側に設けられたピン保持部23に対して着脱可能に構成される。ピン保持部23は、カートリッジケース11の上壁内面(上シェル11aの内面)及び底壁内面(下シェル11bの内面)において、リーダーピン22の上端部及び下端部をそれぞれ弾性的に保持する弾性保持具24を備えている。
 そして、カートリッジケース11の他の側壁内方には、磁気テープMTに記録された情報の誤消去防止用のセイフティタブ25のほか、磁気テープMTに記録されたデータに関する内容および磁気テープMTに関する情報を非接触で読み書き可能なカートリッジメモリ9が配置されている。
(2)磁気テープの構成
 図2は、磁気テープMTの構成の一例を示す断面図である。磁気テープMTは、長尺状の基体41と、基体41の一方の主面(第1の主面)上に設けられた下地層42と、下地層42上に設けられた磁性層43と、基体41の他方の主面(第2の主面)上に設けられたバック層44とを備える。なお、下地層42およびバック層44は、必要に応じて備えられるものであり、無くてもよい。磁気テープMTは、垂直記録型の磁気記録媒体であってもよいし、長手記録型の磁気記録媒体であってもよい。磁気テープMTは、走行性の向上の観点から、潤滑剤を含むことが好ましい。潤滑剤は、下地層42および磁性層43のうちの少なくとも1層に含まれていてもよい。
 磁気テープMTはLTO規格に準拠するものであってもよいし、LTO規格とは別の規格に準拠するものであってもよい。磁気テープMTの幅は、1/2インチであってもよいし、1/2インチよりも広くてもよい。磁気テープMTがLTO規格に準拠するものである場合には、磁気テープMTの幅は7、1/2インチである。磁気テープMTは、走行時に磁気テープMTの長手方向に加わるテンションを記録再生装置(ドライブ)により調整することで、磁気テープMTの幅を一定またはほぼ一定に保つことが可能な構成を有していてもよい。
 磁気テープMTは長尺状を有し、記録再生の際には長手方向に走行される。磁気テープMTは、記録用ヘッドとしてリング型ヘッドを備える記録再生装置で用いられることが好ましい。磁気テープMTは、1100nm以下または900nm以下のデータトラック幅でデータを記録可能に構成された記録再生装置に用いられることが好ましい。
[基体]
 基体41は、下地層42および磁性層43を支持する非磁性支持体である。基体41は、長尺のフィルム状を有する。基体41の平均厚みの上限値は、例えば4.4μm以下、好ましくは4.2μm以下、より好ましくは4.0μm以下、さらにより好ましくは3.8μm以下、特に好ましくは3.6μm以下、最も好ましくは3.4μm以下である。基体41の平均厚みの上限値が4.4μm以下であると、1データカートリッジ内に記録できる記録容量を一般的な磁気テープよりも高めることができる。基体41の平均厚みの下限値は、好ましくは3μm以上、より好ましくは3.2μm以上である。基体41の平均厚みの下限値が3μm以上であると、基体41の強度低下を抑制することができる。
 基体41の平均厚みは以下のようにして求められる。まず、カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTを250mmの長さに切り出し、3つのサンプルを作製する。本明細書において、"磁気テープMTとリーダーテープLTとの接続部21から長手方向"という場合の"長手方向"とは、リーダーテープLT側の一端からそれとは反対側の他端に向かう方向を意味する。
 続いて、各サンプルの基体41以外の層(すなわち下地層42、磁性層43およびバック層44)をMEK(メチルエチルケトン)または希塩酸等の溶剤で除去する。次に、測定装置としてMitutoyo社製レーザーホロゲージ(LGH-110C)を用いて、各サンプル(基体41)の厚みを5点の位置で測定し、それらの測定値(合計で15点のサンプルの厚み)を算術平均して、基体41の平均厚みを算出する。なお、上記5点の測定位置は、磁気テープMTの長手方向においてそれぞれ異なる位置となるように、各サンプルから無作為に選ばれるものとする。
 基体41は、例えば、ポリエステル類、ポリオレフィン類、セルロース誘導体、ビニル系樹脂、およびその他の高分子樹脂のうちの少なくとも1種を含む。基体41が上記材料のうちの2種以上を含む場合、それらの2種以上の材料は混合されていてもよいし、共重合されていてもよいし、積層されていてもよい。
 基体41は、上記の高分子樹脂のうち、ポリエステル類を含むことが好ましい。基体41がポリエステル類を含むことで、基体41の長手方向の貯蔵弾性率E'を、好ましくは9.0GPa以下、より好ましくは7.5GPa以下、さらにより好ましくは6.0GPa以下、特に好ましくは5.5GPa以下、最も好ましくは4.5GPa以下に低減することができる。したがって、走行時における磁気テープMTの長手方向のテンションを記録再生装置により調整することで、磁気テープMTの幅を一定またはほぼ一定に保つ制御を特に行いやすい。
 ポリエステル類は、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PBT(ポリブチレンテレフタレート)、PBN(ポリブチレンナフタレート)、PCT(ポリシクロヘキシレンジメチレンテレフタレート)、PEB(ポリエチレン-p-オキシベンゾエート)およびポリエチレンビスフェノキシカルボキシレートのうちの少なくとも1種を含む。基体41が2種以上のポリエステル類を含む場合、それらの2種以上のポリエステル類は混合されていてもよいし、共重合されていてもよいし、積層されていてもよい。ポリエステル類の末端および側鎖の少なくとも一方が変性されていてもよい。基体41の強度を向上するために、PET(ポリエチレンテレフタレート)にPA(ポリアミド)が添加されていてもよい。
 基体41にポリエステル類が含まれていることは、例えば、次のようにして確認される。まず、カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に30mから40mの範囲から磁気テープMTを切り出し、サンプルを作製した後、サンプルの基体41以外の層を除去する。次に、赤外吸収分光法(Infrared Absorption Spectrometry:IR)によりサンプル(基体41)のIRスペクトルを取得する。このIRスペクトルに基づき、基体41にポリエステル類が含まれていることを確認することができる。
 ポリオレフィン類は、例えば、PE(ポリエチレン)およびPP(ポリプロピレン)のうちの少なくとも1種を含む。セルロース誘導体は、例えば、セルロースジアセテート、セルローストリアセテート、CAB(セルロースアセテートブチレート)およびCAP(セルロースアセテートプロピオネート)のうちの少なくとも1種を含む。ビニル系樹脂は、例えば、PVC(ポリ塩化ビニル)およびPVDC(ポリ塩化ビニリデン)のうちの少なくとも1種を含む。
 その他の高分子樹脂は、例えば、PA(ポリアミド、ナイロン)、芳香族PA(芳香族ポリアミド、アラミド)、PI(ポリイミド)、芳香族PI(芳香族ポリイミド)、PAI(ポリアミドイミド)、芳香族PAI(芳香族ポリアミドイミド)、PBO(ポリベンゾオキサゾール、例えばザイロン(登録商標))、ポリエーテル、PEK(ポリエーテルケトン)、PEEK(ポリエーテルエーテルケトン)、ポリエーテルエステル、PES(ポリエーテルサルフォン)、PEI(ポリエーテルイミド)、PSF(ポリスルフォン)、PPS(ポリフェニレンスルフィド)、PC(ポリカーボネート)、PAR(ポリアリレート)およびPU(ポリウレタン)のうちの少なくとも1種を含む。
 基体41は、長手方向および幅方向に二軸延伸されていてもよい。基体41に含まれる高分子樹脂は、基体41の幅方向に対して斜め方向に配向されていることが好ましい。
[磁性層]
 磁性層43は、信号を磁化パターンにより記録するための記録層である。磁性層43は、塗布膜であってもよい。磁性層43は、垂直記録型の記録層であってもよいし、長手記録型の記録層であってもよい。磁性層43は、例えば、磁性粉、結着剤、潤滑剤およびカーボンを含む。磁性層43が、必要に応じて、帯電防止剤、研磨剤、硬化剤、防錆剤および非磁性補強粒子等のうちの少なくとも1種の添加剤をさらに含んでいてもよい。磁性層43は、凹凸形状を有する表面を有していてもよい。
 図3に示すように、磁性層43は、データが書き込まれる長手方向(X軸方向)に長い複数のデータバンドd(データバンドd0~d3)と、サーボパターン6が書き込まれる長手方向に長い複数のサーボバンドs(サーボバンドs0~s4)とを有している。サーボバンドsは、幅方向(Y軸方向)で各データバンドdを挟み込む位置に配置される。なお、磁性層43は、5以上のサーボバンドsを有するのが好ましい。
 本技術において、磁性層43の表面全体の面積に対するサーボバンドsの面積の比率は、典型的には、4.0%以下とされる。なお、サーボバンドsの幅は、1/2インチのテープ幅で、例えば98μm以下とされる。磁性層43の表面全体の面積に対するサーボバンドsの面積の比率は、例えば、磁気テープMTを、フェリコロイド現像液等の現像液を用いて現像し、その後、現像した磁気テープMTを光学顕微鏡で観察することで測定することができる。
 図3に示す例では、データバンドdの本数が4本とされ、サーボバンドsの本数が5本とされた場合の例が示されている。なお、データバンドdの本数、サーボバンドsの本数は、適宜変更することができる。
 データバンドdは、長手方向に長く、幅方向に整列された複数の記録トラック5を含む。1本のデータバンドdに含まれる記録トラック5の本数は、例えば、1000本から2500本程度とされる。データは、この記録トラック5に沿って、記録トラック5内に記録される。データバンドdに記録されるデータにおける長手方向の1ビット長は、例えば、48nm以下とされる。サーボバンドsは、後述するサーボパターン記録装置(図18参照)によって記録される所定形状のサーボパターン6を含む。
 ここで、LTO規格の磁気テープMTは、世代ごとに記録トラック5の数が増加して記録容量が飛躍的に向上している。一例を挙げると、初代のLTO-1では記録トラック5の数が384本であったが、LTO-2からLTO-8では記録トラック5の数がそれぞれ順に、512本、704本、896本、1280本、2176本、3584本及び6656本である。データの記録容量についても同様に、LTO-1では100GB(ギガバイト)であったのが、LTO-2からLTO-8ではそれぞれ順に、200GB、400GB、800GB、1.5TB(テラバイト)、2.5TB、6.0TB及び12TBである。
 本実施形態では、記録トラック5の本数や記録容量は、特に限定されず、適宜変更可能である。但し、例えば、記録トラック5の本数や記録容量が多く(例えば、6656本以上、12TB以上:LTO8以降)、磁気テープMTの幅の変動の影響を受けやすいような磁気テープMTに適用されると有利である。例えば、磁気テープMTとして、テープ全体のヤング率(テープ長手方向のヤング率)が、8GPa以下の磁気テープが適用される。
[データバンド及びサーボバンド]
 図4は、データバンドdにおける記録トラック5を示す拡大図である。図4に示すように、記録トラック5は、長手方向に長く、幅方向に整列され、また、幅方向でトラック毎に所定の記録トラック幅(トラックピッチ)Wdを有している。この記録トラック幅Wdは、LTO-8では、2.0μm以下とされる。なお、このような記録トラック幅Wdは、例えば、磁気テープMTの磁性層43を、フェリコロイド現像液等の現像液を用いて現像し、その後、現像した磁気テープMTの磁性層43を光学顕微鏡で観察することで測定することができる。もしくは、ドライブヘッドを利用した測定方法として、テープ走行時の変動を無視するため、ドライブヘッドをRead While Write(記録時再生)状態とし、ドライブヘッドのAzimuthを変化させた場合の出力変化から記録トラック幅Wdを測定することができる。(IEEE#Sept1996#Crosstrack Profiles of Thin Film MR Tape Heads Using the Azimuth Displacement Method)
 図5は、サーボバンドsに書き込まれたサーボパターン6の一部を示す拡大図である。図5に示すように、サーボパターン6は、その詳細については後述するが、幅方向(Y軸方向)に対して所定のアジマス角αを持って傾斜する複数のストライプを含む。この複数のストライプは、幅方向(Y軸方向)に対して時計回りに傾斜する第1のストライプ群61と、幅方向に対して反時計回りに傾斜する第2のストライプ群62とに分類される。第1のストライプ群61及び第2のストライプ群62は、典型的には、4本又は5本のストライプを含む。なお、サーボパターン6の形状などは、例えば、磁気テープMTの磁性層43を、フェリコロイド現像液等の現像液を用いて現像し、その後、現像した磁気テープMTの磁性層43を光学顕微鏡で観察することで測定することができる。
 図5には、サーボパターン6上を後述するサーボリードヘッド132(図11参照)によってトレースされるラインであるサーボトレースラインTが破線により示されている。サーボトレースラインTは、長手方向(X軸方向)に沿って設定され、また、幅方向に所定の間隔Psを開けて設定される。
 1本のサーボバンドsあたりのサーボトレースラインTの本数は、例えば、30本から60本程度とされる。隣接する2つのサーボトレースラインTの間隔Psは、記録トラック幅Wdの値と同じであり、例えば、2.0μm以下とされる。ここで、隣接する2つのサーボトレースラインTの間隔Psは、記録トラック幅Wdを決定付ける値とされている。つまり、サーボトレースラインTの間隔Psが狭められると、記録トラック幅Wdが小さくなり、1本のデータバンドdに含まれる記録トラック5の本数が増える。結果として、データの記録容量が増えることになる。
 磁性層43の平均厚みの上限値は、好ましくは90nm以下、より好ましくは80nm以下、さらにより好ましくは70nm以下、特に好ましくは60nm以下、最も好ましくは50nm以下である。磁性層43の平均厚みの上限値が90nm以下であると、記録ヘッドとしてはリング型ヘッドを用いた場合に、反磁界の影響を軽減できるため、さらに優れた電磁変換特性を得ることができる。
 磁性層43の平均厚みの下限値は、好ましくは35nm以上である。磁性層43の平均厚みの下限値が35nm以上であると、再生ヘッドとしてはMR型ヘッドを用いた場合に、出力を確保できるため、さらに優れた電磁変換特性を得ることができる。
 磁性層43の平均厚みは、以下のようにして求められる。まず、カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTを250mmの長さに切り出し、3つのサンプルを作製する。続いて、各サンプルをFIB法等により加工して薄片化を行う。FIB法を使用する場合には、後述の断面のTEM像を観察する前処理として、保護膜としてカーボン層およびタングステン層を形成する。当該カーボン層は蒸着法により磁気テープMTの磁性層43側の表面およびバック層44側の表面に形成され、そして、当該タングステン層は蒸着法またはスパッタリング法により磁性層43側の表面にさらに形成される。当該薄片化は磁気テープMTの長さ方向(長手方向)に沿って行われる。すなわち、当該薄片化によって、磁気テープMTの長手方向および厚み方向の両方に平行な断面が形成される。
 得られた各薄片化サンプルの上記断面を、透過型電子顕微鏡(Transmission Electron Microscope:TEM)により、下記の条件で観察し、各薄片化サンプルのTEM像を得る。なお、装置の種類に応じて、倍率および加速電圧は適宜調整されてよい。
装置:TEM(日立製作所製H9000NAR)
加速電圧:300kV
倍率:100,000倍
 次に、得られた各薄片化サンプルのTEM像を用い、各薄片化サンプルの10点の位置で磁性層43の厚みを測定する。なお、各薄片化サンプルの10点の測定位置は、磁気テープMTの長手方向においてそれぞれ異なる位置となるように、各サンプルから無作為に選ばれる。得られた各薄片化サンプルの測定値(合計で30点の磁性層43の厚み)を算術平均して得られた平均値を磁性層43の平均厚み[nm]とする。
[磁性粉]
 磁性粉は、複数の磁性粒子を含む。磁性粒子は、例えば、金属酸化物を含む粒子(以下「金属酸化物粒子」という。)である。金属酸化物粒子は、例えば、六方晶フェライトを含む粒子(以下「六方晶フェライト粒子」という。)、イプシロン型酸化鉄(ε酸化鉄)を含む粒子(以下「ε酸化鉄粒子」という。)またはCo含有スピネルフェライトを含む粒子(以下「コバルトフェライト粒子」という。)である。磁性粉は、磁気テープMTの垂直方向に優先的に結晶配向していることが好ましい。本明細書において、磁気テープMTの垂直方向(厚み方向)とは、平面状態にある磁気テープMTの厚み方向を意味する。
[六方晶フェライト粒子]
 六方晶フェライト粒子は、例えば、六角板状等の板状または六角柱状等の柱状(但し、厚さまたは高さが板面または底面の長径より小さい。)を有する。本明細書において、六角板状は、ほぼ六角板状を含むものとする。六方晶フェライトは、好ましくはBa、Sr、PbおよびCaのうちの少なくとも1種、より好ましくはBaおよびSrのうちの少なくとも1種を含む。六方晶フェライトは、具体的には例えばバリウムフェライトまたはストロンチウムフェライトであってもよい。バリウムフェライトは、Ba以外にSr、PbおよびCaのうちの少なくとも1種をさらに含んでいてもよい。ストロンチウムフェライトは、Sr以外にBa、PbおよびCaのうちの少なくとも1種をさらに含んでいてもよい。
 より具体的には、六方晶フェライトは、一般式MFe1219で表される平均組成を有する。但し、Mは、例えばBa、Sr、PbおよびCaのうちの少なくとも1種の金属、好ましくはBaおよびSrのうちの少なくとも1種の金属である。Mが、Baと、Sr、PbおよびCaからなる群より選ばれる1種以上の金属との組み合わせであってもよい。また、Mが、Srと、Ba、PbおよびCaからなる群より選ばれる1種以上の金属との組み合わせであってもよい。上記一般式においてFeの一部が他の金属元素で置換されていてもよい。
 磁性粉が六方晶フェライト粒子粉を含む場合、磁性粉の平均粒子サイズは、好ましくは13nm以上22nm以下、より好ましくは13nm以上19nm以下、さらにより好ましくは13nm以上18nm以下、特に好ましくは14nm以上17nm以下、最も好ましくは14nm以上16nm以下である。磁性粉の平均粒子サイズが22nm以下であると、高記録密度の磁気テープMTにおいて、さらに優れた電磁変換特性(例えばSNR)を得ることができる。一方、磁性粉の平均粒子サイズが13nm以上であると、磁性粉の分散性がより向上し、さらに優れた電磁変換特性(例えばSNR)を得ることができる。
 磁性粉が六方晶フェライト粒子粉を含む場合、磁性粉の平均アスペクト比が、好ましくは1.0以上3.0以下、より好ましくは1.5以上2.8以下、さらにより好ましくは1.8以上2.7以下である。磁性粉の平均アスペクト比が1.0以上3.0以下の範囲内であると、磁性粉の凝集を抑制することができる。また、磁性層43の形成工程において磁性粉を垂直配向させる際に、磁性粉に加わる抵抗を抑制することができる。したがって、磁性粉の垂直配向性を向上することができる。
 磁性粉が六方晶フェライト粒子粉を含む場合、磁性粉の平均粒子サイズおよび平均アスペクト比は以下のようにして求められる。まず、カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に30mから40mの範囲から磁気テープMTを切り出す。続いて、切り出された磁気テープMTをFIB法等により加工して薄片化を行う。FIB法を使用する場合には、後述の断面のTEM像を観察する前処理として、保護膜としてカーボン層およびタングステン層を形成する。当該カーボン層は蒸着法により磁気テープMTの磁性層43側の表面およびバック層44側の表面に形成され、そして、当該タングステン層は蒸着法またはスパッタリング法により磁性層43側の表面にさらに形成される。当該薄片化は磁気テープMTの長さ方向(長手方向)に沿って行われる。すなわち、当該薄片化によって、磁気テープMTの長手方向および厚み方向の両方に平行な断面が形成される。
 得られた薄片サンプルの上記断面を、透過電子顕微鏡(日立ハイテクノロジーズ社製H-9500)を用いて、加速電圧:200kV、総合倍率500,000倍で磁性層43の厚み方向に対して磁性層43全体が含まれるように断面観察を行い、TEM写真を撮影する。TEM写真は、下記で示す板径DBおよび板厚DA(図7参照)を測定できる粒子を50個抽出できる枚数準備する。
 本明細書では、上記のTEM写真において観察される粒子の形状が、図6に示すように、板状または柱状(但し、厚さまたは高さが板面または底面の長径より小さい。)である場合には、粒子の板面または底面の長径を板径DBの値とする。上記のTEM写真において観察される粒子の厚さまたは高さを板厚DAの値とする。一粒子内にて粒子の厚さまたは高さが一定でない場合には、最大の粒子の厚さまたは高さを板厚DAとする。
 次に、撮影したTEM写真から抽出する50個の粒子を、下記の基準に基づき選び出す。粒子の一部がTEM写真の視野の外にはみだしている粒子は測定せず、輪郭がはっきりしており、孤立して存在している粒子を測定する。粒子同士に重なりがある場合は、両者の境界が明瞭で、粒子全体の形状も判断可能な粒子は、それぞれの粒子を単独粒子として測定するが、境界がはっきりせず、粒子の全形も判らない粒子は、粒子の形状が判断できないものとして測定しない。
 図7、図8にTEM写真の一例を示す。図7、図8において、例えば矢印aおよびdで示される粒子が、その粒子の板厚(その粒子の厚さまたは高さ)DAを明らかに確認できるので、選択される。選択された50個の粒子それぞれの板厚DAを測定する。このようにして求めた板厚DAを算術平均して平均板厚DAaveを求める。平均板厚DAaveが平均粒子板厚である。続いて、各磁性粉の板径DBを測定する。粒子の板径DBを測定するために、撮影したTEM写真から、粒子の板径DBを明らかに確認できる粒子を50個選び出す。例えば、図7、図8において、例えば矢印bおよびcで示される粒子が、その板径DBを明らかに確認できるので、選択される。選択された50個の粒子それぞれの板径DBを測定する。このようにして求めた板径DBを単純平均(算術平均)して平均板径DBaveを求める。平均板径DBaveが、平均粒子サイズである。そして、平均板厚DAaveおよび平均板径DBaveから粒子の平均アスペクト比(DBave/DAave)を求める。
 磁性粉が六方晶フェライト粒子粉を含む場合、磁性粉の平均粒子体積は、好ましくは500nm3以上2500nm3以下、より好ましくは500nm3以上1600nm3以下、さらに好ましくは500nm3以上1500nm3以下、特に好ましくは600nm3以上1200nm3以下、最も好ましくは600nm3以上1000nm3以下である。磁性粉の平均粒子体積が2500nm3以下であると、磁性粉の平均粒子サイズを22nm以下とする場合と同様の効果が得られる。一方、磁性粉の平均粒子体積が500nm3以上であると、磁性粉の平均粒子サイズを13nm以上とする場合と同様の効果が得られる。
 磁性粉の平均粒子体積は以下のようにして求められる。まず、上記の磁性粉の平均粒子サイズの算出方法に関して述べた通り、平均板厚DAaveおよび平均板径DBaveを求める。次に、以下の式により、磁性粉の平均体積Vを求める。
[ε酸化鉄粒子]
 ε酸化鉄粒子は、微粒子でも高保磁力を得ることができる硬磁性粒子である。ε酸化鉄粒子は、球状を有しているか、または立方体状を有している。本明細書において、球状は、ほぼ球状を含むものとする。また、立方体状には、ほぼ立方体状を含むものとする。ε酸化鉄粒子が上記のような形状を有しているため、磁性粒子としてε酸化鉄粒子を用いた場合、磁性粒子として六角板状のバリウムフェライト粒子を用いた場合に比べて、磁気テープMTの厚み方向における粒子同士の接触面積を低減し、粒子同士の凝集を抑制することができる。したがって、磁性粒子の分散性を高め、さらに優れた電磁変換特性(例えばSNR)を得ることができる。
 ε酸化鉄粒子は、複合粒子の構造を有していてもよい。より具体的には、ε酸化鉄粒子は、ε酸化鉄部と、軟磁性を有する部分もしくは、ε酸化鉄より飽和磁化量σsが高く、保磁力Hcが小さい磁性を有する部分(以下「軟磁性を有する部分等」という。)とを備える。
 ε酸化鉄部は、ε酸化鉄を含む。ε酸化鉄部に含まれるε酸化鉄は、ε-Fe23結晶を主相とするものが好ましく、単相のε-Fe23からなるものがより好ましい。
 軟磁性を有する部分等は、少なくともε酸化鉄部と一部で接している。具体的には、軟磁性を有する部分等は、ε酸化鉄部を部分的に覆っていてもよいし、ε酸化鉄部の周囲全体を覆っていてもよい。
 軟磁性を有する部分(ε酸化鉄より飽和磁化量σsが高く、保磁力Hcが小さい磁性を有する部分)は、例えば、α-Fe、Ni-Fe合金またはFe-Si-Al合金等の軟磁性体を含む。α-Feは、ε酸化鉄部に含まれるε酸化鉄を還元することにより得られるものであってもよい。
 また、軟磁性を有する部分は、例えば、Fe34、γ-Fe23、またはスピネルフェライト等を含んでいてもよい。
 ε酸化鉄粒子が、上記のように軟磁性を有する部分等を備えることで、熱安定性を確保するためにε酸化鉄部単体の保磁力Hcを大きな値に保ちつつ、ε酸化鉄粒子(複合粒子)全体としての保磁力Hcを記録に適した保磁力Hcに調整できる。
 ε酸化鉄粒子が、上記複合粒子の構造に代えて添加剤を含んでいてもよいし、上記複合粒子の構造を有すると共に添加剤を含んでいてもよい。この場合、ε酸化鉄粒子のFeの一部が添加剤で置換される。ε酸化鉄粒子が添加剤を含むことによっても、ε酸化鉄粒子全体としての保磁力Hcを記録に適した保磁力Hcに調整できるため、記録容易性を向上することができる。添加剤は、鉄以外の金属元素、好ましくは3価の金属元素、より好ましくはAl、GaおよびInからなる群より選ばれた少なくとも1種、さらにより好ましくはAlおよびGaからなる群より選ばれた少なくとも1種である。
 具体的には、添加剤を含むε酸化鉄は、ε-Fe2-xx3結晶(但し、Mは鉄以外の金属元素、好ましくは3価の金属元素、より好ましくはAl、GaおよびInからなる群より選ばれた少なくとも1種、さらにより好ましくはAlおよびGaからなる群より選ばれた少なくとも1種である。xは、例えば0<x<1である。)である。
 磁性粒子がε酸化鉄粒子である場合、磁性粒子の平均粒子サイズは、好ましくは10nm以上20nm以下、より好ましくは10nm以上18nm以下、さらにより好ましくは10nm以上16nm以下、特に好ましくは10nm以上15nm以下、最も好ましくは10nm以上14nm以下である。磁気テープMTでは、記録波長の1/2のサイズの領域が実際の磁化領域となる。このため、磁性粒子の平均粒子サイズを最短記録波長の半分以下に設定することで、さらに優れた電磁変換特性(例えばSNR)を得ることができる。したがって、磁性粒子の平均粒子サイズが20nm以下であると、高記録密度の磁気テープMT(例えば40nm以下の最短記録波長で信号を記録可能に構成された磁気テープMT)において、さらに優れた電磁変換特性(例えばSNR)を得ることができる。一方、磁性粒子の平均粒子サイズが10nm以上であると、磁性粒子の分散性がより向上し、さらに優れた電磁変換特性(例えばSNR)を得ることができる。
 磁性粒子がε酸化鉄粒子である場合、磁性粒子の平均アスペクト比が、好ましくは1.0以上3.0以下、より好ましくは1.0以上2.5以下、さらにより好ましくは1.0以上2.1以下、特に好ましくは1.0以上1.8以下である。磁性粒子の平均アスペクト比が1.0以上3.0以下の範囲内であると、磁性粒子の凝集を抑制することができる。また、磁性層43の形成工程において磁性粒子を垂直配向させる際に、磁性粒子に加わる抵抗を抑制することができる。したがって、磁性粒子の垂直配向性を向上することができる。
 磁性粒子がε酸化鉄粒子である場合、磁性粒子の平均粒子サイズおよび平均アスペクト比は、以下のようにして求められる。まず、カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部から長手方向に30mから40mの位置で磁気テープMTを切り出す。続いて、測定対象となる磁気テープMTをFIB(Focused Ion Beam)法等により加工して薄片化を行う。FIB法を使用する場合には、後述の断面のTEM像を観察する前処理として、保護層としてカーボン層およびタングステン層を形成する。当該カーボン層は蒸着法により磁気テープMTの磁性層43側の表面およびバック層44側の表面に形成され、そして、当該タングステン層は蒸着法またはスパッタリング法により磁性層43側の表面にさらに形成される。薄片化は磁気テープMTの長さ方向(長手方向)に沿うかたちで行って行われる。すなわち、当該薄片化によって、磁気テープMTの長手方向および厚み方向の両方に平行な断面が形成される。
 得られた薄片サンプルの上記断面を、透過電子顕微鏡(日立ハイテクノロジーズ社製 H-9500)を用いて、加速電圧:200kV、総合倍率500,000倍で磁性層43の厚み方向に対して磁性層43全体が含まれるように断面観察を行い、TEM像を撮影する。次に、撮影したTEM像から、粒子の形状を明らかに確認することができる50個の粒子を選び出し、各粒子の長軸長DLと短軸長DSを測定する。ここで、長軸長DLとは、各粒子の輪郭に接するように、あらゆる角度から引いた2本の平行線間の距離のうち最大のもの(いわゆる最大フェレ径)を意味する。一方、短軸長DSとは、粒子の長軸(DL)と直交する方向における粒子の長さのうち最大のものを意味する。続いて、測定した50個の粒子の長軸長DLを単純に平均(算術平均)して平均長軸長DLaveを求める。このようにして求めた平均長軸長DLaveを磁性粒子の平均粒子サイズとする。また、測定した50個の粒子の短軸長DSを単純に平均(算術平均)して平均短軸長DSaveを求める。そして、平均長軸長DLaveおよび平均短軸長DSaveから粒子の平均アスペクト比(DLave/DSave)を求める。
 磁性粒子がε酸化鉄粒子である場合、磁性粒子の平均粒子体積は、好ましくは500nm3以上4000nm3以下、より好ましくは500nm3以上3000nm3以下、さらにより好ましくは500nm3以上2000nm3以下、特に好ましくは600nm3以上1600nm3以下、最も好ましくは600nm3以上1300nm3以下である。一般的に磁気テープMTのノイズは粒子個数の平方根に反比例(すなわち粒子体積の平方根に比例)するため、粒子体積をより小さくすることで、さらに優れた電磁変換特性(例えばSNR)を得ることができる。したがって、磁性粒子の平均粒子体積が4000nm3以下であると、磁性粒子の平均粒子サイズを20nm以下とする場合と同様に、さらに優れた電磁変換特性(例えばSNR)を得ることができる。一方、磁性粒子の平均粒子体積が500nm3以上であると、磁性粒子の平均粒子サイズを10nm以上とする場合と同様の効果が得られる。
 ε酸化鉄粒子が球状を有している場合には、磁性粒子の平均粒子体積は以下のようにして求められる。まず、上記の磁性粒子の平均粒子サイズの算出方法と同様にして、平均長軸長DLaveを求める。次に、以下の式により、磁性粒子の平均体積Vを求める。
V=(π/6)×DLave 3
 ε酸化鉄粒子が立方体状を有している場合、磁性粒子の平均体積は以下のようにして求められる。まず、カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部から長手方向に30mから40mの位置で磁気テープMTを切り出す。続いて、切り出された磁気テープMTをFIB(Focused Ion Beam)法等により加工して薄片化を行う。FIB法を使用する場合には、後述の断面のTEM像を観察する前処理として、保護膜としてカーボン膜およびタングステン薄膜を形成する。当該カーボン膜は蒸着法により磁気テープMTの磁性層43側の表面およびバック層44側の表面に形成され、そして、当該タングステン薄膜は蒸着法またはスパッタリング法により磁性層43側の表面にさらに形成される。当該薄片化は磁気テープMTの長さ方向(長手方向)に沿って行われる。すなわち、当該薄片化によって、磁気テープMTの長手方向および厚み方向の両方に平行な断面が形成される。
 得られた薄片サンプルを透過電子顕微鏡(日立ハイテクノロジーズ社製 H-9500)を用いて、加速電圧:200kV、総合倍率500,000倍で磁性層43の厚み方向に対して磁性層43全体が含まれるように断面観察を行い、TEM像を得る。なお、装置の種類に応じて、倍率および加速電圧は適宜調整されてよい。次に、撮影したTEM像から粒子の形状が明らかである50個の粒子を選び出し、各粒子の辺の長さDCを測定する。続いて、測定した50個の粒子の辺の長さDCを単純に平均(算術平均)して平均辺長DCaveを求める。次に、平均辺長DCaveを用いて以下の式から磁性粒子の平均体積Vave(粒子体積)を求める。
 Vave=DCave 3
[コバルトフェライト粒子]
 コバルトフェライト粒子は、一軸結晶異方性を有することが好ましい。コバルトフェライト粒子が一軸結晶異方性を有することで、磁性粉を磁気テープMTの垂直方向に優先的に結晶配向させることができる。コバルトフェライト粒子は、例えば、立方体状を有している。本明細書において、立方体状は、ほぼ立方体状を含むものとする。Co含有スピネルフェライトが、Co以外にNi、Mn、Al、CuおよびZnのうちの少なくとも1種をさらに含んでいてもよい。
 Co含有スピネルフェライトは、例えば以下の式で表される平均組成を有する。
 CoxyFe2Z
(但し、式中、Mは、例えば、Ni、Mn、Al、CuおよびZnのうちの少なくとも1種の金属である。xは、0.4≦x≦1.0の範囲内の値である。yは、0≦y≦0.3の範囲内の値である。但し、x、yは(x+y)≦1.0の関係を満たす。zは3≦z≦4の範囲内の値である。Feの一部が他の金属元素で置換されていてもよい。)
 磁性粉がコバルトフェライト粒子粉を含む場合、磁性粉の平均粒子サイズは、好ましくは8nm以上16nm以下、より好ましくは8nm以上13nm以下、さらにより好ましくは8nm以上10nm以下である。磁性粉の平均粒子サイズが16nm以下であると、高記録密度の磁気テープMTにおいて、さらに優れた電磁変換特性(例えばSNR)を得ることができる。一方、磁性粉の平均粒子サイズが8nm以上であると、磁性粉の分散性がより向上し、さらに優れた電磁変換特性(例えばSNR)を得ることができる。磁性粉の平均粒子サイズの算出方法は、磁性粉がε酸化鉄粒子粉を含む場合における磁性粉の平均粒子サイズの算出方法と同様である。
 磁性粉がコバルトフェライト粒子粉を含む場合、磁性粉の平均アスペクト比が、好ましくは1.0以上2.5以下、より好ましくは1.0以上2.1以下、さらにより好ましくは1.0以上1.8以下である。磁性粉の平均アスペクト比が1.0以上2.5以下の範囲内であると、磁性粉の凝集を抑制することができる。また、磁性層43の形成工程において磁性粉を垂直配向させる際に、磁性粉に加わる抵抗を抑制することができる。したがって、磁性粉の垂直配向性を向上することができる。磁性粉の平均アスペクト比の算出方法は、磁性粉がε酸化鉄粒子粉を含む場合における磁性粉の平均アスペクト比の算出方法と同様である。
 磁性粉がコバルトフェライト粒子粉を含む場合、磁性粉の平均粒子体積は、好ましくは500nm3以上4000nm3以下、より好ましくは600nm3以上2000nm3以下、さらにより好ましくは600nm3以上1000nm3以下である。磁性粉の平均粒子体積が4000nm3以下であると、磁性粉の平均粒子サイズを16nm以下とする場合と同様の効果が得られる。一方、磁性粉の平均粒子体積が500nm3以上であると、磁性粉の平均粒子サイズを8nm以上とする場合と同様の効果が得られる。磁性分の平均粒子体積の算出方法は、ε酸化鉄粒子が立方体状を有している場合の平均粒子体積の算出方法と同様である。
[結着剤]
 結着剤としては、例えば、熱可塑性樹脂、熱硬化性樹脂、反応型樹脂等が挙げられる。熱可塑性樹脂としては、例えば、塩化ビニル、酢酸ビニル、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニル-塩化ビニリデン共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニル共重合体、メタクリル酸エステル-エチレン共重合体、ポリフッ化ビニル、塩化ビニリデン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン共重合体、ポリアミド樹脂、ポリビニルブチラール、セルロース誘導体(セルロースアセテートブチレート、セルロースダイアセテート、セルローストリアセテート、セルロースプロピオネート、ニトロセルロース)、スチレンブタジエン共重合体、ポリウレタン樹脂、ポリエステル樹脂、アミノ樹脂、合成ゴム等が挙げられる。
 熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、ポリウレタン硬化型樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、シリコーン樹脂、ポリアミン樹脂、尿素ホルムアルデヒド樹脂等が挙げられる。
 上記の全ての結着剤には、磁性粉の分散性を向上させる目的で、-SO3M、-OSO3M、-COOM、P=O(OM)2(但し、式中Mは水素原子またはリチウム、カリウム、ナトリウム等のアルカリ金属を表す)や、-NR1R2、-NR1R2R3+-で表される末端基を有する側鎖型アミン、>NR1R2+-で表される主鎖型アミン(但し、式中R1、R2、R3は水素原子または炭化水素基を表し、X-はフッ素、塩素、臭素、ヨウ素等のハロゲン元素イオン、無機イオンまたは有機イオンを表す。)、さらに-OH、-SH、-CN、エポキシ基等の極性官能基が導入されていてもよい。これら極性官能基の結着剤への導入量は、10-1モル/g以上10-8モル/g以下であるのが好ましく、10-2モル/g以上10-6モル/g以下であるのがより好ましい。
[潤滑剤]
 潤滑剤は、例えば脂肪酸および脂肪酸エステルから選ばれる少なくとも1種、好ましくは脂肪酸および脂肪酸エステルの両方を含む。磁性層43が潤滑剤を含むことが、特には磁性層43が脂肪酸および脂肪酸エステルの両方を含むことが、磁気テープMTの走行安定性の向上に貢献する。
 脂肪酸は、好ましくは下記の一般式(1)または(2)により示される化合物であってよい。例えば、脂肪酸として下記の一般式(1)により示される化合物および一般式(2)により示される化合物の一方が含まれていてよく、または両方が含まれていてもよい。
 また、脂肪酸エステルは、好ましくは下記一般式(3)または(4)により示される化合物であってよい。例えば、脂肪酸エステルとして下記の一般式(3)により示される化合物および一般式(4)により示される化合物の一方が含まれていてよく、または両方が含まれていてもよい。
 潤滑剤が、一般式(1)に示される化合物および一般式(2)に示される化合物のいずれか一方若しくは両方と、一般式(3)に示される化合物および一般式(4)に示される化合物 若しくは、一般式(5)に示される化合物いずれか一つ若しくは二つ以上を含むことによって、磁気テープMTを繰り返しの記録または再生による動摩擦係数の増加を抑制することができる。
 CH3(CH2kCOOH ・・・(1)
(但し、一般式(1)において、kは14以上22以下の範囲、より好ましくは14以上18以下の範囲から選ばれる整数である。)
 CH3(CH2nCH=CH(CH2mCOOH ・・・(2)
(但し、一般式(2)において、nとmとの和は12以上20以下の範囲、より好ましくは14以上18以下の範囲から選ばれる整数である。)
 CH3(CH2pCOO(CH2qCH3 ・・・(3)
(但し、一般式(3)において、pは14以上22以下、より好ましくは14以上18以下の範囲から選ばれる整数であり、且つ、qは2以上5以下の範囲、より好ましくは2以上4以下の範囲から選ばれる整数である。)
 CH3(CH2rCOO-(CH2sCH(CH32・・・(4)
(但し、一般式(4)において、rは14以上22以下の範囲から選ばれる整数であり、sは1以上3以下の範囲から選ばれる整数である。)
 CH3(CH2tCOO-(CH)(CH3)CH2(CH3u・・・(5)
(但し、一般式(5)において、tは14以上22以下の範囲から選ばれる整数であり、uは1以上3以下の範囲から選ばれる整数である。)
[カーボン]
 磁性層43に含まれるカーボンは、帯電防止剤および潤滑剤等として機能してもよい。磁性層43に含まれるカーボンの一部は、磁性層43の表面から露出している。磁性層43の表面の凹凸が、カーボンや研磨剤等により形成されていてもよい。
 カーボンは、具体的には、カーボン粒子である。カーボン粒子は、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブおよびグラフェンからなる群より選ばれる1種以上を含む。
[帯電防止剤]
 帯電防止剤としては、例えば、天然界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤等が挙げられる。
[研磨剤]
 研磨剤としては、例えば、α化率90%以上のα-アルミナ、β-アルミナ、γ-アルミナ、炭化ケイ素、酸化クロム、酸化セリウム、α-酸化鉄、コランダム、窒化珪素、チタンカ-バイト、酸化チタン、二酸化珪素、酸化スズ、酸化マグネシウム、酸化タングステン、酸化ジルコニウム、窒化ホウ素、酸化亜鉛、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、2硫化モリブデン、磁性酸化鉄の原料を脱水、アニール処理した針状α酸化鉄、必要によりそれらをアルミおよび/またはシリカで表面処理したもの等が挙げられる。
[硬化剤]
 硬化剤としては、例えば、ポリイソシアネート等が挙げられる。ポリイソシアネートとしては、例えば、トリレンジイソシアネート(TDI)と活性水素化合物との付加体等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート(HMDI)と活性水素化合物との付加体等の脂肪族ポリイソシアネート等が挙げられる。これらポリイソシアネートの重量平均分子量は、100以上3000以下の範囲であることが望ましい。
[防錆剤]
 防錆剤としては、例えばフェノール類、ナフトール類、キノン類、窒素原子を含む複素環化合物、酸素原子を含む複素環化合物、硫黄原子を含む複素環化合物等が挙げられる。
[非磁性補強粒子]
 非磁性補強粒子として、例えば、酸化アルミニウム(α、βまたはγアルミナ)、酸化クロム、酸化珪素、ダイヤモンド、ガーネット、エメリー、窒化ホウ素、チタンカーバイト、炭化珪素、炭化チタン、酸化チタン(ルチル型またはアナターゼ型の酸化チタン)等が挙げられる。
[下地層]
 下地層42は、基体41の表面の凹凸を緩和し、磁性層43の表面の凹凸を調整するためのものである。下地層42は、非磁性粉、結着剤および潤滑剤を含む非磁性層である。下地層42は、磁性層43の表面に潤滑剤を供給する。下地層42が、必要に応じて、帯電防止剤、硬化剤および防錆剤等のうちの少なくとも1種の添加剤をさらに含んでいてもよい。
 下地層42の平均厚みの上限値は、好ましくは1.0μm以下、より好ましくは0.9μm以下、さらにより好ましくは0.8μm以下、特により好ましくは0.7μm以下、最も好ましくは0.6μm以下である。下地層42の平均厚みの上限値が1.0μm以下であると、磁気テープMTの厚みを低減することができるので、1データカートリッジ内に記録できる記録容量を一般的な磁気テープよりも高めることができる。また、下地層42の平均厚みが1.0μm以下であると、外力による磁気テープMTの伸縮性がさらに高くなるため、テンション調整による磁気テープMTの幅の調整がさらに容易となる。下地層42の平均厚みの下限値は、好ましくは0.3μm以上である。下地層42の平均厚みの下限値が0.3μm以上であると、下地層42としての機能低下を抑制することができる。なお、下地層42の平均厚みは、磁性層43の平均厚みと同様にして求められる。但し、TEM像の倍率は、下地層42の厚みに応じて適宜調整される。
[非磁性粉]
 非磁性粉は、例えば無機粒子粉または有機粒子粉の少なくとも1種を含む。また、非磁性粉は、カーボンブラック等の炭素粉を含んでいてもよい。なお、1種の非磁性粉を単独で用いてもよいし、2種以上の非磁性粉を組み合わせて用いてもよい。無機粒子は、例えば、金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物または金属硫化物等を含む。非磁性粉の形状としては、例えば、針状、球状、立方体状、板状等の各種形状が挙げられるが、これらの形状に限定されるものではない。
[結着剤、潤滑剤]
 結着剤および潤滑剤は、上記の磁性層43と同様である。
[添加剤]
 帯電防止剤、硬化剤および防錆剤はそれぞれ、上記の磁性層43と同様である。
[バック層]
 バック層44は、結着剤および非磁性粉を含む。バック層44が、必要に応じて潤滑剤、硬化剤および帯電防止剤等のうちの少なくとも1種の添加剤をさらに含んでいてもよい。結着剤および非磁性粉は、上記の下地層42と同様である。硬化剤および帯電防止剤は、上記の磁性層43と同様である。
 非磁性粉の平均粒子サイズは、好ましくは10nm以上150nm以下、より好ましくは15nm以上110nm以下である。非磁性粉の平均粒子サイズは、上記の磁性粉の平均粒子サイズと同様にして求められる。非磁性粉が、2以上の粒度分布を有する非磁性粉を含んでいてもよい。
 バック層44の平均厚みの上限値は、好ましくは0.6μm以下である。バック層44の平均厚みの上限値が0.6μm以下であると、磁気テープMTの平均厚みが5.3μm以下である場合でも、下地層42や基体41の厚みを厚く保つことができるので、磁気テープMTの記録再生装置内での走行安定性を保つことができる。バック層44の平均厚みの下限値は特に限定されるものではないが、例えば0.2μm以上である。
 バック層44の平均厚みtbは以下のようにして求められる。まず、磁気テープMTの平均厚みtTを測定する。平均厚みtTの測定方法は、以下の「磁気テープの平均厚み」に記載されている通りである。続いて、カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTを250mmの長さに切り出し、3つのサンプルを作製する。次に、各サンプルのバック層44をMEK(メチルエチルケトン)または希塩酸等の溶剤で除去する。次に、Mitutoyo社製レーザーホロゲージ(LGH-110C)を用いて、各サンプルの厚みを5点の位置で測定し、それらの測定値(合計で15点のサンプルの厚み)を算術平均して、平均値tB[μm]を算出する。その後、以下の式よりバック層44の平均厚みtb[μm]を求める。なお、上記5点の測定位置は、磁気テープMTの長手方向においてそれぞれ異なる位置となるように、各サンプルから無作為に選ばれるものとする。
b[μm]=tT[μm]-tB[μm]
[平均幅変化量ΔA]
 磁気テープMTの幅1/2インチあたり0.55Nのテンションが長手方向に加えられた状態で温度50℃、相対湿度40%RHの環境下に40時間静置される前後の磁気テープMTの平均幅変化量ΔAの絶対値が、0ppm以上170ppm以下、好ましくは0ppm以上140ppm以下、より好ましくは0ppm以上70ppm以下、さらにより好ましくは0ppm以上40ppm以下である。磁気テープMTの平均幅変化量ΔAの絶対値が170ppmを超えると、カートリッジ10に巻き取られた磁気テープMTが高温環境下に長期間保管されたときの磁気テープMTのクリープ変化、および磁気テープMTが高温環境下で長期間走行されたときの磁気テープMTのクリープ変化が大きくなる。このため、カートリッジ10に巻き取られた状態で高温環境下に長期間保管された磁気テープMT、および高温環境下で長期間走行された磁気テープMTの幅変化が、長手方向の走行テンションの調整により補正可能な範囲を超える。したがって、長手方向の走行テンションの調整により上記幅変化を補正することが困難になる。本明細書において、高温環境とは、35℃以上50℃以下の環境のことをいう。
 従来の磁気テープでは、高温環境下において、クリープ特性による形状変化が大きる。このため、磁気テープの走行テンションの調整により磁気テープの幅変化を補正することは困難である。これに対して、第1の実施形態に係る磁気テープMTでは、磁気テープMTの平均幅変化量ΔAの絶対値が170ppm以下であるため、環境に起因する磁気テープMTの変形に加えて、高温環境下でのクリープ変形を低減することができる。したがって、磁気テープMTの走行テンションの調整により磁気テープMTの幅変化を補正することができる。
 平均幅変化量ΔAの絶対値は、基体41および下地層42の少なくとも一方の選択により所望の値に設定されてもよい。例えば、平均幅変化量ΔAの絶対値は、基体41の厚みおよび基体41の材料の少なくとも一方を選択することにより所望の値に設定されてもよい。また、平均幅変化量ΔAの絶対値は、基体41の幅方向および長手方向の延伸強度を調整することによって、所望の値に設定されてもよい。また、平均幅変化量ΔAの絶対値は、磁性層43の種類を塗布膜およびスパッタ膜のうちから選択することによって、所望の値に設定されてもよい。
 また、平均幅変化量ΔAの絶対値は、カレンダー工程後、裁断工程前にひずみ緩和工程を備え、当該ひずみ緩和工程における環境温度および保管時間を調整(例えば温度65℃の環境下に48時間保管)することによって、所望の値に設定されてもよい。また、平均幅変化量ΔAの絶対値は、消磁工程後、サーボパターンの書き込み工程前にひずみ緩和工程を備え、当該ひずみ緩和工程における環境温度および保管時間を調整(例えば温度55℃の環境下に48時間保管)することによって、所望の値に設定されてもよい。
 なお、上記の複数の選択例のうちの1つを選択することによって、平均幅変化量ΔAの絶対値が所望の値に設定されてもよいし、2以上を選択することによって、平均幅変化量ΔAの絶対値が所望の値に設定されてもよい。
 磁気テープMTの平均幅変化量ΔAの絶対値は以下のようにして求められる。まず、カートリッジ10に収容された1/2インチ幅の磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTを250mmの長さに切り出し、3つのサンプルを取得する。
 次に、上記の3つのサンプルの幅変化量ΔAの絶対値をそれぞれに以下のようにして求める。まず、測定装置としてキーエンス社製のデジタル寸法測定器LS-7000を組み込んだ、図9に示す測定装置を準備し、この測定装置にサンプル10Sをセットする。具体的には、長尺状のサンプル(磁気テープMT)10Sの一端を固定部231により固定する。次に、図9に示されるとおり、サンプル10Sを、5本の略円柱状且つ棒状の支持部材2321~2325に乗せる。サンプル10Sは、そのバック面が5本の支持部材2321~2325に接するように、これら支持部材2321~2325に乗せられる。5本の支持部材2321~2325(特にその表面)はいずれもステンレス鋼SUS304から形成されており、その表面粗さRz(最大高さ)は0.15μmから0.3μmである。
 5本の棒状の支持部材2321~2325の配置を、図9を参照しながら説明する。図9に示されるとおり、サンプル10Sは、5本の支持部材2321~2325に乗せられている。5本の支持部材2321~2325について、以下では、固定部231に最も近いほうから「第1支持部材2321」、「第2支持部材2322」、「第3支持部材2323」(スリット232Aを有する)、「第4支持部材2324」、および「第5支持部材2325」(重り233に最も近い)という。これら5本の第1~第5支持部材2321~2325の直径はいずれも、7mmである。第1支持部材2321と第2支持部材2322との距離d1(特にはこれら支持部材の中心軸の間の距離)は20mmである。第2支持部材2322と第3支持部材2323との距離d2は30mmである。第3支持部材2323と第4支持部材2324との距離d3は30mmである。第4支持部材2324と第5支持部材2325との距離d4は20mmである。
 また、サンプル10Sのうち第2支持部材2322、第3支持部材2323、および第4支持部材2324の間に乗っている部分が、重力方向に対して略垂直な平面を形成するように、これら3つの支持部材2322~2324は配置されている。また、サンプル10Sが、第1支持部材2321と第2支持部材2322との間では、上記略垂直の平面に対してθ1=30°の角度を形成するように、第1支持部材2321および第2支持部材2322は配置されている。さらに、サンプル10Sが、第4支持部材2324と第5支持部材2325との間では、上記の略垂直な平面に対してθ2=30°の角度を形成するように、第4支持部材2324および第5支持部材2325は配置されている。また、5本の第1~第5支持部材2321~2325のうち、第3支持部材2323は回転しないように固定されているが、その他の4本の第1、第2、第4、第5支持部材2321、2322、2324、2325は全て回転可能である。上記のように支持部材2323は回転しないように固定されているため、支持体2323とサンプル10Sとの摩擦の低減を考慮して、支持体2323とサンプル10Sとの接触角を浅くしている。
 サンプル10Sは、支持部材2321~2325上でサンプル10Sの幅方向に移動しないように保持される。なお、支持部材2321~2325のうち、発光器234および受光器235の間に位置し、かつ、固定部231と荷重をかける部分とのほぼ中心に位置する支持部材2323にはスリット232Aが設けられている。スリット232Aを介して発光器234から受光器235に光Lが照射されるようになっている。スリット232Aのスリット幅は1mmであり、光Lは、スリット232Aの枠に遮られることなく、当該スリット232Aを通り抜けられる。
 続いて、室温環境(温度25℃、相対湿度50%RH)にあるチャンバ内に測定装置を収容したのち、サンプル10Sの他端に、サンプル10Sの幅1/2インチあたり0.55Nの荷重をかけるための重り233を取り付ける。すなわち、サンプル10Sにかけられる荷重は、幅が1/2インチの場合は0.55Nに設定され、幅が1/2インチではない場合は幅に比例した荷重が設定される。重り233を取り付けた後、サンプル10Sを上記室温環境下に30分間静置する。30分間静置後、チャンバ内を昇温し、チャンバ内が規定環境(温度50℃、相対湿度40%RH)になった時点からサンプル10Sの幅の測定を開始する。チャンバ内を上記規定環境(温度50℃、相対湿度40%RH)に維持しながら、上記測定開始から40時間を超えるまでサンプル10Sの幅の測定を継続する。
 上記測定装置は、上記規定環境にて0.55Nの荷重が加えられた状態で、発光器234から受光器235に向けて光Lを照射し、長手方向に荷重が加えられたサンプル10Sの幅を測定する。当該幅の測定は、サンプル10Sがカールしていない状態で行われる。発光器234および受光器235は、デジタル寸法測定器LS-7000に備えられているものである。
 次に、上記のようにして取得されたサンプル10Sの幅の測定結果を用いて、上記測定開始の時点から1時間経過後(すなわち、チャンバ内が上記規定環境になった時点から1時間経過後)におけるサンプル10Sの幅を基準として、上記測定開始の時点から40時間経過後におけるサンプル10Sの幅変化量ΔAの絶対値を算出する。すなわち、40時間経過後におけるサンプル10Sの幅から、1時間経過後におけるサンプル10Sの幅を差し引いて、サンプル10Sの幅変化量ΔAの絶対値を求める。サンプル10Sの幅変化量ΔAの値の正負は、幅変化の方向を意味する。幅変化量ΔAが正の場合はサンプル10Sの幅が広がる方向に変化したことを表し、負の場合はサンプル10Sの幅が狭まる方向に変化したことを表す。次に、上記のようにして算出された3つのサンプル10Sの幅変化量ΔAの絶対値を算術平均し、磁気テープMTの平均幅変化量ΔAの絶対値を得る。
[平均テンション応答性ΔW]
 温度50℃、相対湿度40%RHの環境下における、長手方向のテンションに対する平均テンション応答性ΔWの下限値が、700ppm/N以上、好ましくは715ppm/N以上、より好ましくは750ppm/N以上、さらにより好ましくは800ppm/N以上である。平均テンション応答性ΔWが700ppm/N未満であると、高温環境下における平均テンション応答性ΔWが低いため、カートリッジ10に巻き取られた磁気テープMTが高温環境下に長期間保管されたときの磁気テープMTのクリープ変化、および磁気テープMTが高温環境下で長期間走行されたときの磁気テープMTのクリープ変化を、走行テンションの調整により補正することが困難になる。上記のように、本明細書において、高温環境とは、35℃以上50℃以下の環境のことをいう。
 平均テンション応答性ΔWの上限値は、好ましくは20000ppm/N以下、15000ppm/N以下、より好ましくは8000ppm/N以下、5000ppm/N以下、4000ppm/N以下、3000ppm/N以下、または2000ppm/N以下である。平均テンション応答性ΔWが15000ppm/N以下であると、記録再生装置のテンションコントロールにばらつきがある場合にも、当該ばらつきに対する磁気テープMTの幅の変化量を低減することができる。
 平均テンション応答性ΔWは、基体41および下地層42の少なくとも一方の選択により所望の値に設定されてもよい。例えば、平均テンション応答性ΔWは、基体41の厚みおよび基体41の材料の少なくとも一方を選択することにより所望の値に設定されてもよい。また、平均テンション応答性ΔWは、基体41の幅方向および長手方向の延伸強度を調整することによって、所望の値に設定されてもよい。例えば、基体41の幅方向における延伸を強めることによって、平均テンション応答性ΔWは低下し、反対に、基体41の長手方向における延伸を強めることによって、平均テンション応答性ΔWは上昇する。また、平均テンション応答性ΔWは、磁性層43の種類を塗布膜およびスパッタ膜のうちから選択することによって、所望の値に設定されてもよい。
 また、平均テンション応答性ΔWは、カレンダー工程後、裁断工程前にひずみ緩和工程を備え、当該ひずみ緩和工程における環境温度および保管時間を調整(例えば温度65℃の環境下に48時間保管)することによって、所望の値に設定されてもよい。また、平均テンション応答性ΔWは、消磁工程後、サーボパターンの書き込み工程前にひずみ緩和工程を備え、当該ひずみ緩和工程における環境温度および保管時間を調整(例えば温度55℃の環境下に48時間保管)することによって、所望の値に設定されてもよい。
 なお、上記の複数の選択例のうちの1つを選択することによって、平均テンション応答性ΔWが所望の値に設定されてもよいし、2以上を選択することによって、平均テンション応答性ΔWが所望の値に設定されてもよい。
 平均テンション応答性ΔWは以下のようにして求められる。まず、カートリッジ10に収容された1/2インチ幅の磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から10mから20mの範囲、30mから40mの範囲、及び50mから60mの範囲それぞれから250mmの長さに新たに切り出し、サンプルを3つ作製する。すなわち、平均幅変化量ΔAの測定に際し、切り出したサンプルとは別のサンプルを新たに切り出す。測定に使用する測定装置は、上記磁気記録媒体の平均幅変化量ΔAの測定で使用するものと同じである。
 次に、3つのサンプルのテンション応答性ΔWを以下のようにして求める。サンプル10Sの長手方向に0.2N、0.6N、1.0Nの順で荷重をかけ、0.2N、0.6N、および1.0Nの荷重におけるサンプル10Sの幅を測定する。続いて、以下の式よりテンション応答性ΔWを求める。なお、0.6Nの荷重をかけた場合の測定は、測定において異常が生じていないかを確認するため(特にはこれら3つの測定結果が直線的になっていることを確認するため)に行われるものであり、その測定結果は以下の式において用いられない。
(但し、式中、D(0.2N)およびD(1.0N)はそれぞれ、サンプル10Sの長手方向に0.2Nおよび1.0Nの荷重をかけたときのサンプル10Sの幅を示す。)
 次に、上記のようにして求められた3つのサンプルのテンション応答性ΔWを算術平均することにより、平均テンション応答性ΔWを求める。なお、上記の説明において、サンプル10Sにかけられる荷重の値は、磁気テープMT(サンプル10S)の幅が1/2インチの場合における値である。磁気テープMT(サンプル10S)の幅が1/2インチではない場合、幅に比例した荷重がかけられる。すなわち、幅に比例した荷重をかけた条件下で3つのサンプルのテンション応答性ΔWを求め、それらを算術平均することにより平均テンション応答性ΔWを算出する。
 各荷重をかけたときのサンプル10Sの幅は以下のようにして測定される。まず、測定装置としてキーエンス社製のデジタル寸法測定器LS-7000を組み込んだ、図9に示す測定装置を準備し、この測定装置にサンプル10Sをセットする。測定装置の具体的な構成は、上記の平均幅変化量ΔAの絶対値の測定方法と同様である。また、測定装置に対するサンプル10Sの具体的なセットの手順も、上記の平均幅変化量ΔAの絶対値の測定方法と同様である。
 続いて、温度50℃、相対湿度40%RHの一定環境下に制御されたチャンバ内に測定装置を収容したのち、サンプル10Sの他端に、0.2Nの荷重をかけるための重り233を取り付け、サンプル10Sを上記環境内に2時間静置する。2時間置静置後に、サンプル10Sの幅を測定する。次に、0.2Nの荷重をかけるための重りを、0.6Nの荷重をかけるための重り233に変更し、当該変更の5分後にサンプル10Sの幅を測定する。最後に、1.0Nの荷重をかけるための重り233に変更し、当該変更の5分後にサンプル10Sの幅を測定する。
 以上のとおり、重り233の重さを調整することによりサンプル10Sの長手方向に加わる荷重を変化させることができる。なお、磁気テープMTの幅が1/2インチでないときは磁気テープMTの幅に比例して荷重を調整する。温度50℃、相対湿度40%RHの一定環境下において各荷重が加えられた状態で、発光器234から受光器235に向けて光Lを照射し、長手方向に荷重が加えられたサンプル10Sの幅を測定する。当該幅の測定は、サンプル10Sがカールしていない状態で行われる。発光器234および受光器235は、デジタル寸法測定器LS-7000に備えられているものである。
[基体の長手方向の平均貯蔵弾性率]
 温度50℃の環境下における基体41の長手方向の平均貯蔵弾性率の上限値は、好ましくは9.0GPa以下、より好ましくは7.5GPa以下、さらにより好ましくは6.0GPa以下、特に好ましくは5.5GPa以下、最も好ましくは4.5GPa以下である。貯蔵弾性率の上限値が9.0GPa以下であると、高温環境下において、長手方向のテンションに対する磁気テープMTの伸縮性が高くなるため、平均テンション応答性ΔWを向上することができる。
 温度50℃の環境下における基体41の長手方向の平均貯蔵弾性率の下限値は、好ましくは3.0GPa以上、より好ましくは3.5GPa以上である。貯蔵弾性率の上限値が3.0GPa以上であると、長手方向のテンションに対する磁気テープMTの伸縮性が過度に高くなることを抑制することができる。したがって、走行安定性の低下を抑制することができる。
 磁気テープMTの長手方向の平均貯蔵弾性率は、外力による磁気テープMTの長手方向における伸縮のし難さを示す値であり、この値が大きいほど外力により磁気テープMTは長手方向に伸縮し難く、この値が小さいほど外力により磁気テープMTは長手方向に伸縮しやすい。
 なお、磁気テープMTの長手方向の平均貯蔵弾性率は、磁気テープMTの長手方向に関する値であるが、磁気テープMTの幅方向の伸縮のし難さとも相関がある。つまり、この値が大きいほど磁気テープMTは外力により幅方向に伸縮し難く、この値が小さいほど磁気テープMTは外力により幅方向に伸縮しやすい。したがって、テンション調整の観点から、磁気テープMTの長手方向の平均貯蔵弾性率は、上記のように小さく、9.0GPa以下であることが有利である。
 磁気テープMTの長手方向の平均貯蔵弾性率は以下のようにして求められる。まず、カートリッジ10に収容された1/2インチ幅の磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTを規定サイズに打ち抜き、3つのサンプルを取得する。次に、上記の3つのサンプルについて、温度50℃の環境下における基体41の長手方向の貯蔵弾性率E'をそれぞれ測定する。次に、測定された3つのサンプルの貯蔵弾性率E'を算術平均することにより、温度50℃の環境下における基体41の長手方向の平均貯蔵弾性率を求める。
 上記の貯蔵弾性率E'は、動的粘弾性測定によって測定される。上記動的粘弾性測定は温度依存性測定であり、具体的には以下のとおりにして行われる。打ち抜き器により磁気テープMTを打ち抜き、テープ長手方向の長さ22.0mmおよび幅方向の幅4.0mmを有するサンプルを取得する。当該サンプルの長手方向の両端が、動的粘弾性測定装置(RSAII、TAインスツルメンツ社製)の測定部にクランプされる。そして、以下の測定条件で、動的粘弾性測定を行う。
 測定温度範囲:-10℃以上140℃以下
 昇温速度:2℃/分
 振幅:テープ初期長に対して0.1%の振幅で伸び縮みさせる
 測定周波数:10Hz
 Test Type:「Strain-Controlled」
 Measurment Type:「Dynamic」
 装置が置かれる環境:温度25℃、相対湿度50RH%
 測定部の湿度コントロール:無し
 上記装置の測定条件に関するより詳細な設定は以下のとおりである。すなわち、以下に記載されるとおり、上記測定において、テンションが0以下になることがないようにテンションが調整され、且つ、ひずみがトランスデューサーの下限値を下回らないように調整される。これらの調整のための測定条件は当業者により適宜設定されてよいが、上記動的粘弾性測定装置について例えば以下のとおりの設定が採用されてよい。
 Option設定
 Delay Before Test : OFF
 Auto Tension
    Mode Static Force Tracking Dynamic Force
    Auto Tension Direction Tension
    Initial Static Force 10.0g
    Static>Dynamic Force by 5.0%
    Minimum Static Force 1.0g
    Auto Tension Sensitivity 1.0g
 Auto Strain
    Max Applied Strain 0.1%
    Max Allowed Force 100.0g
    Min allowed Force 2.0g
    Strain Adjustment 3.0%
    Meas Ops: Default setting
 以上で説明した上記動的粘弾性測定を上記サンプルに対して行うことによって、各測定温度における貯蔵弾性率E'の値が得られる。測定温度50℃における貯蔵弾性率E'も得られる。各測定温度にて得られた貯蔵弾性率E'の値を用いて、測定温度に対してプロットすることによって、温度変化に伴う貯蔵弾性率E'の変化の傾向を読み取ることができる。
 磁気テープMTの貯蔵弾性率E'は、例えば基体41を形成する材料の種類および/または磁性層43、下地層42、およびバック層44(特には、これら3つの層のうち最も厚くなることが多い下地層42)の組成およびこれらの組合せを変更することによって調整することができる。
 例えば、基体41を形成する材料としてPEN、PET、またはPEEKを用いることによって、貯蔵弾性率E'を調整することができる。また、これら樹脂の選択によって、温度変化に対して貯蔵弾性率E'をプロットしたグラフの形状が変更されうる。
 また、例えば磁性層43、下地層42、およびバック層44(特には下地層42)を形成する塗料に含まれる樹脂成分の種類の変更および/または樹脂組成の調整によって、貯蔵弾性率E'を調整することができる。例えばこれらの層に含まれうる結着剤のガラス転移温度Tgを調整することによって、貯蔵弾性率E'を調整することができる。ガラス転移温度Tgの調整のしやすさの観点から、当該結着剤は、例えばポリウレタン系樹脂を含む。より好ましくは、下地層42がポリウレタン系樹脂を含み、これにより貯蔵弾性率E'を調整しやすくなる。さらにより好ましくは、下地層42に含まれるポリウレタン系樹脂のガラス転移温度Tgは、好ましくは10℃以上140℃以下、より好ましくは30℃以上130℃以下、さらにより好ましくは30℃以上120℃以下、特に好ましくは55℃以上120℃以下である。ガラス転移温度Tgが低すぎる場合、高温での保存時に粘着が発生する可能性が生じうる。ガラス転移温度Tgが高すぎる場合、表面平滑化(カレンダー)での処理が困難になりうる。
[磁気テープの平均厚み]
 磁気テープMTの平均厚み(平均全厚)tTの上限値が、好ましくは5.3μm以下、より好ましくは5.1μm以下、さらにより好ましくは4.9μm以下、特に好ましくは4.6μm以下、最も好ましくは4.4μm以下である。磁気テープMTの平均厚みtTが5.3μm以下であると、1データカートリッジ内に記録できる記録容量を一般的な磁気テープよりも高めることができる。磁気テープMTの平均厚みtTの下限値は特に限定されるものではないが、例えば3.5μm以上である。
 磁気テープMTの平均厚みtTは以下のようにして求められる。まず、カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTを250mmの長さに切り出し、3つのサンプルを作製する。次に、測定装置としてMitutoyo社製レーザーホロゲージ(LGH-110C)を用いて、各サンプルの厚みを5点の位置で測定し、それらの測定値(合計で15点のサンプルの厚み)を算術平均して、平均厚みtT[μm]を算出する。なお、上記5点の測定位置は、磁気テープMTの長手方向においてそれぞれ異なる位置となるように、各サンプルから無作為に選ばれるものとする。
[磁性層の表面の算術平均粗さRa
 磁性層43の表面の算術平均粗さRaの平均値は、1.9nm以下、好ましくは1.6nm以下、より好ましくは1.3nm以下である。算術平均粗さRaの平均値が1.9nm以下であると、スペーシングロスによる出力低下を抑制することができるため、優れた電磁変換特性を得ることができる。磁性層43の表面の算術平均粗さRaの平均値の下限値は、好ましくは1.0nm以上、より好ましくは1.2nm以上である。磁性層43の表面の算術平均粗さRaの平均値の下限値が1.0nm以上であると、摩擦の増大による走行性の低下を抑制することができる。
 算術平均粗さRaの平均値は次のようにして求められる。まず、カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTを250mmの長さに切り出し、3つのサンプルを作製する。次に、各サンプルの磁性層43の表面をAFM(Atomic Force Microscope)により観察し、40μm×40μmのAFM像を得る。AFMとしてはDigital Instruments社製、Nano Scope IIIa D3100を用い、カンチレバーとしてはシリコン単結晶製のものを用い(注1)、タッピング周波数として、200Hzから400Hzのチューニングにて測定を行う。次に、各AFM像を512×512(=262,144)個の測定点に分割し、各測定点にて高さZ(i)(i:測定点番号、i=1から262,144)を測定し、測定した各測定点の高さZ(i)を算術平均して平均高さ(平均面)Zave(=(Z(1)+Z(2)+・・・+Z(262,144))/262,144)を求める。続いて、各測定点での平均中心線からの偏差Z"(i)(=Z(i)-Zave)を求め、算術平均粗さRa[nm](=(Z"(1)+Z"(2)+・・・+Z"(262,144))/262,144)を算出する。この際には、画像処理として、Flatten order2、ならびに、planefit order 3 XYによりフィルタリング処理を行ったものをデータとして用いる。(注1)Nano World社製SPMプローブNCH ノーマルタイプPointProbe L(カンチレバー長)=125μm
 次に、3つサンプルの算術平均粗さRaを算術平均して、算術平均粗さRaの平均値を算出する。
[バック面の表面粗度Rb
 バック面の表面粗度(バック層44の表面粗度)Rbの平均値が、Rb≦6.0[nm]であることが好ましい。バック面の表面粗度Rbの平均値が上記範囲であると、さらに優れた電磁変換特性を得ることができる。
 バック面の表面粗度Rbの平均値は以下のようにして求められる。まず、カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTを100mmの長さに切り出し、3つのサンプルを作製する。次に、サンプルの被測定面(磁性層側の表面)が上になるようにスライドグラスに乗せ、サンプルの端部をメンディングテープで固定する。測定装置としてVertScanを用いて表面形状を測定し、ISO 25178の規格に基づいて以下の式からバック面の表面粗度Rbを求める。
 測定条件は以下のとおりである。
 装置:光干渉を用いた非接触粗度計
(株式会社菱化システム製非接触表面・層断面形状計測システムVertScan R5500GL-M100-AC)
 対物レンズ:20倍
 測定領域:640×480ピクセル(視野:約237μm×178μm視野)
 測定モード:phase
 波長フィルター:520nm
 CCD:1/3インチ
 ノイズ除去フィルター:スムージング3×3
 面補正:2次多項式近似面にて補正
 測定ソフトウエア:VS-Measure Version5.5.2
 解析ソフトウエア:VS-viewer Version5.5.5
 各サンプルについて、上記のようにして、磁気テープMTの長手方向に5点の位置にて面粗度を測定したのち、各位置で得られた表面プロファイルから自動計算されたそれぞれの算術平均粗さSa(nm)の平均値をバック面の表面粗度Rb(nm)とする。なお、上記5点の測定位置は、磁気テープMTの長手方向においてそれぞれ異なる位置となるように、各サンプルから無作為に選ばれるものとする。次に、3つサンプルから求めた表面粗度Rbを算術平均して、表面粗度Rbの平均値を算出する。
[保磁力Hc2の平均値]
 磁気テープMTの長手方向における磁性層43の保磁力Hc2の平均値の上限値が、好ましくは3000Oe以下、より好ましくは2000Oe以下、さらにより好ましくは1900Oe以下、特に好ましくは1800Oe以下である。磁気テープMTの長手方向における磁性層43の保磁力Hc2の平均値が3000Oe以下であると、高記録密度であっても十分な電磁変換特性を有することができる。
 磁気テープMTの長手方向に測定した磁性層43の保磁力Hc2の平均値の下限値が、好ましくは1000Oe以上である。磁気テープMTの長手方向に測定した磁性層43の保磁力Hc2の平均値が1000Oe以上であると、記録ヘッドからの漏れ磁束による減磁を抑制することができる。
 上記の保磁力Hc2の平均値は以下のようにして求められる。まず、カートリッジ10に収容された磁気テープMTを巻き出され、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTが250mmの長さに切り出される。切り出された各磁気テープMTは、磁気テープMTの長手方向の向きが同じになるように、両面テープで3枚重ね合わされた後、φ6.39mmのパンチで打ち抜かれて、測定サンプルが作製される。この際に、磁気テープMTの長手方向(走行方向)が認識できるように、磁性を持たない任意のインクでマーキングを行う。そして、振動試料型磁力計(Vibrating Sample Magnetometer:VSM)を用いて磁気テープMTの長手方向(走行方向)に対応する測定サンプル(磁気テープMT全体)のM-Hループが測定される。次に、上記で切り出した磁気テープMTの塗膜(下地層42、磁性層43およびバック層44等)を、アセトンまたはエタノール等を用いて払拭し、基体41のみを残す。そして、得られた基体41が両面テープで3枚重ね合わされた後、φ6.39mmのパンチで打ち抜かれて、バックグラウンド補正用のサンプル(以下、単に「補正用サンプル」)が作製される。その後、VSMを用いて基体41の長手方向(磁気テープMTの長手方向)に対応する補正用サンプル(基体41)のMHループが測定される。
 測定サンプル(磁気テープMTの全体)のM-Hループ、補正用サンプル(基体41)のM-Hループの測定においては、東英工業社製の高感度振動試料型磁力計「VSM-P7-15型」が用いられる。測定条件は、測定モード:フルループ、最大磁界:15kOe、磁界ステップ:40bit、Time constant of Locking amp:0.3sec、Waiting time:1sec、MH平均数:20とされる。
 測定サンプル(磁気テープMTの全体)のM-Hループおよび補正用サンプル(基体41)のM-Hループが得られた後、測定サンプル(磁気テープMTの全体)のM-Hループから補正用サンプル(基体41)のM-Hループが差し引かれることで、バックグラウンド補正が行われ、バックグラウンド補正後のM-Hループが得られる。このバックグラウンド補正の計算には、「VSM-P7-15型」に付属されている測定・解析プログラムが用いられる。得られたバックグラウンド補正後のM-Hループから保磁力Hc2が求められる。なお、この計算には、「VSM-P7-15型」に付属されている測定・解析プログラムが用いられる。なお、上記のM-Hループの測定はいずれも、25℃±2℃、50%RH±5%RHの環境にて行われるものとする。また、M-Hループを磁気テープMTの長手方向に測定する際の"反磁界補正"は行わないものとする。次に、3つサンプルの保磁力Hc2を算術平均して、保磁力Hc2の平均値を算出する。
[角形比S1、S2の平均値]
 磁気テープMTの垂直方向における磁性層43の角形比S1の平均値が、好ましくは65%以上、より好ましくは70%以上、さらにより好ましくは75%以上、特に好ましくは80%以上、最も好ましくは85%以上である。角形比S1の平均値が65%以上であると、磁性粉の垂直配向性が十分に高くなるため、さらに優れた電磁変換特性を得ることができる。
 磁気テープMTの垂直方向における角形比S1の平均値は以下のようにして求められる。まず、カートリッジ10に収容された磁気テープMTを巻き出され、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTが250mmの長さに切り出される。切り出された各磁気テープMTは、磁気テープMTの長手方向の向きが同じになるように、両面テープで3枚重ね合わされた後、φ6.39mmのパンチで打ち抜かれて、測定サンプルが作製される。この際に、磁気テープMTの長手方向(走行方向)が認識できるように、磁性を持たない任意のインクでマーキングを行う。そして、VSMを用いて磁気テープMTの垂直方向(厚み方向)に対応する測定サンプル(磁気テープMTの全体)のM-Hループが測定される。次に、上記で切り出した磁気テープMTの塗膜(下地層42、磁性層43およびバック層44等)を、アセトンまたはエタノール等を用いて払拭し、基体41のみを残す。そして、得られた基体41が両面テープで3枚重ね合わされた後、φ6.39mmのパンチで打ち抜かれて、バックグラウンド補正用のサンプル(以下、単に「補正用サンプル」)が作製される。その後、VSMを用いて基体41の垂直方向(磁気テープMTの垂直方向)に対応する補正用サンプル(基体41)のM-Hループが測定される。
 測定サンプル(磁気テープMTの全体)のM-Hループ、補正用サンプル(基体41)のM-Hループの測定においては、東英工業社製の高感度振動試料型磁力計「VSM-P7-15型」が用いられる。測定条件は、測定モード:フルループ、最大磁界:15kOe、磁界ステップ:40bit、Time constant of Locking amp:0.3sec、Waiting time:1sec、MH平均数:20とされる。
 測定サンプル(磁気テープMTの全体)のM-Hループおよび補正用サンプル(基体41)のM-Hループが得られた後、測定サンプル(磁気テープMTの全体)のM-Hループから補正用サンプル(基体41)のM-Hループが差し引かれることで、バックグラウンド補正が行われ、バックグラウンド補正後のM-Hループが得られる。このバックグラウンド補正の計算には、「VSM-P7-15型」に付属されている測定・解析プログラムが用いられる。
 得られたバックグラウンド補正後のM-Hループの飽和磁化量Ms(emu)および残留磁化Mr(emu)が以下の式に代入されて、角形比S1(%)が計算される。なお、上記のM-Hループの測定はいずれも、25℃±2℃、50%RH±5%RHの環境にて行われるものとする。また、M-Hループを磁気テープMTの垂直方向に測定する際の"反磁界補正"は行わないものとする。なお、この計算には、「VSM-P7-15型」に付属されている測定・解析プログラムが用いられる。
 角形比S1(%)=(Mr/Ms)×100
 次に、3つサンプルの角形比S1を算術平均して、角形比S1の平均値を算出する。
 磁気テープMTの長手方向(走行方向)における磁性層43の角形比S2の平均値が、好ましくは35%以下、より好ましくは30%以下、さらにより好ましくは25%以下、特に好ましくは20%以下、最も好ましくは15%以下である。角形比S2の平均値が35%以下であると、磁性粉の垂直配向性が十分に高くなるため、さらに優れた電磁変換特性を得ることができる。
 磁気テープMTの長手方向における角形比S2の平均値は、M-Hループを磁気テープMTおよび基体41の長手方向(走行方向)に測定すること以外は角形比S1の平均値と同様にして求められる。
[磁気テープの長手方向の平均ヤング率]
 磁気テープMTの長手方向の平均ヤング率の上限値は、好ましくは9.0GPa以下、より好ましくは8.0GPa以下、さらにより好ましくは7.5GPa以下、特に好ましくは7.1GPa以下である。磁気テープMTの長手方向の平均ヤング率が9.0GPa以下であると、外力による磁気テープMTの伸縮性がさらに高くなるため、テンション調整による磁気テープMTの幅の調整がさらに容易となる。したがって、オフトラックをさらに適切に抑制することができ、磁気テープMTに記録されたデータをさらに正確に再生することが可能となる。磁気テープMTの長手方向の平均ヤング率の下限値は、好ましくは3.0GPa以上、より好ましくは4.0GPa以上である。磁気テープMTの長手方向の平均ヤング率の下限値が3.0GPa以上であると、走行安定性の低下を抑制することができる。
 磁気テープMTの長手方向の平均ヤング率は、外力による磁気テープMTの長手方向における伸縮のし難さを示す値であり、この値が大きいほど外力により磁気テープMTは長手方向に伸縮し難く、この値が小さいほど外力により磁気テープMTは長手方向に伸縮しやすい。
 なお、磁気テープMTの長手方向の平均ヤング率は、磁気テープMTの長手方向に関する値であるが、磁気テープMTの幅方向の伸縮のし難さとも相関がある。つまり、この値が大きいほど磁気テープMTは外力により幅方向に伸縮し難く、この値が小さいほど磁気テープMTは外力により幅方向に伸縮しやすい。したがって、テンション調整の観点から、磁気テープMTの長手方向の平均ヤング率は、上記のように小さく、9.0GPa以下であることが有利である。
 磁気テープMTの長手方向の平均ヤング率は以下のようにして求められる。まず、カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTを180mmの長さに切り出し3つのサンプルを取得する。次に、3つのサンプルそれぞれの長手方向のヤング率を測定し、それらの測定値を算術平均することにより、磁気テープMTの長手方向の平均ヤング率を求める。
 各サンプルのヤング率は、引っ張り試験機(島津製作所製、AG-100D)を用いて以下のようにして測定される。引っ張り試験機にテープの幅(1/2インチ)を固定できる冶具を取り付け、テープ幅の上下を固定する。距離(チャック間のテープの長さ)は100mmにする。テープサンプルをチャック後、サンプルを引っ張る方向(サンプル長手方向)に応力を徐々にかけていく。引っ張り速度は0.1mm/minとする。この時の応力の変化と伸び量から、以下の式を用いてヤング率を計算する。
 E(GPa)=((ΔN/S)/(Δx/L))×10-3
 ΔN:応力の変化(N)
 S:試験片の断面積(mm2
 Δx:伸び量(mm)
 L:つかみ治具間距離(mm)
 上記測定サンプルの断面積Sは、引張動作前の断面積であり、測定サンプルの幅(1/2インチ)と測定サンプルの厚さとの積で求められる。測定を行う際の引張応力の範囲は、磁気テープMTの厚み等に応じて線形領域の引張応力の範囲を設定する。ここでは、応力の範囲としては0.5Nから1.0Nとし、この時の応力変化(ΔN)と伸び量(Δx)を計算に使用する。なお、上記のヤング率の測定は、25℃±2℃、50%RH±5%RHにて行われるものとする。
[基体の長手方向の平均ヤング率]
 基体41の長手方向の平均ヤング率は、好ましくは7.8GPa以下、より好ましくは7.0GPa以下、さらにより好ましくは6.6GPa以下、特に好ましくは6.4GPa以下である。基体41の長手方向の平均ヤング率が7.8GPa以下であると、外力による磁気テープMTの伸縮性がさらに高くなるため、テンション調整による磁気テープMTの幅の調整がさらに容易となる。したがって、オフトラックをさらに適切に抑制することができ、磁気テープMTに記録されたデータをさらに正確に再生することが可能となる。基体41の長手方向の平均ヤング率の下限値は、好ましくは2.5GPa以上、より好ましくは3.0GPa以上である。基体41の長手方向の平均ヤング率の下限値が2.5GPa以上であると、走行安定性の低下を抑制することができる。
 上記の基体41の長手方向の平均ヤング率は、次のようにして求められる。まず、カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTを180mmの長さに切り出し、3つのサンプルを作製する。続いて、切り出した各サンプルから下地層42、磁性層43およびバック層44を除去し、基体41を得る。これらの3つのサンプルの基体41を用いて、上記の磁気テープMTの長手方向の平均ヤング率と同様の手順で基体41の長手方向の平均ヤング率を求める。
 基体41の厚みは、磁気テープMTの全体の厚みの半分以上を占めている。したがって、基体41の長手方向の平均ヤング率は、外力による磁気テープMTの伸縮し難さと相関があり、この値が大きいほど磁気テープMTは外力により幅方向に伸縮し難く、この値が小さいほど磁気テープMTは外力により幅方向に伸縮しやすい。
 なお、基体41の長手方向の平均ヤング率は、磁気テープMTの長手方向に関する値であるが、磁気テープMTの幅方向の伸縮のし難さとも相関がある。つまり、この値が大きいほど磁気テープMTは外力により幅方向に伸縮し難く、この値が小さいほど磁気テープMTは外力により幅方向に伸縮しやすい。したがって、テンション調整の観点から、基体41の長手方向の平均ヤング率は、上記のように小さく、7.8GPa以下であることが有利である。
(3)磁気テープの製造方法
 次に、上記の構成を有する磁気テープMTの製造方法の一例について説明する。
[塗料の調製工程]
 まず、非磁性粉および結着剤等を溶剤に混練、分散させることにより、下地層形成用塗料を調製する。次に、磁性粉、結着剤、潤滑剤およびカーボン等を溶剤に混練、分散させることにより、磁性層形成用塗料を調製する。磁性層形成用塗料および下地層形成用塗料の調製には、例えば、以下の溶剤、分散装置および混練装置を用いることができる。
 上記の塗料調製に用いられる溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、乳酸エチル、エチレングリコールアセテート等のエステル系溶媒、ジエチレングリコールジメチルエーテル、2-エトキシエタノール、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、クロロベンゼン等のハロゲン化炭化水素系溶媒等が挙げられる。これらは単独で用いてもよく、適宜混合して用いてもよい。
 上記の塗料調製に用いられる混練装置としては、例えば、連続二軸混練機、多段階で希釈可能な連続二軸混練機、ニーダー、加圧ニーダー、ロールニーダー等の混練装置を用いることができるが、特にこれらの装置に限定されるものではない。また、上記の塗料調製に用いられる分散装置としては、例えば、ロールミル、ボールミル、横型サンドミル、縦型サンドミル、スパイクミル、ピンミル、タワーミル、パールミル(例えばアイリッヒ社製「DCPミル」等)、ホモジナイザー、超音波分散機等の分散装置を用いることができるが、特にこれらの装置に限定されるものではない。
[塗布工程]
 次に、下地層形成用塗料を基体41の一方の主面に塗布して乾燥させることにより、下地層42を形成する。続いて、この下地層42上に磁性層形成用塗料を塗布して乾燥させることにより、磁性層43を下地層42上に形成する。なお、乾燥の際に、例えばソレノイドコイルにより、磁性粉を基体41の厚み方向に磁場配向させてもよい。また、乾燥の際に、例えばソレノイドコイルにより、磁性粉を基体41の走行方向(長手方向)に磁場配向させたのちに、基体41の厚み方向に磁場配向させるようにしてもよい。このように長手方向に磁性粉を一旦配向させる処理を施すことで、磁性粉の垂直配向度(すなわち角形比S1)をさらに向上することができる。磁性層43の形成後、基体41の他方の主面にバック層44を形成する。これにより、磁気テープMTが得られる。
 角形比S1、S2は、例えば、磁性層形成用塗料の塗膜に印加される磁場の強度、磁性層形成用塗料中における固形分の濃度、磁性層形成用塗料の塗膜の乾燥条件(乾燥温度および乾燥時間)を調整することにより所望の値に設定される。塗膜に印加される磁場の強度は、磁性粉の保磁力の2倍以上3倍以下であることが好ましい。角形比S1をさらに高めるためには(すなわち角形比S2をさらに低めるためには)、磁性層形成用塗料中における磁性粉の分散状態を向上させることが好ましい。また、角形比S1をさらに高めるためには、磁性粉を磁場配向させるための配向装置に磁性層形成用塗料が入る前の段階で、磁性粉を磁化させておくことも有効である。なお、上記の角形比S1、S2の調整方法は単独で使用されてもよいし、2以上組み合わされて使用されてもよい。
[硬化工程]
 次に、磁気テープMTをロール状に巻き取ったのち、この状態で磁気テープMTに加熱処理を行うことにより、下地層42および磁性層43を硬化させる。
[カレンダー工程]
 次に、得られた磁気テープMTにカレンダー処理を行い、磁性層43の表面を平滑化する。
[裁断工程]
 次に、磁気テープMTを所定の幅(例えば1/2インチ幅)に裁断する。
以上により、磁気テープMTが得られる。
[消磁工程およびサーボパターンの書き込み工程]
 次に、必用に応じて、磁気テープMTの消磁を行ったのち、磁気テープMTの磁性層43に磁気テープMT幅方向に隣接する複数のサーボパターンを書き込んでもよい。なお、磁気テープMTを走行させ、サーボライトヘッドの複数の記録部の温度を個別に整理し、前記複数の記録部によって磁性層43に複数のサーボパターンを書き込んでもよい。
(4)テープドライブ装置の構成
 図10は、テープドライブ装置30を示す図である。テープドライブ装置30は、磁気テープMTにデータを記録し、又は、磁気テープMTに記録されたデータを再生することが可能なデータ記録/再生装置である。
 図10に示すように、テープドライブ装置30は、カートリッジ10を装填可能に構成されている。テープドライブ装置30は、1つのカートリッジ10を装填可能に構成されるが、複数のカートリッジ10を同時に装填可能に構成されてもよい。
 テープドライブ装置30は、スピンドル31と、巻取りリール32と、スピンドル駆動装置33と、リール駆動装置34と、複数のガイドローラ35と、ドライブヘッド36と、リーダライタ37と、制御装置38とを備える。テープドライブ装置30は、温度計39、湿度計40などをさらに備えてもよい。
 スピンドル31は、カートリッジ10の下シェル11bに形成された開口部14を介してテープリール13のチャッキングギヤに係合するヘッド部を有する。スピンドル31は、リールスプリング16の付勢力に抗してテープリール13を所定距離上昇させ、リールロック部材17によるリールロック機能を解除する。これによりテープリール13は、スピンドル31によりカートリッジケース11の内部において回転可能に支持される。
 スピンドル駆動装置33は、制御装置38からの指令に応じて、スピンドル31を回転させる。巻取りリール32は、テープローディング機構(不図示)を介してカートリッジ10から引き出された磁気テープMTの先端(リーダーピン22)を固定可能に構成される。
 複数のガイドローラ35は、カートリッジ10と巻取りリール32との間に形成されるテープパスがドライブヘッド36に対して所定の相対位置関係となるように磁気テープMTの走行をガイドする。リール駆動装置34は、制御装置38からの指令に応じて、巻取りリール32を回転させる。
 磁気テープMTに対してデータの記録/再生が行われるとき、スピンドル駆動装置33及びリール駆動装置34により、スピンドル31及び巻取りリール32が回転し、磁気テープMTが走行する。磁気テープMTの走行方向は、図10において矢印A1で示す順方向(テープリール13側から巻取りリール32側へ巻き出す方向)、及び、矢印A2で示す逆方向(巻取りリール32側からテープリール13側へ巻き戻す方向)での往復が可能とされている。
 なお、本実施形態では、スピンドル駆動装置33によるスピンドル31の回転、及びリール駆動装置34による巻取りリール32の回転の制御により、データ記録/再生時における磁気テープMTの長手方向(X軸方向)でのテンションが調整可能とされる。磁気テープMTのテンションの調整は、スピンドル31、巻取りリール32の回転の制御に代えて(あるいは、この制御に加えて)、ガイドローラ35の移動の制御、ダンサーローラを含むテンション制御ユニット等により行われてもよい。
 磁気テープMTの走行時のテンションは、典型的には、後述するサーボパターン記録装置100によって磁気テープMTへサーボパターン6を記録したときのテンションと同じ値(以下、基準テンションともいう)に設定される。また、テープドライブ装置30がテンション調整可能に構成されることで、磁気テープMTの内部歪や経時変化に起因する磁気テープMTの幅寸法の変化にも対応可能となる。具体的には、磁気テープMTの幅寸法が広がる方向に変化した場合にはテンションを基準テンションよりも高く調整し、サーボバンドピッチが狭まる方向に変化した場合にはテンションを基準テンションよりも低く調整する。サーボパターン記録時の基準テンションや基準テンション時における磁気テープMTの幅寸法等に関する情報は、カートリッジメモリ9に格納される。
 リーダライタ37は、制御装置38からの指令に応じて、カートリッジメモリ9に対して管理情報を記録することが可能に構成されている。また、リーダライタ37は、制御装置38からの指令に応じて、カートリッジメモリ9から管理情報を読み出すことが可能に構成されている。管理情報としては、テープカートリッジ10及び磁気テープMTの製品情報、使用履歴情報、磁気テープMTに記録されている情報の概要などが挙げられる。製品情報には、製造情報、磁気テープMTの記録トラック5の数、ID等の固有情報が含まれる。使用履歴情報としては、アクセス日時、アドレス情報、リーダライタ37との通信履歴、テープドライブ装置30に対するローディング/アンローディング時の異常の有無等が含まれる。リーダライタ37とカートリッジメモリ9との間の通信方式としては、例えば、ISO14443方式が採用される。
 制御装置38は、例えば、制御部、記憶部、通信部などを含む。制御部は、例えば、CPU(Central Processing Unit)等により構成されており、記憶部に記憶されたプログラムに従い、テープドライブ装置30の各部を統括的に制御する。
 記憶部は、各種のデータや各種のプログラムが記録される不揮発性のメモリと、制御部の作業領域として用いられる揮発性のメモリとを含む。上記各種のプログラムは、光ディスク、半導体メモリ等の可搬性の記録媒体から読み取られてもよいし、ネットワーク上のサーバ装置からダウンロードされてもよい。記憶部は、リーダライタ37から読み出されたカートリッジメモリ9の情報、温度計39及び湿度計40の出力等を一時的に又は非一時的に記憶する。通信部は、PC(Personal Computer)、サーバ装置等の他の装置との間で互いに通信可能に構成されている。
 ドライブヘッド36は、制御装置38からの指令に応じて、磁気テープMTに対してデータを記録することが可能に構成されている。また、ドライブヘッド36は、制御装置38からの指令に応じて、磁気テープMTに書き込まれたデータを再生することが可能に構成されている。
 ドライブヘッド36は、例えば、2つのサーボリードヘッド、複数のデータライト/リードヘッド等を有するヘッドユニットで構成される。図11は、ドライブヘッド36を下側(テープ走行面)から見た概略図である。
 図11に示すように、ドライブヘッド36は、第1のドライブヘッド部36aと、第2のドライブヘッド部36bとを含む。第1のドライブヘッド部36a及び第2のドライブヘッド部36bは、X'軸方向(磁気テープMTの走行方向(図3においてX軸方向))で対称に構成されている。第1のドライブヘッド部36a及び第2のドライブヘッド部36bは、Y'軸方向(磁気テープMTの幅方向(図3においてY軸方向))に移動可能に構成されている。
 第1のドライブヘッド部36aは、磁気テープMTが順方向(図10においてA1方向)に走行しているときに使用されるドライブヘッドである。一方、第2のドライブヘッド部36bは、磁気テープMTが逆方向(図10においてA2方向)に走行しているときに使用されるドライブヘッドである。第1のドライブヘッド部36a及び第2のドライブヘッド部36bは、基本的に同様の構成であるため、第1のドライブヘッド部36aについて代表的に説明する。
 第1のドライブヘッド部36aは、ヘッド本体131と、2つのサーボリードヘッド132と、複数のデータライト/リードヘッド133とを有する。
 サーボリードヘッド132は、磁気テープMTのサーボバンドsに記録された磁気的情報から発生する磁束をMR素子(MR:Magneto Resistive effect)などにより読み取ることで、サーボ信号を再生可能に構成されている。つまり、サーボリードヘッド132により、サーボバンドs上に記録されたサーボパターン6が読み取られることで、サーボ信号が再生される。
 サーボリードヘッド132は、ヘッド本体131における幅方向(図11においてY'軸方向)の両端側にそれぞれ1つずつ設けられる。MR素子としては、異方性磁気抵抗効果素子(AMR:Anisotropic Magneto Resistive effect)、巨大磁気抵抗効果素子(GMR:Giant Magneto Resistive effect)、トンネル磁気抵抗効果素子(TMR:Tunnel Magneto Resistive effect)などを含む。2つのサーボリードヘッド132の幅方向(Y'軸方向)における間隔であるサーボリードヘッドピッチP1は、磁気テープMTにおける隣接する2つのサーボバンドs間の距離(サーボバンドピッチ)の規格値の中心値(2858.8μm)に設定される。
 データライト/リードヘッド133は、幅方向(Y'軸方向)に沿って、等間隔に配置されている。また、データライト/リードヘッド133は、2つのサーボリードヘッド132に挟み込まれる位置に配置されている。データライト/リードヘッド133の数は、例えば、20個~40個程度とされるが、この個数ついては特に限定されず、本実施形態では、32個(32チャンネル)である。
 データライト/リードヘッド133は、データライトヘッド134と、データリードヘッド135とを含む。データライトヘッド134は、磁気ギャップから発生する磁界によって、磁気テープMTのデータバンドdに対してデータ信号を記録することが可能に構成されている。また、データリードヘッド135は、磁気テープMTのデータバンドdに記録された磁気的情報から発生する磁界をMR素子などにより読み取ることで、データ信号を再生可能に構成されている。MR素子としては、異方性磁気抵抗効果素子(AMR)、巨大磁気抵抗効果素子(GMR)、トンネル磁気抵抗効果素子(TMR)などを含む。
 第1のドライブヘッド部36aにおいては、データライトヘッド134が、データリードヘッド135の左側(磁気テープ1が順方向に流れる場合の上流側)に配置される。一方、第2のドライブヘッド部36bにおいては、データライトヘッド134が、データリードヘッド135の右側(磁気テープMTが逆方向に流れる場合の上流側)に配置される。なお、データリードヘッド135は、データライトヘッド134が磁気テープMTにデータ信号を書き込んだ直後に、このデータ信号を再生可能とされている。なお上記に代えて、第1のドライブヘッド部36aのデータライトヘッド134で書き込まれたデータ信号が、第2のドライブヘッド部36bのデータリードヘッド135で再生されてもよい。
 図12は、第1のドライブヘッド部36aがデータ信号の記録/再生を行っているときの様子を示す図である。なお、図12に示す例では、磁気テープMTが順方向(A1方向)に走行しているときの様子が示されている。
 図12に示すように、第1のドライブヘッド部36aがデータ信号の記録/再生を行うとき、2つのサーボリードヘッド132のうち一方のサーボリードヘッド132は、隣接する2つのサーボバンドsのうち一方のサーボバンドs上に位置し、このサーボバンドs上のサーボパターン6を読み取る。また、2つのサーボリードヘッド132のうち他方のサーボリードヘッド132は、隣接する2つのサーボバンドsのうち他方のサーボバンドs上に位置し、このサーボバンドs上のサーボパターン6を読み取る。
 制御装置38は、サーボパターン6の再生波形に基づいて、サーボリードヘッド132が、目的とするサーボトレースラインT(図5参照)上を正確にトレースしているかどうかを判定する。
 この原理について説明する。図5に示すように、サーボパターン6における第1のストライプ群61と、第2のストライプ群62とでは、幅方向(Y軸方向)に対して傾斜する方向が逆となっている。このため、上側のサーボトレースラインTでは、第1のストライプ群61と第2のストライプ群62との間の長手方向(X軸方向)での距離は、相対的に狭くなっている。一方、下側のサーボトレースラインT上では、第1のストライプ群61と、第2のストライプ群62との間の長手方向(X軸方向)での距離は、相対的に広くなっている。このため、第1のストライプ群61の再生波形が検出された時刻と、第2のストライプ群62の再生波形が検出された時刻との差を求めれば、サーボリードヘッド132が磁気テープMTに対して幅方向(Y軸方向)で、現在どの位置に位置するかが分かる。
 従って、制御装置38は、サーボパターン6の再生波形に基づいて、目的とするサーボトレースラインT上をサーボリードヘッド132が正確にトレースしているかどうかを判定することができる。そして、制御装置38は、目的とするサーボトレースラインT上をサーボリードヘッド132が正確にトレースしていない場合には、ドライブヘッド36を幅方向(Y'軸方向)に移動させて、ドライブヘッド36の位置あるいはトラッキングを調整する。なお、サーボリードヘッド132がトレースするサーボトレースラインTの測定方法については後述する(図16,17参照)。
 図12に戻り、データライト/リードヘッド133は、磁気テープMTの走行時に磁気テープMTが幅方向に変動した場合、サーボトレースラインTに沿うように位置を調整し、記録トラック5内にデータ信号を記録する。
 磁気テープMTがテープカートリッジ10から全て引き出されると、今度は、逆方向(A2方向)に磁気テープMTが走行される。このとき、ドライブヘッド36として、第2のドライブヘッド部36bが使用される。サーボトレースラインTは、先ほどのサーボトレースラインTに隣接するサーボトレースラインTが使用される。この場合、ドライブヘッド36は、幅方向(Y'軸方向)において、サーボトレースラインTの間隔Ps分(=記録トラック幅Wd分)、移動される。この場合、先ほどデータ信号が記録された記録トラック5に隣接する記録トラック5に対して、第2のドライブヘッド部36bのデータライトヘッド134によってデータ信号が記録される。
 このように、磁気テープMTは、順方向及び逆方向に走行方向が変えられて何往復もされながら、記録トラック5に対してデータ信号が記録される。例えば、サーボトレースラインTの本数が、100本であり、第1のドライブヘッド部36a(あるいは、第2のドライブヘッド部36b)に含まれるデータライト/リードヘッド133の数が32個の場合を想定する。この場合、1本のデータバンドdに含まれる記録トラック5の本数は、100×32で3200本であり、この記録トラック5すべてにデータ信号を記録するためには、磁気テープMTを50往復させることになる。
[サーボパターン]
 続いて、サーボパターン6の詳細について説明する。サーボパターン6は、「ECMA-319規格」に準拠したデータ構造を有する。図13(A)はサーボパターン6の配置例を示す概略平面図、図13(B)はその再生波形を示す図である。
 タイミングベースサーボ方式のヘッドトラッキングサーボでは、サーボパターンは、2種以上の異なる形状の複数の方位角傾斜(azimuthal slope)パターンを含む。異種の形状の2つの傾斜パターンを読み取った時間間隔と、同種の形状の2つの傾斜パターンを読み取った時間間隔とにより、サーボリードヘッド132の位置を認識する。こうして認識されたサーボリードヘッド132の位置に基づき、磁気テープMTの幅方向(Y軸方向)におけるドライブヘッド36の位置が制御される(図11,12参照)。
 図13(A)に示すように、サーボパターン6は、第1サーボサブフレームSSF1と、第2サーボサブフレームSSF2とを有するサーボフレームSFを形成する。サーボフレームSFは、テープ長手方向に沿って所定の間隔をおいて磁気テープMTの長手方向に配列される。各サーボフレームSFは、「1」又は「0」の一つのビットを符号化する。つまり、1つのサーボフレームSFは、1ビットに相当する。
 第1サーボサブフレームSSF1は、Aバースト6aとBバースト6bとにより構成される。Aバースト6aは、テープ長手方向に対して第1の方向に傾斜した5本の直線パターン(図5における第1のストライプ群61に相当)からなり、Bバースト6bは、テープ長手方向に上記第1の方向とは逆の第2の方向に傾斜した5本の直線パターン(図5における第2のストライプ群62に相当)からなる。
 一方、第2サーボサブフレームSSF2は、Cバースト6cとDバースト6dとにより構成される。Cバースト6cは、上記第1の方向に傾斜した4本の直線パターン(図5における第1のストライプ群61に相当)からなり、Dバースト6dは、上記第2の方向に傾斜した4本の直線パターン(図5における第2のストライプ群62に相当)からなる。
 サーボフレームSF及び各サーボサブフレームSSF1,SSF2の長さ、各バースト6a~6dを傾斜する傾斜部の配列間隔等は、磁気テープの種類や仕様等に応じて任意に設定可能である。
 サーボパターン6の再生波形は、典型的には図13(B)に示すようなバースト波形を示し、信号S6aはAバースト6aに、信号S6bはBバースト6bに、信号S6cはCバースト6cに、そして、信号S6dはDバースト6dに、それぞれ相当する。
 タイミングベースサーボ方式のヘッドトラッキングサーボでは、一のデータバンドに隣接する2つのサーボバンド上のサーボパターン6を読み取ることで、位置誤差信号(PES:Position Error Signal)を生成し、当該データバンド内の記録トラックに対する記録再生ヘッドを適切に位置決めする。典型的には、所定速度で走行する磁気テープMTからサーボパターン6を読み取り、互いに同種形状の傾斜パターンの配列体であるAバースト6aとCバースト6cとの間の距離(時間間隔)ACと、互いに異種形状の傾斜パターンの配列体であるAバースト6aとBバースト6bとの間の距離(時間間隔)ABとの比(あるいは、Cバースト6cとAバースト6aとの距離CAと、Cバースト6cとDバースト6dとの距離CDとの比)を算出し、その値が記録トラックごとに定められた設定値となるようにドライブヘッド36をテープ幅方向(Y'軸方向)に移動させる(図12参照)。
[データバンドの特定]
 各サーボバンドs(s0~s4)には、各データバンドについて異なる組み合わせのサーボバンド識別情報が書き込まれる。例えば、データバンドd0に隣接する2つのサーボバンドs2,s3から得られるサーボバンド識別情報の組み合わせは、データバンドd1に隣接するサーボバンドs1,s2から得られるサーボバンド識別情報の組み合わせと、データバンドd2に隣接するサーボバンドs3,s4から得られるサーボバンド識別情報の組み合わせと、データバンドd3に隣接する2つのサーボバンドs0,s1から得られるサーボバンド識別情報の組み合わせと、それぞれ異なる。このように、一のデータバンドに隣接する2つのサーボバンドから得られるサーボバンド識別情報を、他のデータバンドに隣接する2つのサーボバンドから得られるサーボバンド識別情報と異ならせることにより、個々のデータバンドの特定が可能となる。
 本実施形態においては、記録再生するべきデータバンドd0~d4を特定するために、2種類のサーボバンドが用いられる。上述のように、サーボバンドには、サーボバンド識別情報が埋め込まれる。サーボバンド識別情報は、複数ビットの情報であり、典型的には、4ビットであるが、8ビットであってもよいし、4ビット及び8ビット以外の他の複数ビットであってもよい。
 本実施形態において、上記2種類のサーボバンドは、第1のサーボバンド識別情報が記録される第1のサーボバンドと、第2のサーボバンド識別情報が記録される第2のサーボバンドとを有する。第1のサーボバンド識別情報は、4ビットの情報(例えば「1001」)であり、第2のサーボバンド識別情報は、第1のサーボバンド識別情報とは異なる4ビットの情報(例えば「0111」)である。
 第1及び第2のサーボバンド識別情報を構成する符号「0」、「1」の組み合わせは、サーボパターン6の再生波形から識別される。つまり、サーボパターン6の再生波形は、符号「0」、「1」の変調波に相当し、当該再生波形を復調し、且つ、例えば4ビット組み合わせることで、第1及び第2のサーボバンド識別情報が読み出される。以下、第1及び第2のサーボバンド識別情報について、図14及び図15を参照して説明する。
 図14(A),(B)は、第1のサーボバンド識別情報が埋め込まれるサーボパターン(以下、第1のサーボパターン601ともいう)及び第2のサーボバンド識別情報が埋め込まれるサーボパターン(以下、第2のサーボパターン602ともいう)の構成例を示す概略図である。同図に示すように、第1のサーボパターン601及び第2のサーボパターン602はいずれも、一方の符号(例えば「1」)を表すサーボフレームSF1と、他方の符号(例えば「0」)を表すサーボフレームSF0とを含む2種のサーボフレームSFの組み合わせからなる。各サーボフレームSF1,SF0は、第1サーボサブフレームSSF1及び第2サーボサブフレームSSF2からなるサーボフレームSFを構成単位とする点で共通するが、第1サーボサブフレームSSF1(Aバースト6a及びBバースト6b)が相互に異なる。
 図14(A)に示すように、符号「1」を表すサーボフレームSF1においては、Aバースト6a及びBバースト6bをそれぞれ構成する5本の傾斜パターンを図中左側から順に第1傾斜部、第2傾斜部、第3傾斜部、第4傾斜部及び第5傾斜部としたとき、第2、第4傾斜部がそれぞれ第1、第5傾斜部側に偏った位置に配置される。これに対して、図14(B)に示すように、符号「0」を表すサーボフレームSF0においては、Aバースト6a及びBバースト6bを構成する傾斜パターンの一部の配列間隔がサーボフレームSF1と異なっている。図示の例では、Aバースト6a及びBバースト6bをそれぞれ構成する5本の傾斜パターンは、第2、第4傾斜部がそれぞれ第3傾斜部側に偏った位置に配置される。このため、サーボフレームSF0におけるAバースト6a及びBバースト6bについては、第2傾斜部と第3傾斜部、並びに第3傾斜部と第4傾斜部との間隔が最も小さく、第1傾斜部と第2傾斜部、並びに第4傾斜部と第5傾斜部との間隔が最も大きくなっている。
 図15(A),(B)は、第1のサーボパターン601及び第2のサーボパターン602の再生波形SP1,SP2をそれぞれ示している。各サーボフレームSF1,SF0の再生波形は、各バースト部6a~6d各々の傾斜部に対応する位置にピークを有するバースト信号で構成される。上述のように、サーボフレームSF0については、Aバースト6a及びBバースト6bの構成がサーボフレームSF1のAバースト6a及びBバースト6bと異なるため、その異なる傾斜部の間隔に対応してバースト信号S6a及びS6bのピーク位置にずれが生じる。したがって、このピーク位置のずれが生じている部位とそのずれ量、ずれ方向を検出することにより、サーボフレームSFに書き込まれた情報の読み出しが可能となる。ここでは例えば、図15(A)に示すサーボフレームSF1が1つのビット「1」を表し、図15(B)に示すサーボフレームSF0が他の1つのビット「0」を表す。これら2つのサーボフレームSF1,SF0を任意に例えば4ビット組み合わせることで、第1及び第2のサーボバンド識別情報を構成することができる。
[サーボバンドピッチの測定方法]
 続いて、磁気テープMTのサーボバンドピッチの測定方法について説明する。ここで、サーボバンドピッチとは、1つのデータバンド(例えば、データバンドd0)に隣接する2つのサーボバンド(サーボバンドs2、s3)間の距離を示す指標である。より詳細には、サーボバンドピッチとは、上記2つのサーボバンドのうち一方のサーボバンドに記録されたサーボパターンの中心と他方のサーボバンドに記録されたサーボパターンの中心との間の距離をいう。また以下の説明では、サーボバンドピッチを、サーボリードヘッドピッチP1(図11参照)との差分という意味で用いる場合もある。本実施形態においては、複数のサーボバンドにおいて隣接する2つのサーボバンドピッチの磁気テープMT全長にわたる差の平均値が100nm以下であり、好ましくは95nm以下であり、より好ましくは90nm以下であり、さらに好ましくは85nm以下である。
 サーボバンドピッチは、テープドライブ装置30により測定される。ここでは図16に示すように、サーボバンドs2とサーボバンドs3との間に挟まれたデータバンドd0をドライブヘッド36がトラッキングする例について説明する。
 テープドライブ装置30を用いたサーボバンドピッチの測定方法は、上述のように、テープドライブ装置30によって磁気テープMTを走行させ、2つのサーボリードヘッド132の各サーボバンド上でのサーボトレースラインTをそれぞれ測定し、測定した各サーボトレースラインTのサーボパターン6に対する相対位置からサーボバンドピッチを測定する。
 図16において実線で示すサーボトレースラインTの間隔は、磁気テープMTの幅が変化していないときのサーボバンドピッチ(ドライブヘッド36の2つのサーボリードヘッド132の配置間隔であるサーボリードヘッドピッチP1)を示している。また、図16において破線で示すサーボトレースラインTの間隔は、磁気テープMTの幅が広がったときのサーボバンドピッチ(P2)に相当する。
 図17は、サーボトレースラインTの測定方法を説明する図である。テープドライブ装置30は、サーボパターン6に対するサーボトレースラインTの位置に応じた波形のサーボ再生信号を出力する(図15参照)。典型的には、互いに同種形状の傾斜パターンの配列体であるAバーストおよびCバースト間の距離ACと、互いに異種形状の傾斜パターンの配列体であるAバーストおよびBバースト間の距離ABとを算出し、下記[数4]式で各サーボリードヘッド132のサーボトレースラインTの位置を測定する。なお、θは、図5における角度αに相当する上記各傾斜パターンのアジマス角であり、本例では、12°とする。
 ここで、距離ACは、AバーストおよびCバーストの第1傾斜部同士の間の距離AC1でもよいし、それらの第2傾斜部同士の間の距離AC2でもよいし、それらの第3傾斜部同士の間の距離AC3でもよいし、それらの第4傾斜部同士の間の距離AC4でもよい。これらの距離AC(AC1~AC4)は、サーボ再生波形における振幅の正の最大値を示す位置(上ピーク位置)間の距離をいう。
 距離ABについても同様に、AバーストおよびBバーストの第1傾斜部同士の間の距離AB1でもよいし、それらの第2傾斜部同士の間の距離AB2でもよいし、それらの第3傾斜部同士の間の距離AB3でもよいし、それらの第4傾斜部同士の間の距離AB4でもよい。典型的には、距離AC1が採用される場合は距離AB1が採用され、距離AC2が採用される場合は距離AB2が採用され、距離AC3が採用される場合は距離AB3が採用され、距離AC4が採用される場合は距離AB4が採用される。
 そして、上記[数4]式を用いて算出された、距離ABおよび距離ACの割合から求められるサーボパターン上の各サーボトレースラインTの位置を表す数値の差分から、サーボバンドピッチを求める。ここでは、測定する2つのサーボバンドのうち、テープエッジ側のサーボバンド(サーボバンドs3)の測定値からの、テープ中央側のサーボバンド(サーボバンドs2)の測定値の差分をとる。その値の正負は、テープ幅の変化の方向を意味し、正の場合はサーボバンドピッチが狭まったことに相当し、負の場合はサーボバンドピッチが広がったことに相当する。上記差分がゼロの場合は、テープ幅の変動が無いことを意味する。
 サーボバンドピッチは、多数のサーボフレームの差分から求めることが好ましく、例えば、100~100000個のサーボフレームの差分から計算される測定値の平均値であってもよい。測定時におけるテープテンションは、サーボパターン6の記録時のテンション(基準テンション、例えば、0.55N)とし、磁気テープMTの全長にわたって一定のテンションで測定を行う。
 なお、サーボトレースラインTの測定方法は上記の例に限られず、例えば、CバーストおよびAバースト間の距離CAと、CバーストおよびDバースト間の距離CDとを算出し、下記[数5]式でサーボトレースラインTの位置を測定してもよい。
 ここで、距離CAは、CバーストおよびAバーストの第1傾斜部同士の間の距離CA1でもよいし、それらの第2傾斜部同士の間の距離CA2でもよいし、それらの第3傾斜部同士の間の距離CA3でもよいし、それらの第4傾斜部同士の間の距離CA4でもよい。これらの距離CA(CA1~CA4)は、サーボ再生波形における振幅の正の最大値を示す位置間の距離をいう。
 距離CDについても同様に、CバーストおよびDバーストの第1傾斜部同士の間の距離CD1でもよいし、それらの第2傾斜部同士の間の距離CD2でもよいし、それらの第3傾斜部同士の間の距離CD3でもよいし、それらの第4傾斜部同士の間の距離CD4でもよい。典型的には、距離CA1が採用される場合は距離CD1が採用され、距離CA2が採用される場合は距離CD2が採用され、距離CA3が採用される場合は距離CD3が採用され、距離CA4が採用される場合は距離CD4が採用される。
 さらに、サーボバンドピッチの測定には、[数4]式を用いた測定値と[数5]式を用いた測定値との平均値が用いられてもよい。さらに、[数4]式における距離AC,ABおよび[数5]式における距離CA,CDとして、サーボ再生波形における振幅の負の最大値を示す位置(下ピーク位置)間の距離が採用されてもよい。あるいは、[数4]式における距離AC,ABおよび[数5]式における距離CA,CDとして、サーボ再生波形における振幅の正の最大値を示す位置(上ピーク位置)間の距離と負の最大値を示す位置(下ピーク位置)間の距離との平均値が採用されてもよい。
 図16に示すように、サーボトレースラインTが破線で示す位置にある場合、サーボバンドs2においては距離ABが38.5μm、距離ACが76μm、サーボバンドs3においては距離ABが37.5μm、距離ACが76μmであるとする。
 サーボバンドs2においては、
 (38.5/76)×(76/2tan12°)=90.5641[μm]
 サーボバンドs3においては、
 (37.5/76)×(76/2tan12°)=88.2118[μm]となる。 これらの値の差分は、
 88.2118-90.5641=-2.3523[μm]
となる。
 したがって、この場合におけるサーボバンドピッチP2は、サーボリードヘッドピッチP1より、2.3523μmだけ広い値として求められる。
 なお、図16に示すように、サーボトレースラインTが実線で示す位置にある場合、サーボバンドs2およびサーボバンドs3のいずれにおいても距離ABが38μm、距離ACが76μmとなる。この場合、サーボバンドs2およびサーボバンドs3のいずれにおいても89.3880[μm]であり、それらの差分は0[μm]となる。つまり、この場合のサーボバンドピッチは、サーボリードヘッドピッチP1と同一を意味する。
[テンション制御]
 テープドライブ装置30は、上述のようにして測定されたサーボパターンピッチに基づき、測定されたサーボパターンピッチがサーボリードヘッドピッチP1と同一となるように磁気テープMTのテンションを制御する。
 本実施形態では、磁気テープMTへのデータの記録あるいは磁気テープMTからのデータの再生に先立って、データを記録あるいは再生する1つのデータバンドを挟む2つのサーボバンドからサーボ信号を読み取り、読み取った各サーボ信号からこれら2つのサーボバンドピッチがサーボリードヘッドピッチP1よりも広いか狭いかを判定する。サーバンドピッチがサーボリードヘッドピッチP1よりも広い場合にはテンションを高くし、サーボバンドピッチがサーボリードヘッドピッチP1よりも狭い場合にはテンションを低くする。このようにサーボバンドピッチの大きさに応じてテンションの大きさを調整することで、当該データバンドについて所望とするトラッキング制御を安定に行うことができる。
 テープドライブ装置30は、1つのデータバンドについてのサーボバンドピッチとテンションとの関係を1往復のテープ走行により取得し、その取得データをカートリッジメモリ9へ記録する。テープドライブ装置30は、上記1つのデータバンドについて測定したサーボバンドピッチとテンションとの関係を、他のデータバンドに対するデータの記録再生時にも同様に適用する。
[ヘッドアジマス角制御]
 また、テープドライブ装置30において、ドライブヘッド36の長手方向(Y'軸方向)が、磁気テープMTの幅方向(Y軸方向)に対して、所定の角度θ(アジマス角θ)傾斜して配置されていてもよい。ドライブヘッド36のアジマス角θを調整することで、磁気テープMTの幅の変動に対応する。典型的には、磁気テープMTの幅が相対的に広くなったとき、ドライブヘッド36のアジマス角θは小さくされ、逆に、磁気テープMTの幅が相対的に狭くなったとき、ドライブヘッド36のアジマス角θは大きくされる。制御装置38は、幅測定部(図示しない)から磁気テープMTの幅の情報を取得し(あるいは、サーボ信号から磁気テープMTの幅を予測し)、磁気テープMTの幅の情報に基づいて、角度調整部(図示しない)によりドライブヘッド36のアジマス角θを調整する。
(5)サーボパターン記録装置の構成
 続いて、磁気テープMTのサーボバンドsにサーボパターン6を記録するサーボパターン記録装置の構成について説明する。図18は、本技術の一実施形態に係るサーボパターン記録装置100を示す概略正面図である。図19は、サーボパターン記録装置100の一部を示す部分拡大図である。
 サーボパターン記録装置100は、磁気テープMTの搬送方向の上流側から順番に、送り出しローラ111、前処理部112、サーボライトヘッド113、再生ヘッド部114及び巻き取りローラ115を備えている。サーボパターン記録装置100はさらに、駆動部120及びコントローラ130を備えている。コントローラ130は、サーボパターン記録装置100の各部を統括的に制御する制御部や、制御部の処理に必要な各種のプログラムやデータが記憶された記憶部、データを表示させる表示部、データを入力する入力部などを有する。
 送り出しローラ111は、ロール状の磁気テープMT(サーボパターン6記録前)を回転可能に支持することが可能とされている。送り出しローラ111は、モータなどの駆動源の駆動に応じて回転され、回転に応じて磁気テープMTを下流側に向けて送り出す。
 巻き取りローラ115は、ロール状の磁気テープMT(サーボパターン6記録後)を回転可能に支持することが可能とされている。巻き取りローラ115は、モータなどの駆動源の駆動に応じて送り出しローラ111と同調して回転し、サーボパターン6が記録された磁気テープMTを回転に応じて巻き取っていく。送り出しローラ111及び巻き取りローラ115は、搬送経路上において磁気テープMTを一定の速度で移動させることが可能とされている。
 サーボライトヘッド113は、例えば、磁気テープMTの上方側(磁性層43側)に配置される。サーボライトヘッド113は、磁気テープMTの下側(基材41側)に配置されてもよい。サーボライトヘッド113は、矩形波のパルス信号に応じて所定のタイミングで磁界を発生し、磁気テープMTが有する磁性層43(前処理後)の一部に対して磁場を印加する。
 これにより、サーボライトヘッド113は、第1の方向に磁性層43の一部を磁化させて磁性層43にサーボパターン6を記録する(磁化方向は図19中、黒の矢印参照)。サーボライトヘッド113は、サーボライトヘッド113の下側を磁性層43が通過するときに、5つのサーボバンドs0~s4に対してそれぞれサーボパターン6を記録することが可能とされている。
 サーボパターン6の磁化方向である第1の方向は、磁性層43の上面に垂直な垂直方向の成分を含む。すなわち、本実施形態では、垂直配向若しくは無配向の磁性粉が磁性層43に含まれるので、磁性層43に記録されるサーボパターン6は、垂直方向の磁化成分を含む。
 前処理部112は、例えば、サーボライトヘッド113よりも上流側において、磁気テープMTの下側(基材41側)に配置される。前処理部112は、磁気テープMTの上側(磁性層43側)に配置されてもよい。前処理部112は、図15においてY'軸方向(磁気テープMTの幅方向)を回転の中心軸として回転可能な永久磁石112aを含む。永久磁石112aの形状は、例えば、円柱形状や、多角柱形状とされるが、これらに限られない。
 永久磁石112aは、サーボライトヘッド113によってサーボパターン6が記録される前に、直流磁界によって磁性層43の全体に対して磁場を印加して、磁性層43全体を消磁する。これにより、永久磁石112aは、サーボパターン6の磁化方向とは反対方向の第2の方向に予め磁性層43を磁化させることができる(図19中、白の矢印参照)。このように、2つの磁化方向をそれぞれ反対方向にさせることで、サーボパターン6を読み取ることで得られるサーボ信号の再生波形を上下方向(±)で対称とすることができる。
 なお、上記第2の方向の調整方法としては、例えば、永久磁石112aの回転角度を任意とし、磁性層43全体を消磁後に、磁性層43にサーボパターン6を記録し、その再生波形の傾きに基づいて、磁気テープMTの幅方向を中心とする永久磁石112aの回転角度を調整するようにしてもよい。
 再生ヘッド部114は、サーボライトヘッド113よりも下流側において、磁気テープMTの上側(磁性層43側)に配置される。再生ヘッド部114は、前処理部112によって前処理され、かつ、サーボライトヘッド113によってサーボパターン6が記録された磁気テープMTの磁性層43から上記サーボパターン6を読み取る。再生ヘッド部114によって読み取られたサーボパターン6の再生波形は、表示部の画面上に表示される。典型的には、再生ヘッド部114は、再生ヘッド部114の下側を磁性層43が通過するときに、サーボバンドsの表面から発生する磁束を検出する。このとき検出された磁束がサーボ信号としてのサーボパターン6の再生波形となる。
 図20は、サーボライトヘッド113の構成を概略的に示す斜視図、図21は、サーボライトヘッド113の要部の概略断面図、図22は、サーボライトヘッド113の要部の概略平面図である。
 図20および図21に示すように、サーボライトヘッド113は、磁気テープMTの各サーボバンドs0~s4にサーボパターン6を記録するための複数の磁性コアh0~h4と、各磁性コアh0~h4の間を接合する接着層hsとを有する。
 各磁性コアh0~h4はそれぞれ、センダストやパーマロイ、フェライト等の軟磁性材料で構成されるヘッドブロック402と、ヘッドブロック402に巻回されたコイル70とを有する。各磁性コアh0~h4は、磁気テープMTの各サーボバンドs0~s4に対応して配置された記録部401を構成し、各サーボバンドsにサーボパターン6を記録するための磁気ギャップgを有する。
 磁気ギャップgは、相互に逆方向に傾斜する一対の直線部(「/」及び「\」)からなり、一方の直線部「/」はAバースト6a及びCバースト6cを、他方の直線部「\」はBバースト6b及びDバースト6dをそれぞれ記録する。各ヘッドブロックh1~h5の磁気ギャップgは、サーボライトヘッド113の長手方向(Y'方向)に平行な軸線上に整列するように配置される。磁気ギャップgの配列間隔は、サーボライトヘッド113の長手方向のパターン幅Pwにおける中心間の距離であり、その大きさは、サーボリードヘッドピッチP1とされる。各磁性コアh0~h4は相互に磁気的に分離されており、2つ以上のサーボバンドに同時に異なる種類のサーボパターン6を記録可能に構成される。
 図23は、駆動部120の構成を示すブロック図である。図23に示すように、駆動部120は、コントローラ130(図18参照)からの出力に基づき、サーボ情報をパルス情報に変換する変換器121と、変換器121の出力に基づいてパルス信号を生成する信号生成部122と、生成されたパルス信号を増幅する増幅器123とを有する。信号生成部122及び増幅器123は、各磁性コアh0~h4に対応して複数ずつ設けられており、各磁性コアh0~h4に巻回されたコイル70へそれぞれ固有のパルス信号を出力することが可能に構成される。
 コントローラ130は、第1のサーボバンド識別情報を記録するべきサーボバンドの位置(本例では、サーボバンドs0,s1,s4)と、第2のサーボバンド識別情報を記録するべきサーボバンドの位置(本例では、サーボバンドs2,s3)とに関するデータを格納したメモリを備える。コントローラ130は、当該メモリに格納されたデータに基づいて、駆動部120を制御する。
 変換器121は、各サーボバンドs0~s4に記録するべきサーボバンド識別情報に対応する情報を各磁性コアh0~h4に対応する信号生成部122へ個々に出力する。本実施形態では、サーボバンドs0、s1、s4に対応する磁性コアh0、h1及びh4に第1のサーボバンド識別情報を含む第1のサーボパターン601(図14(A))を記録するための第1のパルス信号PS1を出力し、サーボバンドs2,s3に対応するヘッドブロックh2,h3に第2のサーボバンド識別情報を含む第2のサーボパターン602(図14(B))を記録するための第2のパルス信号PS2を出力する。
 図24(A),(B)に、第1のパルス信号PS1及び第2のパルス信号PS2における第1サーボサブフレームSSF1の記録信号波形をそれぞれ模式的に示す。同図に示すように、第1及び第2のパルス信号PS1,PS2は、5つのパルス群からなる第1パルス群SPF1と、4つのパルス群からなる第2パルス群SPF2とを含む。第1パルス群SPF1は、Aバースト6aの各傾斜部を記録するための信号であり、第2パルス群SPF2は、Bバースト6bの各傾斜部を記録するための信号である。
 図24(A),(B)に示すように、第1のパルス信号PS1と第2のパルス信号PS2との間には、第1パルス群SPF1における2番目及び4番目のパルスの立ち上がり時刻が異なっており、パルス信号PS2の方がパルス信号PS1よりも2番目のパルスの立ち上がり時刻が遅く、4番目のパルスの立ち上がり時刻が早い。これにより、図14(A),(B)に示したようなAバースト6aの傾斜部の配列間隔の一部が相互に相違する第1サーボサブフレームSSF1が形成される。
 さらに、第1のパルス信号PS1と第2のパルス信号PS2は、それぞれ同位相(同一のタイミング)で磁性コアh0~h4に送信される。これにより、各磁性コアh0~h4においてサーボバンドs0,s1,s4には第1のサーボパターン601(第1のサーボバンド識別情報)が、サーボバンドs2,s3には第2のサーボパターン602(第2のサーボバンド識別情報)が同位相で記録される。
 <本技術の詳細>
 テープドライブ装置30は、上述のように、磁気テープMTの幅寸法の変化に対応するため、磁気テープMTの走行時に加えるテンションを変化させることが可能に構成される。具体的には、磁気テープMTの幅寸法が広がる方向に変化した場合にはテンションを高くし、磁気テープMTの幅寸法が狭まる方向に変化した場合にはテンションを低くする調整が行われる。このように磁気テープMTの幅寸法の変化に応じてテンションの大きさを調整することで、所望とするトラッキング制御を安定に行うことが可能となる。
 そして、磁気テープMTの幅寸法の変動は、各データバンドのサーボバンドピッチについて一様に生じる。一方、テープドライブ装置30におけるテープ走行時間という観点からは、複数のデータバンドのうち1つのデータバンドのサーボバンドピッチについて1往復のテープ走行によりテンションとの関係を取得してカートリッジメモリ9に保持し、その取得したサーボバンドピッチとテンションを基準に残りの他のデータバンドのサーボバンドピッチについても同様に適用する方法が有利である。
 しかしながら、基準としたサーボバンドピッチと残りの他のサーボバンドピッチとの差が大きい場合、当該他のサーボバンドピッチについては事前に取得したテンションとサーボバンドピッチの関係が異なることになるため、所望とするトラッキング制御を確保することが困難になる。
 各データバンドのサーボバンドピッチに差が生じる原因としては、まず、サーボライトヘッド113の各磁性コアh0~h4に形成される磁気ギャップgの位置ズレが挙げられる。磁気ギャップgは、フォトリソグラフィ技術を用いて形成されるため寸法精度は比較的高いものの、サブミクロン単位の寸法誤差が生じる場合がある。
 また、各データバンドのサーボバンドピッチに差が生じる他の原因としては、サーボパターン記録時においてテープ走行をガイドするガイドローラの平行度のズレが挙げられる。例えば図25に、サーボパターン記録装置100における磁気テープMTの走行をガイドする一対のガイドローラ141,142を示す。各ガイドローラ141,142の軸心は互いに平行に設置され、これにより磁気テープMTの幅方向に一様なテンションが作用する。しかし、図25において破線で示すようにガイドローラ142の軸心がガイドローラ141の軸心に対して上下方向に角度θのずれ(ミスアライメント角)が生じている場合、角度θの大きさが1度以下であっても、磁気テープMTの幅方向にテンションの分布が生じることがある。
 一例として図26に、同一の磁気テープについて測定した各データバンドのサーボバンドピッチを比較して示す。図中横軸はテープ長、縦軸はサーボバンドピッチである。ここでは、縦軸のサーボバンドピッチは、サーボリードヘッドピッチP1(2858.8μm)を基準値(Ref)とした差分で示している。サーボバンドピッチの測定は、図16および図17を参照して説明したようにテープドライブ装置30を用いて行うことができる。なお図中、d0(s2/s3)は、データバンドd0に隣接する2つのサーボバンドs2、s3の間隔(サーボバンドピッチs2/s3)を意味し、d1(s1/s2)は、データバンドd1に隣接する2つのサーボバンドs1、s2の間隔(サーボバンドピッチs1/s2)を意味する。同様に、d2(s3/s4)は、データバンドd2に隣接する2つのサーボバンドs3、s4の間隔(サーボバンドピッチs3/s4)を意味し、d3(s0/s1)は、データバンドd0に隣接する2つのサーボバンドs0、s1の間隔(サーボバンドピッチs0/s1)を意味する。
 図26に示す測定例では、サーボバンドピッチは、データバンドd3からd2にかけて広がっており、データバンドd3のサーボバンドピッチ(s0/s1)を最大値、データバンドd2のサーボバンドピッチ(s3/s4)を最小値としたとき、同一テープ長における最大値-最小値の幅(絶対値)で表されるサーボバンドピッチの最大変化量は、平均的に約0.13μmあった。
 サーボバンドピッチは、テープテンションに依存することは周知なので、各データバンドにおけるサーボバンドピッチのばらつきは、磁気テープの幅方向のテンション分布が関係している可能性がある。例えば図25に示したガイドローラ141,142の平行度のズレにより、サーボパターン記録時のテンションが、再生時のテンションと比較してデータバンドd3付近では低く(再生時にテンションが加わるので幅が狭まる)、データバンドd2付近では高い(再生時にはテンションが緩むので幅は広がる)状態であったことが想定される。
 磁気テープの幅方向のテンション分布は、磁気テープのもつ歪応力の不均一性、サーボライトヘッドの上流側および下流側に位置するガイドローラの平行度の僅かなズレなどが関係していると考えられる。しかし、磁気テープ内のテンション分布を直接測定あるいは把握することは困難であることから、テンション以外の方法でもサーボバンドピッチの変化を起こすパラメータを把握、調整することにより、サーボバンドピッチのばらつきを少なくできることがより好ましい。
 サーボバンドピッチにばらつきが生じると、各データバンドに対する記録再生ヘッドの位置決め精度が低下し、各データバンドに対して安定したトラッキング制御を実現することが困難になる。特に、記録トラックの総数が6500を超えるLTO-8規格の磁気テープMTにおいては、トラックピッチWd(図4参照)が1.56μmと非常に小さいだけでなく、今後ますます狭ピッチ化が進むと想定される。そうすると、記録トラックに対する記録再生ヘッドの位置決め精度をさらに高める必要が生じる。具体的には、各データバンドdのトラックピッチWdとテープドライブ装置30のデータリードヘッド135の幅との関係を考慮すると、記録トラックに対するデータリードヘッド135の位置合わせマージンを確保するためには、トラック幅方向に±100nm(0.1μm)の精度でサーボパターンピッチのばらつきを低下させる必要がある。
[サーボパターン記録装置の詳細]
 このような問題を解決するため、本実施形態のサーボパターン記録装置100は、図18に示すように温度調整部80をさらに備える。
(適用例1)
 温度調整部80は、サーボライトヘッド113の記録部401を構成する各磁性コアh0~h4を個別に昇温させることが可能に構成される。本実施形態において温度調整部80は、駆動部120の一部として構成され、コントローラ130からの指令に基づき、サーボライトヘッド113の各記録部401(磁性コアh0~h4)の温度を所定温度範囲で個別に調整する。本実施形態において温度調整部80は、サーボバンドピッチのテープ全長にわたる差の平均値が所定の値以下(例えば、100nm以下)となるように、各記録部401の温度を個別に調整することが可能に構成される。
 より具体的に、例えば、温度調整部80は、加熱機構を有する。加熱機構としては、各磁性コアh0~h4のコイル70へ供給する電力を個別に調整可能な電力調整部を含む。この電力調整部としては、各コイル70へサーボ情報であるパルス信号を増幅する増幅器123(図23)が相当する。
 本発明者はサーボバンドピッチを変化させるパラメータとして、サーボライトヘッド113の各磁性コアh0~h4のコイル70へ供給するサーボパターン6の記録電流(コイル70への供給電力)に着目したところ、記録電流の値の変化によりサーボバンドピッチが約100nm弱変化することを確認した。
 図27は、記録電流値とサーボバンドピッチとの関係を示す一実験結果であり、図26と同様に横軸はテープ長、縦軸はサーボバンドピッチである。同図に示すように、サーボパターン記録時の電流値(記録電流値)によって、サーボバンドピッチが変化する。ここでは、0~200mのテープ長では記録電流値を基準値(Ref(1.8A))とし、200m~400mのテープ長では記録電流値を基準値よりも20%小さい値(-20%)とし、400m~600mのテープ長では記録電流値を基準値より20%大きい値(+20%)とし、それ以後は200mごとに記録電流値を-20%と+20%を交互に繰り返してサーボバンドピッチを記録した。
 図27に示すように、記録電流値が基準値よりも20%小さいときはサーボバンドピッチが約0.05μm狭まり、記録電流値が基準値よりも20%大きいときはサーボバンドピッチが0.05μm広がることが確認された。これら最大値と最小値との差であるサーボバンドピッチの最大変化量は、約100nmであった。
 サーボバンドピッチの変化の要因としては、コイル70のジュール熱によるサーボライトヘッド113を構成する各磁性コアh0~h4のヘッドブロック402の熱膨張が挙げられる。ヘッドブロック402の熱膨張により、隣接する他のヘッドブロック402との間で磁気ギャップgの配列間隔が変化する。したがって、ヘッドブロック402の熱膨張量を調整することで、隣接する磁気ギャップg間の配列間隔、つまりサーボバンドピッチをサブミクロンオーダで調整することが可能となる。
 本実施形態では、磁性コアh0~h4はフェライト材料で構成される。この場合、その線膨張係数を11.7×10-6[1/℃]とすると、例えば、3℃の温度変化が100nmの寸法変化となることが計算により求められる(11.7×10-6×3℃×2.8588mm)。なお、記録電流の基準値(Ref)が1.8Aのとき、各磁性コアh0~h4のヘッドブロック402に7℃以上の温度変化が確認された。サーボバンドピッチの最大変化量が約100nmである図27の結果との相違は、走行する磁気テープMTとの接触によるヘッドブロック402の冷却が影響したためと推定される。
 図27の結果より、記録電流の大きさによりサーボバンドピッチが変化することがわかる。記録電流値が大きいほど、サーボバンドピッチの変化量も大きくなる。例えば図28に、記録電流の大きさとヘッドブロック402の温度変化と磁気テープの走行時間との関係の実験結果を示す。図28に示すように、同一のテープ走行時間では記録電流値が大きくなるほどヘッドブロックの温度上昇量が高くなる。また、テープ走行時間が長くなるほどヘッドブロックの温度もわずかに上昇する傾向にある。
 以上の実験結果より、記録電流値がサーボバンドピッチの変化のパラメータになることが確認された。続いて、サーボバンドs0及びs1の組と、サーボバンドs3及びs4の組との間で記録電流の大きさを異ならせて上記各サーボバンドにサーボパターン6を記録したときのデータバンドd2、d3についてのサーボバンドピッチの変化を測定した。その測定結果を図29に示す。
 図29は、図27の実験と同様に、200mのテープ長範囲でサーボパターン6の記録電流を基準電流値より小さい値(-20%)と記録電流値より高い値(+20%)で交互に変化させたときのデータバンドd2及びd3についてのサーボバンドピッチの変化を示す。図27の実験と異なるのは、サーボバンドs0及びs1での記録電流値が基準電流値の-20%のときはサーボバンドs3及びs4での記録電流値を基準電流値の+20%とし、サーボバンドs0及びs1での記録電流値が基準電流値の+20%のときはサーボバンドs3及びs4での記録電流値を基準電流値の-20%としたところにある。また実験には、図26の実験結果が得られた磁気テープを用いた。
 その結果、図29に示すように、2つのデータバンドd2及びd3の間でサーボバンドピッチの差分が小さくなるテープ長領域がある。同図の結果では、サーボバンドs0及びs1での記録電流値を基準電流値の+20%とし、かつ、サーボバンドs3及びs4での記録電流値を基準電流値の-20%としたとき、データバンドd2及びd3間でのサーボバンドピッチを最小に抑えることができる。これにより、図26に示した実験結果よりも、データバンドd2及びd3間のサーボバンドピッチの差を小さくすることが可能になり、その差のテープ全長にわたる平均値は100nm以下であった。
 なおこの場合、データバンドd2及びd3以外のデータバンドd1及びd4での記録電流値は基準電流値としてもよい。これにより図26に示した値のサーボバンドピッチが得られるため、データバンドd2及びd3との間におけるサーボバンドピッチのばらつきを小さくできる。これに限られず、各データバンド間におけるサーボバンドピッチのばらつきをさらに低減するため、データバンドd1及びd4についても記録電流の大きさを最適化してもよい。記録電流の大きさの最適化には、磁性コアh0~h4のうち少なくとも1つの磁性コアのコイル70に供給される記録電流を、他の磁性コアのコイル70に供給される記録電流よりも大きくすることが含まれる。
 以上のように本実施形態の適用例1によれば、図26に示すように、サーボパターン6の記録時においてデータバンドd3側の方がデータバンドd2側よりもテンションが低くなるようなテンション分布が生じている場合においても、データバンドd3を挟むサーボバンドs0及びs1の組よりも、データバンドd2を挟むサーボバンドs3及びs4の組の記録電流値を大きくすることで、図29に示すようにこれらデータバンドd3及びd2の間のサーボバンドピッチのばらつきを小さくすることができる。
 各サーボバンドsに記録するサーボパターン6の記録電流の決定方法としては、例えば、各サーボバンドsにそれぞれ所定のテープ長(例えば200m以上)にわたって一定の記録電流値(例えば基準電流値)でサーボパターン6を記録し、その後、記録した各データバンドについてのサーボバンドピッチをテープドライブ装置30で測定する。その結果、図26に示すような各データバンドについてサーボパターンピッチのばらつきを確認した後、データバンド間でのサーボバンドピッチが最小(例えば、100nm以下)となるように磁性コアh0~h4ごとにコイル70へ供給する記録電流値を最適化する。記録電流値は、サーボパターン記録装置100における駆動部120の増幅器123の増幅率を調整することで設定される。その後、調整された記録電流値で、磁気テープMTの各サーボバンドsへサーボパターン6を記録する。
(適用例2)
 温度調整部80は、上記加熱機構に代えて、サーボライトヘッド113の記録部401を構成する各磁性コアh0~h4を個別に冷却することが可能な冷却機構を有してもよい。冷却機構としては、各磁性コアh0~h4のコイル70またはヘッドブロック402を個別に冷却することが可能に構成された送風ユニット90を有する。
 図30は、送風ユニット90を備えたサーボライトヘッド113の構成を示す概略斜視図である。
 送風ユニット90は、サーボライトヘッド113の磁気ギャップgが形成される記録面とは反対側に配置された送風ブロック91と、サーボライトヘッド113の長手方向(Y'方向)の両端を支持し、送風ブロック91をサーボライトヘッド113に対して位置決めする一対の位置決めブロック92L,92Rとを有する。
 送風ブロック91には、各磁性コアh0~h4のコイル70とZ'軸方向に各々対向する複数のガス噴出口91aが設けられる。一対の位置決めブロック92L,92Rのうち一方の位置決めブロック92Lには、冷却ガスを導入可能なガス導入口92aが設けられる。ガス導入口92aは、位置決めブロック92Lの内部および送風ブロック92の内部を通って複数のガス噴出口91aに連通している。これにより、各磁性コアh0~h4のコイル70がガス噴出口92aから噴出される冷却ガスにより冷却されるため、コイル70のジュール熱によるヘッドブロック402の昇温による熱膨張が抑制される。
 冷却ガスは典型的にはエアーであるが、窒素などのガスが用いられてもよい。冷却ガスの温度は典型的には室温でるが、室温以下に冷却されたガスであってもよい。また、各ガス噴出口92aと各コイル70が個々に対応するように、ガス噴出願92aにはガス噴出方向に指向性をもたせたノズルが付加されてもよい。また、ガス噴出口92aから噴出される冷却ガスがヘッドブロック402を回り込んでサーボライトヘッド113の記録部401(図30参照)を走行する磁気テープMTへ吹き付けられるのを防ぐために、ヘッドブロック402の周囲に風除けのためのシールド板93が配置されてもよい。
 送風ユニット90は、各磁性コアh0~h4のコイル70を一様に冷却するように構成されてもよいが、各磁性コアh0~h4に温度勾配をもたせるように各コイル70へのガス噴出量を個別に調整可能に構成されてもよい。
 この場合、送風ユニット90はさらに、各ガス噴出口91aから噴出する冷却ガスの量を個別に調整可能な弁機構94を有する。弁機構94は、ガス導入口92aから導入される冷却ガスを個々に分流して各ガス噴出口92aから噴出させるとともに、ガス噴出口91aごとに冷却ガスの噴出量を調整することが可能に構成される。弁機構94による冷却ガス噴出量の調整は、サーボパターン記録装置100のコントローラ130によって実行される。
 図31は、冷却ガス(エアー)の導入の有無によるサーボパターンピッチの変化の様子を示す一実験結果であり、横軸はテープ長、縦軸はサーボバンドピッチの基準値(P1:2858.8μm)からの変化量を示している。ここでは、データバンドd2に隣接する2つのサーボバンドs3及びs4の間のサーボバンドピッチを測定した。
 図31に示すように、冷却ガスを導入しない場合と比較して、冷却ガスを導入した場合の方が、サーボバンドピッチが0.05μm(50nm)狭くなることが確認された。この結果より、発熱源である磁性コアh0~h4のコイル70へ吹き付けられる冷却ガスの流量を調整することにより、各磁性コアh0~h4に温度勾配を持たせることで、各データバンドについてのサーボバンドピッチのばらつきを少なくすることが可能となる。冷却ガスの流量の調整には、磁性コアh0~h4のうち少なくとも1つの磁性コアのコイル70に供給される冷却ガスの流量を、他の磁性コアのコイル70に供給される冷却ガスの流量よりも大きくすることが含まれる。
 図32~図34は、各磁性コアh0~h4のコイル70へ一定の記録電流を供給して各サーボバンドへサーボパターン6を記録した磁気テープMTを作製し、隣接する2つのサーボバンド間の間隔であるサーボバンドピッチの最大値(max)および最小値(min)、ならびにこれら最大値と最小値との差分(サーボバンドピッチ差:SBD)を示す実験結果である。
 ここで、図32は、サーボライトヘッド113を冷却ガスで冷却せずにサーボパターンを記録したときの実験結果を示し、図33は、3L/minの流量の冷却ガスでサーボライトヘッド113を冷却しながらサーボパターンを記録したときの実験結果を示している。また、図34は、10L/minの流量の冷却ガスでサーボライトヘッド113を冷却しながらサーボパターンを記録したときの実験結果を示している。なお各図において、横軸はテープ長、左側の縦軸は、サーボパターンピッチの最大値および最小値の基準値(P1:2858.8μm)からの変化量を示している。また、右側の縦軸は、サーボパターンピッチのサーボバンドピッチの差を示している。
 実験の結果、サーボライトヘッド113を冷却せずにサーボパターンを記録したときの各サーボバンドピッチのテープ全長にわたる差の平均値は0.141μmであった(図32)。このサーボバンドピッチの差は、各磁性コアh0~h4へ記録電流を流したときに生じるコイル70のジュール熱によるヘッドブロック402の線膨張を原因とする磁性コア(磁気ギャップg)間の距離の変化が一因として挙げられる。
 これに対し、3L/minの流量の冷却ガスでサーボライトヘッド113を冷却しながらサーボパターンを記録したときの各サーボバンドピッチのテープ全長にわたる差の平均値は0.090μmであった(図33)。また、10L/minの流量の冷却ガスでサーボライトヘッド113を冷却しながらサーボパターンを記録したときの各サーボバンドピッチのテープ全長にわたる差の平均値は0.057μmであった(図34)。
 以上のように、各磁性コアh0~h4のコイル70を冷却ガスで冷却することにより、コイル70のジュール熱に起因するヘッドブロック402の熱膨張を抑え、サーボバンドピッチの差を0.1μm(100nm)以下に抑えることが可能となる。また、冷却ガスの流量を大きくするほど上記効果が顕著に現れることから、冷却前のサーボバンドピッチの差を考慮して冷却ガスの流量の最適化を図ることができる。
 さらに本実施形態の適用例によれば、サーボパターン記録時の磁気テープの幅方向に沿ったテンション分布による影響の改善も図ることができる。この場合、テンションが高いサーボバンド領域には冷却ガスの流量を高めるようにして磁性コアh0~h4の間に温度勾配をもたせることで、テープドライブ装置30における再生時において上記サーボバンド間の広がりを抑制し、各サーボバンドピッチの差の減少させる手法が採用可能である。
 この場合、冷却ガスの流量の決定方法としては、例えば、各サーボバンドsにそれぞれ所定のテープ長(例えば200m以上)にわたって一定の記録電流値(例えば基準電流値)でサーボパターン6を記録し、その後、記録した各データバンドについてのサーボバンドピッチをテープドライブ装置30で測定する。その結果、図26に示すような各データバンドについてサーボパターンピッチのばらつきを確認した後、データバンド間でのサーボバンドピッチが最小(例えば、100nm以下)となるように磁性コアh0~h4ごとにコイル70へ供給する冷却ガスの流量を最適化する。その後、設定された冷却ガスの流量となるように弁機構94で各ガス噴出口92aからの冷却ガスの噴出量を調整した状態で、磁気テープMTの各サーボバンドsへサーボパターン6を記録する。
 送風ユニット90によるサーボライトヘッド113の冷却効果を高めるため、サーボライトヘッド113の記録部401に複数の溝部が設けられてもよい。図35は、上記複数の溝部を有するサーボライトヘッド113Aの概略平面図である。
 サーボライトヘッド113Aは、各磁気コアh0~h4の磁気ギャップgにより磁気テープMTにサーボパターンを記録する記録部401を有する。記録部401は、長さ方向(Y'方向、磁気テープMTの幅方向)において磁気ギャップgが設けられる位置に対応する第1の領域411と、上記長さ方向において磁気ギャップgが設けられていない位置に対応する第2の領域412とを有する。第2の領域412は、上記長さ方向に直交する幅方向(X'方向、磁気テープMTの長さ方向)の一端から上記幅方向の他端に架けて横切る複数の溝部95が設けられている。
 第2の領域412は、第1の領域411を有する各磁性コアh0~h4の間に位置し、溝部95は、各磁性コアh0~h4の磁気ギャップgの間に形成される。図36は、溝部95の詳細を示す拡大斜視図である。
 本実施形態において複数の溝部95は、記録部401の長さ方向(Y'軸方向)に間隔をおいて配列されるとともに、記録部401の幅方向(X'軸方向)に平行に直線的に形成される。図36に示すように溝部95は、平坦な底部を有する角溝G1で形成される。隣接する2つの角溝G1の間には平坦な頂部T1が形成される。この例では、角溝G1の深さは約1μm、角溝G1の底部の溝幅は約5μm、頂部T1の幅(top)は約5μm、角溝G1の配列ピッチ(pitch)は約10μmとされる。なお、各部の大きさは上記の例に限られず、例えば、角溝G1の底部の溝幅は5μm~20μm、角溝G1の配列ピッチは10μm~25μmの間で適宜設定可能である。
 サーボライトヘッド113Aは、第2の領域412に複数の溝部95が設けられているため、磁気テープMTの走行時に、第2の領域412を流れる空気の量を増やして磁気テープMTを第2の領域412から浮上させることができる。これにより、磁気ギャップgを有する第1の領域411に磁気テープMTを安定に接触させつつ、磁気テープMTを第2の領域412とはほぼ非接触で走行させることができるため、記録部401と磁気テープMTとの間の摩擦を低減し、サーボパターン7の記録の精度を向上させることができる。
 また、磁気テープMTを第2の領域412から浮上させることができるため、磁気テープMTとの接触摩擦熱によるサーボライトヘッド113Aの昇温が抑えられる。さらに、複数の溝部95の間を流れる空気により第2の領域412の冷却効果が得られるため、磁気ギャップgを有する第1の領域411の放熱効果を得ることができる。これにより、サーボバンドピッチのばらつきを小さくすることができる。
 図37は、図35の変形例を示すサーボライトヘッド113Bの概略平面図である。このサーボライトヘッド113Bは、第2の領域412に幅方向(X'軸方向)に対向する2つの切欠き部96が設けられている点で、図35のサーボライトヘッド113Aと異なる。
 各切欠き部96は、第2の領域412の幅方向(X'軸方向)の端部を円弧状に切り欠くようにして形成される。切欠き部96の形状は円弧状に限られず、矩形状あるいは三角形状などであってもよい。複数の溝部95は、上記幅方向に切欠き部96によって挟まれるようにして第2の領域412の表面に形成される。
 第2の領域412は、切欠き部96によって上記幅方向の寸法が狭められる。特に、切欠き部96が円弧状である関係で、第2の領域412はその長さ方向(Y'軸方向)の中央で括れた形状に形状される。これにより、テープ走行方向の上流側に位置する切欠き部96から第2の領域412へ空気が流れ込みやすくなり、第2の領域412と磁気テープMTとの間を空気が通過しやすくなる。このため、磁気テープMTが第2の領域412から浮上しやすくなり、サーボライトヘッド113Bの冷却効果をより一層高めることができる。
(6)作用効果
 上記のように、第1の実施形態に係る磁気テープMTでは、0.55Nのテンションが長手方向に加えた状態で温度50℃、相対湿度40%RHの環境下に40時間静置される前後の磁気テープMTの平均幅変化量ΔAが170ppm以下であるので、環境に起因する磁気テープMTの変形に加えて、高温環境下での磁気テープMTのクリープ変形を長期間(例えば10年間)に亘って十分に抑制することができる。これにより、長期間(例えば10年間)に亘って磁気テープMTを高温環境下で保存や走行した場合にも、磁気テープMTの幅変化を抑制することができる。
 また、温度50℃、相対湿度40%RHの環境下における、長手方向のテンションに対する平均テンション応答性が700ppm/N以上であるので、高温環境下において磁気テープMTの幅変化を良好に補正することができる。
 したがって、長期間(例えば10年間)に亘って磁気テープMTを高温環境下で保存や走行した場合にも、磁気テープMTの走行テンションの調整により磁気テープMTの幅変化を補正することができる。
 また、第1の実施形態に係る磁気テープMTは、ドライブヘッド36のアジマス角θを調整することにより磁気テープMTの幅変化に対応可能なテープドライブ装置30において用いられうる。テープドライブ装置30において、典型的には、磁気テープMTの幅が相対的に広くなったとき、ドライブヘッド36のアジマス角θは小さくされ、逆に、磁気テープMTの幅が相対的に狭くなったとき、ドライブヘッド36のアジマス角θは大きくされる。これにより、磁気テープMTのサーボパターン6は、磁気テープMTの幅が変化した場合にも、正確に読み取られる。したがって、磁気テープMTの幅が高温環境下で変化した場合にも、ドライブヘッド36のアジマス角θを調整することにより、幅変化に対応することができる。
2.第2の実施形態
 上記の第1の実施形態では、磁気テープMTが、下地層および磁性層等が塗布工程(ウエットプロセス)により作製された塗布型の磁気テープである場合について説明したが、下地層および磁性層等がスパッタリング等の真空薄膜の作製技術(ドライプロセス)により作製される真空薄膜型の磁気テープであってもよい。
(1)磁気テープの構成
 図38は、本技術の第2の実施形態に係る真空薄膜型の磁気テープMT1の構成の一例を示す断面図である。磁気テープMT1は、垂直記録型の磁気記録媒体であり、フィルム状の基体511と、軟磁性裏打ち層(Soft magnetic underlayer、以下「SUL」という。)512と、第1のシード層513Aと、第2のシード層513Bと、第1の下地層514Aと、第2の下地層514Bと、記録層としての磁性層515とを備える。SUL512、第1、第2のシード層513A、513B、第1、第2の下地層514A、514Bおよび磁性層515は、例えば、スパッタ膜等の真空薄膜である。
 SUL512、第1、第2のシード層513A、513Bおよび第1、第2の下地層514A、514Bは、基体511の一方の主面(以下「表面」という。)と磁性層515との間に設けられ、基体511から磁性層515の方向に向かってSUL512、第1のシード層513A、第2のシード層513B、第1の下地層514A、第2の下地層514Bの順序で積層されている。
 磁気テープMT1が、必要に応じて、磁性層515上に設けられた保護層516と、保護層516上に設けられた潤滑層517とをさらに備えるようにしてもよい。また、磁気テープMT1が、必要に応じて、基体511の他方の主面(以下「裏面」という。)上に設けられたバック層518をさらに備えるようにしてもよい。
 以下では、磁気テープMT1の長手方向(基体511の長手方向)をMD(Machine Direction)方向という。ここで、機械方向とは、磁気テープMT1に対する記録および再生ヘッドの相対的な移動方向、すなわち記録再生時に磁気テープMT1が走行される方向を意味する。
 第2の実施形態に係る磁気テープMT1は、今後ますます需要が高まることが期待されるデータアーカイブ用ストレージメディアとして用いて好適なものである。この磁気テープMT1は、例えば、現在のストレージ用塗布型磁気記録媒体の10倍以上の面記録密度、すなわち50Gb/in2以上の面記録密度を実現することが可能である。このような面記録密度を有する磁気テープMT1を用いて、一般のリニア記録方式のデータカートリッジを構成した場合には、データカートリッジ1巻当たり100TB以上の大容量記録が可能になる。
 第2の実施形態に係る磁気テープMT1は、リング型の記録ヘッドと巨大磁気抵抗効果(Giant Magnetoresistive:GMR)型またはトンネル磁気抵抗効果(Tunneling Magnetoresistive:TMR)型の再生ヘッドとを有する記録再生装置(データを記録再生するための記録再生装置)に用いて好適なものである。また、第2の実施形態に係る磁気テープMT1は、サーボ信号書込ヘッドとしてリング型の記録ヘッドが用いられるものであることが好ましい。磁性層515には、例えばリング型の記録ヘッドによりデータ信号が垂直記録される。また、磁性層515には、例えばリング型の記録ヘッドによりサーボ信号が垂直記録される。
 第2の実施形態における磁気テープMT1の平均厚みtT、平均幅変化量ΔA、平均テンション応答性は、第1の実施形態におけるものと同様である。
[基体]
 基体511は、第1の実施形態における基体41と同様である。
[SUL]
 SUL512は、アモルファス状態の軟磁性材料を含む。軟磁性材料は、例えば、Co系材料およびFe系材料のうちの少なくとも1種を含む。Co系材料は、例えば、CoZrNb、CoZrTaまたはCoZrTaNbを含む。Fe系材料は、例えば、FeCoB、FeCoZrまたはFeCoTaを含む。
 SUL512は、単層のSULであり、基体511に直接設けられている。SUL512の平均厚みは、好ましくは10nm以上50nm以下、より好ましくは20nm以上30nm以下である。
 SUL512の平均厚みは、第1の実施形態における磁性層43と同様にして求められる。なお、後述する、SUL512以外の層の平均厚み(すなわち、第1、第2のシード層513A、513B、第1、第2の下地層514A、514Bおよび磁性層515の平均厚み)も、第1の実施形態における磁性層43と同様にして求められる。但し、TEM像の倍率は、各層の厚みに応じて適宜調整される。
[第1、第2のシード層]
 第1のシード層513Aは、TiおよびCrを含む合金を含み、アモルファス状態を有している。また、この合金には、O(酸素)がさらに含まれていてもよい。この酸素は、スパッタリング法等の成膜法で第1のシード層513Aを成膜する際に、第1のシード層513A内に微量に含まれる不純物酸素であってもよい。
 ここで、"合金"とは、TiおよびCrを含む固溶体、共晶体、および金属間化合物等の少なくとも一種を意味する。"アモルファス状態"とは、X線回折または電子線回折法等により、ハローが観測され、結晶構造を特定できないことを意味する。
 第1のシード層513Aに含まれるTiおよびCrの総量に対するTiの原子比率は、好ましくは30原子%以上100原子%未満、より好ましくは50原子%以上100原子%未満の範囲内である。Tiの原子比率が30%未満であると、Crの体心立方格子(Body-Centered Cubic lattice:bcc)構造の(100)面が配向するようになり、第1のシード層513A上に形成される第1、第2の下地層514A、514Bの配向性が低下する虞がある。
 上記Tiの原子比率は次のようにして求められる。磁性層515側から磁気テープMT1をイオンミリングしながら、オージェ電子分光法(Auger Electron Spectroscopy、以下「AES」という。)による第1のシード層513Aの深さ方向分析(デプスプロファイル測定)を行う。次に、得られたデプスプロファイルから、膜厚方向におけるTiおよびCrの平均組成(平均原子比率)を求める。次に、求めたTiおよびCrの平均組成を用いて、上記Tiの原子比率を求める。
 第1のシード層513AがTi、CrおよびOを含む場合、第1のシード層513Aに含まれるTi、CrおよびOの総量に対するOの原子比率は、好ましくは15原子%以下、より好ましくは10原子%以下である。Oの原子比率が15原子%を超えると、TiO2結晶が生成することにより、第1のシード層513A上に形成される第1、第2の下地層514A、514Bの結晶核形成に影響を与えるようになり、第1、第2の下地層514A、514Bの配向性が低下する虞がある。上記Oの原子比率は、上記Tiの原子比率と同様の解析方法を用いて求められる。
 第1のシード層513Aに含まれる合金が、TiおよびCr以外の元素を添加元素としてさらに含んでいてもよい。この添加元素としては、例えば、Nb、Ni、Mo、AlおよびW等からなる群より選ばれる1種以上の元素が挙げられる。
 第1のシード層513Aの平均厚みは、好ましくは2nm以上15nm以下、より好ましくは3nm以上10nm以下である。
 第2のシード層513Bは、例えば、NiWまたはTaを含み、結晶状態を有している。第2のシード層513Bの平均厚みは、好ましくは3nm以上20nm以下、より好ましくは5nm以上15nm以下である。
 第1、第2のシード層513A、513Bは、第1、第2の下地層514A、514Bに類似した結晶構造を有し、結晶成長を目的として設けられるシード層ではなく、当該第1、第2のシード層513A、513Bのアモルファス状態によって第1、第2の下地層514A、514Bの垂直配向性を向上するシード層である。
[第1、第2の下地層]
 第1、第2の下地層514A、514Bは、磁性層515と同様の結晶構造を有していることが好ましい。磁性層515がCo系合金を含む場合には、第1、第2の下地層514A、514Bは、Co系合金と同様の六方細密充填(hcp)構造を有する材料を含み、その構造のc軸が膜面に対して垂直方向(すなわち膜厚方向)に配向していることが好ましい。磁性層515の配向性を高め、かつ、第2の下地層514Bと磁性層515との格子定数のマッチングを比較的良好にできるからである。六方細密充填(hcp)構造を有する材料としては、Ruを含む材料を用いることが好ましく、具体的にはRu単体またはRu合金が好ましい。Ru合金としては、例えば、Ru-SiO2、Ru-TiO2またはRu-ZrO2等のRu合金酸化物が挙げられる。
 上記のように、第1、第2の下地層514A、514Bの材料として同様のものを用いることができる。しかしながら、第1、第2の下地層514A、514Bそれぞれの目的とする効果が異なっている。具体的には、第2の下地層514Bについてはその上層となる磁性層515のグラニュラ構造を促進する膜構造であり、第1の下地層514Aについては結晶配向性の高い膜構造である。このような膜構造を得るためには、第1、第2の下地層514A、514Bそれぞれのスパッタ条件等の成膜条件を異なるものとすることが好ましい。
 第1の下地層514Aの平均厚みは、好ましくは3nm以上15nm以下、より好ましくは5nm以上10nm以下である。第2の下地層514Bの平均厚みは、好ましくは7nm以上40nm以下、より好ましくは10nm以上25nm以下である。
[磁性層]
 磁性層515は、磁性材料が垂直に配向した垂直磁気記録層である。磁性層515は、スパッタ膜等の真空薄膜であってもよい。磁性層515は、記録密度を向上する観点からすると、Co系合金を含むグラニュラ磁性層であることが好ましい。このグラニュラ磁性層は、Co系合金を含む強磁性結晶粒子と、この強磁性結晶粒子を取り巻く非磁性粒界(非磁性体)とから構成されている。より具体的には、このグラニュラ磁性層は、Co系合金を含むカラム(柱状結晶)と、このカラムを取り囲み、それぞれのカラムを磁気的に分離する非磁性粒界(例えばSiO2等の酸化物)とから構成されている。この構造では、それぞれのカラムが磁気的に分離した構造を有する磁性層515を構成することができる。
 Co系合金は、六方細密充填(hcp)構造を有し、そのc軸が膜面に対して垂直方向(膜厚方向)に配向している。Co系合金としては、少なくともCo、CrおよびPtを含有するCoCrPt系合金を用いることが好ましい。CoCrPt系合金は、特に限定されるものではなく、CoCrPt合金がさらに添加元素を含んでいてもよい。添加元素としては、例えば、NiおよびTa等からなる群より選ばれる1種以上の元素が挙げられる。
 強磁性結晶粒子を取り巻く非磁性粒界は、非磁性金属材料を含む。ここで、金属には半金属を含むものとする。非磁性金属材料としては、例えば、金属酸化物および金属窒化物のうちの少なくとも一方を用いることができ、グラニュラ構造をより安定に維持する観点からすると、金属酸化物を用いることが好ましい。金属酸化物としては、Si、Cr、Co、Al、Ti、Ta、Zr、Ce、YおよびHf等からなる群より選ばれる少なくとも1種以上の元素を含む金属酸化物が挙げられ、少なくともSi酸化物(すなわちSiO2)を含む金属酸化物が好ましい。金属酸化物の具体例としては、SiO2、Cr23、CoO、Al23、TiO2、Ta25、ZrO2またはHfO2等が挙げられる。金属窒化物としては、Si、Cr、Co、Al、Ti、Ta、Zr、Ce、YおよびHf等からなる群より選ばれる少なくとも1種以上の元素を含む金属窒化物が挙げられる。金属窒化物の具体例としては、SiN、TiNまたはAlN等が挙げられる。
 強磁性結晶粒子に含まれるCoCrPt系合金と、非磁性粒界に含まれるSi酸化物とが、以下の式(1)に示す平均組成を有していることが好ましい。反磁界の影響を抑え、かつ、十分な再生出力を確保できる飽和磁化量Msを実現でき、これにより、記録再生特性の更なる向上を実現できるからである。
(CoxPtyCr100-x-y100-z-(SiO2z・・・(1)
(但し、式(1)中において、x、y、zはそれぞれ、69≦X≦75、10≦y≦16、9≦Z≦12の範囲内の値である。)
 なお、上記組成は次のようにして求めることができる。磁性層515側から磁気テープMT1をイオンミリングしながら、AESによる磁性層515の深さ方向分析を行い、膜厚方向におけるCo、Pt、Cr、SiおよびOの平均組成(平均原子比率)を求める。
 磁性層515の平均厚みの上限値は、例えば90nm以下、好ましくは80nm以下、より好ましくは70nm以下、さらにより好ましくは60nm以下、特に好ましくは50nm以下、20nm以下または15nm以下である。磁性層515の平均厚みの下限値は、好ましくは9nm以上である。磁性層515の平均厚みが9nm以上90nm以下であると、電磁変換特性を向上することができる。
[保護層]
 保護層516は、例えば、炭素材料または二酸化ケイ素(SiO2)を含み、保護層516の膜強度の観点からすると、炭素材料を含むことが好ましい。炭素材料としては、例えば、グラファイト、ダイヤモンド状炭素(Diamond-Like Carbon:DLC)またはダイヤモンド等が挙げられる。
[潤滑層]
 潤滑層517は、少なくとも1種の潤滑剤を含む。潤滑層517は、必要に応じて各種添加剤、例えば防錆剤をさらに含んでいてもよい。潤滑剤としては、第1の実施形態における磁性層43と同様のものを例示することができる。
 なお、潤滑剤は、上記のように磁気テープMT1の表面に潤滑層517として保持されるのみならず、磁気テープMT1を構成する磁性層515および保護層516等の層に含まれ、保有されていてもよい。
[バック層]
 バック層518は、第1の実施形態におけるバック層44と同様である。
(2)スパッタ装置の構成
 以下、図39を参照して、第2の実施形態に係る磁気テープMT1の製造に用いられるスパッタ装置620の構成の一例について説明する。このスパッタ装置620は、SUL512、第1のシード層513A、第2のシード層513B、第1の下地層514A、第2の下地層514Bおよび磁性層515の成膜に用いられる連続巻取式スパッタ装置であり、成膜室621と、金属キャン(回転体)であるドラム622と、カソード623a~623fと、供給リール624と、巻き取りリール625と、複数のガイドロール627a~627c、628a~628cとを備える。スパッタ装置620は、例えばDC(直流)マグネトロンスパッタリング方式の装置であるが、スパッタリング方式はこの方式に限定されるものではない。
 成膜室621は、排気口626を介して図示しない真空ポンプに接続され、この真空ポンプにより成膜室621内の雰囲気が所定の真空度に設定される。成膜室621の内部には、回転可能な構成を有するドラム622、供給リール624および巻き取りリール625が配置されている。成膜室621の内部には、供給リール624とドラム622との間における基体511の搬送をガイドするための複数のガイドロール627a~627cが設けられていると共に、ドラム622と巻き取りリール625との間における基体511の搬送をガイドするための複数のガイドロール628a~628cが設けられている。スパッタ時には、供給リール624から巻き出された基体511が、ガイドロール627a~627c、ドラム622およびガイドロール628a~628cを介して巻き取りリール625に巻き取られる。ドラム622は円柱状の形状を有し、長尺状の基体511はドラム622の円柱面状の周面に沿わせて搬送される。ドラム622には、図示しない冷却機構が設けられており、スパッタ時には、例えば-20℃程度に冷却される。成膜室621の内部には、ドラム622の周面に対向して複数のカソード623a~623fが配置されている。これらのカソード623a~623fにはそれぞれターゲットがセットされている。具体的には、カソード623a、623b、623c、623d、623e、623fにはそれぞれ、SUL512、第1のシード層513A、第2のシード層513B、第1の下地層514A、第2の下地層514B、磁性層515を成膜するためのターゲットがセットされている。これらのカソード623a~623fにより複数の種類の膜、すなわちSUL512、第1のシード層513A、第2のシード層513B、第1の下地層514A、第2の下地層514Bおよび磁性層515が同時に成膜される。
 上記の構成を有するスパッタ装置620では、SUL512、第1のシード層513A、第2のシード層513B、第1の下地層514A、第2の下地層514Bおよび磁性層515をRoll to Roll法により連続成膜することができる。
(3)磁気テープの製造方法
 第2の実施形態に係る磁気テープMT1は、例えば、以下のようにして製造することができる。
 まず、図39に示したスパッタ装置620を用いて、SUL512、第1のシード層513A、第2のシード層513B、第1の下地層514A、第2の下地層514Bおよび磁性層515を基体511の表面上に順次成膜する。具体的には以下のようにして成膜する。まず、成膜室621を所定の圧力になるまで真空引きする。その後、成膜室621内にArガス等のプロセスガスを導入しながら、カソード623a~623fにセットされたターゲットをスパッタする。これにより、SUL512、第1のシード層513A、第2のシード層513B、第1の下地層514A、第2の下地層514Bおよび磁性層515が、走行する基体511の表面に順次成膜される。
 スパッタ時の成膜室621の雰囲気は、例えば、1×10-5Paから5×10-5Pa程度に設定される。SUL512、第1のシード層513A、第2のシード層513B、第1の下地層514A、第2の下地層514Bおよび磁性層515の膜厚および特性は、基体511を巻き取るテープライン速度、スパッタ時に導入するArガス等のプロセスガスの圧力(スパッタガス圧)、および投入電力等を調整することにより制御可能である。
 次に、磁性層515上に保護層516を成膜する。保護層516の成膜方法としては、例えば化学気相成長(Chemical Vapor Deposition:CVD)法または物理蒸着(physical vapor deposition:PVD)法を用いることができる。
 次に、結着剤、無機粒子および潤滑剤等を溶剤に混練、分散させることにより、バック層成膜用の塗料を調製する。次に、基体511の裏面上にバック層成膜用の塗料を塗布して乾燥させることにより、バック層518を基体511の裏面上に成膜する。
 次に、例えば潤滑剤を保護層516上に塗布し、潤滑層517を成膜する。潤滑剤の塗布方法としては、例えば、グラビアコーティング、ディップコーティング等の各種塗布方法を用いることができる。次に、必要に応じて、磁気テープMT1を所定の幅に裁断する。以上により、図38に示した磁気テープMT1が得られる。
(4)作用効果
 第2の実施形態に係る磁気テープMT1では、第1の実施形態と同様に、長期間(例えば10年間)に亘って磁気テープMT1を高温環境下で保存や走行した場合にも、磁気テープMT1の走行テンションの調整により磁気テープMT1の幅変化を補正することができる。また、磁気テープMT1の幅が高温環境下で変化した場合にも、ドライブヘッド36のアジマス角θを調整することにより、幅変化に対応することができる。
3.第3の実施形態
(1)磁気テープの構成
 図40は、本技術の第3の実施形態に係る真空薄膜型の磁気テープMT2の構成の一例を示す断面図である。磁気テープMT2は、基体511と、SUL512と、シード層731と、第1の下地層732Aと、第2の下地層732Bと、磁性層515とを備える。なお、第3の実施形態において第2の実施形態と同様の箇所には同一の符号を付して説明を省略する。
 SUL512、シード層731、第1、第2の下地層732A、732Bは、基体511の一方の主面と磁性層515との間に設けられ、基体511から磁性層515の方向に向かってSUL512、シード層731、第1の下地層732A、第2の下地層732Bの順序で積層されている。
[シード層]
 シード層731は、Cr、NiおよびFeを含み、面心立方格子(fcc)構造を有し、この面心立方構造の(111)面が基体511の表面に平行になるように優先配向している。ここで、優先配向とは、X線回折法のθ-2θスキャンにおいて面心立方格子構造の(111)面からの回折ピーク強度が他の結晶面からの回折ピークより大きい状態、またはX線回折法のθ-2θスキャンにおいて面心立方格子構造の(111)面からの回折ピーク強度のみが観察される状態を意味する。
 シード層731のX線回折の強度比率は、SNRの向上の観点から、好ましくは60cps/nm以上、より好ましくは70cps/nm以上、さらにより好ましくは80cps/nm以上である。ここで、シード層731のX線回折の強度比率は、シード層731のX線回折の強度I(cps)をシード層731の平均厚みD(nm)で除算して求められる値(I/D(cps/nm))である。
 シード層731に含まれるCr、NiおよびFeは、以下の式(2)で表される平均組成を有することが好ましい。
 CrX(NiYFe100-Y100-X・・・(2)
(但し、式(2)中において、Xは10≦X≦45、Yは60≦Y≦90の範囲内である。)
 Xが上記範囲内であると、Cr、Ni、Feの面心立方格子構造の(111)配向が向上し、より良好なSNRを得ることができる。同様にYが上記範囲内であると、Cr、Ni、Feの面心立方格子構造の(111)配向が向上し、より良好なSNRを得ることができる。
 シード層731の平均厚みは、5nm以上40nm以下であることが好ましい。シード層731の平均厚みをこの範囲内にすることで、Cr、Ni、Feの面心立方格子構造の(111)配向を向上し、より良好なSNRを得ることができる。なお、シード層731の平均厚みは、第1の実施形態における磁性層43と同様にして求められる。但し、TEM像の倍率は、シード層731の厚みに応じて適宜調整される。
[第1、第2の下地層]
 第1の下地層732Aは、面心立方格子構造を有するCoおよびOを含み、カラム(柱状結晶)構造を有している。CoおよびOを含む第1の下地層732Aでは、Ruを含む第2の下地層732Bとほぼ同様の効果(機能)が得られる。Coの平均原子濃度に対するOの平均原子濃度の濃度比((Oの平均原子濃度)/(Coの平均原子濃度))が1以上である。濃度比が1以上であると、第1の下地層732Aを設ける効果が向上し、より良好なSNRを得ることができる。
 カラム構造は、SNR向上の観点から、傾斜していることが好ましい。その傾斜の方向は、長尺状の磁気テープMT2の長手方向であることが好ましい。このように長手方向が好ましいのは、以下の理由による。本実施形態に係る磁気テープMT2は、いわゆるリニア記録用の磁気記録媒体であり、記録トラックは磁気テープMT2の長手方向に平行となる。また、本実施形態に係る磁気テープMT2は、いわゆる垂直磁気記録媒体でもあり、記録特性の観点からすると、磁性層515の結晶配向軸が垂直方向であることが好ましいが、第1の下地層732Aのカラム構造の傾きの影響で、磁性層515の結晶配向軸に傾きが生じる場合がある。リニア記録用である磁気テープMT2においては、記録時のヘッド磁界との関係上、磁気テープMT2の長手方向に磁性層515の結晶配向軸が傾いている構成が、磁気テープMT2の幅方向に磁性層515の結晶配向軸が傾いている構成に比べて、結晶配向軸の傾きによる記録特性への影響を低減できる。磁気テープMT2の長手方向に磁性層515の結晶配向軸を傾かせるためには、上記のように第1の下地層732Aのカラム構造の傾斜方向を磁気テープMT2の長手方向とすることが好ましい。
 カラム構造の傾斜角は、好ましくは0°より大きく60°以下であることが好ましい。傾斜角が0°より大きく60°以下の範囲では、第1の下地層732Aに含まれるカラムの先端形状の変化が大きくほぼ三角山状になるため、グラニュラ構造の効果が高まり、低ノイズ化し、SNRが向上する傾向がある。一方、傾斜角が60°を超えると、第1の下地層732Aに含まれるカラムの先端形状の変化が小さくほぼ三角山状とはなりにくいため、低ノイズ効果が薄れる傾向がある。
 カラム構造の平均粒径は、3nm以上13nm以下である。平均粒径が3nm未満であると、磁性層515に含まれるカラム構造の平均粒径が小さくなるため、現在の磁性材料では記録を保持する能力が低下する虞がある。一方、平均粒径が13nm以下であると、ノイズを抑制し、より良好なSNRを得ることができる。
 第1の下地層732Aの平均厚みは、10nm以上150nm以下であることが好ましい。第1の下地層732Aの平均厚みが10nm以上であると、第1の下地層732Aの面心立方格子構造の(111)配向が向上し、より良好なSNRを得ることができる。一方、第1の下地層732Aの平均厚みが150nm以下であると、カラムの粒径が大きくなることを抑制できる。したがって、ノイズを抑制し、より良好なSNRを得ることができる。なお、第1の下地層732Aの平均厚みは、第1の実施形態における磁性層43と同様にして求められる。但し、TEM像の倍率は、第1の下地層732Aの厚みに応じて適宜調整される。
 第2の下地層732Bは、磁性層515と同様の結晶構造を有していることが好ましい。磁性層515がCo系合金を含む場合には、第2の下地層732Bは、Co系合金と同様の六方細密充填(hcp)構造を有する材料を含み、その構造のc軸が膜面に対して垂直方向(すなわち膜厚方向)に配向していることが好ましい。磁性層515の配向性を高め、かつ、第2の下地層732Bと磁性層515との格子定数のマッチングを比較的良好にできるからである。六方細密充填構造を有する材料としては、Ruを含む材料を用いることが好ましく、具体的にはRu単体またはRu合金が好ましい。Ru合金としては、例えば、Ru-SiO2、Ru-TiO2またはRu-ZrO2等のRu合金酸化物が挙げられる。
 第2の下地層732Bの平均厚みは、一般的な磁気記録媒体における下地層(例えばRuを含む下地層)よりも薄くてもよく、例えば、1nm以上5nm以下とすることが可能である。第2の下地層732Bの下に上記の構成を有するシード層731および第1の下地層732Aを設けているので、第2の下地層732Bの平均厚みが上記のように薄くても良好なSNRが得られる。なお、第2の下地層732Bの平均厚みは、第1の実施形態における磁性層43と同様にして求められる。但し、TEM像の倍率は、第2の下地層732Bの厚みに応じて適宜調整される。
 第3の実施形態における磁気テープMT2の平均厚みtT、平均幅変化量ΔA、平均テンション応答性は、第1の実施形態におけるものと同様である。
(2)作用効果
 第3の実施形態に係る磁気テープMT2では、第1の実施形態と同様に、長期間(例えば10年間)に亘って磁気テープMT2高温環境下で保存や走行した場合にも、磁気テープMT2の走行テンションの調整により磁気テープMT2の幅変化を補正することができる。また、磁気テープMT2の幅が高温環境下で変化した場合にも、ドライブヘッド36のアジマス角θを調整することにより、幅変化に対応することができる。
 第3の実施形態に係る磁気テープMT2は、基体511と第2の下地層732Bとの間にシード層731および第1の下地層732Aを備えている。シード層731は、Cr、NiおよびFeを含み、面心立方格子構造を有し、この面心立方構造の(111)面が基体511の表面に平行になるように優先配向している。第1の下地層732Aは、CoおよびOを含み、Coの平均原子濃度に対するOの平均原子濃度の比が1以上であり、平均粒径が3nm以上13nm以下であるカラム構造を有する。これにより、第2の下地層732Bの厚さを薄くして高価な材料であるRuをできるだけ使用せずに、良好な結晶配向を有し、かつ高い抗磁力を有する磁性層515を実現できる。
 第2の下地層732Bに含まれるRuは、磁性層515の主成分であるCoと同じ六方稠密格子構造を有する。このため、Ruには、磁性層515の結晶配向性向上とグラニュラ性促進とを両立させる効果がある。また、第2の下地層732Bに含まれるRuの結晶配向を更に向上させるために、第2の下地層732Bの下に第1の下地層732Aおよびシード層731を設けている。第3の実施形態に係る磁気テープMT2においては、Ruを含む第2の下地層732Bとほぼ同様の効果(機能)を、面心立方格子構造を有する安価なCoOを含む第1の下地層732Aで実現している。このため、第2の下地層732Bの厚さを薄くできる。また、第1の下地層732Aの結晶配向を高めるために、Cr、NiおよびFeを含むシード層731を設けている。
(4)変形例
<変形例1>
 上記の第1の実施形態では、磁気テープカートリッジが、1リールタイプのカートリッジ10である場合について説明したが、2リールタイプのカートリッジであってもよい。
 図41は、2リールタイプのカートリッジ321の構成の一例を示す分解斜視図である。カートリッジ321は、合成樹脂製の上ハーフ302と、上ハーフ302の上面に開口された窓部302aに嵌合されて固着される透明な窓部材323と、上ハーフ302の内側に固着されリール306、307の浮き上がりを防止するリールホルダー322と、上ハーフ302に対応する下ハーフ305と、上ハーフ302と下ハーフ305を組み合わせてできる空間に収納されるリール306、307と、リール306、307に巻かれた磁気テープMTと、上ハーフ302と下ハーフ305を組み合わせてできるフロント側開口部を閉蓋するフロントリッド309およびこのフロント側開口部に露出した磁気テープMTを保護するバックリッド309Aとを備える。
 リール306、307は、磁気テープMTを巻くためのものである。リール306は、磁気テープMTが巻かれる円筒状のハブ部306aを中央部に有する下フランジ306bと、下フランジ306bとほぼ同じ大きさの上フランジ306cと、ハブ部306aと上フランジ306cの間に挟み込まれたリールプレート311とを備える。リール307はリール306と同様の構成を有している。
 窓部材323には、リール306、307に対応した位置に、これらリールの浮き上がりを防止するリール保持手段であるリールホルダー322を組み付けるための取付孔323aが各々設けられている。磁気テープMTは、第1の実施形態における磁気テープMTと同様である。
<変形例2>
 第2の実施形態に係る磁気テープMT1が、基体511とSUL512との間に下地層をさらに備えるようにしてもよい。SUL512はアモルファス状態を有するため、SUL512上に形成される層のエピタキシャル成長を促す役割を担わないが、SUL512の上に形成される第1、第2の下地層514A、514Bの結晶配向を乱さないことが求められる。そのためには、軟磁性材料がカラムを形成しない微細な構造を有していることが好ましいが、基体511からの水分等のデガスの影響が大きい場合、軟磁性材料が粗大化し、SUL512上に形成される第1、第2の下地層514A、514Bの結晶配向を乱してしまう虞がある。基体511からの水分等のデガスの影響を抑制するためには、上記のように、基体511とSUL512との間に、TiおよびCrを含む合金を含み、アモルファス状態を有する下地層を設けることが好ましい。この下地層の具体的な構成としては、第2の実施形態の第1のシード層513Aと同様の構成を採用することができる。
 磁気テープMT1が、第2のシード層513Bおよび第2の下地層514Bのうちの少なくとも1つの層を備えていなくてもよい。但し、SNRの向上の観点からすると、第2のシード層513Bおよび第2の下地層514Bの両方の層を備えることがより好ましい。
 磁気テープMT1が、単層のSULに代えて、APC-SUL(Antiparallel Coupled SUL)を備えるようにしてもよい。
5.実施例
 以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例に限定されるものではない。
 以下の実施例および比較例において、平均幅変化量ΔA、平均テンション応答性ΔW、基体の平均厚み、磁気テープの平均厚み、磁性層の平均厚み、下地層の平均厚み、バック層の平均厚み、および長手方向における角形比S2等は、第1の実施形態にて説明した測定方法により求められた値である。
[実施例1]
(SULの成膜工程)
 まず、以下の成膜条件にて、非磁性支持体としての長尺の高分子フィルムの一方の主面上に、平均厚み10nmのCoZrNb層(SUL)を成膜した。高分子フィルムとしては、平均厚みが3.8μmであり、温度50℃の環境下における長手方向の平均貯蔵弾性率が5.5GPaであり、長手方向の平均ヤング率が6.3GPaであるPENフィルムが用いられた。
 成膜方式:DCマグネトロンスパッタリング方式
 ターゲット:CoZrNbターゲット
 ガス種:Ar
 ガス圧:0.1Pa
(第1のシード層の成膜工程)
 次に、以下の成膜条件にて、CoZrNb層上に平均厚み5nmのTiCr層(第1のシード層)を成膜した。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:TiCrターゲット
 到達真空度:5×10-5Pa
 ガス種:Ar
 ガス圧:0.5Pa
(第2のシード層の成膜工程)
 次に、以下の成膜条件にて、TiCr層上に平均厚み10nmのNiW層(第2のシード層)を成膜した。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:NiWターゲット
 到達真空度:5×10-5Pa
 ガス種:Ar
 ガス圧:0.5Pa
(第1の下地層の成膜工程)
 次に、以下の成膜条件にて、NiW層上に平均厚み10nmのRu層(第1の下地層)を成膜した。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:Ruターゲット
 ガス種:Ar
 ガス圧:0.5Pa
(第2の下地層の成膜工程)
 次に、以下の成膜条件にて、Ru層上に平均厚み20nmのRu層(第2の下地層)を成膜した。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:Ruターゲット
 ガス種:Ar
 ガス圧:1.5Pa
(磁性層の成膜工程)
 次に、以下の成膜条件にて、Ru層上に平均厚み9nmの(CoCrPt)-(SiO2)層(磁性層)を成膜した。
 成膜方式:DCマグネトロンスパッタリング方式
 ターゲット:(CoCrPt)-(SiO2)ターゲット
 ガス種:Ar
 ガス圧:1.5Pa
(保護層の成膜工程)
 次に、以下の成膜条件にて、磁性層上に平均厚み5nmのカーボン層(保護層)を成膜した。
 成膜方式:DCマグネトロンスパッタリング方式
 ターゲット:カーボンターゲット
 ガス種:Ar
 ガス圧:1.0Pa
(潤滑層の成膜工程)
 次に、潤滑剤を保護層上に塗布し、潤滑層を成膜した。
(バック層の成膜工程)
 次に、高分子フィルムの他方の主面上に、バック層形成用塗料を塗布し乾燥することにより、平均厚みtbが0.3μmのバック層を形成した。これにより、平均厚みtTが4.2μm の磁気テープが得られた。
(裁断の工程)
 上記のようにして得られた磁気テープを1/2インチ(12.65mm)幅に裁断した。 これにより、目的とする長尺状の磁気テープ(平均厚み4.2μm)が得られた。
(消磁工程およびサーボパターンの書き込み工程)
 磁気テープの消磁を行ったのち、磁気テープにサーボパターンを書き込んだ。当該サーボパターンは、磁気テープの幅方向に対して非対称な第1のサーボパターンおよび第2のサーボパターンを含んでいた。また、互いに隣接するサーボバンドにおけるサーボパターンは位相差を有していた。
 実施例1では、磁性層としてスパッタ膜を用い、高分子フィルムとしてPENフィルムを用い、PENフィルムの幅方向および長手方向の延伸強度を調整することにより、平均幅変化量ΔAおよび平均テンション応答性ΔWが表1に示す値に設定された。
[実施例2]
 高分子フィルムとして、平均厚みが3.8μmであり、温度50℃における長手方向の平均貯蔵弾性率が3.9GPaであり、長手方向の平均ヤング率が4.6GPaである強化PETフィルムを用いた。ここで、強化PETフィルムとは、PETフィルムにポリアミドが添加されることにより強化されたものを意味する。磁性層としてスパッタ膜を用い、高分子フィルムとして強化PETフィルムを用い、強化PETフィルムの幅方向および長手方向の延伸強度を調整することにより、平均幅変化量ΔAおよび平均テンション応答性ΔWを表1に示す値に設定した。
 上記以外のことは実施例1と同様にして平均厚み4.2μmの磁気テープを得た。
[実施例3]
(磁性層形成用塗料の調製工程)
 磁性層形成用塗料を以下のようにして調製した。まず、下記配合の第1組成物をエクストルーダで混練した。次に、ディスパーを備えた攪拌タンクに、混練した第1組成物と、下記配合の第2組成物を加えて予備混合を行った。続いて、さらにサンドミル混合を行い、フィルター処理を行い、磁性層形成用塗料を調製した。
(第1組成物)
バリウムフェライト(BaFe1219)磁性粉(六角板状、平均アスペクト比3.0、平均粒子体積1600nm3):100質量部
塩化ビニル系樹脂(シクロヘキサノン溶液30質量%):35質量部
(塩化ビニル系樹脂:重合度300、数平均分子量Mn=10000、極性基としてOSO3K=0.07mmol/g、2級OH=0.3mmol/gを含有する。)
ポリウレタン樹脂(樹脂溶液:ポリウレタン樹脂の配合量30質量%、シクロヘキサノンの配合量70質量%):10質量部
(ポリウレタン樹脂:数平均分子量Mn=25000、ガラス転移温度Tg=110℃)酸化アルミニウム粉末:6質量部(α-Al23、平均粒径0.1μm)
(第2組成物)
カーボンブラック:2.0質量部(東海カーボン社製、商品名:シーストS、算術平均粒子径70nm)
ポリウレタン樹脂(樹脂溶液:ポリウレタン樹脂の配合量30質量%、シクロヘキサノンの配合量70質量%):5.0質量部
(ポリウレタン樹脂:数平均分子量Mn=25000、ガラス転移温度Tg=110℃)n-ブチルステアレート:2質量部
メチルエチルケトン:121.0質量部
トルエン:121.0質量部
シクロヘキサノン:116.0質量部
 上記のようにして調製した磁性層形成用塗料に、硬化剤として、ポリイソシアネート(商品名:コロネートL、東ソー株式会社製):3.3質量部と、ステアリン酸:2質量部とを添加した。
(下地層形成用塗料の調製工程)
 下地層形成用塗料を以下のようにして調製した。まず、下記配合の第3組成物をエクストルーダで混練した。次に、ディスパーを備えた攪拌タンクに、混練した第3組成物と、下記配合の第4組成物を加えて予備混合を行った。続いて、さらにダイノミル混合を行い、フィルター処理を行い、下地層形成用塗料を調製した。
(第3組成物)
針状酸化鉄粉末:100質量部
(α-Fe23、平均長軸長0.11μm)
塩化ビニル系樹脂(シクロヘキサノン溶液30質量%):46質量部
(塩化ビニル系樹脂:重合度300、数平均分子量Mn=10000、極性基としてOSO3K=0.07mmol/g、2級OH=0.3mmol/gを含有する。)
酸化アルミニウム粉末:3質量部(α-Al23、平均粒径0.1μm)
(第4組成物)
カーボンブラック:30質量部(旭カーボン社製、商品名:#80)
ポリウレタン樹脂(樹脂溶液:ポリウレタン樹脂の配合量30質量%、シクロヘキサノンの配合量70質量%):40質量部
(ポリウレタン樹脂:数平均分子量Mn=25000、ガラス転移温度Tg=70℃)n-ブチルステアレート:2質量部
メチルエチルケトン:108.2質量部
トルエン:108.2質量部
シクロヘキサノン:100.0質量部
 上記のようにして調製した下地層形成用塗料に、硬化剤として、ポリイソシアネート(商品名:コロネートL、東ソー株式会社製):1.5質量部と、ステアリン酸:1.5質量部とを添加した。
(バック層形成用塗料の調製工程)
 バック層形成用塗料を以下のようにして調製した。下記原料を、ディスパーを備えた攪拌タンクで混合を行い、フィルター処理を行うことで、バック層形成用塗料を調製した。カーボンブラック(旭カーボン株式会社製、商品名:#80):100質量部
ポリエステルポリウレタン:100質量部
(日本ポリウレタン社製、商品名:N-2304)
メチルエチルケトン:500質量部
トルエン:400質量部
シクロヘキサノン:100質量部
(成膜工程)
 上記のようにして作製した塗料を用いて、非磁性支持体としての長尺の高分子フィルムの一方の主面上に下地層および磁性層を以下のようにして形成した。
 まず、基材上に下地層形成用塗料を塗布し乾燥させることにより、下地層を形成した。この際、塗布条件は、カレンダー処理後の下地層の平均厚みが0.8μmとなるように調整された。高分子フィルムとしては、平均厚みが4.0μmのPENを用いた。
 次に、下地層上に、磁性層形成用塗料を塗布し、乾燥させることにより、下地層上に磁性層を形成した。この際、塗布条件は、カレンダー処理後の磁性層の平均厚みが0.08μmとなるように調整された。磁性層形成用塗料の乾燥の際に、ネオジム磁石により、磁性粉が高分子フィルムの厚み方向に磁場配向された。磁性層形成用塗料の乾燥条件(乾燥温度および乾燥時間)が調整され、長手方向における角形比が33% に設定された。
 続いて、下地層および磁性層が形成されたPENフィルムの他方の主面上にバック層形成用塗料を塗布し乾燥させることにより、バック層を形成した。この際、塗布条件は、カレンダー処理後のバック層の平均厚みが0.32μmとなるように調整された。以上により、磁気テープが得られた。
(硬化工程)
 次に、磁気テープをロール状に巻き取ったのち、この状態で磁気テープに加熱処理を行うことにより、下地層および磁性層を硬化させた。
(カレンダー工程)
 次に、得られた磁気テープMTにカレンダー処理を行い、磁性層の表面を平滑化した。
(裁断の工程)
 上記のようにして得られた磁気テープを1/2インチ(12.65mm)幅に裁断した。これにより、目的とする長尺状の磁気テープ(平均厚み5.2μm)が得られた。
(消磁工程およびサーボパターンの書き込み工程)
 磁気テープの消磁を行ったのち、磁気テープにサーボパターンを書き込んだ。当該サーボパターンは、磁気テープの幅方向に対して非対称な第1のサーボパターンおよび第2のサーボパターンを含んでいた。また、互いに隣接するサーボバンドにおけるサーボパターンは位相差を有していた。
 実施例3では、磁性層として塗布膜を用い、高分子フィルムとしてPENフィルムを用い、PENフィルムの幅方向および長手方向の延伸強度を調整することにより、平均幅変化量ΔAおよび平均テンション応答性ΔWが表1に示す値に設定された。
[実施例4]
 PENフィルムの幅方向および長手方向の延伸強度を調整し、さらにカレンダー工程後にひずみ緩和処理(60℃環境にて48時間保持)を行った。これにより平均幅変化量ΔAおよび平均テンション応答性ΔWが表1に示す値に設定された。
 上記以外のことは実施例3と同様にして平均厚み5.2μmの磁気テープを得た。
[比較例1]
 高分子フィルムとして、平均厚みが4.8μmであり、温度50℃の環境下における長手方向の平均貯蔵弾性率が3.9GPaであり、長手方向の平均ヤング率が4.7GPaであるPETフィルムを用いた。磁性層としてスパッタ膜を用い、高分子フィルムとしてPETフィルムを用い、PETフィルムの幅方向および長手方向の延伸強度を調整することにより、平均幅変化量ΔAおよび平均テンション応答性ΔWが表1に示す値に設定された。
 上記以外のことは実施例1と同様にして平均厚み5.2μmの磁気テープを得た。
[比較例2]
 PENフィルムの幅方向および長手方向の延伸強度を調整することにより、平均幅変化量ΔAおよび平均テンション応答性ΔWが表1に示す値に設定された。
 上記以外のことは実施例3と同様にして平均厚み5.2μmの磁気テープを得た。
[比較例3]
 高分子フィルムとして、平均厚みが4.6μmの強化PETフィルムを用いた。
 強化PETフィルムの幅方向および長手方向の延伸強度を調整することにより、平均幅変化量ΔAおよび平均テンション応答性ΔWが表1に示す値に設定された。
 上記以外のことは実施例3と同様にして平均厚み5.6μmの磁気テープを得た。
[比較例4]
 高分子フィルムとして、平均厚みが4.0μmの強化PETフィルムを用いた。
 強化PETフィルムの幅方向および長手方向の延伸強度を調整することにより、平均幅変化量ΔAおよび平均テンション応答性ΔWが表1に示す値に設定された。
 上記以外のことは実施例3と同様にして平均厚み5.2μmの磁気テープを得た。
 実施例1~4および比較例1~4の各磁気記録テープについて、評価を行った。具体的には、当該各磁気記録テープについて、平均幅変化量ΔA、平均テンション応答性ΔW、磁気テープの平均厚み、基体の平均厚み、磁気テープの長手方向における磁性層の角形比S2、及び磁気テープの長手方向の平均ヤング率を測定した。これらは、上記1.(2)において説明した測定方法により求められたものである。これらの測定結果は表1に記載されている。また、図42は、実施例1に係る磁気テープの幅変化量の測定結果を示すグラフである。
 実施例1~4および比較例1~4の各磁気記録テープについて、上記1.(4)において説明した測定方法によりサーボバンドピッチ差を測定した。また、実施例1~4および比較例1~4の各磁気記録テープについて、10年を想定した幅変化量、10年を想定した幅変化を調整するために必要なテンション、及び傾斜して配置されたドライブヘッドの移動角度を算出した。これらの算出方法について以下で説明する。
[10年を想定した幅変化量の算出方法]
 上記1.(2)において説明した平均幅変化量ΔAの測定方法に従って、磁気テープから取得した3つのサンプルについて、幅の測定開始から1時間後の幅変化量と40時間後の幅変化量を測定した。3つのサンプルの1時間後の幅変化量を算術平均し、測定開始から1時間後の平均幅変化量を得た。また、3つのサンプルの40時間後の幅変化量を算術平均し、測定開始から40時間後の平均幅変化量を得た。時間軸Xを対数として、測定開始から1時間後の平均幅変化量(これを初期値0とする)と、40時間後の平均幅変化量から外挿して、10年後の幅変化を想定した。図43は、各実施例および比較例における10年を想定した幅変化量を示すグラフである。
[10年を想定した幅変化を調整するために必要なテンションの算出方法]
 LTO7 Driveの測定環境は32℃55%で固定した。
 カートリッジの保存は、0.55Nのテンションでカートリッジに巻き込んだ状態で実施した。なお、測定開始は、各環境下で1時間後から測定した。
 測定回数は1回/日で実施し、14日間測定した。
 測定バンドは通常のCreep評価ではDB0部を測定した。
 10年後の想定
 保存時間とクリープ変化量から、測定開始時の点と、14日後(336時間)の点から近似式にてCreep rateを算出した。
 このCreep rateから、10年後(87600hrs)を算出した。
 10年後のクリープ変化量/張力応答性=10年を想定した幅変化を調整するために必要なテンションとなる。
[サーボバンドピッチの測定方法]
 上記1.(4)において説明した測定方法により、テープドライブ装置によって磁気テープを走行させ、2つのサーボリードヘッドの各サーボバンド上でのサーボトレースラインTをそれぞれ測定し、測定した各サーボトレースラインTのサーボパターンに対する相対位置からサーボバンドピッチを測定した。
[傾斜して配置されたドライブヘッドの移動角度の算出方法]
 図44は、傾斜して配置されたドライブヘッドの移動角度の算出方法を説明するための模式図である。当該移動角度は、10年を想定した幅変化に対処するために必要なドライブヘッドの移動角度である。
 図44の左側には、初期(幅変化前)の磁気テープにおける、ドライブヘッドの2つのサーボリードヘッドの間隔(h)、サーボバンドピッチ(SP) 、及びドライブヘッドの傾斜角度(10°)が示されている。図44の左側の場合において、Cos10°=SP/hである。
 図44の右側には、サーボバンドピッチが狭くなった後(幅変化後)の磁気テープにおける、サーボバンドピッチ(SP-ΔSP)、ドライブヘッドの移動角度(α)、及びドライブヘッドの移動後の傾斜角度(10°+α)が示されている。図44の右側の場合において、Cos(10°+α)=(SP-ΔSP)/hである。この式から、ドライブヘッドの移動角度(α)は次のとおり算出される。
 10°+α=Cos-1[(SP-ΔSP)/h]
 α=Cos-1[(SP-ΔSP)/h]-10°
 これらの算出結果は表1に記載されている。
 表1に示されるとおり、実施例1~4は、平均幅変化量ΔAの絶対値が170ppm以下であり、平均テンション応答性ΔWが700ppm/N以上であり、複数のサーボバンドにおいて隣接する2つのサーボバンドピッチの磁気記録媒体全長にわたる差の平均値が100nm以下の条件を満たす磁気テープである。比較例1~4は当該条件を満たさない磁気テープである。
 テープドライブ装置において、絶対値が0.75Nを超えるテンションの調整は実際上困難であると考えられる。比較例1~4の場合、10年を想定した幅変化を調整するために必要なテンションの絶対値は、0.75Nを超えている。そのため、比較例1~4の磁気テープの場合、10年後に想定される幅変化をテンションの調整により補正することは困難であると考えられる。一方、実施例1~4の場合、10年を想定した幅変化を調整するために必要なテンションの絶対値は、0.56N以下である。そのため、実施例1~4の磁気テープの場合、10年後に想定される幅変化をテンションの調整により補正可能と考えられる。
 これらの結果から、平均幅変化量ΔAの絶対値を170ppm以下とし、平均テンション応答性ΔWが700ppm/N以上とすることにより、長期間(例えば10年間)に亘って磁気テープを高温環境下で保存または走行した場合にも、テンションの調整により磁気テープの幅変化を補正できると考えられる。
 10年を想定した幅変化量の絶対値が500ppmを超えると(幅変化量の絶対値が500ppmを超えると)、幅変化をもたらすクリープ変形以外の要因(例えば温湿度変化など)をすべて考慮した場合に、ドライブヘッドの移動角度が過度に大きくなる虞がある。すなわち、クリープ変形とそれ以外(例えば温湿度変化など)とに起因する10年後の幅変化に対して、ドライブヘッドの角度調整により対応しようとすると、ドライブヘッドの移動角度が大きくなり過ぎる虞がある。移動角度が大きくなり過ぎると、ドライブヘッドの追従性が悪化して、磁気テープの幅変化に十分に対応できない可能性がある。
 実施例1~4の磁気テープの場合、10年を想定した幅変化量の絶対値が500ppmを超えないため、10年後に想定される幅変化に対して、ドライブヘッドの角度調整により対応することができると考えられる。したがって、本技術の磁気テープは、長期間(例えば10年間)に亘って磁気テープを高温環境下で保存または走行した場合にも、ドライブヘッドの角度調整により磁気テープの幅変化に対応できると考えられる。
 以上、本技術の実施形態および変形例について具体的に説明したが、本技術は、上記の実施形態および変形例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。例えば、上記の実施形態および変形例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。上記の実施形態および変形例の構成、方法、工程、形状、材料および数値等は、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 本技術は、以下のような構成を採用することもできる。
[1]
 幅方向に隣接する複数のサーボパターンが記録される複数のサーボバンドを有する磁性層を有するテープ状の磁気記録媒体であって、
 前記磁気記録媒体の幅1/2インチあたり0.55Nのテンションが長手方向に加えられた状態で温度50℃、相対湿度40%RHの環境下に40時間静置される前後の磁気記録媒体の平均幅変化量の絶対値が170ppm以下であり、かつ、温度50℃、相対湿度40%RHの環境下における、長手方向のテンションに対する平均テンション応答性が700ppm/N以上であり、
 前記複数のサーボバンドにおいて隣接する2つのサーボバンドピッチの磁気記録媒体全長にわたる差の平均値が100nm以下である磁気記録媒体。
[2]
 前記平均テンション応答性が、715ppm/N以上15000ppm/N以下である、[1]に記載の磁気記録媒体。
[3]
 前記平均幅変化量の絶対値が、140ppm以下である、[1]または[2]に記載の磁気記録媒体。
[4]
 基体と、下地層と、磁性層とを順次備え、前記基体は、ポリエステル類を含む、[1]~[3]のいずれか1つに記載の磁気記録媒体。
[5]
 前記ポリエステル類は、ポリエチレンテレフタレートおよびポリエチレンナフタレートからなる群より選ばれた少なくとも1種を含む、[1]~[4]のいずれか1つに記載の磁気記録媒体。
[6]
 前記基体の平均厚みは、4.4μm以下である、[4]または[5]に記載の磁気記録媒体。
[7]
 前記磁性層は、真空薄膜である、[1]~[6]のいずれか1つに記載の磁気記録媒体。
[8]
 前記磁性層は、塗布膜である、[1]~[6]のいずれか1つに記載の磁気記録媒体。
[9]
 前記磁性層は、磁性粉を含む、[8]に記載の磁気記録媒体。
[10]
 前記磁性粉は、ε酸化鉄磁性粉、六方晶フェライト磁性粉またはCo含有スピネルフェライト磁性粉を含む、[9]に記載の磁気記録媒体。
[11]
 前記磁性層の平均厚みは、90nm以下である、[4]~[10]のいずれか1つに記載の磁気記録媒体。
[12]
 前記下地層の平均厚みは、1.0μm以下である、[4]~[11]のいずれか1つに記載の磁気記録媒体。
[13]
 前記磁気記録媒体の平均厚みは、5.3μm以下である、[1]~[12]のいずれか1つに記載の磁気記録媒体。
[14]
 前記磁気記録媒体の長手方向における前記磁性層の角形比は、35%以下である、[1]~[13]のいずれか1つに記載の磁気記録媒体。
[15]
 前記磁性層は、5以上のサーボバンドを有する、[1]~[14]のいずれか1つに記載の磁気記録媒体。
[16]
 前記サーボバンドの幅は、98μm以下である、[15]に記載の磁気記録媒体。
[17]
 前記磁性層は、複数のデータトラックを形成可能に構成され、前記データトラックの幅は 、1100nm以下である、[1]~[16]のいずれか1つに記載の磁気記録媒体。
[18]
 ヤング率は8GPa以下である、[1]~[17]のいずれか1つに記載の磁気記録媒体。
[19]
 磁気記録媒体の磁性層に磁気記録媒体幅方向に隣接する複数のサーボパターンが記録された磁気記録媒体の製造方法であって、前記磁気記録媒体を走行させ、サーボライトヘッドの複数の記録部の温度を個別に調整し、
 前記複数の記録部によって前記磁性層に前記複数のサーボパターンを記録する磁気記録媒体の製造方法。
[20]
 [1]に記載された磁気記録媒体と、前記磁気記録媒体の長手方向にかかるテンションを調整するための調整情報を書き込み可能に構成された記憶部とを備えるカートリッジ。
MT   磁気テープ
5    記録トラック
6    サーボパターン
9    カートリッジメモリ
10   テープカートリッジ
10S  サンプル
11   カートリッジケース
11a  上シェル
11b  下シェル
13   テープリール
14   開口部
15   金属プレート
16   リールスプリング
17   リールロック部材
18   スパイダ
19   テープ引出し口
20   スライドドア
21   トーションバネ
22   リーダーピン
23   ピン保持部
24   弾性保持具
25   セイフティタブ
30   テープドライブ装置
31   スピンドル
32   巻取りリール
33   スピンドル駆動装置
34   リール駆動装置
35   ガイドローラ
36   ドライブヘッド
36a  第1のドライブヘッド
36b  第2のドライブヘッド
37   リーダライタ
38   制御装置
39   温度計
40   湿度計
41   基体
42   下地層
43   磁性層
44   バック層
70   コイル
80   温度調整部
91   送風ブロック
91a  ガス噴出口
92a  ガス噴出口
92L  位置決めブロック
92R  位置決めブロック
93   シールド板
94   弁機構
95   溝部
96   切欠き部
G1   角溝
T1   頂部
100  サーボパターン記録装置
111  送り出しローラ
112  前処理部
112a 永久磁石
113  サーボライトヘッド
114  再生ヘッド部
115  巻き取りローラ
120  駆動部
121  変換器
122  信号生成部
123  増幅器
130  コントローラ
131  ヘッド本体
132  サーボリードヘッド
133  データライト/リードヘッド
134  データライトヘッド
135  データリードヘッド
141  ガイドローラ
142  ガイドローラ
231  固定部
2321   第1支持部材
2322   第2支持部材
2323   第3支持部材
2324   第4支持部材
2325   第5支持部材
232A スリット
233  重り
234  発光器
235  受光器
L    光
321  カートリッジ
302  上ハーフ
302a 窓部
305  下ハーフ
306  リール
306a ハブ部
306b 下フランジ
306c 上フランジ
307  リール
309  フロントリッド
309A バックリッド
311  リールプレート
322  リールホルダー
323  窓部材
323a 取付孔
401  記録部
402  ヘッドブロック
411  第1の領域
412  第2の領域
511  基体
512  SUL
513A 第1のシード層
513B 第2のシード層
514A 第1の下地層
514B 第2の下地層
515  磁性層
516  保護層
517  潤滑層
518  バック層
601  第1のサーボパターン
602  第2のサーボパターン
620  スパッタ装置
621  成膜室
622  ドラム
623a カソード
623b カソード
623c カソード
623d カソード
623e カソード
623f カソード
624  供給リール
625  巻き取りリール
626  排気口
627a ガイドロール
627b ガイドロール
627c ガイドロール
628a ガイドロール
628b ガイドロール
628c ガイドロール
731  シード層
732A 第1の下地層
732B 第2の下地層

Claims (20)

  1.  幅方向に隣接する複数のサーボパターンが記録される複数のサーボバンドを有する磁性層を有するテープ状の磁気記録媒体であって、
     前記磁気記録媒体の幅1/2インチあたり0.55Nのテンションが長手方向に加えられた状態で温度50℃、相対湿度40%RHの環境下に40時間静置される前後の磁気記録媒体の平均幅変化量の絶対値が170ppm以下であり、かつ、温度50℃、相対湿度40%RHの環境下における、長手方向のテンションに対する平均テンション応答性が700ppm/N以上であり、
     前記複数のサーボバンドにおいて隣接する2つのサーボバンドピッチの磁気記録媒体全長にわたる差の平均値が100nm以下である磁気記録媒体。
  2.  前記平均テンション応答性が、715ppm/N以上15000ppm/N以下である、請求項1に記載の磁気記録媒体。
  3.  前記平均幅変化量の絶対値が、140ppm以下である、請求項1に記載の磁気記録媒体。
  4.  基体と、下地層と、磁性層とを順次備え、前記基体は、ポリエステル類を含む、請求項1に記載の磁気記録媒体。
  5.  前記ポリエステル類は、ポリエチレンテレフタレートおよびポリエチレンナフタレートからなる群より選ばれた少なくとも1種を含む、請求項4に記載の磁気記録媒体。
  6.  前記基体の平均厚みは、4.4μm以下である、請求項4に記載の磁気記録媒体。
  7.  前記磁性層は、真空薄膜である、請求項1に記載の磁気記録媒体。
  8.  前記磁性層は、塗布膜である、請求項1に記載の磁気記録媒体。
  9.  前記磁性層は、磁性粉を含む、請求項8に記載の磁気記録媒体。
  10.  前記磁性粉は、ε酸化鉄磁性粉、六方晶フェライト磁性粉またはCo含有スピネルフェライト磁性粉を含む、請求項9に記載の磁気記録媒体。
  11.  前記磁性層の平均厚みは、90nm以下である、請求項1に記載の磁気記録媒体。
  12.  前記下地層の平均厚みは、1.0μm以下である、請求項4に記載の磁気記録媒体。
  13.  前記磁気記録媒体の平均厚みは、5.3μm以下である、請求項1に記載の磁気記録媒体。
  14.  前記磁気記録媒体の長手方向における前記磁性層の角形比は、35%以下である、請求項1に記載の磁気記録媒体。
  15.  前記磁性層は、5以上のサーボバンドを有する、請求項1に記載の磁気記録媒体。
  16.  前記サーボバンドの幅は、98μm以下である、請求項1に記載の磁気記録媒体。
  17.  前記磁性層は、複数のデータトラックを形成可能に構成され、前記データトラックの幅は、1100nm以下である、請求項1に記載の磁気記録媒体。
  18.  ヤング率は8GPa以下である、請求項1に記載の磁気記録媒体。
  19.  磁気記録媒体の磁性層に磁気記録媒体幅方向に隣接する複数のサーボパターンが記録された磁気記録媒体の製造方法であって、前記磁気記録媒体を走行させ、サーボライトヘッドの複数の記録部の温度を個別に調整し、
     前記複数の記録部によって前記磁性層に前記複数のサーボパターンを記録する磁気記録媒体の製造方法。
  20.  請求項1に記載された磁気記録媒体と、前記磁気記録媒体の長手方向にかかるテンションを調整するための調整情報を書き込み可能に構成された記憶部とを備えるカートリッジ。
PCT/JP2023/032607 2022-09-29 2023-09-07 磁気記録媒体 WO2024070554A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022155916 2022-09-29
JP2022-155916 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024070554A1 true WO2024070554A1 (ja) 2024-04-04

Family

ID=90477433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032607 WO2024070554A1 (ja) 2022-09-29 2023-09-07 磁気記録媒体

Country Status (1)

Country Link
WO (1) WO2024070554A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327392A (ja) * 2004-05-14 2005-11-24 Fuji Photo Film Co Ltd テープドライブ
JP2006099919A (ja) * 2004-09-30 2006-04-13 Hitachi Maxell Ltd 磁気テープの記録再生方法および記録再生装置
JP6816851B1 (ja) * 2019-10-10 2021-01-20 ソニー株式会社 磁気記録媒体
JP2021064431A (ja) * 2020-02-07 2021-04-22 ソニー株式会社 カートリッジ、メモリ、データ記録装置及びデータ再生装置
WO2023037585A1 (ja) * 2021-09-09 2023-03-16 ソニーグループ株式会社 サーボパターン記録装置、サーボパターン記録方法、磁気テープの製造方法、磁気テープ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327392A (ja) * 2004-05-14 2005-11-24 Fuji Photo Film Co Ltd テープドライブ
JP2006099919A (ja) * 2004-09-30 2006-04-13 Hitachi Maxell Ltd 磁気テープの記録再生方法および記録再生装置
JP6816851B1 (ja) * 2019-10-10 2021-01-20 ソニー株式会社 磁気記録媒体
JP2021064431A (ja) * 2020-02-07 2021-04-22 ソニー株式会社 カートリッジ、メモリ、データ記録装置及びデータ再生装置
WO2023037585A1 (ja) * 2021-09-09 2023-03-16 ソニーグループ株式会社 サーボパターン記録装置、サーボパターン記録方法、磁気テープの製造方法、磁気テープ

Similar Documents

Publication Publication Date Title
JP6753549B1 (ja) 磁気記録媒体およびカートリッジ
US10720181B1 (en) Magnetic recording cartridge
US11631430B2 (en) Magnetic recording medium
JP6590104B1 (ja) 磁気記録媒体
JP6610822B1 (ja) 磁気記録媒体
JP6610821B1 (ja) 磁気記録媒体
WO2023037585A1 (ja) サーボパターン記録装置、サーボパターン記録方法、磁気テープの製造方法、磁気テープ
US20240203455A1 (en) Magnetic recording cartridge
JP6885495B2 (ja) 磁気記録媒体
WO2022211020A1 (ja) 磁気記録媒体およびカートリッジ
JP6680396B1 (ja) 磁気記録媒体
WO2024070554A1 (ja) 磁気記録媒体
JP6733794B1 (ja) 磁気記録媒体
JP6733798B1 (ja) 磁気記録媒体
WO2024070719A1 (ja) 磁気記録媒体およびカートリッジ
WO2024090258A1 (ja) 磁気記録カートリッジ
WO2024090286A1 (ja) 磁気記録カートリッジ
WO2024090255A1 (ja) 磁気記録カートリッジ
WO2024057947A1 (en) Magnetic recording medium
JP6677340B1 (ja) 磁気記録媒体
WO2022196225A1 (ja) サーボパターン記録方法、サーボパターン記録装置、磁気テープの製造方法、磁気テープ及びテープカートリッジ
WO2023074694A1 (ja) 磁気記録媒体
WO2022018904A1 (ja) 磁気記録媒体
JP2021103607A (ja) 磁気記録媒体
JP2020166919A (ja) 磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871793

Country of ref document: EP

Kind code of ref document: A1