WO2024070197A1 - 固体冷凍装置 - Google Patents

固体冷凍装置 Download PDF

Info

Publication number
WO2024070197A1
WO2024070197A1 PCT/JP2023/028107 JP2023028107W WO2024070197A1 WO 2024070197 A1 WO2024070197 A1 WO 2024070197A1 JP 2023028107 W JP2023028107 W JP 2023028107W WO 2024070197 A1 WO2024070197 A1 WO 2024070197A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat medium
solid
heat
magnetic
Prior art date
Application number
PCT/JP2023/028107
Other languages
English (en)
French (fr)
Inventor
潤一 寺木
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024070197A1 publication Critical patent/WO2024070197A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • This disclosure relates to solid-state refrigeration devices.
  • the magnetic refrigeration device disclosed in Patent Document 1 has multiple beds, a high-temperature side heat exchanger, and a low-temperature side heat exchanger.
  • the beds, high-temperature side heat exchanger, and low-temperature side heat exchanger are connected to a heat medium circuit.
  • the magnetic working material generates or absorbs heat as the magnetic field of the magnetic working material fluctuates.
  • the heat medium in the heat medium circuit is heated by the magnetic working material that generates heat, or cooled by the magnetic working material that absorbs heat. This operation creates a temperature difference between the heat medium in the high-temperature side heat exchanger and the heat medium in the low-temperature side heat exchanger.
  • the heat medium stored in the high-temperature heat exchanger is used to defrost the low-temperature heat exchanger, so in order to ensure sufficient heat to melt the frost, the size of the high-temperature heat exchanger must be made larger than that of the low-temperature heat exchanger.
  • a method has also been proposed in which the high-temperature side and low-temperature side are swapped by switching the flow paths, and defrosting is performed using heat generated by a magnetic working material, but this method requires the addition of a valve to the heat medium circuit.
  • a method has also been proposed in which heat from the high-temperature side is stored, and the flow paths are switched during defrosting, and the stored heat is used for defrosting, but this method requires the addition of a valve and a tank to the heat medium circuit.
  • the purpose of this disclosure is to make it possible to defrost the low-temperature side heat exchanger while avoiding the increase in size and complexity of solid-state refrigeration devices such as magnetic refrigeration devices.
  • a first aspect of the present disclosure is a solid refrigeration device (1) comprising a storage section (11), a force field modulation section (15), a first heat exchanger (16), a second heat exchanger (17), a heat medium circuit (C), and a heat medium transport section (21, 50, 100).
  • the storage section (11) has a solid refrigerant material (12) and an internal flow path (13) through which a heat medium flows and exchanges heat with the solid refrigerant material (12).
  • the force field modulation section (15) applies a force field fluctuation to the solid refrigerant material (12) in the storage section (11) to induce a calorific effect.
  • the first heat exchanger (16), the second heat exchanger (17), and the internal flow path (13) are connected to the heat medium circuit (C).
  • the heat medium transport section (21, 50, 100) transports the heat medium back and forth to the solid refrigerant material (12) in the storage section (11) in response to the force field fluctuation in the heat medium circuit (C).
  • the solid refrigeration device (1) performs a heating operation and a defrosting operation. In the heating operation, the heat medium heated by the solid refrigerant material (12) is dissipated in the first heat exchanger (16), and the heat medium cooled by the solid refrigerant material (12) is absorbed in the second heat exchanger (17). In the defrosting operation, frost that has adhered to the second heat exchanger (17) in the heating operation is removed.
  • the solid refrigerant material (12) includes a plurality of substances (12a to 12e) having different temperatures at which the heat effect is maximized, and the plurality of substances (12a to 12e) are arranged along the internal flow path (13) in order of high to low temperature.
  • the transport direction of the heat medium in the internal flow path (13) relative to the phase of the force field fluctuation is switched to the opposite direction to that in the heating operation.
  • the transport direction of the heat medium in the internal flow path (13) relative to the phase of the force field fluctuation is switched to the opposite direction to that in heating operation.
  • a second aspect of the present disclosure is the first aspect, wherein the storage section (11) includes a plurality of partial storage sections (11a to 11e) connected in series to each other in the heat medium circuit (C), and each of the plurality of partial storage sections (11a to 11e) has at least one of the plurality of substances (12a to 12e).
  • the degree of freedom in the cascade arrangement configuration of the solid refrigerant material (12) is increased.
  • the third aspect of the present disclosure is the first or second aspect, in which the force field modulation section (15) and the heat medium transport section (21, 50, 100) are electrically controlled to switch the transport direction of the heat medium in the internal flow path (13) in response to the phase of the force field fluctuation.
  • defrosting can be performed by electrical control while avoiding the device becoming larger and more complicated.
  • the fourth aspect of the present disclosure is the first or second aspect, in which the force field modulation section (15) and the heat medium transport section (100) are mechanically controlled to switch the transport direction of the heat medium in the internal flow path (13) in response to the phase of the force field fluctuation.
  • the low-temperature side heat exchanger can be defrosted by mechanical control while avoiding the device becoming larger and more complicated.
  • a fifth aspect of the present disclosure is any one of the first to fourth aspects, further comprising a fan (17f) for blowing air to the second heat exchanger (17), and when the temperature of the second heat exchanger (17) is higher than the ambient temperature of the second heat exchanger (17), the fan (17f) is stopped during the defrost operation.
  • the fan (17f) is stopped to prevent heat from being dissipated from the outdoor heat exchanger to the outdoor air, thereby enabling efficient defrosting.
  • a sixth aspect of the present disclosure is any one of the first to fifth aspects, in which the first heat exchanger (16) is an indoor heat exchanger, and further includes an indoor fan (16f) that blows air to the indoor heat exchanger, and the indoor fan (16f) is stopped during the defrost operation.
  • the seventh aspect of the present disclosure is any one of the first to sixth aspects, in which the frequency of the force field fluctuation is increased during the defrost operation.
  • the flow rate of the heat medium increases, increasing the pressure loss, and as a result, the amount of heat transferred to the heat medium also increases. Also, in the constituent material of the storage section (11) and the constituent material of the force field modulation section (15) adjacent to said material (such as the yoke), eddy current loss increases, further increasing the amount of heat transferred to the heat medium. Therefore, it is possible to speed up defrosting.
  • the eighth aspect of the present disclosure is any one of the first to seventh aspects, in which the flow rate of the heat medium in the heat medium circuit (C) is increased during the defrost operation.
  • the flow rate of the heat medium increases, which increases the pressure loss, and as a result, the amount of heat transferred to the heat medium also increases, making it possible to speed up defrosting.
  • a ninth aspect of the present disclosure is any one of the first to eighth aspects, in which the solid refrigerant material (12) is a magnetic working material (12), and the force field modulation unit (15) is a magnetic field modulation unit (15) that imparts a magnetic field fluctuation to the magnetic working material (12).
  • the magnetic refrigeration device can be started up quickly.
  • FIG. 1 is a piping diagram of a magnetic refrigeration apparatus according to an embodiment.
  • FIG. 2 is a diagram showing a schematic relationship between the temperature of a plurality of solid refrigerant materials arranged in a cascade shape in a single container in the magnetic refrigeration device according to the embodiment and the magnetic refrigeration effect.
  • FIG. 3 is a diagram showing a schematic relationship between the temperature of a plurality of solid refrigerant materials arranged in a cascade shape in a plurality of partial accommodation portions in the magnetic refrigeration device according to the embodiment and the magnetic refrigeration effect.
  • FIG. 4 is a piping diagram for explaining the heating operation performed by the magnetic refrigeration apparatus according to the embodiment.
  • FIG. 5 is a piping diagram for explaining the defrost operation performed by the magnetic refrigeration apparatus according to the embodiment.
  • FIG. 6 is a diagram showing the relationship between the magnetic field fluctuation and the heat medium transport direction during the heating operation performed by the magnetic refrigeration device according to the embodiment.
  • FIG. 7 is a diagram showing the relationship between the magnetic field fluctuation and the heat medium transport direction during the defrost operation performed by the magnetic refrigeration device according to the embodiment.
  • FIG. 8 is a piping diagram of the magnetic refrigeration apparatus according to the first modification.
  • FIG. 9 is a schematic configuration diagram of a magnetic refrigeration unit according to the first modification.
  • FIG. 10 is a schematic diagram for explaining the operation of the magnetic refrigeration unit according to the first modification.
  • FIG. 11 is a schematic diagram for explaining the operation of the magnetic refrigeration unit according to the first modification.
  • FIG. 12 is a piping diagram for explaining the cooling operation in the magnetic refrigeration apparatus according to the first modified example.
  • FIG. 13 is a piping diagram for explaining the heating operation in the magnetic refrigeration apparatus according to the first modification.
  • FIG. 14 is a piping diagram for explaining the defrost operation in the magnetic refrigeration apparatus according to the first modified example.
  • FIG. 15 is a piping diagram of a magnetic refrigeration apparatus according to the second modification.
  • FIG. 16 is a schematic configuration diagram of a magnetic refrigeration unit according to the second modification.
  • FIG. 17 is a schematic diagram for explaining the operation of the magnetic refrigeration unit according to the second modification.
  • FIG. 18 is a piping diagram for explaining the cooling operation in the magnetic refrigeration apparatus according to the second modification.
  • FIG. 19 is a piping diagram for explaining the heating operation in the magnetic refrigeration apparatus according to the second modification.
  • FIG. 20 is a piping diagram for explaining the defrost operation in the magnetic refrigeration apparatus according to the second modification.
  • FIG. 21 is a piping diagram of a magnetic refrigeration apparatus according to the third modification.
  • 22 is a plan view of the magnetic refrigeration module of the magnetic refrigeration apparatus shown in FIG. 21, viewed from the axial direction of the annular storage portion.
  • 23 is a cross-sectional view of the magnetic refrigeration module of the magnetic refrigeration apparatus shown in FIG. 21, viewed from a radial direction of the annular storage portion.
  • FIG. 24 is a schematic diagram of a main part of the magnetic refrigeration device according to the fourth modification, for explaining mechanical control of the magnetic field modulation unit and the heat medium transport unit.
  • FIG. 25 is a plan view of the high-pressure side valve plate of the rotary valve type multi-way switching valve shown in FIG. 24 as viewed from the outside of the valve body.
  • 26 is a plan view of the low-pressure side valve plate of the rotary valve type multi-way switching valve shown in FIG. 24 as viewed from the outside of the valve body.
  • FIG. 27 is a schematic diagram of an example of a phase adjuster mechanism for mechanically controlling the magnetic field modulation section (15) in a magnetic refrigeration apparatus according to the fifth modification.
  • FIG. 28 is a schematic diagram of another example of the phase adjuster mechanism for mechanically controlling the magnetic field modulation section (15) in the magnetic refrigeration apparatus according to the fifth modification.
  • FIG. 29 is a piping diagram of a magnetic refrigeration apparatus according to the sixth modification.
  • the magnetic refrigeration device (1) of the present embodiment is a solid-state refrigeration device that adjusts the temperature of a heat medium by utilizing the magnetocaloric effect, and is applied to, for example, an air conditioner.
  • the magnetic refrigeration device (1) adjusts the temperature of air in a space to be air-conditioned.
  • the space to be air-conditioned is, for example, an indoor space.
  • the magnetic refrigeration device (1) switches between a heating operation and a defrost operation.
  • the magnetic refrigeration device (1) includes a heat medium circuit (C) filled with a heat medium.
  • the heat medium circuit (C) transports the filled heat medium.
  • the heat medium includes, for example, a refrigerant, water, brine, etc.
  • the magnetic refrigeration device (1) mainly comprises a storage section (11), a magnetic field modulation section (15) which is a force field modulation section, a first heat exchanger (16), a second heat exchanger (17), a reciprocating pump (21) which is a heat medium transport section, and a control section (30).
  • the storage section (11), the first heat exchanger (16), the second heat exchanger (17), and the reciprocating pump (21) are connected to each other via heat medium piping to form a heat medium circuit (C).
  • the storage section (11) has a magnetic working material (12) which is a solid refrigerant material, and an internal flow path (13) through which the heat transfer medium flows and exchanges heat with the solid refrigerant material (12).
  • the storage section (11) is a hollow case or column. The inside of the storage section (11) is filled with the magnetic working material (12).
  • the magnetic working material (12) generates heat when a magnetic field is applied or when the applied magnetic field becomes stronger.
  • the magnetic working material (12) absorbs heat when the magnetic field is removed or when the applied magnetic field becomes weaker.
  • Examples of the material of the magnetic working material ( 12) that can be used include Gd5(Ge0.5Si0.5 ) 4 , La (Fe1 - xSix ) 13 , La( Fe1- xCoxSiy ) 13 , La(Fe1 - xSix ) 13Hy , and Mn( As0.9Sb0.1 ).
  • the magnetic working material (12) is composed of a plurality of materials (12a-12e) with different Curie temperatures at which the calorific effect (magnetic refrigeration effect) is maximized.
  • the plurality of materials (12a-12e) are arranged along the internal flow path (13) in order of decreasing Curie temperature (i.e., in a cascade shape).
  • five types of magnetic working materials (12) namely, a first material (12a), a second material (12b), a third material (12c), a fourth material (12d), and a fifth material (12e
  • the various magnetic working materials (12) have different Curie temperatures, i.e., the relationship between temperature and magnetic refrigeration effect.
  • the Curie temperature of the first material (12a) is Ta
  • the Curie temperature of the second material (12b) is Tb
  • the Curie temperature of the third material (12c) is Tc
  • the Curie temperature of the fourth material (12d) is Td
  • the Curie temperature of the fifth material (12e) is Te
  • the type of material of the magnetic working materials (12) and the cascade arrangement configuration are not particularly limited.
  • multiple storage sections (11) each having multiple types of magnetic working materials (12) arranged in a cascade arrangement may be arranged in parallel.
  • the storage section (11) may be composed of multiple partial storage sections (11a to 11e) connected in series to each other in the heat medium circuit (C), and each of the multiple partial storage sections (11a to 11e) may store a corresponding substance among the multiple substances (12a to 12e).
  • a single substance may be arranged in all of the partial storage sections (11a to 11e), or two or more substances may be arranged in a cascade arrangement.
  • a single substance may be placed in one or more partial storage sections (11a-11e), and two or more substances may be cascaded in one or more other partial storage sections (11a-11e).
  • multiple substances (12a-12e) are placed in order of temperature along the internal flow path (13) of the serially connected partial storage sections (11a-11e).
  • the magnetic field modulation section (15) induces a calorific effect by applying a magnetic field fluctuation to the magnetic working material (12) in the container section (11).
  • the magnetic field modulation section (15) is composed of, for example, an electromagnet capable of modulating a magnetic field.
  • the magnetic field modulation section (15) performs a first modulation operation and a second modulation operation. In the first modulation operation, a predetermined magnetic field is applied to the magnetic working material (12). In the second modulation operation, a magnetic field smaller than the predetermined magnetic field is applied or the predetermined magnetic field is removed.
  • the first heat exchanger (16) may be an indoor heat exchanger that exchanges heat between the heat medium heated by the magnetic working material (12) and indoor air. Alternatively, the first heat exchanger (16) may exchange heat between the heat medium heated by the magnetic working material (12) and a secondary refrigerant flowing through a utilization unit (e.g., an air handling unit) not shown.
  • the second heat exchanger (17) may be an outdoor heat exchanger that exchanges heat between the heat medium cooled by the magnetic working material (12) and outdoor air. Alternatively, the second heat exchanger (17) may exchange heat between the heat medium cooled by the magnetic working material (12) and a secondary refrigerant flowing through a heat source unit (e.g., a cooling tower) not shown.
  • the first heat exchanger (16) and the second heat exchanger (17) are connected via the internal flow path (13) of the accommodation section (11).
  • the reciprocating pump (21) reciprocates the heat medium to the magnetic working material (12) in the storage section (11) in response to magnetic field fluctuations.
  • the reciprocating pump (21) is, for example, a piston pump.
  • the reciprocating pump (21) has a pump case (22), a piston (23), and a drive mechanism (not shown).
  • the piston (23) is disposed inside the pump case (22).
  • the piston (23) divides the inside of the pump case (22) into two chambers.
  • one chamber (hereinafter referred to as the first chamber) of the pump case (22) is connected to the first heat exchanger (16), and the other chamber (hereinafter referred to as the second chamber) of the pump case (22) is connected to the second heat exchanger (17).
  • the drive mechanism has a rod connected to the piston (23), a crank connected to the rod, and an electric motor that drives the crank. When the electric motor rotates the crank, the rod moves back and forth, causing the piston (23) to reciprocate within the pump case (22).
  • the first conveying operation and the second conveying operation are alternately and repeatedly performed.
  • the piston (23) moves in a direction that expands the first chamber and reduces the second chamber.
  • the heat medium is discharged from the second chamber, and in the heat medium circuit (C), the heat medium moves sequentially toward the second heat exchanger (17), the accommodation section (11) (internal flow path (13)), and the first heat exchanger (16), and is sucked into the first chamber.
  • the piston (23) moves in a direction that contracts the first chamber and expands the second chamber.
  • the heat medium is discharged from the first chamber, and in the heat medium circuit (C), the heat medium moves sequentially toward the first heat exchanger (16), the accommodation section (11) (internal flow path (13)), and the second heat exchanger (17), and is sucked into the second chamber.
  • the control unit (30) controls, for example, the operation of each of the magnetic field modulation unit (15) and the reciprocating pump (21).
  • the control unit (30) is configured, for example, using a microcomputer and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.
  • the control unit (30) is connected to each of the magnetic field modulation unit (15) and the reciprocating pump (21) via a communication line.
  • the magnetic refrigeration device (1) performs a heat dissipation operation (hot blow) and a heat absorption operation (cold blow).
  • a predetermined magnetic field is applied to the magnetic working material (12) and the heat medium is moved in a first direction in the internal flow path (13), so that the hot heat generated in the magnetic working material (12) is transported by the heat medium to the outside of the storage section (11), for example, to the first heat exchanger (16), and dissipated.
  • a magnetic field smaller than the predetermined magnetic field is applied to the magnetic working material (12) or the predetermined magnetic field is removed and the heat medium is moved in a second direction opposite to the first direction in the internal flow path (13), so that the cold heat generated in the magnetic working material (12) is transported by the heat medium to the outside of the storage section (11), for example, to the second heat exchanger (17), and absorbed.
  • the heat dissipation operation involves a first modulation operation (excitation) of the magnetic field modulation section (15) and a first conveying operation of the reciprocating pump (21).
  • the heat medium is heated in the internal flow path (13) of the storage section (11).
  • the heated heat medium dissipates heat in the first heat exchanger (16).
  • the second modulation operation (demagnetization) of the magnetic field modulation section (15) and the second conveying operation of the reciprocating pump (21) are performed.
  • the heat medium is cooled in the internal flow path (13) of the storage section (11).
  • the cooled heat medium absorbs heat in the second heat exchanger (17).
  • the magnetic refrigeration device (1) When the magnetic refrigeration device (1) performs a cycle (AMR (Active Magnetic Refrigerator) cycle) in which the heat dissipation and heat absorption operations described above are repeated, the magnetic working material (12) in the container (11) regenerates while generating heat and cold due to magnetic field fluctuations, creating a temperature gradient in the container (11) and resulting in a large temperature difference between the high-temperature end and low-temperature end of the container (11).
  • AMR Active Magnetic Refrigerator
  • the heat medium heated by the magnetic working material (12) releases heat to the indoor air in the first heat exchanger (16), which is a high-temperature side heat exchanger, and the indoor air is heated, while the heat medium cooled by the magnetic working material (12) absorbs heat from the outdoor air in the second heat exchanger (17), which is a low-temperature side heat exchanger. This makes heating operation possible.
  • the temperature of the heat medium in the second heat exchanger (17) becomes low, and frost may form on the surface of the second heat exchanger (17).
  • the transport direction of the heat medium in the internal flow path (13) relative to the phase of the magnetic field fluctuation is switched to the opposite direction from that of the heating operation shown in FIG. 4.
  • the second modulation operation (demagnetization) of the magnetic modulation unit (15) and the first transport operation of the reciprocating pump (21) are performed, and the heat medium cooled in the internal flow path (13) of the storage unit (11) absorbs heat in the first heat exchanger (16).
  • the first modulation operation (excitation) of the magnetic modulation unit (15) and the second transport operation of the reciprocating pump (21) are performed, and the heat medium heated in the internal flow path (13) of the storage unit (11) dissipates heat in the second heat exchanger (17), thereby performing defrosting.
  • the timing of the magnetic field fluctuation and the heat medium flow i.e., the AMR (Active Magnetic Refrigerator) cycle
  • the AMR (Active Magnetic Refrigerator) cycle is reversed (phase inversion of 180°) as shown in FIG. 7 compared to the heating operation shown in FIG. 6.
  • FIGS. 6 and 7 (A) shows the magnetic field fluctuation
  • (B) shows the transport direction of the heat medium. This transfers heat from the high temperature side to the low temperature side, heating the outdoor heat exchanger (second heat exchanger (17)), which is the low temperature side heat exchanger, to perform defrosting.
  • the internal flow path (13) is arranged along the longitudinal direction of the storage section (11), in other words, the high-temperature side inlet/outlet port and the low-temperature side inlet/outlet port of the internal flow path (13) are arranged at both longitudinal ends of the storage section (11), respectively.
  • the arrangement of the internal flow path (13) is not limited to this.
  • the high-temperature side inlet/outlet port and the low-temperature side inlet/outlet port of the internal flow path (13) may be arranged on the same face of the storage section (11).
  • the direction in which the heat medium flows from the low-temperature side inlet/outlet port to the high-temperature side inlet/outlet port in the internal flow path (13) is the “first direction”
  • the direction in which the heat medium flows from the high-temperature side inlet/outlet port to the low-temperature side inlet/outlet port is the “second direction”.
  • the magnetic refrigeration device (1) of the present embodiment includes a storage section (11), a magnetic field modulation section (15), a first heat exchanger (16), a second heat exchanger (17), a heat medium circuit (C), and a reciprocating pump (21).
  • the storage section (11) includes a magnetic working material (12) and an internal flow path (13) through which the heat medium flows and exchanges heat with the magnetic working material (12).
  • the magnetic field modulation section (15) applies a magnetic field fluctuation to the magnetic working material (12) in the storage section (11) to induce a calorific effect.
  • the first heat exchanger (16), the second heat exchanger (17), and the internal flow path (13) are connected to the heat medium circuit (C).
  • the reciprocating pump (21) reciprocates the heat medium to the magnetic working material (12) in the storage section (11) in response to the magnetic field fluctuation in the heat medium circuit (C).
  • the magnetic refrigeration device (1) performs a heating operation and a defrosting operation. In the heating operation, the heat medium heated by the magnetic working material (12) is dissipated in the first heat exchanger (16), and the heat medium cooled by the magnetic working material (12) is absorbed in the second heat exchanger (17). In the defrosting operation, the frost formed on the second heat exchanger (17) during the heating operation is removed.
  • the magnetic working material (12) includes a plurality of materials (12a-12e) having different temperatures at which the calorific effect is maximized, and the plurality of materials (12a-12e) are arranged along the internal flow path (13) in the order of decreasing temperature.
  • the transport direction of the heat medium in the internal flow path (13) relative to the phase of the magnetic field fluctuation is switched to the opposite direction to that in heating operation.
  • the losses due to the reversal of the AMR cycle can also be used as a heat source, so there is no need to enlarge the high-temperature heat exchanger or install a heat storage tank.
  • the first heat exchanger (16) (indoor heat exchanger) colder than the second heat exchanger (17) (outdoor heat exchanger) during defrost operation it is possible to make the first heat exchanger (16) (indoor heat exchanger) colder than the second heat exchanger (17) (outdoor heat exchanger) during defrost operation, and this amount can be used as a heat source, so it is possible to avoid enlarging the size of the indoor heat exchanger.
  • the conveying direction of the heat medium in the internal flow path (13) relative to the phase of the magnetic field fluctuation is switched to the opposite direction to that in the heating operation in the defrost operation by simply electrically controlling the magnetic field modulation part (15) and the reciprocating pump (21) by the control part (30). Therefore, compared with the conventional method in which the high temperature side and the low temperature side are exchanged by flow path switching with a valve in the defrost operation and defrosting is performed by the warm heat generated by the magnetic working material, the following advantages are obtained.
  • the Curie temperature of each material of the cascaded magnetic working material (12) becomes close to the temperature of the heat medium, so the amount of heat transfer increases and quick defrosting is possible.
  • the Curie temperature of each material of the cascaded magnetic working material (12) is significantly different from the temperature of the heat medium, so the amount of heat transfer decreases and defrosting may be delayed or defrosting may not be possible.
  • the storage section (11) includes a plurality of partial storage sections (11a to 11e) connected in series to each other in the heat medium circuit (C), and each of the plurality of partial storage sections (11a to 11e) may have at least one of the plurality of substances (12a to 12e). In this way, the degree of freedom in the cascade arrangement configuration of the solid refrigerant material (12) is increased.
  • the magnetic field modulation section (15) and the reciprocating pump (21) may be electrically controlled to switch the heat medium transport direction in the internal flow path (13) according to the phase of the magnetic field fluctuation. In this way, defrosting can be performed by electrical control while avoiding the device becoming larger and more complicated.
  • the frequency of the magnetic field fluctuation may be increased during defrost operation.
  • the frequency of the reciprocating transport of the heat medium increases along with the frequency of the magnetic field fluctuation, so the flow rate of the heat medium increases, increasing the pressure loss and, as a result, the amount of heat transferred to the heat medium also increases.
  • eddy current losses increase, further increasing the amount of heat transferred to the heat medium. This makes it possible to speed up defrosting.
  • the flow rate of the heat medium in the heat medium circuit (C) may be increased during defrost operation.
  • Example A simulation of defrost operation was performed for a configuration (15-stage cascade AMR) in which 15 types of magnetic working materials (12) were cascaded in the magnetic refrigeration device (1) of this embodiment.
  • the simulation conditions were: RA (room air conditioner) 4 kW, low heating temperature (outdoor air temperature: 2°C, indoor temperature: 20°C), 2 L of water (20°C) inside the indoor heat exchanger and piping, 1.4 kg of ice on the outdoor heat exchanger (required heat of dissolution: 468 kJ), and no heat exchange with indoor air in the indoor heat exchanger (fan stopped).
  • the operation mode is switched to defrost mode, the temperature of each material of the magnetic working material (12) starts to decrease.
  • the temperature of each material is close to the Curie temperature, so that the amount of heat transferred to the heat medium within the internal flow path (13) is large.
  • the magnetic refrigeration apparatus (1) of this modification is a solid-state refrigeration apparatus that adjusts the temperature of a heat medium by utilizing the magnetocaloric effect, and is applied to, for example, an air conditioner.
  • the magnetic refrigeration apparatus (1) adjusts the temperature of air in a space to be air-conditioned.
  • the space to be air-conditioned is, for example, an indoor space.
  • the magnetic refrigeration apparatus (1) switches between a cooling operation, a heating operation, and a defrost operation.
  • ⁇ Configuration of magnetic refrigeration device> 8 and 9 are a piping diagram of the magnetic refrigeration apparatus (1) of this modified example and a schematic configuration diagram of the magnetic refrigeration unit (U), respectively.
  • Fig. 8 and Fig. 9 the same components as those in the magnetic refrigeration apparatus (1) of the embodiment shown in Fig. 1 are denoted by the same reference numerals.
  • the magnetic refrigeration device (1) mainly includes a magnetic refrigeration unit (U), a first heat exchanger (16), and a second heat exchanger (17).
  • the magnetic refrigeration unit (U), the first heat exchanger (16), and the second heat exchanger (17) are connected to each other via heat medium piping to form a heat medium circuit (C).
  • the magnetic refrigeration device (1) of this modified example has a control unit similar to the control unit (30) of the above embodiment.
  • the magnetic refrigeration unit (U) mainly includes a storage section (11), a magnetic field modulation section (15) which is a force field modulation section, a reciprocating pump (21) which is a heat medium transport section, a first outlet pipe (41), a first inlet pipe (42), a second outlet pipe (43), a second inlet pipe (44), a first pump side pipe (45), and a second pump side pipe (46).
  • the storage section (11) has a magnetic working material (12) which is a solid refrigerant material, and an internal flow path (13) through which the heat medium flows and exchanges heat with the solid refrigerant material (12).
  • the magnetic working material (12) is composed of multiple substances (12a-12e) with different Curie temperatures that maximize the calorific effect, and the multiple substances (12a-12e) are arranged along the internal flow path (13) in order of high to low Curie temperature (i.e., in a cascade).
  • a first internal flow path (13A) and a second internal flow path (13B) are formed inside the storage section (11) as the internal flow path (13).
  • a first outlet pipe (41) is connected to one end of the first internal flow path (13A).
  • a second inlet pipe (44) is connected to the other end of the first internal flow path (13A).
  • a first inlet pipe (42) is connected to one end of the second internal flow path (13B).
  • a second outlet pipe (43) is connected to the other end of the second internal flow path (13B).
  • the first outlet pipe (41) is provided with a first check valve (CV1).
  • the first inlet pipe (42) is provided with a second check valve (CV2).
  • the second outlet pipe (43) is provided with a third check valve (CV3).
  • the second inlet pipe (44) is provided with a fourth check valve (CV4).
  • the first check valve (CV1) allows the heat medium to flow from the first internal flow path (13A) of the storage section (11) to the first heat exchanger (16) and prohibits the heat medium to flow in the opposite direction.
  • the second check valve (CV2) allows the heat medium to flow from the first heat exchanger (16) to the second internal flow path (13B) of the storage section (11) and prohibits the heat medium to flow in the opposite direction.
  • the third check valve (CV3) allows the heat medium to flow from the second internal flow path (13B) of the storage section (11) to the second heat exchanger (17) and prohibits the heat medium to flow in the opposite direction.
  • the fourth check valve (CV4) allows the heat medium to flow from the second heat exchanger (17) to the first internal flow path (13A) of the storage section (11) and prohibits the heat medium to flow in the opposite direction.
  • the magnetic field modulation section (15) induces a calorific effect by applying a magnetic field fluctuation to the magnetic working material (12) in the container section (11).
  • the magnetic field modulation section (15) is composed of, for example, an electromagnet capable of modulating a magnetic field.
  • the magnetic field modulation section (15) performs a first modulation operation and a second modulation operation. In the first modulation operation, a predetermined magnetic field is applied to the magnetic working material (22). In the second modulation operation, a magnetic field smaller than the predetermined magnetic field is applied or the predetermined magnetic field is removed.
  • the reciprocating pump (21) reciprocates the heat medium in the heat medium circuit (C) as in the above embodiment.
  • the reciprocating pump (21) is a piston pump.
  • the reciprocating pump (21) has a pump case (22), a piston (23), and a drive mechanism (not shown).
  • the piston (23) is disposed inside the pump case (22).
  • the piston (23) divides the inside of the pump case (22) into two chambers.
  • the reciprocating pump (21) is provided with a first port (24) and a second port (25). One chamber of the pump case (22) communicates with the first port (24), and the other chamber communicates with the second port (25).
  • One end of the first pump side pipe (45) is connected to the first port (24). The other end of the first pump side pipe (45) is connected to the first inlet pipe (42) upstream of the second check valve (CV2).
  • One end of the second pump side pipe (46) is connected to the second port (25). The other end of the second pump side pipe (46) is connected to the second inlet pipe (44) upstream of the fourth check valve (CV4).
  • the drive mechanism has a rod connected to the piston (23), a crank connected to the rod, and an electric motor that drives the crank.
  • the electric motor drives and rotates the crank, the rod moves forward and backward. This causes the piston (23) to reciprocate within the pump case (22).
  • the first conveying operation and the second conveying operation are alternately and repeatedly performed.
  • the piston (23) moves toward the first port (24).
  • the heat medium is discharged from the first port (24).
  • the discharged heat medium flows through the first inlet pipe (42), the second internal flow path (13B), and the second outlet pipe (43) in this order.
  • the piston (23) moves toward the second port (25).
  • the heat medium is discharged from the second port (25).
  • the discharged heat medium flows through the second inlet pipe (44), the first internal flow path (13A), and the first outlet pipe (41) in this order.
  • the magnetic refrigeration system (1) of this modification performs cooling operation, heating operation, and defrost operation.
  • the first heat exchanger (16) is an indoor heat exchanger that exchanges heat between the heat medium heated by the magnetic working material (12) and indoor air
  • the second heat exchanger (17) is an outdoor heat exchanger that exchanges heat between the heat medium cooled by the magnetic working material (12) and outdoor air. That is, in the cooling operation, the air in the indoor space is cooled.
  • the cooling operation corresponds to the cooling operation.
  • the heating operation the air in the indoor space is heated.
  • the heating operation corresponds to the heating operation.
  • the defrost operation the frost on the outdoor heat exchanger is melted.
  • the first modulation operation of the magnetic field modulation section (15) and the first conveying operation of the reciprocating pump (21) are performed simultaneously.
  • the heat medium is heated in the second internal flow path (13B) of the storage section (11), and the heated heat medium flows out of the second outlet pipe (43).
  • the heat medium in the heat medium circuit (C) flows into the second port (25) of the pump case (22).
  • the heat medium dissipates heat to the outdoor air.
  • the heat medium that has dissipated heat in the second heat exchanger (17) returns to the magnetic refrigeration unit (U).
  • the first heat exchanger (16) i.e., the indoor heat exchanger
  • the heat medium absorbs heat from the indoor air.
  • the indoor air is cooled.
  • the heat medium that has absorbed heat in the first heat exchanger (16) returns to the magnetic refrigeration unit (U).
  • FIG. 12 the flow of the heat medium for each operation is shown in the same diagram.
  • the heat exchangers from which the heat medium dissipates heat are hatched, and the heat exchangers from which the heat medium absorbs heat are dotted.
  • the second modulation operation of the magnetic field modulation section (15) and the first conveying operation of the reciprocating pump (21) are performed simultaneously.
  • the heat medium is cooled in the second internal flow path (13B) of the storage section (11), and the cooled heat medium flows out of the second outlet pipe (43).
  • the heat medium in the heat medium circuit (C) flows into the second port (25) of the pump case (22).
  • the heat medium absorbs heat from the outdoor air.
  • the heat medium that has absorbed heat in the second heat exchanger (17) returns to the magnetic refrigeration unit (U).
  • the heat medium dissipates heat to the indoor air.
  • the indoor air is heated.
  • the heat medium that dissipated heat in the first heat exchanger (16) returns to the magnetic refrigeration unit (U).
  • the operation is basically the same as in cooling operation, that is, the operation shown in FIG. 10(A) and the operation shown in FIG. 10(B) are repeated alternately.
  • the second heat exchanger (17) i.e., the outdoor heat exchanger
  • the heat medium flowing inside melts the frost on the surface of the outdoor heat exchanger.
  • the heat medium used to defrost the outdoor heat exchanger returns to the magnetic refrigeration unit (U).
  • the heat medium absorbs heat from the indoor air.
  • the heat medium that has absorbed heat in the first heat exchanger (16) returns to the magnetic refrigeration unit (U).
  • the magnetic refrigeration apparatus (1) of this modification is a solid-state refrigeration apparatus that adjusts the temperature of a heat medium by utilizing the magnetocaloric effect, and is applied to, for example, an air conditioner.
  • the magnetic refrigeration apparatus (1) adjusts the temperature of air in a space to be air-conditioned.
  • the space to be air-conditioned is, for example, an indoor space.
  • the magnetic refrigeration apparatus (1) switches between a cooling operation, a heating operation, and a defrost operation.
  • ⁇ Configuration of magnetic refrigeration device> 15 and 16 are a piping diagram of the magnetic refrigeration apparatus (1) of this modified example and a schematic configuration diagram of the magnetic refrigeration unit (U), respectively.
  • Fig. 15 and Fig. 16 the same components as those in the magnetic refrigeration apparatus (1) of the embodiment shown in Fig. 1 are denoted by the same reference numerals.
  • the magnetic refrigeration device (1) mainly includes a magnetic refrigeration unit (U), a first heat exchanger (16), a second heat exchanger (17), a first four-way switching valve (F1), and a second four-way switching valve (F2).
  • the magnetic refrigeration unit (U), the first heat exchanger (16), and the second heat exchanger (17) are connected to each other via heat medium piping to form a heat medium circuit (C).
  • the magnetic refrigeration device (1) of this modified example has a control mechanism similar to the control unit (30) of the above embodiment.
  • the magnetic refrigeration unit (U) has two magnetic refrigeration modules (10) as solid refrigeration modules, a low-temperature outlet pipe (51), a low-temperature inlet pipe (52), a high-temperature outlet pipe (53), a high-temperature inlet pipe (54), and a unit-side pump (55).
  • the magnetic refrigeration unit (U) has a first low-temperature three-way valve (56), a second low-temperature three-way valve (57), a first high-temperature three-way valve (58), and a second high-temperature three-way valve (59).
  • the two magnetic refrigeration modules (10) are composed of a first magnetic refrigeration module (10A) and a second magnetic refrigeration module (10B).
  • the unit-side pump (55) and the multiple three-way valves (56, 57, 58, 59) form a heat medium transport section (50).
  • the first magnetic refrigeration module (10A) and the second magnetic refrigeration module (10B) each have a housing section (11) and a magnetic field modulation section (15) which is a force field modulation section.
  • the storage section (11) has a magnetic working material (12) which is a solid refrigerant material, and an internal flow path (13) through which the heat medium flows and exchanges heat with the solid refrigerant material (12).
  • the magnetic working material (12) is composed of multiple substances (12a-12e) with different Curie temperatures that maximize the calorific effect, and the multiple substances (12a-12e) are arranged along the internal flow path (13) in order of high to low Curie temperature (i.e., in a cascade).
  • the magnetic field modulation section (15) induces a calorific effect by applying a magnetic field fluctuation to the magnetic working material (12) in the container section (11).
  • the magnetic field modulation section (15) is composed of, for example, an electromagnet capable of modulating a magnetic field.
  • the magnetic field modulation section (15) performs a first modulation operation and a second modulation operation. In the first modulation operation, a predetermined magnetic field is applied to the magnetic working material (22). In the second modulation operation, a magnetic field smaller than the predetermined magnetic field is applied or the predetermined magnetic field is removed.
  • a first internal flow path (13A) and a second internal flow path (13B) are formed inside each of the accommodation sections (11) of the magnetic refrigeration modules (10).
  • the low-temperature end of the first internal flow path (13A) of the first magnetic refrigeration module (10A) is connected to the low-temperature outlet pipe (51) via the first low-temperature three-way valve (56).
  • the low-temperature end of the second internal flow path (13B) of the first magnetic refrigeration module (10A) is connected to the low-temperature inlet pipe (52) via the second low-temperature three-way valve (57).
  • the high-temperature end of the first internal flow path (13A) of the second magnetic refrigeration module (10B) is connected to the high-temperature inlet pipe (54) via the second high-temperature three-way valve (59).
  • the high-temperature end of the second internal flow path (13B) of the second magnetic refrigeration module (10B) is connected to the high-temperature outlet pipe (53) via the first high-temperature three-way valve (58).
  • the unit side pump (55) is provided in the high-temperature outflow pipe (53).
  • the unit side pump (55) is a one-way pump.
  • the unit side pump (55) transports the heat medium toward the downstream side of the high-temperature outflow pipe (53).
  • the first port of the low-temperature first three-way valve (56) is connected to the low-temperature outflow pipe (51).
  • the second port of the low-temperature first three-way valve (56) is connected to the low-temperature end of the first internal flow path (13A) of the second magnetic refrigeration module (10B).
  • the third port of the low-temperature first three-way valve (56) is connected to the low-temperature end of the first internal flow path (13A) of the first magnetic refrigeration module (10A).
  • the first port of the low-temperature second three-way valve (57) is connected to the low-temperature inlet pipe (52).
  • the second port of the low-temperature second three-way valve (57) is connected to the low-temperature end of the second internal flow path (13B) of the second magnetic refrigeration module (10B).
  • the third port of the low-temperature second three-way valve (57) is connected to the low-temperature end of the second internal flow path (13B) of the first magnetic refrigeration module (10A).
  • the first port of the high-temperature first three-way valve (58) communicates with the high-temperature outflow pipe (53).
  • the second port of the high-temperature first three-way valve (58) communicates with the high-temperature end of the second internal flow path (13B) of the second magnetic refrigeration module (10B).
  • the third port of the high-temperature first three-way valve (58) communicates with the high-temperature end of the second internal flow path (13B) of the first magnetic refrigeration module (10A).
  • the first port of the high-temperature second three-way valve (59) communicates with the high-temperature inlet pipe (54).
  • the second port of the high-temperature second three-way valve (59) communicates with the high-temperature end of the first internal flow path (13A) of the second magnetic refrigeration module (10B).
  • the third port of the high-temperature second three-way valve (59) communicates with the high-temperature end of the first internal flow path (13A) of the first magnetic refrigeration module (10A).
  • Each three-way valve (56, 57, 58, 59) has a first port, a second port, and a third port.
  • the first port of the three-way valve is represented by a circled number 1
  • the second port of the three-way valve is represented by a circled number 2
  • the third port of the three-way valve is represented by a circled number 3.
  • Each three-way valve (56, 57, 58, 59) switches between a first state (the state shown by the solid line in FIG. 16) and a second state (the state shown by the dashed line in FIG. 16). In the first state, each three-way valve (56, 57, 58, 59) connects the first port to the second port. In the second state, each three-way valve (56, 57, 58, 59) connects the first port to the third port.
  • the first heat exchanger (16) shown in FIG. 15 is an indoor heat exchanger that exchanges heat between the heat medium and the indoor air.
  • One end of the first heat exchanger (16) is connected to the second port of the first four-way switching valve (F1) via a pipe.
  • the other end of the first heat exchanger (16) is connected to the second port of the second four-way switching valve (F2) via a pipe.
  • the second heat exchanger (17) shown in FIG. 15 is an outdoor heat exchanger that serves as a heat source.
  • the second heat exchanger (17) exchanges heat between the heat medium and the outdoor air.
  • One end of the second heat exchanger (17) is connected to the third port of the first four-way switching valve (F1) via a pipe.
  • the other end of the second heat exchanger (17) is connected to the third port of the second four-way switching valve (F2) via a pipe.
  • the first four-way switching valve (F1) and the second four-way switching valve (F2) are switching mechanisms that switch the flow path of the heat medium in the heat medium circuit (C).
  • the first four-way switching valve (F1) and the second four-way switching valve (F2) of this modified example switch the flow path of the heat medium in cooling operation, heating operation, and defrost operation.
  • Each four-way switching valve (F1, F2) has a first port, a second port, a third port, and a fourth port.
  • the first port of the four-way switching valve is represented by a symbol with a circle around 1
  • the second port of the four-way switching valve is represented by a symbol with a circle around 2
  • the third port of the four-way switching valve is represented by a symbol with a circle around 3
  • the fourth port of the four-way switching valve is represented by a symbol with a circle around 4.
  • Each four-way switching valve (F1, F2) switches between a first state (the state shown by the solid line in FIG. 15) and a second state (the state shown by the dashed line in FIG. 15). In the first state, each four-way switching valve (F1, F2) connects the first port to the second port and also connects the third port to the fourth port. In the second state, each four-way switching valve (F1, F2) connects the first port to the third port and also connects the second port to the fourth port.
  • the first port of the first four-way valve (F1) is connected to the high-temperature inlet pipe (54).
  • the second port of the first four-way valve (F1) is connected to the first heat exchanger (16).
  • the third port of the first four-way valve (F1) is connected to the second heat exchanger (17).
  • the fourth port of the first four-way valve (F1) is connected to the low-temperature inlet pipe (52).
  • the first port of the second four-way valve (F2) is connected to the high-temperature outlet pipe (53).
  • the second port of the second four-way valve (F2) is connected to the first heat exchanger (16).
  • the third port of the second four-way valve (F2) is connected to the second heat exchanger (17).
  • the fourth port of the second four-way valve (F2) is connected to the low-temperature outlet pipe (51).
  • the control unit (30) of this modified example is connected to the magnetic refrigeration unit (U) and each of the four-way switching valves (F1, F2) via a communication line. That is, the control unit (30) controls the magnetic field modulation unit (15), the heat medium transport unit (50), and each of the four-way switching valves (F1, F2).
  • the magnetic refrigeration system (1) of this modification performs cooling operation, heating operation, and defrost operation.
  • the first heat exchanger (16) is an indoor heat exchanger that exchanges heat between the heat medium heated by the magnetic working material (12) and indoor air
  • the second heat exchanger (17) is an outdoor heat exchanger that exchanges heat between the heat medium cooled by the magnetic working material (12) and outdoor air. That is, in the cooling operation, the air in the indoor space is cooled.
  • the cooling operation corresponds to the cooling operation.
  • the heating operation the air in the indoor space is heated.
  • the heating operation corresponds to the heating operation.
  • the defrost operation the frost on the outdoor heat exchanger is melted.
  • the first magnetic refrigeration module (10A) performs the first modulation operation
  • the second magnetic refrigeration module (10B) performs the second modulation operation.
  • the low-temperature first three-way valve (56) is set to the first state
  • the low-temperature second three-way valve (57) is set to the second state
  • the high-temperature first three-way valve (58) is set to the second state
  • the high-temperature second three-way valve (59) is set to the first state.
  • the unit side pump (55) operates.
  • the first magnetic refrigeration module (10A) performs the second modulation operation
  • the second magnetic refrigeration module (10B) performs the first modulation operation.
  • the low-temperature first three-way valve (56) is set to the second state
  • the low-temperature second three-way valve (57) is set to the first state
  • the high-temperature first three-way valve (58) is set to the first state
  • the high-temperature second three-way valve (59) is set to the second state.
  • the unit side pump (55) operates.
  • the first four-way switching valve (F1) is set to the second state
  • the second four-way switching valve (F2) is set to the second state.
  • FIG. 18 shows the heat medium flow in each operation in the same diagram.
  • the first heat exchanger (16) and the second heat exchanger (17) from which the heat medium releases heat are hatched, and the heat exchangers from which the heat medium absorbs heat are dotted. The same applies to FIG. 19 and FIG. 20 described later.
  • the heat medium heated by the magnetic refrigeration unit (U) passes through the second four-way switching valve (F2) and flows through the second heat exchanger (17).
  • the heat medium dissipates heat to the outdoor air.
  • the heat medium that has dissipated heat in the second heat exchanger (17) passes through the first four-way switching valve (F1) and returns to the magnetic refrigeration unit (U).
  • the heat medium cooled by the magnetic refrigeration unit (U) passes through the second four-way switching valve (F2) and flows through the first heat exchanger (16).
  • the first heat exchanger (16) i.e., the indoor heat exchanger
  • the heat medium absorbs heat from the indoor air.
  • the indoor air is cooled.
  • the heat medium that has absorbed heat in the first heat exchanger (16) passes through the first four-way switching valve (F1) and returns to the magnetic refrigeration unit (U).
  • heating operation the operation shown in FIG. 17(A) and the operation shown in FIG. 17(B) are alternately repeated.
  • the first four-way switching valve (F1) is set to the first state
  • the second four-way switching valve (F2) is set to the first state.
  • the heat medium cooled by the magnetic refrigeration unit (U) passes through the second four-way switching valve (F2) and flows through the second heat exchanger (17).
  • the heat medium absorbs heat from the outdoor air.
  • the heat medium that has absorbed heat in the second heat exchanger (17) passes through the first four-way switching valve (F1) and returns to the magnetic refrigeration unit (U).
  • the heat medium heated by the magnetic refrigeration unit (U) passes through the second four-way switching valve (F2) and flows through the first indoor heat exchanger (16).
  • the heat medium dissipates heat to the indoor air.
  • the indoor air is heated.
  • the heat medium that has dissipated heat in the first indoor heat exchanger (16) passes through the first four-way switching valve (F1) and returns to the magnetic refrigeration unit (U).
  • defrost operation the operation is substantially the same as in cooling operation. That is, in defrost operation, the operation shown in FIG. 17(A) and the operation shown in FIG. 17(B) are alternately repeated. The cycle for switching between each operation is about one second. Defrost operation is executed when the conditions for frost to form on the surface of the second heat exchanger (17), i.e., the outdoor heat exchanger, are met, for example, during heating operation in winter.
  • the first four-way switching valve (F1) is set to the second state
  • the second four-way switching valve (F2) is set to the second state.
  • the heat medium heated by the magnetic refrigeration unit (U) passes through the second four-way switching valve (F2) and flows into the second heat exchanger (17).
  • the second heat exchanger (17) i.e., the outdoor heat exchanger
  • the heat medium flowing inside melts the frost on the surface of the outdoor heat exchanger.
  • the heat medium used to defrost the outdoor heat exchanger passes through the first four-way switching valve (F1) and returns to the magnetic refrigeration unit (U).
  • the heat medium cooled by the magnetic refrigeration unit (U) passes through the second four-way switching valve (F2) and flows through the first heat exchanger (16).
  • the heat medium absorbs heat from the indoor air.
  • the heat medium that has absorbed heat in the first heat exchanger (16) passes through the first four-way switching valve (F1) and returns to the magnetic refrigeration unit (U).
  • the piping system shown in Fig. 19 may be configured without the four-way switching valves (F1, F2), and in defrost operation, the transport direction of the heat medium in the internal flow path (13) relative to the phase of the magnetic field fluctuation may be switched to the opposite direction to that in heating operation (heating operation) by electrically controlling the magnetic field modulation unit (15) and the heat medium transport unit (50) in the operations shown in Fig. 17(A) and (B).
  • This makes it possible to defrost the low-temperature side heat exchanger at low cost while avoiding the need to increase the size of the high-temperature side heat exchanger or to complicate the device structure by adding valves, tanks, etc.
  • the magnetic refrigeration apparatus (1) of this modification is a solid-state refrigeration apparatus that adjusts the temperature of a heat medium by utilizing the magnetocaloric effect, and is applied to, for example, an air conditioner.
  • the magnetic refrigeration apparatus (1) adjusts the temperature of air in a space to be air-conditioned.
  • the space to be air-conditioned is, for example, an indoor space.
  • a magnetic working material (12) is filled inside a storage section (11) constituted by a hollow case or column, and a magnetic field modulation section (15) constituted by an electromagnet capable of modulating a magnetic field is used to impart a magnetic field fluctuation to the magnetic working material (12) inside the storage section (11).
  • the magnetic refrigeration device (1) of this modified example is a magnetic heat pump device in which the magnetic circuit rotates.
  • the magnetic refrigeration device (1) of this modified example mainly includes a heat medium circuit (C) in which a magnetic refrigeration module (10), a first heat exchanger (16), a second heat exchanger (17), and a heat medium pump (21A) are provided.
  • the components of the heat medium circuit (C) are connected to each other via heat medium piping.
  • the magnetic refrigeration device (1) is a solid-state refrigeration device that adjusts the temperature of the heat medium by utilizing the calorific effect
  • the magnetic refrigeration module (10) is a solid-state refrigeration module that adjusts the temperature of the heat medium by utilizing the calorific effect.
  • the magnetic refrigeration module (10) is provided, for example, in an air-conditioning device that exchanges heat with a secondary refrigerant or air.
  • the use of the magnetic refrigeration module (10) is not limited to this, and it may be provided, for example, in a magnetic refrigeration system (1) configured as a cooling-only chiller.
  • the magnetic refrigeration module (10) includes an annular container (11) having a plurality of partial containers (11a-11l) that contain a magnetic working material (12) as a solid refrigerant material and form an internal flow path (13) through which a heat transfer medium flows.
  • the magnetic refrigeration module (10) generates a magnetocaloric effect by applying or removing a magnetic field, which is a force field, to the magnetic working material (12), thereby heating or cooling the heat transfer medium flowing through the flow path (13).
  • the magnetic working material (12) is also composed of a plurality of materials (12a to 12e) with different Curie temperatures at which the calorific effect is maximized, and the plurality of materials (12a to 12e) are arranged in order of high to low Curie temperature (i.e., in a cascade) along the internal flow path (13) of each partial housing portion (11a to 11l).
  • the magnetic refrigeration module (10) is composed of a plurality of unit modules (10a-10l), for example 12 in number.
  • Each component of the plurality of unit modules (10a-10l) is housed in a plurality of partial storage sections (11a-11l), respectively.
  • each partial storage section (11a-11l) is, for example, an annular sector shape, but is not limited thereto and may be a sector shape or a trapezoid shape, for example.
  • the partial storage sections (11a-11l) are combined in a ring shape to form the ring-shaped storage section (11) of the magnetic refrigeration module (10).
  • each partial storage section (11a-11l) is set to a thickness that is unlikely to cause magnetic flux leakage and that ensures the required volume of the storage section.
  • partial storage section (11a) refers to any storage piece among the multiple partial storage sections (11a to 11l)
  • unit module (10a) refers to any unit module among the multiple unit modules (10a to 10l).
  • a magnetic field modulation section (15) which is a force field modulation section is arranged to sandwich the magnetic refrigeration module (10) in the axial direction of the annular storage section (11).
  • the magnetic field modulation section (15) has an annular magnet (15a) which is a force field generating section arranged close to the magnetic refrigeration module (10), a yoke (15b) for supporting the annular magnet (15a) and forming a magnetic path, and a rotation mechanism (15c).
  • the rotation mechanism (15c) is arranged to extend in the axial direction of the annular storage section (11) through a central opening of the magnetic refrigeration module (10).
  • the magnet (15a) is rotated in the circumferential direction of the annular storage section (11) by the rotation mechanism (15c).
  • the number of magnets (15a) (a pair of magnets sandwiching the magnetic refrigeration module (10) in the axial direction of the annular storage section (11)) is equal to the number of poles of the magnetic circuit.
  • two magnets (15a) are arranged so as to overlap an area equivalent to three partial storage sections (11a).
  • the magnets (15a) and the unit modules (20a) are arranged evenly in the circumferential direction of the same axis.
  • the annular storage section (11), i.e., the magnetic refrigeration module (10), may be fixed.
  • Figs. 21 and 22 show the unit modules (10a, 10b, 10c, 10g, 10h, 10i) as excited and the unit modules (10d, 10e, 10f, 10j, 10k, 10l) as demagnetized.
  • each unit module (10a-10l) constituting the magnetic refrigeration module (10) has a low-temperature side inlet passage (61), a low-temperature side outlet passage (62), a high-temperature side inlet passage (63), and a high-temperature side outlet passage (64).
  • Each inlet passage (61, 63) and each outlet passage (62, 64) communicates with the internal flow path (13) of the partial storage section (11a-11l) of each unit module (10a-10l).
  • the heat medium flowing in from the low-temperature side inlet passage (61) flows through the internal flow path (13) of the partial storage section (11a) and is discharged from the high-temperature side outlet passage (64).
  • the heat medium flowing in from the high-temperature side inlet passage (63) flows through the internal flow path (13) of the partial storage section (11a) and is discharged from the low-temperature side outlet passage (62).
  • the first heat exchanger (16) is an indoor heat exchanger that exchanges heat between the heat medium heated by the magnetic refrigeration module (10) and indoor air.
  • the first heat exchanger (16) has a first outlet (16a) connected to the high-temperature side inlet passage (63) of the magnetic refrigeration module (10) and a first inlet (16b) connected to the high-temperature side outlet passage (64) of the magnetic refrigeration module (10).
  • a high-pressure side multi-way switching valve (110) is provided in the heat medium piping between the first outlet (16a) and the high-temperature side inlet passage (63) of each unit module (10a to 10l).
  • a low-pressure side multi-way switching valve (120) is provided in the heat medium piping between the first inlet (16b) and the high-temperature side outlet passage (64) of each unit module (10a to 10l).
  • the high pressure side multi-way switching valve (110) and the low pressure side multi-way switching valve (120) are integrated to form a rotary valve type multi-way switching valve (100).
  • the second heat exchanger (17) is an outdoor heat exchanger that exchanges heat between the heat medium cooled by the magnetic refrigeration module (10) and the outdoor air.
  • the second heat exchanger (17) has a second outlet (17a) connected to the low-temperature inlet passage (61) of the magnetic refrigeration module (10) and a second inlet (17b) connected to the low-temperature outlet passage (62) of the magnetic refrigeration module (10).
  • a first check valve (91) is provided in the heat medium piping between the second outlet (17a) and the low-temperature inlet passage (61) of each unit module (10a to 10l).
  • a second check valve (92) is provided in the heat medium piping between the second inlet (17b) and the low-temperature outlet passage (62) of each unit module (10a to 10l).
  • the heat medium pump (21A) is for flowing a heat medium between the magnetic refrigeration module (10) and each heat exchanger (60, 70).
  • the heat medium pump (21A) is provided, for example, in the heat medium piping between the low-pressure side multi-way switching valve (120) of the rotary valve type multi-way switching valve (100) and the second heat exchanger (17).
  • the heat medium transport section is configured by the heat medium pump (21A) and the rotary valve type multi-way switching valve (100).
  • the heat medium flowing out from the second outlet (17a) of the second heat exchanger (17) selectively flows into the low-temperature side inlet (61) of the excited unit module (10a, 10b, 10c, 10g, 10h, 10i) under the control of the first check valve (91).
  • This heat medium is heated by heat exchange with the magnetic working material (12) in a heat-generating state in the unit module (10a, 10b, 10c, 10g, 10h, 10i), and then flows out from the high-temperature side outlet (64).
  • This heat medium exchanges heat with a secondary refrigerant flowing through a heat source unit (not shown), such as a cooling tower, and flows out from the first outlet (16a) of the first heat exchanger (16).
  • the heat medium flowing out from the first outlet (16a) of the first heat exchanger (16) selectively flows into the high-temperature side inlet (63) of the demagnetized unit module (10d, 10e, 10f, 10j, 10k, 10l) by the control of the high-pressure side multi-way switching valve (110).
  • This heat medium is cooled by heat exchange with the magnetic working material (12) in an endothermic state in the unit module (10d, 10e, 10f, 10j, 10k, 10l), and then flows out from the low-temperature side outlet (62).
  • This heat medium exchanges heat with the secondary refrigerant flowing through a utilization unit (not shown), such as an air handling unit, and flows out from the second outlet (17a) of the second heat exchanger (17).
  • the magnetic field modulation unit (15) and the heat medium transport unit, i.e., the reciprocating pump (21) and various valves, are driven independently of each other and electrically synchronized with each other.
  • the heat medium transport direction in the internal flow path (13) is electrically switched in response to the phase of the magnetic field fluctuation.
  • the magnetic field modulation unit (15) and the reciprocating pump (21), which is the heat medium transport unit, and various valves are driven in conjunction with each other using a phase adjustment mechanism such as a shaft, belt, or gear
  • the magnetic field modulation unit (15) and the heat medium transport unit are mechanically controlled to switch the heat medium transport direction in the internal flow path (13) in response to the phase of the magnetic field fluctuation.
  • Fig. 24 is a schematic diagram of the main components of the magnetic refrigeration system (1) of this modified example.
  • the same components as those in the magnetic refrigeration system (1) of the modified example 3 shown in Figs. 21 to 23 are denoted by the same reference numerals.
  • the rotary type magnetic circuit (magnetic field modulation section (15)) in the magnetic refrigeration device (1) of modified example 3 and the rotary valve type multi-way switching valve (100) are connected via a connecting shaft (71), thereby achieving timing (synchronization) between the magnetic field fluctuation and the heat medium flow.
  • the rotary valve type multi-way switching valve (100) mainly comprises a valve box (101), a rotating shaft (102), a high-pressure side inlet port (115), a low-pressure side outlet port (125), a high-pressure side valve plate (111), a high-pressure side valve element (112), a low-pressure side valve plate (121), and a low-pressure side valve element (122).
  • the valve box (101) is made of, for example, acrylic resin.
  • the rotating shaft (102) is made of, for example, stainless steel.
  • the high-pressure side valve plate (111) and the low-pressure side valve plate (121) are made of, for example, aluminum.
  • the high-pressure side valve element (112) and the low-pressure side valve element (122) are made of, for example, a fluororesin such as PTFE.
  • the "axial direction” refers to the direction in which the rotating shaft (102) (axis center (J)) extends
  • the "radial direction” refers to the direction perpendicular to the rotating shaft (102)
  • the "circumferential direction” refers to the circumferential direction of a circle centered on the rotating shaft (102).
  • the high-pressure side valve plate (111) is disposed at one axial end (upper end in FIG. 24) of the valve box (101).
  • the low-pressure side valve plate (121) is disposed at the other axial end (lower end in FIG. 24) of the valve box (101).
  • the high-pressure side valve element (112) is disposed inside the high-pressure side valve plate (111) in the valve box (101).
  • the low-pressure side valve element (122) is disposed inside the low-pressure side valve plate (121) in the valve box (101).
  • the rotating shaft (102) extends from the outside to the inside of the valve box (101) so as to penetrate the center of the high-pressure side valve plate (111).
  • the rotating shaft (102) is rotated by a drive rotation mechanism (not shown).
  • the high-pressure side valve element (112) and the low-pressure side valve element (122) are attached to the rotating shaft (102).
  • the high-pressure side valve element (112) and the low-pressure side valve element (122) are rotatable together with the rotating shaft (102).
  • the high-pressure side valve element (112) and the low-pressure side valve element (122) are rotationally driven on the same rotating shaft (102). Therefore, the high-pressure side valve element (112) and the low-pressure side valve element (122) rotate in the same direction at the same rotation speed. Furthermore, the relative positional relationship between the high-pressure side valve element (112) and the low-pressure side valve element (122) does not change due to rotation.
  • the high-pressure side inlet port (115) is located on the radial side of the valve box (101). As a result, the inside of the valve box (101) is kept at high pressure by communicating with the high-pressure side inlet port (115).
  • the low-pressure side outlet port (125) is located in the center of the low-pressure side valve plate (121).
  • the high-pressure side valve plate (111) is formed with a plurality of high-pressure side outlet ports (113) surrounding the rotating shaft (102).
  • the high-pressure side valve element (112) is formed with a high-pressure side flow path (114).
  • the high-pressure side flow path (114) has an open structure to the inside of the valve box (101).
  • the high-pressure side flow path (114) is connected to at least one port (113a) of the plurality of high-pressure side outlet ports (113) depending on the rotational position of the high-pressure side valve element (112), and selectively communicates the port (113a) with the high-pressure side inlet port (115).
  • the high-pressure side valve element (112) blocks at least one port (113b) of the plurality of high-pressure side outlet ports (113) that has a lower pressure than the pressure inside the valve box (101). Due to the pressure difference between the port (113b) and the inside of the valve box (101), the high-pressure side valve element (112) is attracted toward the high-pressure side valve plate (111) and tightly adheres to it, preventing fluid leakage.
  • the high-pressure side valve body (112) is fixed in the circumferential direction of the rotating shaft (102), but is not fixed in the axial direction of the rotating shaft (102).
  • the cross-sectional shape of the rotating shaft (102) perpendicular to the axial direction may be D-shaped, and a through hole of the same D shape may be provided in the high-pressure side valve body (112).
  • the high-pressure side valve body (112) may be fixed in the circumferential direction of the rotating shaft (102) and made movable in the axial direction of the rotating shaft (102). This makes it possible to prevent the rotating shaft (102) from being sucked in together with the high-pressure side valve body (112) when it is sucked toward the high-pressure side valve plate (111).
  • the low-pressure side valve plate (121) is formed with a plurality of low-pressure side inlet ports (123) surrounding a low-pressure side outlet port (125).
  • the low-pressure side valve body (122) is formed with a low-pressure side flow path (124).
  • the low-pressure side valve body (122) blocks at least one port (123a) that is at high pressure among the plurality of low-pressure side inlet ports (123) depending on the rotational position.
  • the low-pressure side flow path (124) is connected to at least one port (123b) that is at a lower pressure than the pressure inside the valve box (101) depending on the rotational position of the low-pressure side valve body (122), and selectively communicates the port (123b) with the low-pressure side outlet port (125).
  • the low-pressure side flow path (124) has a closed structure with respect to the inside of the valve box (101).
  • the high pressure inside the valve box (101) is separated from the low pressure in the low pressure side flow path (124) (inside the low pressure side valve body (122)).
  • the low pressure side valve body (122) is attracted to the low pressure side valve plate (121) and tightly adheres to it due to the pressure difference between the inside of the low pressure side valve body (122) and the inside of the valve box (101), preventing fluid leakage.
  • the low-pressure side valve body (122) is fixed in the circumferential direction of the rotating shaft (102), but is not fixed in the axial direction of the rotating shaft (102).
  • the cross-sectional shape of the rotating shaft (102) perpendicular to the axial direction may be D-shaped, and the low-pressure side valve body (122) may have a through-hole of the same D shape, and the rotating shaft (102) may be passed through the through-hole to fix the low-pressure side valve body (122) in the circumferential direction of the rotating shaft (102) and make it movable in the axial direction of the rotating shaft (102). This makes it possible to prevent the rotating shaft (102) from being sucked in together with the low-pressure side valve body (122) when the low-pressure side valve body (122) is sucked toward the low-pressure side valve plate (121).
  • the high-pressure side valve element (112) and the low-pressure side valve element (122) are constructed as separate members and can move independently in the axial direction (slidable relative to the rotation shaft (102)), so that the suction forces acting on the high-pressure side valve element (112) and the low-pressure side valve element (122) are not cancelled out.
  • each valve element (112, 122) can move in the axial direction, when the spring (104) is installed between each valve element (112, 122), the elastic force of the spring (104) makes it possible to bring each valve element (112, 122) into close contact with each valve plate (111, 121).
  • the low-pressure side valve element (122) may be provided with a mechanism for thermally insulating the interior of the valve box (101) from the low-pressure side flow path (124).
  • at least a portion of the low-pressure side valve element (122) may be made of a thermal insulating material.
  • a resin with low friction and excellent sliding properties such as PTFE or POM, may be used.
  • the high-pressure side outlet port (113) of the high-pressure side multi-way switching valve (110) is connected to the high-temperature side inlet passage (63) of the magnetic refrigeration module (10) (unit modules (10a to 10l)).
  • the low-pressure side inlet port (123) of the low-pressure side multi-way switching valve (120) is connected to the high-temperature side outlet passage (64) of the magnetic refrigeration module (10).
  • the high-pressure side outlet port (113) and the low-pressure side inlet port (123) connected to the same unit module (10a to 10l) are not open at the same time.
  • the high-pressure side outlet port (113) and the low-pressure side inlet port (123) connected to the same unit module (10a to 10l) when one port is open, the other port is closed, and when one port is closed, the other port is open or closed.
  • valve box (101) when the internal pressure of the valve box (101) is low immediately after the magnetic refrigeration device (1) starts operating, or when the valve body (112, 122) is pressed against the valve plate (111, 121) in a direction opposite to the direction of gravity, the adhesion may be insufficient, resulting in leakage of fluid.
  • a spring (104) is placed inside the valve box (101) as an auxiliary to increase the adhesion between the valve disc (112, 122) and the valve plate (111, 121).
  • the high pressure inside the valve box (101) is used to generate an adhesion force, so the elastic force of the spring (104) is sufficient to weakly bring the valve disc (112, 122) into contact with the valve plate (111, 121). This makes it possible to suppress wear of the valve disc (112, 122) caused by the elastic force of the spring (104).
  • the spring (104) is installed between the high-pressure side valve element (112) and the low-pressure side valve element (122).
  • the spring (104) extends in the axial direction while surrounding the outer periphery of the rotating shaft (102).
  • One end of the spring (104) is attached to the high-pressure side valve element (112), and the other end of the spring (104) is attached to the low-pressure side valve element (122).
  • the spring (104) it is possible to press the high-pressure side valve element (112) against the high-pressure side valve plate (111) and press the low-pressure side valve element (122) against the low-pressure side valve plate (121) without providing other members such as a spring retainer.
  • valve box (101), valve plate (high pressure side valve plate (111), low pressure side valve plate (121))) of the rotary valve type multi-way switching valve (100) is fixed, but in this modified example, the main body of the rotary valve type multi-way switching valve (100) is rotated around a common axis. This causes the port positions of the valve plates (high pressure side valve plate (111), low pressure side valve plate (121)) to move in the rotational direction, making it possible to change the timing of the heat medium flow (i.e., to shift the phase).
  • the rotary valve type multi-way switching valve (100) is connected to the magnetic refrigeration module (10) and the heat medium pump (21A) by piping, and the rotary valve type multi-way switching valve (100) body can be easily rotated by using flexible piping (such as plastic tubes).
  • the rotation angle for phase adjustment is usually within ⁇ 90° when a two-pole magnet (15a) is used, so the maximum rotation angle of the rotary valve type multi-way switching valve (100) body during defrost operation is also approximately 90°.
  • the configuration described above makes it possible to adjust the phase (switch the heat medium transport direction in the internal flow path (13) according to the phase of the magnetic field fluctuation) even while the magnetic field modulation section (15) and the rotary valve type multi-way switching valve (100) are rotating.
  • the magnetic refrigeration apparatus (1) of this modified example differs from the modified example 4 in that a phase adjustment mechanism (200, 300) as shown in FIG. 27 or 28, for example, is provided between the rotary type magnetic circuit (magnetic field modulation section (15)) and the rotary valve type multi-way switching valve (100).
  • the phase adjustment mechanism (200) shown in FIG. 27 has four bevel gears (206a, 206b, 206c, 206d) (collectively referred to as the bevel gear group (206)) and two spur gears (208a, 208b) (collectively referred to as the spur gear group (208)) in a casing (201).
  • the bevel gear group (206) is housed in the upper casing (202), and the spur gear group (208) is housed in the lower casing (203).
  • An input shaft (204) having one end supported by the bevel gear group (206) (bevel gear (206a)) is provided penetrating the ceiling of the upper casing (202).
  • An output shaft (205) having one end supported by the spur gear group (208) (spur gear (208b)) is provided penetrating the bottom of the lower casing (203).
  • a connecting shaft (207), one end of which is supported by the bevel gear group (206) (bevel gear (206b)) and the other end of which is supported by the spur gear group (208) (spur gear (208a)) is provided penetrating the bottom of the upper casing (202) (the ceiling of the lower casing (203)).
  • the upper diagram in FIG. 27 shows a cross-sectional configuration of the phase adjustment mechanism (200) as viewed from the axial direction
  • the lower diagram in FIG. 27 shows a cross-sectional configuration of the phase adjustment mechanism (200) as viewed from the radial direction.
  • the bevel gear group (206) performs phase adjustment (switching the heat medium transport direction in the internal flow path (13) in response to the phase of the magnetic field fluctuation).
  • the spur gear group (208) changes the rotation direction of the output shaft (205), which is coaxial with the rotating shaft (102) of the rotary valve type multi-way switching valve (100), to the same direction as the input shaft (204), which is coaxial with the shaft (rotating mechanism (15c)) of the magnetic field modulation section (15).
  • two bevel gears (206c, 206d) are installed so as to be rotatable with respect to the input shaft (204).
  • phase rotation angle the phase difference between the input shaft (204) and the output shaft (205) can be changed.
  • the shafts (211, 213) of the bevel gears (206c, 206d) are supported by bearings (212, 214) provided on the support member (210) in the upper casing (202).
  • the rotation angle (hereinafter referred to as the phase adjustment angle) of the bevel gears (206c, 206d) is changed, a phase rotation angle twice as large as the phase adjustment angle appears on the output shaft (205) in the opposite direction to the rotation direction of the bevel gears (306c, 306d).
  • phase adjustment switching the heat medium transport direction in the internal flow path (13) according to the phase of the magnetic field fluctuation
  • the main body of the rotary valve type multi-way switching valve (100) can be kept fixed, there are no restrictions on piping, etc.
  • phase adjustment mechanism (300) shown in FIG. 28 may be constructed by replacing the spur gear group (208) of the phase adjustment mechanism (200) shown in FIG. 27 with bevel gears.
  • FIG. 28 shows a cross-sectional configuration of the phase adjustment mechanism (300) as viewed from the radial direction.
  • the phase adjustment mechanism (300) has a first bevel gear group (306) consisting of four bevel gears (306a, 306b, 306c, 306d) and a second bevel gear group (306) consisting of four bevel gears (307a, 307b, 307c, 307d) in a casing (301).
  • the first bevel gear group (306) is accommodated in the upper space (302) of the casing (301), and the second bevel gear group (306) is accommodated in the lower space (303) of the casing (301).
  • An input shaft (304), one end of which is supported by the first bevel gear group (306) (bevel gear (306a)), is provided penetrating the ceiling of the casing (301).
  • the first bevel gear group (306) performs phase adjustment (switching the heat medium transport direction in the internal flow path (13) in response to the phase of the magnetic field fluctuation).
  • the second bevel gear group (306) changes the rotation direction of the output shaft (305) coaxial with the rotating shaft (102) of the rotary valve type multi-way switching valve (100) to the same direction as the input shaft (304) coaxial with the shaft (rotating mechanism (15c)) of the magnetic field modulation unit (15).
  • the two bevel gears (306c, 306d) of the first bevel gear group (306) are installed to be rotatable with respect to the input shaft (304), and the phase difference (hereinafter referred to as the phase rotation angle) between the input shaft (304) and the output shaft (305) can be changed by rotating the two bevel gears (306c, 306d).
  • the shafts (311, 313) of the bevel gears (306c, 306d) are supported by bearings (312, 314) provided on a support member in the upper space (302), respectively.
  • phase adjustment angle When the rotation angle (hereinafter referred to as the phase adjustment angle) of the bevel gears (306c, 306d) is changed, a phase rotation angle twice as large as the phase adjustment angle appears on the output shaft (305) in the direction opposite to the rotation direction of the bevel gears (306c, 306d).
  • a stepping motor or servo motor for example, to control the phase adjustment angle, it becomes possible to control the angle at will.
  • two bevel gears (307c, 307d) are installed so as to be rotatable with respect to the output shaft (305).
  • the shafts (321, 323) of the bevel gears (307c, 307d) are supported by bearings (322, 324) provided on the side wall of the casing (301), respectively.
  • phase adjustment switching the heat medium transport direction in the internal flow path (13) in relation to the phase of the magnetic field fluctuation
  • the main body of the rotary valve type multi-way switching valve (100) can remain fixed, there are no restrictions on piping, etc.
  • the phase adjustment mechanism (300) can be easily installed between the rotary type magnetic circuit (magnetic field modulation unit (15)) and the rotary valve type multi-way switching valve (100).
  • Fig. 29 is a piping diagram of a magnetic refrigeration system (1) according to Modification 6.
  • Fig. 29 the same components as those in the embodiment shown in Fig. 1 are denoted by the same reference numerals.
  • a first fan (16f) is disposed near the first heat exchanger (16).
  • the first fan (16f) is driven by a first motor (16m).
  • a second fan (17f) is disposed near the second heat exchanger (17).
  • the second fan (17f) is driven by a second motor (17m).
  • the first motor (16m) and the second motor (17m) are driven and controlled by the control unit (30).
  • the second fan (17f) is stopped in the defrost operation.
  • the second heat exchanger (17) is a low-temperature side heat exchanger (e.g., an outdoor heat exchanger) and the temperature of the outdoor heat exchanger is higher than the outdoor air temperature
  • the second fan (17f) is stopped to prevent heat from being dissipated from the outdoor heat exchanger to the outdoor air, and defrosting can be performed efficiently.
  • the second fan control described below may be performed.
  • the first heat exchanger (16) is an indoor heat exchanger, and the first fan (indoor fan) (16f) is stopped in defrost operation. This makes it possible to prevent the temperature in the indoor space from dropping due to the cold air being blown out from the indoor unit in which the indoor heat exchanger is installed.
  • a magnetic refrigeration device which is a solid refrigeration device
  • the solid refrigeration device may use a method other than magnetic refrigeration that induces a magnetocaloric effect in the magnetic working material 12.
  • the solid refrigerant material also includes a material having properties intermediate between a liquid and a solid, such as a soft crystal.
  • solid refrigeration devices include, for example, 1) a type that induces an electrocaloric effect in a solid refrigerant material, 2) a type that induces a pressure caloric effect in a solid refrigerant material, and 3) a type that induces an elastic caloric effect in a solid refrigerant material.
  • the force field application unit (hereinafter also referred to as the inducing unit) applies an electric field fluctuation to the solid refrigerant material. This causes the solid refrigerant material to undergo a phase transition from ferroelectric to paraelectric, causing the solid refrigerant material to generate or absorb heat.
  • the inducing part applies pressure fluctuations to the solid refrigerant material, causing the solid refrigerant material to undergo a phase transition and generate or absorb heat.
  • the inducing part applies stress fluctuations to the solid refrigerant material, causing the solid refrigerant material to undergo a phase transition and generate or absorb heat.
  • the present disclosure is useful for solid-state refrigeration devices, particularly magnetic refrigeration devices.
  • Magnetic refrigeration device solid-state refrigeration device
  • 11 storage section
  • 11a to 11e partial storage section
  • 12 magnetic working material (solid refrigerant material); 12a to 12e: Multiple substances with different temperatures at which the calorific effect is maximized
  • 13 Internal flow path
  • 15 Magnetic field modulation section (force field modulation section); 16 First heat exchanger 16f First fan (indoor fan) 17 Second heat exchanger 17f Second fan (fan) 21 Reciprocating pump (heat medium transport section) 50 Heat medium conveying section 100 Rotary valve type multi-way switching valve (heat medium conveying section) C Heat transfer medium circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

固体冷凍装置(1)は、加熱運転と、デフロスト運転とを行う。デフロスト運転では、加熱運転で第2熱交換器(17)に付着した霜を取り除く。固体冷媒物質(12)は、熱量効果が最大となる温度が異なる複数の物質(12a~12e)を含み、前記複数の物質(12a~12e)は、内部流路(13)に沿って前記温度の高低順に配置される。デフロスト運転において、力場変動の位相に対する内部流路(13)における熱媒体の搬送方向を、加熱運転とは反対向きに切り替える。

Description

固体冷凍装置
 本開示は、固体冷凍装置に関するものである。
 特許文献1に開示された磁気冷凍装置は、複数のベッド、高温側熱交換器、及び低温側熱交換器を有する。ベッド、高温側熱交換器、及び低温側熱交換器は熱媒体回路に接続される。ベッドでは、磁気作業物質の磁場変動に伴い、磁気作業物質が発熱又は吸熱する。熱媒体回路の熱媒体は、発熱する磁気作業物質により加熱され、或いは、吸熱する磁気作業物質により冷却される。このような動作により、高温側熱交換器の熱媒体と低温側熱交換器の熱媒体との間に温度差が生じる。
 低温側熱交換器では熱媒体の温度が低くなるので、低温側熱交換器の表面に霜が付くことがある。特許文献1では、高温側熱交換器に貯まった熱媒体を低温側熱交換器に搬送することで、低温側熱交換器に対し除霜(デフロスト)を行っている。
特開2016-11799号公報
 しかしながら、特許文献1のデフロスト方法によると、高温側熱交換器に貯まった熱媒体を低温側熱交換器の除霜に利用しているため、霜を溶かすために十分な温熱を確保するためには、高温側熱交換器のサイズを低温側熱交換器に対して大きくする必要がある。また、流路切り替えにより高温側と低温側とを入れ替えて、磁気作業物質の生成する温熱で除霜する方法が提案されているが、この方法では、熱媒体回路にバルブを追加する必要がある。また、高温側の温熱を蓄熱すると共に除霜時に流路を切り替えて、蓄熱した温熱で除霜する方法が提案されているが、この方法では、熱媒体回路にバルブとタンクを追加する必要がある。
 本開示の目的は、磁気冷凍装置等の固体冷凍装置の大型化や複雑化を回避しつつ低温側熱交換器の除霜を行えるようにすることにある。
 本開示の第1の態様は、収容部(11)と、力場変調部(15)と、第1熱交換器(16)と、第2熱交換器(17)と、熱媒体回路(C)と、熱媒体搬送部(21,50,100)とを備える固体冷凍装置(1)である。前記収容部(11)は、固体冷媒物質(12)と、熱媒体が前記固体冷媒物質(12)と熱交換して流れる内部流路(13)とを有する。前記力場変調部(15)は、前記収容部(11)内の前記固体冷媒物質(12)に力場変動を付与して熱量効果を誘発させる。前記熱媒体回路(C)には、前記第1熱交換器(16)と前記第2熱交換器(17)と前記内部流路(13)とが接続される。前記熱媒体搬送部(21,50,100)は、前記熱媒体回路(C)において前記力場変動に応じて前記熱媒体を前記収容部(11)内の前記固体冷媒物質(12)に対して往復的に搬送する。前記固体冷凍装置(1)は、加熱運転と、デフロスト運転とを行う。前記加熱運転では、前記固体冷媒物質(12)により加熱した前記熱媒体を前記第1熱交換器(16)で放熱させ且つ前記固体冷媒物質(12)により冷却した前記熱媒体を前記第2熱交換器(17)で吸熱させる。前記デフロスト運転では、前記加熱運転で前記第2熱交換器(17)に付着した霜を取り除く。前記固体冷媒物質(12)は、熱量効果が最大となる温度が異なる複数の物質(12a~12e)を含み、前記複数の物質(12a~12e)は、前記内部流路(13)に沿って前記温度の高低順に配置される。前記デフロスト運転において、前記力場変動の位相に対する前記内部流路(13)における前記熱媒体の搬送方向を、前記加熱運転とは反対向きに切り替える。
 第1の態様では、デフロスト運転において、力場変動の位相に対する内部流路(13)における熱媒体の搬送方向を、加熱運転とは反対向きに切り替える。これにより、高温側熱交換器の大型化、又はバルブ若しくはタンク等の追加による装置構造の複雑化を回避しつつ低温側熱交換器の除霜を行うことができる。
 本開示の第2の態様は、前記第1の態様において、前記収容部(11)は、前記熱媒体回路(C)において互いに直列接続された複数の部分収容部(11a~11e)を含み、前記複数の部分収容部(11a~11e)のそれぞれは、前記複数の物質(12a~12e)のうち少なくとも1つの物質を有する。
 第2の態様では、固体冷媒物質(12)のカスケード配置構成の自由度が高くなる。
 本開示の第3の態様は、前記第1又は第2の態様において、前記力場変調部(15)と前記熱媒体搬送部(21,50,100)とを電気的に制御して、前記力場変動の位相に対する前記内部流路(13)における前記熱媒体の搬送方向を切り替える。
 第3の態様では、装置の大型化や複雑化を回避しつつ、電気的制御によりデフロストを行うことができる。
 本開示の第4の態様は、前記第1又第2の態様において、前記力場変調部(15)と前記熱媒体搬送部(100)とを機械的に制御して、前記力場変動の位相に対する前記内部流路(13)における前記熱媒体の搬送方向を切り替える。
 第4の態様では、装置の大型化や複雑化を回避しつつ、機械的制御により低温側熱交換器の除霜を行うことができる。
 本開示の第5の態様は、前記第1~第4の態様のいずれか1つにおいて、前記第2熱交換器(17)に送風するファン(17f)をさらに備え、前記第2熱交換器(17)の温度が当該第2熱交換器(17)の周囲温度よりも高い場合、前記デフロスト運転では前記ファン(17f)を停止する。
 第5の態様では、第2熱交換器(17)が低温側熱交換器(例えば室外熱交換器)であって当該室外熱交換器の温度が外気温度よりも高いときにファン(17f)を停止することによって、当該室外熱交換器から外気への放熱を防ぎ、デフロストを効率良く行うことができる。
 本開示の第6の態様は、前記第1~第5の態様のいずれか1つにおいて、前記第1熱交換器(16)は、室内熱交換器であり、前記室内熱交換器に送風する室内ファン(16f)をさらに備え、前記デフロスト運転では前記室内ファン(16f)を停止する。
 第6の態様では、デフロスト時に室内ファン(16f)を停止することにより、室内熱交換器が設けられた室内機から冷風が送出されて室内空間の温度が低下することを抑制できる。
 本開示の第7の態様は、前記第1~第6の態様のいずれか1つにおいて、前記デフロスト運転では前記力場変動の周波数を高くする。
 第7の態様では、熱媒体の流量が増大して圧力損失が増大する結果、熱媒体に移動する熱量も増大する。また、収容部(11)の構成材料や、当該材料に近接する力場変調部(15)の構成材料(ヨークなど)において、渦電流損失が増大する結果、熱媒体に移動する熱量がさらに増大する。従って、デフロストを高速化することができる。
 本開示の第8の態様は、前記第1~第7の態様のいずれか1つにおいて、前記デフロスト運転では、前記熱媒体回路(C)における前記熱媒体の流量を増大させる。
 第8の態様では、熱媒体の流量が増加して圧力損失が増大する結果、熱媒体に移動する熱量も増大するので、デフロストを高速化することができる。
 本開示の第9の態様は、前記第1~第8の態様のいずれか1つにおいて、前記固体冷媒物質(12)は、磁気作業物質(12)であり、前記力場変調部(15)は、前記磁気作業物質(12)に磁場変動を付与する磁場変調部(15)である。
 第9の態様では、磁気冷凍装置の起動を迅速に行うことができる。
図1は、実施形態に係る磁気冷凍装置の配管系統図である。 図2は、実施形態に係る磁気冷凍装置において単一の収容部にカスケード状に配置された複数の固体冷媒物質の温度と磁気冷凍効果との関係を模式的に表した図である。 図3は、実施形態に係る磁気冷凍装置において複数の部分収容部にカスケード状に配置された複数の固体冷媒物質の温度と磁気冷凍効果との関係を模式的に表した図である。 図4は、実施形態に係る磁気冷凍装置が行う加熱運転を説明するための配管系統図である。 図5は、実施形態に係る磁気冷凍装置が行うデフロスト運転を説明するための配管系統図である。 図6は、実施形態に係る磁気冷凍装置が行う加熱運転での磁場変動と熱媒体搬送方向との関係を示す図である。 図7は、実施形態に係る磁気冷凍装置が行うデフロスト運転での磁場変動と熱媒体搬送方向との関係を示す図である。 図8は、変形例1に係る磁気冷凍装置の配管系統図である。 図9は、変形例1に係る磁気冷凍ユニットの概略構成図である。 図10は、変形例1に係る磁気冷凍ユニットの動作を説明するための概略構成図である。 図11は、変形例1に係る磁気冷凍ユニットの動作を説明するための概略構成図である。 図12は、変形例1に係る磁気冷凍装置において、冷房運転を説明するための配管系統図である。 図13は、変形例1に係る磁気冷凍装置において、暖房運転を説明するための配管系統図である。 図14は、変形例1に係る磁気冷凍装置において、デフロスト運転を説明するための配管系統図である。 図15は、変形例2に係る磁気冷凍装置の配管系統図である。 図16は、変形例2に係る磁気冷凍ユニットの概略構成図である。 図17は、変形例2に係る磁気冷凍ユニットの動作を説明するための概略構成図である。 図18は、変形例2に係る磁気冷凍装置において、冷房運転を説明するための配管系統図である。 図19は、変形例2に係る磁気冷凍装置において、暖房運転を説明するための配管系統図である。 図20は、変形例2に係る磁気冷凍装置において、デフロスト運転を説明するための配管系統図である。 図21は、変形例3に係る磁気冷凍装置の配管系統図である。 図22は、図21に示す磁気冷凍装置の磁気冷凍モジュールを環状収納部の軸方向から見た平面図である。 図23は、図21に示す磁気冷凍装置の磁気冷凍モジュールを環状収納部の径方向から見た断面図である。 図24は、変形例4に係る磁気冷凍装置において磁場変調部と熱媒体搬送部との機械的制御を説明するための概略要部構成図である。 図25は、図24に示す回転バルブ型多方切換弁の高圧側弁板を弁箱外部から見た平面図である。 図26は、図24に示す回転バルブ型多方切換弁の低圧側弁板を弁箱外部から見た平面図である。 図27は、変形例5に係る磁気冷凍装置において磁場変調部(15)の機械的制御を行う位相調整器機構の一例の概略構成図である。 図28は、変形例5に係る磁気冷凍装置において磁場変調部(15)の機械的制御を行う位相調整器機構の他例の概略構成図である。 図29は、変形例6に係る磁気冷凍装置の配管系統図である。
 以下、本開示の実施形態について図面を参照しながら説明する。尚、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 (実施形態)
 実施形態について説明する。本実施形態の磁気冷凍装置(1)は、磁気熱量効果を利用して熱媒体の温度を調節する固体冷凍装置であって、例えば空気調和装置に適用される。この場合、磁気冷凍装置(1)は、空調対象の空間の空気の温度を調節する。空調対象の空間は、例えば室内空間である。磁気冷凍装置(1)は、暖房運転とデフロスト運転とを切り換えて行う。
  <磁気冷凍装置の構成>
 図1に示すように、磁気冷凍装置(1)は、熱媒体が充填される熱媒体回路(C)を備える。熱媒体回路(C)では、充填された熱媒体が搬送される。熱媒体は、例えば冷媒、水、ブラインなどを含む。
 磁気冷凍装置(1)は、主として、収容部(11)と、力場変調部である磁場変調部(15)と、第1熱交換器(16)と、第2熱交換器(17)と、熱媒体搬送部である往復式ポンプ(21)と、制御部(30)とを備える。収容部(11)、第1熱交換器(16)、第2熱交換器(17)、及び往復式ポンプ(21)は、熱媒体配管を介して互いに接続されて熱媒体回路(C)を構成する。
 収容部(11)は、固体冷媒物質である磁気作業物質(12)と、熱媒体が固体冷媒物質(12)と熱交換して流れる内部流路(13)とを有する。収容部(11)は、中空状のケースないしカラムである。収容部(11)の内部には、磁気作業物質(12)が充填される。
 磁気作業物質(12)は、磁場が印加される、あるいは印加された磁場が強くなることにより、発熱する。磁気作業物質(12)は、磁場が除去される、あるいは印加された磁場が弱くなると吸熱する。磁気作業物質(12)の材料としては、例えば、Gd5(Ge0.5Si0.54、La(Fe1-xSix13、La(Fe1-xCoxSiy13、La(Fe1-xSix13y、Mn(As0.9Sb0.1)等を用いることができる。
 磁気作業物質(12)は、例えば図2に示すように、熱量効果(磁気冷凍効果)が最大となるキュリー温度が異なる複数の物質(12a~12e)から構成される。複数の物質(12a~12e)は、内部流路(13)に沿ってキュリー温度の高低順(つまりカスケード状)に配置される。具体的には、収容部(11)において、5種類の磁気作業物質(12)である第1物質(12a)、第2物質(12b)、第3物質(12c)、第4物質(12d)、及び第5物質(12e)が、高温側から低温側に向かって順に配置される。各種の磁気作業物質(12)はキュリー温度、つまり温度と磁気冷凍効果との関係が互いに異なる。本例では、第1物質(12a)のキュリー温度をTa、第2物質(12b)のキュリー温度をTb、第3物質(12c)のキュリー温度をTc、第4物質(12d)のキュリー温度をTd、第5物質(12e)をTeとすると、Ta>Tb>Tc>Td>Teの関係を満たしている。
 図2に示すカスケード配置では、5種類の磁気作業物質(12)を単一の収容部(11)に配置したが、磁気作業物質(12)の材料の種類やカスケード配置構成等は特に限定されない。例えば、カスケード配置した複数種類の磁気作業物質(12)をそれぞれ有する複数の収容部(11)が並列に配置されていてもよい。或いは、例えば図3に示すように、収容部(11)を、熱媒体回路(C)において互いに直列接続された複数の部分収容部(11a~11e)から構成し、複数の部分収容部(11a~11e)のそれぞれが、複数の物質(12a~12e)のうちの対応する物質を収容するようにしてもよい。この場合、部分収容部(11a~11e)の全てに、単一の物質が配置されてもよいし、2つ以上の物質がカスケード配置されてもよい。或いは、1つ又は2つ以上の部分収容部(11a~11e)に単一の物質が配置され、1つ又は2つ以上の他の部分収容部(11a~11e)に2つ以上の物質がカスケード配置されてもよい。いずれの収容部構成であっても、直列接続された部分収容部(11a~11e)の内部流路(13)に沿って、複数の物質(12a~12e)が温度の高低順に配置される。
 磁場変調部(15)は、収容部(11)内の磁気作業物質(12)に磁場変動を付与して熱量効果を誘発させる。磁場変調部(15)は、例えば磁場を変調可能な電磁石で構成される。磁場変調部(15)は、第1変調動作と第2変調動作とを行う。第1変調動作では、磁気作業物質(12)に所定の磁場を印加する。第2変調動作では、所定の磁場よりも小さい磁場を印加し又は所定の磁場を除去する。
 第1熱交換器(16)は、磁気作業物質(12)により加熱された熱媒体と室内空気とを熱交換させる室内熱交換器であってもよい。或いは、第1熱交換器(16)は、磁気作業物質(12)により加熱された熱媒体と、図示を省略する利用ユニット(例えば、エアハンドリングユニット)を流れる二次冷媒とを熱交換させてもよい。第2熱交換器(17)は、磁気作業物質(12)により冷却された熱媒体と室外空気とを熱交換させる室外熱交換器であってもよい。或いは、第2熱交換器(17)は、磁気作業物質(12)により冷却された熱媒体と、図示を省略する熱源ユニット(例えばクーリングタワー)を流れる二次冷媒とを熱交換させてもよい。熱媒体回路(C)において、第1熱交換器(16)と第2熱交換器(17)とは、収容部(11)の内部流路(13)を介して接続される。
 往復式ポンプ(21)は、磁場変動に応じて熱媒体を収容部(11)内の磁気作業物質(12)に対して往復的に搬送する。往復式ポンプ(21)は、例えばピストンポンプで構成される。往復式ポンプ(21)は、ポンプケース(22)と、ピストン(23)と、駆動機構(図示省略)とを有する。ピストン(23)は、ポンプケース(22)の内部に配置される。ピストン(23)は、ポンプケース(22)の内部を2つの室に区画する。熱媒体回路(C)において、ポンプケース(22)の一方の室(以下、第1室という)が第1熱交換器(16)と接続し、ポンプケース(22)の他方の室(以下、第2室という)が第2熱交換器(17)と接続する。前記の駆動機構は、ピストン(23)に連結するロッドと、該ロッドに連結するクランクと、該クランクを駆動する電動機とを有する。電動機がクランクを回転駆動すると、ロッドが進退する。これにより、ポンプケース(22)内でピストン(23)の往復運動が行われる。
 具体的には、往復式ポンプ(21)では、第1搬送動作と第2搬送動作とが交互に繰り返し行われる。第1搬送動作では、ピストン(23)が第1室を拡大させ且つ第2室を縮小させる方向に移動する。これにより、第2室から熱媒体が吐出され、熱媒体回路(C)において熱媒体が順次、第2熱交換器(17)、収容部(11)(内部流路(13))、第1熱交換器(16)の方へ移動し、第1室に吸入される。第2搬送動作では、ピストン(23)が第1室を縮小させ且つ第2室を拡大させる方向に移動する。これにより、第1室から熱媒体が吐出され、熱媒体回路(C)において熱媒体が順次、第1熱交換器(16)、収容部(11)(内部流路(13))、第2熱交換器(17)の向へ移動し、第2室に吸入される。
 制御部(30)は、例えば磁場変調部(15)及び往復式ポンプ(21)のそれぞれの動作を制御する。制御部(30)は、例えば、マイクロコンピュータと、マイクロコンピュータを動作させるためのソフトウエアを格納するメモリデバイス(具体的には半導体メモリ)とを用いて構成される。制御部(30)は、磁場変調部(15)及び往復式ポンプ(21)のそれぞれと通信回線を介して接続される。
  <磁気冷凍装置の運転動作>
 磁気冷凍装置(1)は、放熱動作(ホットブロー)と、吸熱動作(コールドブロー)とを行う。放熱動作では、磁気作業物質(12)に所定の磁場を印加すると共に熱媒体を内部流路(13)の第1方向に移動させることにより、磁気作業物質(12)で発生した温熱を熱媒体によって収容部(11)の外部、例えば第1熱交換器(16)へ運び放熱させる。吸熱動作では、磁気作業物質(12)に所定の磁場よりも小さい磁場を印加し又は所定の磁場を除去すると共に熱媒体を内部流路(13)における第1方向とは反対方向の第2方向に移動させることにより、磁気作業物質(12)で発生した冷熱を熱媒体によって収容部(11)の外部、例えば第2熱交換器(17)へ運び吸熱させる。
 具体的には、図4(a)、(b)に示すように、放熱動作では、磁場変調部(15)の第1変調動作(励磁)と、往復式ポンプ(21)の第1搬送動作とが行われる。放熱動作では、収容部(11)の内部流路(13)で熱媒体が加熱される。加熱された熱媒体は、第1熱交換器(16)で放熱する。
 また、図4(c)、(d)に示すように、吸熱動作では、磁場変調部(15)の第2変調動作(消磁)と、往復式ポンプ(21)の第2搬送動作とが行われる。吸熱動作では、収容部(11)の内部流路(13)で熱媒体が冷却される。冷却された熱媒体は、第2熱交換器(17)で吸熱する。
 磁気冷凍装置(1)において、以上に説明した放熱動作と吸熱動作とを繰り返すサイクル(AMR(Active Magnetic Refrigerator)サイクル)を行うと、収容部(11)内の磁気作業物質(12)が磁場変動により温熱、冷熱を発生しつつ再生するので、収容部(11)内に温度勾配が生成される結果、収容部(11)の高温端と低温端との間に大きな温度差が生成される。
 第1熱交換器(16)が室内熱交換器であり、第2熱交換器(17)が室外熱交換器である場合、図4に示すように、磁気作業物質(12)により加熱された熱媒体は、高温側熱交換器である第1熱交換器(16)で室内空気に放熱し、室内空気が加熱される一方、磁気作業物質(12)により冷却された熱媒体は、低温側熱交換器である第2熱交換器(17)で室外空気から吸熱する。これにより、暖房運転(加熱運転)が可能となる。
 暖房運転では、第2熱交換器(17)で熱媒体の温度が低くなるので、第2熱交換器(17)の表面に霜が付着することがある。この付着した霜を除去する除霜(デフロスト)運転を行う場合に、本実施形態では、図5に示すように、磁場変動の位相に対する内部流路(13)における熱媒体の搬送方向を、図4に示す暖房運転とは反対向きに切り替える。
 具体的には、図5(a)、(b)に示す動作では、磁場変調部(15)の第2変調動作(消磁)と、往復式ポンプ(21)の第1搬送動作とが行われ、収容部(11)の内部流路(13)で冷却された熱媒体が第1熱交換器(16)で吸熱する。一方、図5(c)、(d)に示す動作では、磁場変調部(15)の第1変調動作(励磁)と、往復式ポンプ(21)の第2搬送動作とが行われ、収容部(11)の内部流路(13)で加熱された熱媒体が、第2熱交換器(17)で放熱し、デフロストが行われる。
 このように、本実施形態のデフロスト運転では、図6に示す暖房運転の場合と比較して、図7に示すように、磁場変動と熱媒体流動のタイミング、つまりAMR(Active Magnetic Refrigerator)サイクルが逆転(180°位相反転)する。図6、図7において、(A)は磁場変動を示し、(B)は熱媒体の搬送方向を示す。これによって、高温側から低温側に熱を移動させて低温側熱交換器である室外熱交換器(第2熱交換器(17))を加熱してデフロストを行う。
 尚、本実施形態では、収容部(11)の長手方向に沿って内部流路(13)が配置される場合、言い換えると、収容部(11)の長手方向の両端にそれぞれ内部流路(13)の高温側出入ポート及び低温側出入ポートが配置される場合を例として説明したが、内部流路(13)の配置構成は、これに限定されるものではない。例えば、収容部(11)の同じ面に、内部流路(13)の高温側出入ポート及び低温側出入ポートが配置されてもよい。この場合も、内部流路(13)において低温側出入ポートから高温側出入ポートへ熱媒体が流れる向きが「第1方向」であり、高温側出入ポートから低温側出入ポートへ熱媒体が流れる向きが「第2方向」である。
  <実施形態の特徴>
 以上に説明したように、本実施形態の磁気冷凍装置(1)は、収容部(11)と、磁場変調部(15)と、第1熱交換器(16)と、第2熱交換器(17)と、熱媒体回路(C)と、往復式ポンプ(21)とを備える。収容部(11)は、磁気作業物質(12)と、熱媒体が磁気作業物質(12)と熱交換して流れる内部流路(13)とを有する。磁場変調部(15)は、収容部(11)内の磁気作業物質(12)に磁場変動を付与して熱量効果を誘発させる。熱媒体回路(C)には、第1熱交換器(16)と第2熱交換器(17)と内部流路(13)とが接続される。往復式ポンプ(21)は、熱媒体回路(C)において磁場変動に応じて熱媒体を収容部(11)内の磁気作業物質(12)に対して往復的に搬送する。磁気冷凍装置(1)は、加熱運転と、デフロスト運転とを行う。加熱運転では、磁気作業物質(12)により加熱した熱媒体を第1熱交換器(16)で放熱させ且つ磁気作業物質(12)により冷却した熱媒体を第2熱交換器(17)で吸熱させる。デフロスト運転では、加熱運転で第2熱交換器(17)に付着した霜を取り除く。磁気作業物質(12)は、熱量効果が最大となる温度が異なる複数の物質(12a~12e)を含み、複数の物質(12a~12e)は、内部流路(13)に沿って前記温度の高低順に配置される。
 本実施形態の磁気冷凍装置(1)では、デフロスト運転において、磁場変動の位相に対する内部流路(13)における熱媒体の搬送方向を、加熱運転とは反対向きに切り替える。これにより、高温側熱交換器の大型化、又はバルブ若しくはタンク等の追加による装置構造の複雑化を回避しつつ、低コストで低温側熱交換器の除霜を行うことができる。
 詳しくは、本実施形態の磁気冷凍装置(1)では、熱源としての高温側(本例では室内側)の第1熱交換器(16)の温熱に加えて、AMRサイクルの逆転に起因する損失(磁気冷凍サイクル仕事、熱媒体圧力損失、渦電流損失など)も熱源として利用できるため、高温熱交換器の大型化や蓄熱タンクの設置は不要である。さらに、デフロスト運転で第1熱交換器(16)(室内熱交換器)を第2熱交換器(17)(室外熱交換器)よりも低温にすることが可能となり、その分を熱源として利用できるため、室内熱交換器の大型化を回避することができる。
 また、本実施形態の磁気冷凍装置(1)によると、制御部(30)により磁場変調部(15)及び往復式ポンプ(21)を電気的に制御するだけで、デフロスト運転において、磁場変動の位相に対する内部流路(13)における熱媒体の搬送方向を、加熱運転とは反対向きに切り替える。このため、デフロスト運転でバルブによる流路切り替えによって高温側と低温側とを入れ替えて、磁気作業物質の生成する温熱で除霜する従来方式と比べて、以下のような利点が生じる。すなわち、本実施形態の磁気冷凍装置(1)がデフロスト運転へ移行した時点で、カスケード配置された磁気作業物質(12)の各材料のキュリー温度が熱媒体の温度と近くなるため、熱移動量が増大して迅速なデフロストが可能となる。それに対して、バルブによる流路切り替えを用いた従来方式によると、デフロスト運転へ移行した時点では、カスケード配置された磁気作業物質(12)の各材料のキュリー温度が熱媒体の温度と大きく異なっているので、熱移動量が小さくなってデフロストが遅くなるか、又はデフロストができなくなる可能性がある。
 本実施形態の磁気冷凍装置(1)において、収容部(11)は、熱媒体回路(C)において互いに直列接続された複数の部分収容部(11a~11e)を含み、複数の部分収容部(11a~11e)のそれぞれは、複数の物質(12a~12e)のうち少なくとも1つの物質を有してもよい。このようにすると、固体冷媒物質(12)のカスケード配置構成の自由度が高くなる。
 本実施形態の磁気冷凍装置(1)において、磁場変調部(15)と往復式ポンプ(21)を電気的に制御して、磁場変動の位相に対する内部流路(13)における熱媒体の搬送方向を切り替えてもよい。このようにすると、装置の大型化や複雑化を回避しつつ、電気的制御によりデフロストを行うことができる。
 本実施形態の磁気冷凍装置(1)において、デフロスト運転では磁場変動の周波数を高くしてもよい。
 このようにすると、磁場変動の周波数と共に熱媒体の往復的搬送の頻度が多くなるので、熱媒体の流量が増大して圧力損失が増大する結果、熱媒体に移動する熱量も増大する。また、収容部(11)の構成材料や、当該材料に近接する力場変調部(15)の構成材料(ヨークなど)において、渦電流損失が増大する結果、熱媒体に移動する熱量がさらに増大する。従って、デフロストを高速化することができる。
 本実施形態の磁気冷凍装置(1)において、デフロスト運転では、熱媒体回路(C)における熱媒体の流量を増大させてもよい。
 このようにすると、熱媒体の流量が増加して圧力損失が増大する結果、熱媒体に移動する熱量も増大するので、デフロストを高速化することができる。
 (実施例)
 本実施形態の磁気冷凍装置(1)に15種類の磁気作業物質(12)をカスケード配置した構成(15段カスケードAMR)についてデフロスト運転のシミュレーションを行った。シミュレーション条件は、RA(room aircon)4kW、暖房低温(外気温度:2℃、室内温度:20℃)、室内熱交換器及び配管の内部の水量2L(20℃)、室外熱交換器の着氷量1.4kg(必要な溶解熱468kJ)、室内熱交換器での室内空気との熱交換無し(ファン停止)とした。シミュレーションの結果、氷は約70秒で溶け、デフロスト開始から3分経過後に磁気作業物質(12)の各材料の温度がデフロスト運転前(つまり暖房運転時)のキュリー温度近傍に復帰し、暖房運転を再開することができた。尚、デフロスト運転に切り替えると、磁気作業物質(12)の各材料の温度は低下を始めるが、運転切り替え当初は、各材料の温度がキュリー温度近傍にあるため、内部流路(13)内において熱媒体への熱移動量が大きかった。
 (変形例1)
 変形例1について説明する。本変形例の磁気冷凍装置(1)は、磁気熱量効果を利用して熱媒体の温度を調節する固体冷凍装置であって、例えば空気調和装置に適用される。この場合、磁気冷凍装置(1)は、空調対象の空間の空気の温度を調節する。空調対象の空間は、例えば室内空間である。磁気冷凍装置(1)は、冷房運転と暖房運転とデフロスト運転を切り換えて行う。
  <磁気冷凍装置の構成>
 図8及び図9はそれぞれ、本変形例の磁気冷凍装置(1)の配管系統図及び磁気冷凍ユニット(U)の概略構成図である。図8及び図9において、図1に示す前記実施形態の磁気冷凍装置(1)と同じ構成要素には同じ符号を付している。
 図8に示すように、磁気冷凍装置(1)は、主として、磁気冷凍ユニット(U)と、第1熱交換器(16)と、第2熱交換器(17)とを備える。磁気冷凍ユニット(U)、第1熱交換器(16)、及び第2熱交換器(17)は、熱媒体配管を介して互いに接続されて熱媒体回路(C)を構成する。尚、図示は省略しているが、本変形例の磁気冷凍装置(1)は、前記実施形態の制御部(30)と同様の制御部を有する。
 図9に示すように、磁気冷凍ユニット(U)は、主として、収容部(11)と、力場変調部である磁場変調部(15)と、熱媒体搬送部である往復式ポンプ(21)と、第1流出管(41)と、第1流入管(42)と、第2流出管(43)と、第2流入管(44)と、第1ポンプ側配管(45)と、第2ポンプ側配管(46)とを有する。
 収容部(11)は、前記実施形態と同様に、固体冷媒物質である磁気作業物質(12)と、熱媒体が固体冷媒物質(12)と熱交換して流れる内部流路(13)とを有する。磁気作業物質(12)は、熱量効果が最大となるキュリー温度が異なる複数の物質(12a~12e)から構成され、複数の物質(12a~12e)は、内部流路(13)に沿ってキュリー温度の高低順(つまりカスケード状)に配置される。
 本変形例では、収容部(11)の内部に、内部流路(13)として、第1内部流路(13A)と第2内部流路(13B)とが形成される。第1内部流路(13A)の一端には、第1流出管(41)が接続される。第1内部流路(13A)の他端には、第2流入管(44)が接続される。第2内部流路(13B)の一端には、第1流入管(42)が接続される。第2内部流路(13B)の他端には、第2流出管(43)が接続される。
 第1流出管(41)には、第1逆止弁(CV1)が設けられる。第1流入管(42)には、第2逆止弁(CV2)が設けられる。第2流出管(43)には、第3逆止弁(CV3)が設けられる。第2流入管(44)には、第4逆止弁(CV4)が設けられる。
 第1逆止弁(CV1)は、収容部(11)の第1内部流路(13A)から第1熱交換器(16)へ向かう方向の熱媒体の流れを許容し、その逆方向の熱媒体の流れを禁止する。第2逆止弁(CV2)は、第1熱交換器(16)から収容部(11)の第2内部流路(13B)へ向かう方向の熱媒体の流れを許容し、その逆方向の熱媒体の流れを禁止する。第3逆止弁(CV3)は、収容部(11)の第2内部流路(13B)から第2熱交換器(17)へ向かう方向の熱媒体の流れを許容し、その逆方向の熱媒体の流れを禁止する。第4逆止弁(CV4)は、第2熱交換器(17)から収容部(11)の第1内部流路(13A)へ向かう方向の熱媒体の流れを許容し、その逆方向の熱媒体の流れを禁止する。
 磁場変調部(15)は、前記実施形態と同様に、収容部(11)内の磁気作業物質(12)に磁場変動を付与して熱量効果を誘発させる。磁場変調部(15)は、例えば磁場を変調可能な電磁石で構成される。磁場変調部(15)は、第1変調動作と第2変調動作とを行う。第1変調動作では、磁気作業物質(22)に所定の磁場を印加する。第2変調動作では、所定の磁場よりも小さい磁場を印加し又は所定の磁場を除去する。
 往復式ポンプ(21)は、前記実施形態と同様に、熱媒体回路(C)の熱媒体を往復的に搬送する。往復式ポンプ(21)は、ピストンポンプで構成される。往復式ポンプ(21)は、ポンプケース(22)と、ピストン(23)と、駆動機構(図示省略)とを有する。ピストン(23)は、ポンプケース(22)の内部に配置される。ピストン(23)は、ポンプケース(22)の内部を2つの室に区画する。往復式ポンプ(21)には、第1ポート(24)と第2ポート(25)とが設けられる。ポンプケース(22)の一方の室が第1ポート(24)と連通し、他方の室が第2ポート(25)と連通する。
 第1ポンプ側配管(45)の一端は、第1ポート(24)に接続する。第1ポンプ側配管(45)の他端は、第1流入管(42)のうち第2逆止弁(CV2)の上流側に接続される。第2ポンプ側配管(46)の一端は、第2ポート(25)に接続する。第2ポンプ側配管(46)の他端は、第2流入管(44)のうち第4逆止弁(CV4)の上流側に接続される。
 駆動機構は、ピストン(23)に連結するロッドと、該ロッドに連結するクランクと、該クランクを駆動する電動機とを有する。電動機がクランクを回転駆動すると、ロッドが進退する。これにより、ポンプケース(22)内でピストン(23)の往復運動が行われる。
 具体的には、往復式ポンプ(30)では、第1搬送動作と第2搬送動作とが交互に繰り返し行われる。第1搬送動作(図10、図11の(A)参照)では、ピストン(23)が第1ポート(24)側に移動する。これにより、第1ポート(24)から熱媒体が吐出される。吐出された熱媒体は、第1流入管(42)、第2内部流路(13B)、第2流出管(43)を順に流れる。第2搬送動作(図10、図11の(B)参照)では、ピストン(23)が第2ポート(25)側に移動する。これにより、第2ポート(25)から熱媒体が吐出される。吐出された熱媒体は、第2流入管(44)、第1内部流路(13A)、及び第1流出管(41)を順に流れる。
  <磁気冷凍装置の運転動作>
 本変形例の磁気冷凍装置(1)は、冷房運転と、暖房運転と、デフロスト運転とを行う。本変形例では、第1熱交換器(16)は、磁気作業物質(12)により加熱された熱媒体と室内空気とを熱交換させる室内熱交換器であり、第2熱交換器(17)は、磁気作業物質(12)により冷却された熱媒体と室外空気とを熱交換させる室外熱交換器である。すなわち、冷房運転では、室内空間の空気が冷却される。冷房運転は冷却運転に対応する。暖房運転では、室内空間の空気が加熱される。暖房運転は加熱運転に対応する。デフロスト運転では、室外熱交換器の霜が融かされる。
 冷房運転では、図10の(A)に示す動作と、図10の(B)に示す動作とが交互に繰り返し行われる。
 図10の(A)に示す動作では、磁場変調部(15)の第1変調動作と、往復式ポンプ(21)の第1搬送動作とが同時に行われる。これにより、収容部(11)の第2内部流路(13B)で熱媒体が加熱され、加熱された熱媒体は、第2流出管(43)を流出する。同時に熱媒体回路(C)の熱媒体は、ポンプケース(22)の第2ポート(25)に流入する。
 図10の(B)に示す動作では、磁場変調部(15)の第2変調動作と、往復式ポンプ(21)の第2搬送動作とが同時に行われる。これにより、収容部(11)の第1内部流路(13A)で熱媒体が冷却され、冷却された熱媒体は、第1流出管(41)を流出する。同時に熱媒体回路(C)の熱媒体は、ポンプケース(22)の第1ポート(24)に流入する。
 図10の(A)に示す動作で磁気冷凍ユニット(U)により加熱された熱媒体は、図12に示すように、第2熱交換器(17)を流れる。第2熱交換器(17)つまり室外熱交換器では、熱媒体が室外空気へ放熱する。第2熱交換器(17)で放熱した熱媒体は、磁気冷凍ユニット(U)に戻る。
 図10の(B)に示す動作で磁気冷凍ユニット(U)により冷却された熱媒体は、図12に示すように、第1熱交換器(16)を流れる。第1熱交換器(16)つまり室内熱交換器では、熱媒体が室内空気から吸熱する。この結果、室内空気が冷却される。第1熱交換器(16)で吸熱した熱媒体は、磁気冷凍ユニット(U)に戻る。
 尚、便宜上、図12では、各動作の熱媒体の流れを同じ図に表している。また、図12では、第1熱交換器(16)及び第2熱交換器(17)のうち熱媒体が放熱する熱交換器にハッチングを付し、熱媒体が吸熱する熱交換器にドットを付している。後述する図13、図14でも同様である。
 暖房運転では、図11の(A)に示す動作と、図11の(B)に示す動作とが交互に繰り返し行われる。
 図11の(A)に示す動作では、磁場変調部(15)の第2変調動作と、往復式ポンプ(21)の第1搬送動作とが同時に行われる。これにより、収容部(11)の第2内部流路(13B)で熱媒体が冷却され、冷却された熱媒体は、第2流出管(43)を流出する。同時に熱媒体回路(C)の熱媒体は、ポンプケース(22)の第2ポート(25)に流入する。
 図11の(B)に示す動作では、磁場変調部(15)の第1変調動作と、往復式ポンプ(21)の第2搬送動作とが同時に行われる。これにより、収容部(11)の第1内部流路(13A)で熱媒体が加熱され、加熱された熱媒体は、第1流出管(41)を流出する。同時に熱媒体回路(C)の熱媒体は、ポンプケース(22)の第1ポート(24)に流入する。
 図11の(A)に示す動作で磁気冷凍ユニット(U)により冷却された熱媒体は、図13に示すように、第2熱交換器(17)を流れる。第2熱交換器(17)つまり室外熱交換器では、熱媒体が室外空気から吸熱する。第2熱交換器(17)で吸熱した熱媒体は、磁気冷凍ユニット(U)に戻る。
 図11の(B)に示す動作で磁気冷凍ユニット(U)により加熱された熱媒体は、図13に示すように、第1熱交換器(16)を流れる。第1熱交換器(16)つまり室内熱交換器では、熱媒体が室内空気に放熱する。この結果、室内空気が加熱される。第1熱交換器(16)で放熱した熱媒体は、磁気冷凍ユニット(U)に戻る。
 デフロスト運転では、基本的に冷房運転と同じ動作、つまり、図10の(A)に示す動作と、図10の(B)に示す動作とが交互に繰り返し行われる。
 図10の(A)に示す動作で磁気冷凍ユニット(U)により加熱された熱媒体は、図14に示すように、第2熱交換器(17)を流れる。第2熱交換器(17)つまり室外熱交換器では、その内部を流れる熱媒体により、室外熱交換器の表面の霜が融かされる。室外熱交換器の除霜に利用された熱媒体は、磁気冷凍ユニット(U)に戻る。
 図10の(B)に示す動作で磁気冷凍ユニット(U)により冷却された熱媒体は、図14に示すように、第1熱交換器(16)を流れる。第1熱交換器(16)つまり室内熱交換器では、熱媒体が室内空気から吸熱する。第1熱交換器(16)で吸熱した熱媒体は、磁気冷凍ユニット(U)に戻る。
  <変形例1の特徴>
 以上に説明したように、本変形例の磁気冷凍装置(1)では、前記実施形態と同様に、デフロスト運転において、磁場変動の位相に対する内部流路(13)における熱媒体の搬送方向を、加熱運転とは反対向きに切り替える。これにより、高温側熱交換器の大型化、又はバルブ若しくはタンク等の追加による装置構造の複雑化を回避しつつ、低コストで低温側熱交換器の除霜を行うことができる。
 (変形例2)
 変形例2について説明する。本変形例の磁気冷凍装置(1)は、磁気熱量効果を利用して熱媒体の温度を調節する固体冷凍装置であって、例えば空気調和装置に適用される。この場合、磁気冷凍装置(1)は、空調対象の空間の空気の温度を調節する。空調対象の空間は、例えば室内空間である。磁気冷凍装置(1)は、冷房運転と暖房運転とデフロスト運転を切り換えて行う。
  <磁気冷凍装置の構成>
 図15及び図16はそれぞれ、本変形例の磁気冷凍装置(1)の配管系統図及び磁気冷凍ユニット(U)の概略構成図である。図15及び図16において、図1に示す前記実施形態の磁気冷凍装置(1)と同じ構成要素には同じ符号を付している。
 図15に示すように、磁気冷凍装置(1)は、主として、磁気冷凍ユニット(U)と、第1熱交換器(16)と、第2熱交換器(17)と、第1四方切換弁(F1)と、第2四方切換弁(F2)とを備える。磁気冷凍ユニット(U)、第1熱交換器(16)、及び第2熱交換器(17)は、熱媒体配管を介して互いに接続されて熱媒体回路(C)を構成する。尚、図示は省略しているが、本変形例の磁気冷凍装置(1)は、前記実施形態の制御部(30)と同様の制御機構を有する。
 図16に示すように、磁気冷凍ユニット(U)は、固体冷凍モジュールとしての2つの磁気冷凍モジュール(10)と、低温流出管(51)と、低温流入管(52)と、高温流出管(53)と、高温流入管(54)と、ユニット側ポンプ(55)とを有する。磁気冷凍ユニット(U)は、低温第1三方弁(56)と、低温第2三方弁(57)と、高温第1三方弁(58)と、高温第2三方弁(59)とを有する。2つの磁気冷凍モジュール(10)は、第1磁気冷凍モジュール(10A)と第2磁気冷凍モジュール(10B)とで構成される。本変形例では、ユニット側ポンプ(55)及び複数の三方弁(56,57,58,59)により、熱媒体搬送部(50)が構成される。
 第1磁気冷凍モジュール(10A)及び第2磁気冷凍モジュール(10B)はそれぞれ、収容部(11)と、力場変調部である磁場変調部(15)とを有する。
 収容部(11)は、前記実施形態と同様に、固体冷媒物質である磁気作業物質(12)と、熱媒体が固体冷媒物質(12)と熱交換して流れる内部流路(13)とを有する。磁気作業物質(12)は、熱量効果が最大となるキュリー温度が異なる複数の物質(12a~12e)から構成され、複数の物質(12a~12e)は、内部流路(13)に沿ってキュリー温度の高低順(つまりカスケード状)に配置される。
 磁場変調部(15)は、前記実施形態と同様に、収容部(11)内の磁気作業物質(12)に磁場変動を付与して熱量効果を誘発させる。磁場変調部(15)は、例えば磁場を変調可能な電磁石で構成される。磁場変調部(15)は、第1変調動作と第2変調動作とを行う。第1変調動作では、磁気作業物質(22)に所定の磁場を印加する。第2変調動作では、所定の磁場よりも小さい磁場を印加し又は所定の磁場を除去する。
 各磁気冷凍モジュール(10)の収容部(11)の内部のそれぞれには、第1内部流路(13A)と第2内部流路(13B)とが形成される。第1磁気冷凍モジュール(10A)の第1内部流路(13A)の低温端は、低温第1三方弁(56)を介して低温流出管(51)に接続する。第1磁気冷凍モジュール(10A)の第2内部流路(13B)の低温端は、低温第2三方弁(57)を介して低温流入管(52)に接続する。第2磁気冷凍モジュール(10B)の第1内部流路(13A)の高温端は、高温第2三方弁(59)を介して高温流入管(54)に接続する。第2磁気冷凍モジュール(10B)の第2内部流路(13B)の高温端は、高温第1三方弁(58)を介して高温流出管(53)に接続する。
 ユニット側ポンプ(55)は、高温流出管(53)に設けられる。ユニット側ポンプ(55)は、一方向式のポンプである。ユニット側ポンプ(55)は、高温流出管(53)の下流側に向かって熱媒体を搬送する。
 低温第1三方弁(56)の第1ポートは、低温流出管(51)に連通する。低温第1三方弁(56)の第2ポートは、第2磁気冷凍モジュール(10B)の第1内部流路(13A)の低温端に連通する。低温第1三方弁(56)の第3ポートは、第1磁気冷凍モジュール(10A)の第1内部流路(13A)の低温端に連通する。
 低温第2三方弁(57)の第1ポートは、低温流入管(52)に連通する。低温第2三方弁(57)の第2ポートは、第2磁気冷凍モジュール(10B)の第2内部流路(13B)の低温端に連通する。低温第2三方弁(57)の第3ポートは、第1磁気冷凍モジュール(10A)の第2内部流路(13B)の低温端に連通する。
 高温第1三方弁(58)の第1ポートは、高温流出管(53)に連通する。高温第1三方弁(58)の第2ポートは、第2磁気冷凍モジュール(10B)の第2内部流路(13B)の高温端に連通する。高温第1三方弁(58)の第3ポートは、第1磁気冷凍モジュール(10A)の第2内部流路(13B)の高温端に連通する。
 高温第2三方弁(59)の第1ポートは、高温流入管(54)に連通する。高温第2三方弁(59)の第2ポートは、第2磁気冷凍モジュール(10B)の第1内部流路(13A)の高温端に連通する。高温第2三方弁(59)の第3ポートは、第1磁気冷凍モジュール(10A)の第1内部流路(13A)の高温端に連通する。
 各三方弁(56,57,58,59)は、第1ポート、第2ポート及び第3ポートをそれぞれ有する。尚、図面において、三方弁の第1ポートは1を丸で囲んだ記号とし、三方弁の第2ポートは2を丸で囲んだ記号とし、三方弁の第3ポートは3を丸で囲んだ記号としている。
 各三方弁(56,57,58,59)は、第1状態(図16の実線で示す状態)と第2状態(図16の破線で示す状態)とに切り換わる。第1状態の各三方弁(56,57,58,59)は、第1ポートと第2ポートとを連通させる。第2状態の各三方弁(56,57,58,59)は、第1ポートと第3ポートとを連通させる。
 本変形例では、図15に示す第1熱交換器(16)は、熱媒体と室内空気とを熱交換させる室内熱交換器である。第1熱交換器(16)の一端は、配管を介して第1四方切換弁(F1)の第2ポートと接続する。第1熱交換器(16)の他端は、配管を介して第2四方切換弁(F2)の第2ポートと接続する。また、図15に示す第2熱交換器(17)は、熱源となる室外熱交換器である。第2熱交換器(17)は、熱媒体と室外空気とを熱交換させる。第2熱交換器(17)の一端は、配管を介して第1四方切換弁(F1)の第3ポートと接続する。第2熱交換器(17)の他端は、配管を介して第2四方切換弁(F2)の第3ポートと接続する。
 第1四方切換弁(F1)及び第2四方切換弁(F2)は、熱媒体回路(C)の熱媒体の流路を切り換える切換機構である。本変形例の第1四方切換弁(F1)及び第2四方切換弁(F2)は、冷房運転、暖房運転及びデフロスト運転において、熱媒体の流路を切り換える。各四方切換弁(F1,F2)は、第1ポート、第2ポート、第3ポート、及び第4ポートをそれぞれ有する。尚、図面において、四方切換弁の第1ポートは1を丸で囲んだ記号とし、四方切換弁の第2ポートは2を丸で囲んだ記号とし、四方切換弁の第3ポートは3を丸で囲んだ記号とし、四方切換弁の第4ポートは4を丸で囲んだ記号としている。
 各四方切換弁(F1,F2)は、第1状態(図15の実線で示す状態)と第2状態(図15の破線で示す状態)とに切り換わる。第1状態の各四方切換弁(F1,F2)は、第1ポートと第2ポートとを連通させると同時に第3ポートと第4ポートとを連通させる。第2状態の各四方切換弁(F1,F2)は、第1ポートと第3ポートとを連通させると同時に第2ポートと第4ポートとを連通させる。
 第1四方切換弁(F1)の第1ポートは高温流入管(54)に連通する。第1四方切換弁(F1)の第2ポートは第1熱交換器(16)に連通する。第1四方切換弁(F1)の第3ポートは第2熱交換器(17)に連通する。第1四方切換弁(F1)の第4ポートは低温流入管(52)に連通する。
 第2四方切換弁(F2)の第1ポートは高温流出管(53)に連通する。第2四方切換弁(F2)の第2ポートは第1熱交換器(16)に連通する。第2四方切換弁(F2)の第3ポートは第2熱交換器(17)に連通する。第2四方切換弁(F2)の第4ポートは低温流出管(51)に連通する。
 尚、本変形例の制御部(30)は、磁気冷凍ユニット(U)及び各四方切換弁(F1,F2)と通信回線を介して接続されている。すなわち、制御部(30)は、磁場変調部(15)、熱媒体搬送部(50)、及び各四方切換弁(F1,F2)をそれぞれ制御する。
  <磁気冷凍装置の運転動作>
 本変形例の磁気冷凍装置(1)は、冷房運転と、暖房運転と、デフロスト運転とを行う。本変形例では、第1熱交換器(16)は、磁気作業物質(12)により加熱された熱媒体と室内空気とを熱交換させる室内熱交換器であり、第2熱交換器(17)は、磁気作業物質(12)により冷却された熱媒体と室外空気とを熱交換させる室外熱交換器である。すなわち、冷房運転では、室内空間の空気が冷却される。冷房運転は冷却運転に対応する。暖房運転では、室内空間の空気が加熱される。暖房運転は加熱運転に対応する。デフロスト運転では、室外熱交換器の霜が融かされる。
 冷房運転では、図17の(A)に示す動作と、図17の(B)に示す動作とが交互に繰り返し行われる。各動作の切換の周期は1秒程度である。
 図17の(A)に示す動作では、第1磁気冷凍モジュール(10A)が第1変調動作を行い、第2磁気冷凍モジュール(10B)が第2変調動作を行う。低温第1三方弁(56)が第1状態に、低温第2三方弁(57)が第2状態に、高温第1三方弁(58)が第2状態に、高温第2三方弁(59)が第1状態にそれぞれ設定される。ユニット側ポンプ(55)が運転する。
 図17の(B)に示す動作では、第1磁気冷凍モジュール(10A)が第2変調動作を行い、第2磁気冷凍モジュール(10B)が第1変調動作を行う。低温第1三方弁(56)が第2状態に、低温第2三方弁(57)が第1状態に、高温第1三方弁(58)が第1状態に、高温第2三方弁(59)が第2状態にそれぞれ設定される。ユニット側ポンプ(55)が運転する。
 冷房運転では、図18に示すように、第1四方切換弁(F1)が第2状態に、第2四方切換弁(F2)が第2状態に設定される。これにより、「各磁気冷凍モジュール(10)により冷却した熱媒体が低温流出管(51)、第1熱交換器(16)、及び低温流入管(52)を流れ、且つ各磁気冷凍モジュール(10)により加熱した熱媒体が高温流出管(53)、第2熱交換器(17)、及び高温流入管(54)を流れる流路」が形成される。尚、便宜上、図18では、各動作の熱媒体の流れを同じ図に表している。また、図18では、第1熱交換器(16)及び第2熱交換器(17)のうち熱媒体が放熱する熱交換器にハッチングを付し、熱媒体が吸熱する熱交換器にドットを付している。後述する図19、図20でも同様である。
 具体的には、磁気冷凍ユニット(U)により加熱された熱媒体は、第2四方切換弁(F2)を通過し、第2熱交換器(17)を流れる。第2熱交換器(17)つまり室外熱交換器では、熱媒体が室外空気へ放熱する。第2熱交換器(17)で放熱した熱媒体は、第1四方切換弁(F1)を通過し、磁気冷凍ユニット(U)に戻る。
 また、磁気冷凍ユニット(U)により冷却された熱媒体は、第2四方切換弁(F2)を通過し、第1熱交換器(16)を流れる。第1熱交換器(16)つまり室内熱交換器では、熱媒体が室内空気から吸熱する。この結果、室内空気が冷却される。第1熱交換器(16)で吸熱した熱媒体は、第1四方切換弁(F1)を通過し、磁気冷凍ユニット(U)に戻る。
 暖房運転でも、図17の(A)に示す動作と、図17の(B)に示す動作とが交互に繰り返し行われる。暖房運転では、図19に示すように、第1四方切換弁(F1)が第1状態に、第2四方切換弁(F2)が第1状態に設定される。これにより、「各磁気冷凍モジュール(10)により加熱した熱媒体が高温流出管(53)、第1熱交換器(16)、及び高温流入管(54)を流れ、且つ各磁気冷凍モジュール(10)により冷却した熱媒体が低温流出管(51)、第2熱交換器(17)、及び低温流入管(52)を流れる流路」が形成される。
 具体的には、磁気冷凍ユニット(U)により冷却された熱媒体は、第2四方切換弁(F2)を通過し、第2熱交換器(17)を流れる。第2熱交換器(17)つまり室外熱交換器では、熱媒体が室外空気から吸熱する。第2熱交換器(17)で吸熱した熱媒体は、第1四方切換弁(F1)を通過し、磁気冷凍ユニット(U)に戻る。
 また、磁気冷凍ユニット(U)により加熱された熱媒体は、第2四方切換弁(F2)を通過し、第1室内熱交換器(16)を流れる。第1室内熱交換器(16)つまり室内熱交換器では、熱媒体が室内空気へ放熱する。この結果、室内空気が加熱される。第1室内熱交換器(16)で放熱した熱媒体は、第1四方切換弁(F1)を通過し、磁気冷凍ユニット(U)に戻る。
 デフロスト運転では、実質的には冷房運転と同様の動作が行われる。すなわち、デフロスト運転では、冷房運転では、図17の(A)に示す動作と、図17の(B)に示す動作とが交互に繰り返し行われる。各動作の切換の周期は1秒程度である。デフロスト運転は、例えば冬季の暖房運転中において、第2熱交換器(17)つまり室外熱交換器の表面に霜が付く条件が成立すると実行される。
 デフロスト運転では、図20に示すように、第1四方切換弁(F1)が第2状態に、第2四方切換弁(F2)が第2状態に設定される。これにより、「各磁気冷凍モジュール(10)により冷却した熱媒体が低温流出管(51)、第1熱交換器(16)、及び低温流入管(52)を流れ、且つ各磁気冷凍モジュール(10)により加熱した熱媒体が高温流出管(53)、第2熱交換器(17)、及び高温流入管(54)を流れる流路」が形成される。
 具体的には、磁気冷凍ユニット(U)により加熱された熱媒体は、第2四方切換弁(F2)を通過し、第2熱交換器(17)を流れる。第2熱交換器(17)つまり室外熱交換器では、その内部を流れる熱媒体により、室外熱交換器の表面の霜が融かされる。室外熱交換器の除霜に利用された熱媒体は、第1四方切換弁(F1)を通過し、磁気冷凍ユニット(U)に戻る。
 また、磁気冷凍ユニット(U)により冷却された熱媒体は、第2四方切換弁(F2)を通過し、第1熱交換器(16)を流れる。第1熱交換器(16)つまり室内熱交換器では、熱媒体が室内空気から吸熱する。第1熱交換器(16)で吸熱した熱媒体は、第1四方切換弁(F1)を通過し、磁気冷凍ユニット(U)に戻る。
  <変形例2の特徴>
 冷房運転(冷却運転)が不要な場合、図19に示す配管系統で四方切換弁(F1,F2)の無い構成とし、デフロスト運転では、磁場変調部(15)と熱媒体搬送部(50)の電気的制御により、図17の(A)、(B)に示す動作で磁場変動の位相に対する内部流路(13)における熱媒体の搬送方向を、暖房運転(加熱運転)とは反対向きに切り替えてもよい。これにより、高温側熱交換器の大型化、又はバルブ若しくはタンク等の追加による装置構造の複雑化を回避しつつ、低コストで低温側熱交換器の除霜を行うことができる。
 (変形例3)
 変形例3について説明する。本変形例の磁気冷凍装置(1)は、磁気熱量効果を利用して熱媒体の温度を調節する固体冷凍装置であって、例えば空気調和装置に適用される。この場合、磁気冷凍装置(1)は、空調対象の空間の空気の温度を調節する。空調対象の空間は、例えば室内空間である。
  <磁気冷凍装置の構成>
 前記実施形態及び変形例1、2の磁気冷凍装置(1)では、中空状のケースないしカラムで構成された収容部(11)の内部に磁気作業物質(12)を充填し、磁場を変調可能な電磁石で構成された磁場変調部(15)を用いて、収容部(11)内の磁気作業物質(12)に磁場変動を付与した。
 それに対して、本変形例の磁気冷凍装置(1)は、磁気回路が回転する方式の磁気ヒートポンプ装置である。具体的には、本変形例の磁気冷凍装置(1)は、図21に示すように、磁気冷凍装置(1)は、主として、磁気冷凍モジュール(10)と、第1熱交換器(16)と、第2熱交換器(17)と、熱媒体ポンプ(21A)とが設けられた熱媒体回路(C)を備える。熱媒体回路(C)の各構成要素は、熱媒体配管を介して互いに接続されている。磁気冷凍装置(1)は、熱量効果を利用して熱媒体の温度を調節する固体冷凍装置であり、磁気冷凍モジュール(10)は、熱量効果を利用して熱媒体の温度を調節する固体冷凍モジュールである。
 磁気冷凍モジュール(10)は、例えば、二次冷媒や空気などと熱交換する空気調和装置に設けられる。磁気冷凍モジュール(10)の用途は、これに限られるものではなく、例えば、冷専チラーとして構成された磁気冷凍システム(1)に設けられてもよい。
 磁気冷凍モジュール(10)は、固体冷媒物質としての磁気作業物質(12)を収容し且つ熱媒体が流れる内部流路(13)を形成する複数の部分収容部(11a~11l)を有する環状の収容部(11)を備える。磁気冷凍モジュール(10)は、磁気作業物質(12)に力場である磁場を印加したり除去したりすることで磁気熱量効果を生じさせ、それにより流路(13)を流れる熱媒体を加熱又は冷却する。
 本変形例でも、磁気作業物質(12)は、熱量効果が最大となるキュリー温度が異なる複数の物質(12a~12e)から構成され、複数の物質(12a~12e)は、各部分収容部(11a~11l)の内部流路(13)に沿ってキュリー温度の高低順(つまりカスケード状)に配置される。
 図21及び図22に示すように、磁気冷凍モジュール(10)は、例えば12個の複数の単位モジュール(10a~10l)から構成される。複数の単位モジュール(10a~10l)の各構成要素は、複数の部分収容部(11a~11l)にそれぞれ収納される。本実施形態では、各部分収容部(11a~11l)は、例えば環状扇形状であるが、これに限定されず、扇形状又は台形状などであってもよい。複数の部分収容部(11a~11l)が環状に組み合わされることによって、磁気冷凍モジュール(10)の環状の収容部(11)が構成される。各部分収容部(11a~11l)の厚さは、磁束漏れが生じ難く、且つ、必要となる収納部の体積を確保できる厚さに設定される。尚、以下の説明で、部分収容部(11a)と記載するときは、複数の部分収容部(11a~11l)のうちの任意の収納部片を表すものとし、単位モジュール(10a)と記載するときは、複数の単位モジュール(10a~10l)のうちの任意の単位モジュールを表すものとする。
 本変形例では、図22及び図23に示すように、環状の収容部(11)の軸方向において磁気冷凍モジュール(10)を挟むように、力場変調部である磁場変調部(15)が配置される。磁場変調部(15)は、磁気冷凍モジュール(10)に近接して配置される力場発生部である環状の磁石(15a)と、環状の磁石(15a)を支持し且つ磁路を形成するためのヨーク(15b)と、回転機構(15c)とを有する。磁気冷凍モジュール(10)の中央部開口を通って環状の収容部(11)の軸方向に延びるように回転機構(15c)が配置される。磁石(15a)は、回転機構(15c)によって環状の収容部(11)の周方向に回転する。磁石(15a)(環状の収容部(11)の軸方向において磁気冷凍モジュール(10)を挟む一対の磁石)の配置数は磁気回路の極数に等しい。本例では、部分収容部(11a)3個分の面積とオーバーラップする磁石(15a)が2つ配置される。本例では、磁石(15a)及び単位モジュール(20a)は、同軸の周方向にそれぞれ均等配置される。環状の収容部(11)つまり磁気冷凍モジュール(10)は固定されてもよい。
 本変形例の磁気冷凍モジュール(10)では、回転機構(15c)の回転に伴い、磁石(15a)により励磁される単位モジュール(10a)は時々刻々変化するので、磁石回転型の磁気冷凍モジュール(10)が構成される。尚、図21及び図22では、単位モジュール(10a,10b,10c,10g,10h,10i)が励磁されており、単位モジュール(10d,10e,10f,10j,10k,10l)が消磁されている様子を示している。
 図21に示すように、磁気冷凍モジュール(10)を構成する各単位モジュール(10a~10l)は、低温側流入路(61)と、低温側流出路(62)と、高温側流入路(63)と、高温側流出路(64)とを有する。各流入路(61,63)及び各流出路(62,64)は、各単位モジュール(10a~10l)の部分収容部(11a~11l)の内部流路(13)に連通している。低温側流入路(61)から流入した熱媒体は、部分収容部(11a)の内部流路(13)を流れて高温側流出路(64)から排出される。高温側流入路(63)から流入した熱媒体は、部分収容部(11a)の内部流路(13)を流れて低温側流出路(62)から排出される。
 本変形例において、第1熱交換器(16)は、磁気冷凍モジュール(10)で加熱された熱媒体と、室内の空気とを熱交換させる室内熱交換器である。第1熱交換器(16)は、磁気冷凍モジュール(10)の高温側流入路(63)に接続された第1流出部(16a)と、磁気冷凍モジュール(10)の高温側流出路(64)に接続された第1流入部(16b)とを有する。第1流出部(16a)と各単位モジュール(10a~10l)の高温側流入路(63)との間の熱媒体配管には、高圧側多方切換弁(110)が設けられている。第1流入部(16b)と各単位モジュール(10a~10l)の高温側流出路(64)との間の熱媒体配管には、低圧側多方切換弁(120)が設けられている。本変形例では、高圧側多方切換弁(110)と低圧側多方切換弁(120)とが一体として、回転バルブ型多方切換弁(100)を構成する。
 本変形例において、第2熱交換器(17)は、磁気冷凍モジュール(10)で冷却された熱媒体と、室外の空気とを熱交換させる室外熱交換器である。第2熱交換器(17)は、磁気冷凍モジュール(10)の低温側流入路(61)に接続された第2流出部(17a)と、磁気冷凍モジュール(10)の低温側流出路(62)に接続された第2流入部(17b)とを有する。第2流出部(17a)と各単位モジュール(10a~10l)の低温側流入路(61)との間の熱媒体配管には、第1逆止弁(91)が設けられている。第2流入部(17b)と各単位モジュール(10a~10l)の低温側流出路(62)との間の熱媒体配管には、第2逆止弁(92)が設けられている。
 熱媒体ポンプ(21A)は、磁気冷凍モジュール(10)と各熱交換器(60,70)との間で熱媒体を流すためのものである。熱媒体ポンプ(21A)は、例えば、回転バルブ型多方切換弁(100)のうちの低圧側多方切換弁(120)と第2熱交換器(17)との間の熱媒体配管に設けられる。
 本変形例では、熱媒体ポンプ(21A)及び回転バルブ型多方切換弁(100)により、熱媒体搬送部が構成される。
  <磁気冷凍装置の運転動作>
 図21に示す磁気冷凍システム(1)においては、各逆止弁(91,92)及び回転バルブ型多方切換弁(100)を制御すると共に、当該制御動作に対応させて磁気冷凍モジュール(10)(単位モジュール(10a~10l))の収容部(11)に磁場を印加したり除去したりすることによって、冷熱を供給する。
 以下、図21及び図22に示すように、単位モジュール(20a,20b,20c,20g,20h,20i)が励磁されており、且つ、単位モジュール(20d,20e,20f,20j,20k,20l)が消磁されている場合を例として、具体的に説明する。尚、図21では、熱媒体の流れを矢印で示している。
 まず、第2熱交換器(17)の第2流出部(17a)から流れ出た熱媒体は、第1逆止弁(91)の制御により、励磁されている単位モジュール(10a,10b,10c,10g,10h,10i)の低温側流入路(61)に選択的に流入する。この熱媒体は、単位モジュール(10a,10b,10c,10g,10h,10i)において、発熱状態の磁気作業物質(12)と熱交換して加熱された後、高温側流出路(64)から流れ出る。
 単位モジュール(10a,10b,10c,10g,10h,10i)の高温側流出路(64)から流れ出た熱媒体は、低圧側多方切換弁(120)の制御により、熱媒体ポンプ(21A)を経て、第1熱交換器(16)の第1流入部(16b)に流入する。この熱媒体は、例えばクーリングタワー等の熱源ユニット(図示省略)を流れる二次冷媒と熱交換し、第1熱交換器(16)の第1流出部(16a)から流出する。
 第1熱交換器(16)の第1流出部(16a)から流れ出た熱媒体は、高圧側多方切換弁(110)の制御により、消磁されている単位モジュール(10d,10e,10f,10j,10k,10l)の高温側流入路(63)に選択的に流入する。この熱媒体は、単位モジュール(10d,10e,10f,10j,10k,10l)において、吸熱状態の磁気作業物質(12)と熱交換して冷却された後、低温側流出路(62)から流出する。
 単位モジュール(10d,10e,10f,10j,10k,10l)の低温側流出路(62)から流れ出た熱媒体は、第2逆止弁(92)の制御により、第2熱交換器(17)の第2流入部(17b)に流入する。この熱媒体は、例えばエアハンドリングユニット等の利用ユニット(図示省略)を流れる二次冷媒と熱交換し、第2熱交換器(17)の第2流出部(17a)から流出する。
  <変形例3の特徴>
 本変形例の加熱運転では、磁場変調部(15)により励磁したり消磁したりする単位モジュール(10a)を選択的に変えながら、以上に説明した熱媒体の流れ制御を繰り返し行う。また、加熱運転中において、低温側熱交換器(第2熱交換器(17))の表面に霜が付く条件が成立すると、デフロスト運転が実行される。デフロスト運転では、例えば磁場変調部(15)と回転バルブ型多方切換弁(100)の電気的制御により、磁場変動の位相に対する内部流路(13)における熱媒体の搬送方向を、加熱運転とは反対向きに切り替える。これにより、高温側熱交換器の大型化、又はバルブ若しくはタンク等の追加による装置構造の複雑化を回避しつつ、低コストで低温側熱交換器の除霜を行うことができる。
 (変形例4)
 前記実施形態及び変形例1~3の磁気冷凍装置(1)では、磁場変調部(15)と、熱媒体搬送部である往復式ポンプ(21)や各種バルブとがそれぞれ独立して駆動され、電気的に両者の同期を取る構成において、磁場変動の位相に対する内部流路(13)における熱媒体搬送方向を電気的に切り替える場合について説明した。
 それに対して、本変形例では、例えば軸、ベルト、ギアなどの位相調整機構を用いて、磁場変調部(15)と、熱媒体搬送部である往復式ポンプ(21)や各種バルブとが連動して駆動される構成において、磁場変調部(15)と熱媒体搬送部とを機械的に制御して、磁場変動の位相に対する内部流路(13)における熱媒体搬送方向を切り替える。
  <磁気冷凍装置の構成>
 図24は、本変形例の磁気冷凍装置(1)の概略要部構成図である。尚、図24において、図21~図23に示す前記変形例3の磁気冷凍装置(1)と同じ構成要素には同じ符号を付す。
 図24に示すように、本変形例の磁気冷凍装置では、前記変形例3の磁気冷凍装置(1)における回転型の磁気回路(磁場変調部(15))と回転バルブ型多方切換弁(100)とが、接続軸(71)を介して接続されており、これにより、磁場変動と熱媒体流動の間でタイミング(同期)が取られている。
 図24~図26に示す回転バルブ型多方切換弁(100)では、高圧側多方切換弁(110)と低圧側多方切換弁(120)とが同一の弁箱(101)に一体的に設けられる。尚、図24では、熱媒体の流れを矢印で示している。
 回転バルブ型多方切換弁(100)は、主に、弁箱(101)と、回転軸(102)と、高圧側入口ポート(115)と、低圧側出口ポート(125)と、高圧側弁板(111)と、高圧側弁体(112)と、低圧側弁板(121)と、低圧側弁体(122)とを備える。弁箱(101)は、例えばアクリル樹脂製である。回転軸(102)は、例えばステンレス製である。高圧側弁板(111)及び低圧側弁板(121)は、例えばアルミニウム製である。高圧側弁体(112)及び低圧側弁体(122)は、例えばPTFE等のフッ素樹脂製である。
 尚、本変形例おいて、「軸方向」とは、回転軸(102)(軸心(J))の延びる方向のことであり、「径方向」とは、回転軸(102)と直交する方向のことであり、「周方向」とは、回転軸(102)を中心とする円の円周方向のことである。後述する変形例5でも同様である。
 弁箱(101)の軸方向の一端(図24では上端)に高圧側弁板(111)が配置される。弁箱(101)の軸方向の他端(図24では下端)に低圧側弁板(121)が配置される。弁箱(101)における高圧側弁板(111)の内側に高圧側弁体(112)が配置される。弁箱(101)における低圧側弁板(121)の内側に低圧側弁体(122)が配置される。
 回転軸(102)は、高圧側弁板(111)の中心部を貫通するように、弁箱(101)の外部から内部まで延びる。回転軸(102)は、図外の駆動回転機構によって回転する。回転軸(102)と高圧側弁板(111)との間には、例えばメカニカルシール等のシール部材(103)が設けられる。弁箱(101)の内部において、回転軸(102)には高圧側弁体(112)及び低圧側弁体(122)が取り付けられる。高圧側弁体(112)及び低圧側弁体(122)は、回転軸(102)と共に回転可能である。
 高圧側弁体(112)及び低圧側弁体(122)は、同一の回転軸(102)で回転駆動される。このため、高圧側弁体(112)及び低圧側弁体(122)は、同じ回転数で同じ方向に回転する。また、高圧側弁体(112)と低圧側弁体(122)との相対位置関係は、回転によって変化しない。
 高圧側入口ポート(115)は、弁箱(101)の径方向側部に設置される。これにより、弁箱(101)の内部は、高圧側入口ポート(115)と連通することによって高圧に保持される。また、低圧側出口ポート(125)は、低圧側弁板(121)の中心部に設置される。
 高圧側弁板(111)には、複数の高圧側出口ポート(113)が回転軸(102)を囲むように形成される。高圧側弁体(112)には、高圧側流路(114)が形成される。高圧側流路(114)は、弁箱(101)の内部に対しオープン構造を持つ。高圧側流路(114)は、高圧側弁体(112)の回転位置に応じて、複数の高圧側出口ポート(113)のうちの少なくとも1つのポート(113a)と接続し、当該ポート(113a)と高圧側入口ポート(115)とを選択的に連通させる。高圧側弁体(112)は、回転位置に応じて、複数の高圧側出口ポート(113)のうち、弁箱(101)の内部の圧力よりも低圧となる少なくとも1つのポート(113b)を塞ぐ。当該ポート(113b)と弁箱(101)の内部との間の圧力差によって、高圧側弁体(112)は高圧側弁板(111)の方に吸引されて密着するので、流体の漏れを防ぐことができる。
 高圧側弁体(112)は、回転軸(102)の周方向には固定されるが、回転軸(102)の軸方向には固定されない。例えば、軸方向に対して垂直な回転軸(102)の断面形状をD形状とし、同じD形状の貫通穴を高圧側弁体(112)に設けて、当該貫通穴に回転軸(102)を通すことによって、高圧側弁体(112)を回転軸(102)の周方向に固定し、且つ回転軸(102)の軸方向に移動可能としてもよい。これにより、高圧側弁体(112)が高圧側弁板(111)の方に吸引されるときに回転軸(102)が一緒に吸引されることを回避できる。
 低圧側弁板(121)には、複数の低圧側入口ポート(123)が低圧側出口ポート(125)を囲むように形成される。低圧側弁体(122)には、低圧側流路(124)が形成される。低圧側弁体(122)は、回転位置に応じて、複数の低圧側入口ポート(123)のうち高圧となる少なくとも1つのポート(123a)を塞ぐ。低圧側流路(124)は、低圧側弁体(122)の回転位置に応じて、弁箱(101)の内部の圧力よりも低圧となる少なくとも1つのポート(123b)と接続し、当該ポート(123b)と低圧側出口ポート(125)とを選択的に連通させる。低圧側流路(124)は、弁箱(101)の内部に対しクローズド構造を持つ。言い換えると、弁箱(101)の内部の高圧と、低圧側流路(124)(低圧側弁体(122)の内部)の低圧とが分離される。これにより、低圧側弁体(122)の内部と弁箱(101)の内部との間の圧力差によって、低圧側弁体(122)は低圧側弁板(121)の方に吸引されて密着するので、流体の漏れを防ぐことができる。
 低圧側弁体(122)は、回転軸(102)の周方向には固定されるが、回転軸(102)の軸方向には固定されない。例えば、軸方向に対して垂直な回転軸(102)の断面形状をD形状とし、同じD形状の貫通穴を低圧側弁体(122)に設けて、当該貫通穴に回転軸(102)を通すことによって、低圧側弁体(122)を回転軸(102)の周方向に固定し、且つ回転軸(102)の軸方向に移動可能としてもよい。これにより、低圧側弁体(122)が低圧側弁板(121)の方に吸引されるときに回転軸(102)が一緒に吸引されることを回避できる。
 以上に説明したように、高圧側弁体(112)と低圧側弁体(122)とは別部材として構成され、軸方向にはそれぞれ独立して動ける(回転軸(102)に対してスライド可能である)ため、高圧側弁体(112)及び低圧側弁体(122)のそれぞれに作用する吸引力が相殺されることはない。また、各弁体(112,122)が軸方向に動くことが可能であるため、バネ(104)を各弁体(112,122)の間に設置した場合に、バネ(104)の弾性力によって、各弁体(112,122)を各弁板(111,121)に密着させることが可能となる。
 低圧側弁体(122)は、弁箱(101)の内部と低圧側流路(124)とを熱断熱する機構を備えてもよい。一例として、低圧側弁体(122)の少なくとも一部を断熱材で構成してもよい。断熱材としては、低摩擦で摺動性に優れた、例えばPTFEやPOM等の樹脂を用いてもよい。
 尚、図21に示す熱媒体回路(C)において、高圧側多方切換弁(110)の高圧側出口ポート(113)は、磁気冷凍モジュール(10)(単位モジュール(10a~10l))の高温側流入路(63)に接続される。また、低圧側多方切換弁(120)の低圧側入口ポート(123)は、磁気冷凍モジュール(10)の高温側流出路(64)に接続される。ここで、同じ単位モジュール(10a~10l)に接続された高圧側出口ポート(113)及び低圧側入口ポート(123)が同時に「開」になることはない。具体的には、同じ単位モジュール(10a~10l)に接続された高圧側出口ポート(113)及び低圧側入口ポート(123)については、一方のポートが「開」の場合は、他方のポートは「閉」となり、一方のポートが「閉」の場合は、他方のポートは「開」又は「閉」となる。
 ところで、磁気冷凍装置(1)の作動開始直後で弁箱(101)の内部圧力が小さい場合や、重力方向とは逆方向に弁体(112,122)を弁板(111,121)に圧接して密着させる場合などには、密着力が不足して流体が漏れる可能性がある。
 そこで、弁箱(101)の内部にバネ(104)を補助的に配置して、弁体(112,122)と弁板(111,121)との密着力を増大させている。尚、磁気冷凍装置(1)の通常動作時には、弁箱(101)内部の高圧を利用して密着力を発生させるので、バネ(104)の弾性力は、弁体(112,122)を弁板(111,121)に弱く密着させる程度でよい。これにより、バネ(104)の弾性力に起因する弁体(112,122)の摩耗を抑制できる。
 具体的には、バネ(104)は、高圧側弁体(112)と低圧側弁体(122)との間に設置される。バネ(104)は、回転軸(102)の外周を囲みながら軸方向に延びる。バネ(104)の一端は、高圧側弁体(112)に取り付けられ、バネ(104)の他端は、低圧側弁体(122)に取り付けられる。この構成では、バネ押さえ等の他の部材を設けることなく、バネ(104)の設置によって、高圧側弁体(112)を高圧側弁板(111)に押しつけると共に低圧側弁体(122)を低圧側弁板(121)に押しつけることが可能となる。また、バネ(104)は、高圧側弁体(112)及び低圧側弁体(122)と一体となって回転するため、バネ(104)と弁体(112,122)との間や、バネ(104)と弁箱(101)との間などに、滑り部分を設ける必要もないので、摩擦トルクや摩耗の発生を回避することができる。
  <変形例4の特徴>
 本変形例の磁気冷凍装置(1)では、磁場変調部(15)の軸(回転機構(15c))と、回転バルブ型多方切換弁(100)の回転軸(102)とが接続軸(71)を介して接続されており、これにより、磁場変調部(15)と、回転バルブ弁体(高圧側弁体(112)、低圧側弁体(122))とは、同一の軸(以下、共通軸という)により回転する。一方、磁気冷凍モジュール(10)は固定される。
 通常、回転バルブ型多方切換弁(100)の本体(弁箱(101)、弁板(高圧側弁板(111)、低圧側弁板(121)))は固定されるところ、本変形例では、回転バルブ型多方切換弁(100)の本体を共通軸を中心として回転させる。これにより、弁板(高圧側弁板(111)、低圧側弁板(121))のポート位置が回転方向に移動するので、熱媒体流動のタイミングを変化させること(つまり位相をずらす)が可能となる。
 尚、回転バルブ型多方切換弁(100)は、磁気冷凍モジュール(10)や熱媒体ポンプ(21A)などと配管により接続されているが、柔軟性のある配管(樹脂チューブなど)を用いることで、回転バルブ型多方切換弁(100)本体を容易に回転させることができる。位相調整のための回転角は、2極の磁石(15a)を用いる場合で通常±90°以内であるので、デフロスト運転での回転バルブ型多方切換弁(100)本体の最大回転角も約90°である。
 また、回転バルブ型多方切換弁(100)本体の回転に、例えばステッピングモータやサーボモータなどを用いることで、任意の角度制御が可能となる。
 以上に説明したような構成により、磁場変調部(15)及び回転バルブ型多方切換弁(100)の回転中においても位相調整(磁場変動の位相に対する内部流路(13)における熱媒体搬送方向を切り替え)が可能となる。
 (変形例5)
 本変形例の磁気冷凍装置(1)が、前記変形例4と異なる点は、回転型の磁気回路(磁場変調部(15))と回転バルブ型多方切換弁(100)との間に、例えば図27又は図28に示すような位相調整機構(200,300)を設置することである。
 図27に示す位相調整機構(200)は、ケーシング(201)内に、4つのかさ歯車(206a,206b,206c,206d)(合わせてかさ歯車群(206)という)と、2つの平歯車(208a,208b)(合わせて平歯車群(208)という)とを有する。かさ歯車群(206)は、上部ケーシング(202)に収容され、平歯車群(208)は、下部ケーシング(203)に収容される。かさ歯車群(206)(かさ歯車(206a))に一端が支持される入力軸(204)が、上部ケーシング(202)の天井部を貫通して設けられる。平歯車群(208)(平歯車(208b))に一端が支持される出力軸(205)が、下部ケーシング(203)の底部を貫通して設けられる。かさ歯車群(206)(かさ歯車(206b))に一端を支持され且つ平歯車群(208)(平歯車(208a))に他端が支持される接続軸(207)が、上部ケーシング(202)の底部(下部ケーシング(203)の天井部)を貫通して設けられる。
 尚、図27の上側図は、位相調整機構(200)を軸方向から見た断面構成を示し、図27の下側図は、位相調整機構(200)を径方向から見た断面構成を示す。
 かさ歯車群(206)は、位相調整(磁場変動の位相に対する内部流路(13)における熱媒体搬送方向を切り替え)を行う。平歯車群(208)は、回転バルブ型多方切換弁(100)の回転軸(102)と同軸の出力軸(205)の回転方向を、磁場変調部(15)の軸(回転機構(15c))と同軸の入力軸(204)と同方向に変える。かさ歯車群(206)のうち、2つのかさ歯車(206c,206d)については、入力軸(204)に対し回転可能なように設置される。2つのかさ歯車(206c,206d)を回転させることで、入力軸(204)と出力軸(205)との間の位相差(以下、位相回転角という)を変化させることができる。かさ歯車(206c,206d)の軸(211,213)はそれぞれ、上部ケーシング(202)内の支持部材(210)に設けられた軸受(212,214)に支持される。かさ歯車(206c,206d)の回転角(以下、位相調整角という)を変えると、かさ歯車(306c,306d)の回転方向の逆方向に、位相調整角の2倍の大きさの位相回転角が出力軸(205)に現れる。位相調整角の制御に、例えばステッピングモータやサーボモータなどを用いることで、任意の角度制御が可能となる。以上に説明したような構成により、磁場変調部(15)及び回転バルブ型多方切換弁(100)の回転中においても位相調整(磁場変動の位相に対する内部流路(13)における熱媒体搬送方向を切り替え)が可能となる。また、回転バルブ型多方切換弁(100)本体は固定したままで良いので、配管などに対する制約も無くなる。
 尚、図27に示す位相調整機構(200)の平歯車群(208)をかさ歯車に置換することにより、図28に示す位相調整機構(300)を構成してもよい。尚、図28は、位相調整機構(300)を径方向から見た断面構成を示す。
 位相調整機構(300)は、ケーシング(301)内に、4つのかさ歯車(306a,306b,306c,306d)からなる第1かさ歯車群(306)と、4つのかさ歯車(307a,307b,307c,307d)からなる第2かさ歯車群(306)とを有する。第1かさ歯車群(306)は、ケーシング(301)の上部空間(302)に収容され、第2かさ歯車群(306)は、ケーシング(301)の下部空間(303)に収容される。第1かさ歯車群(306)(かさ歯車(306a))に一端が支持される入力軸(304)が、ケーシング(301)の天井部を貫通して設けられる。第2かさ歯車群(306)(かさ歯車(307b))に一端が支持される出力軸(305)が、ケーシング(301)の底部を貫通して設けられる。尚、第1かさ歯車群(306)においてかさ歯車(306a)と対向するかさ歯車群(306b)と、第2かさ歯車群(307)においてかさ歯車(307b)と対向するかさ歯車(307a)とは一体に構成される。
 第1かさ歯車群(306)は、位相調整(磁場変動の位相に対する内部流路(13)における熱媒体搬送方向を切り替え)を行う。第2かさ歯車群(306)は、回転バルブ型多方切換弁(100)の回転軸(102)と同軸の出力軸(305)の回転方向を、磁場変調部(15)の軸(回転機構(15c))と同軸の入力軸(304)と同方向に変える。
 第1かさ歯車群(306)のうち、2つのかさ歯車(306c,306d)については、入力軸(304)に対し回転可能なように設置され、2つのかさ歯車(306c,306d)を回転させることで、入力軸(304)と出力軸(305)との間の位相差(以下、位相回転角という)を変化させることができる。かさ歯車(306c,306d)の軸(311,313)はそれぞれ、上部空間(302)内の支持部材に設けられた軸受(312,314)に支持される。かさ歯車(306c,306d)の回転角(以下、位相調整角という)を変えると、かさ歯車(306c,306d)の回転方向の逆方向に、位相調整角の2倍の大きさの位相回転角が出力軸(305)に現れる。位相調整角の制御に、例えばステッピングモータやサーボモータなどを用いることで、任意の角度制御が可能となる。
 第2かさ歯車群(307)のうち、2つのかさ歯車(307c,307d)については、出力軸(305)に対し回転可能なように設置される。かさ歯車(307c,307d)の軸(321,323)はそれぞれ、ケーシング(301)の側壁部に設けられた軸受(322,324)に支持される。
 以上に説明したような構成により、磁場変調部(15)及び回転バルブ型多方切換弁(100)の回転中においても位相調整(磁場変動の位相に対する内部流路(13)における熱媒体搬送方向を切り替え)が可能となる。また、回転バルブ型多方切換弁(100)本体は固定したままで良いので、配管などに対する制約も無くなる。さらに、入力軸(304)と出力軸(305)とを同一軸上に配置できるため、回転型の磁気回路(磁場変調部(15))と回転バルブ型多方切換弁(100)との間に位相調整機構(300)を容易に設置できる。
 (変形例6)
 図29は、変形例6に係る磁気冷凍装置(1)の配管系統図である。図29において、図1に示す前記実施形態と同じ構成要素には同じ符号を付している。
 本変形例6の磁気冷凍装置(1)においては、図29に示すように、第1熱交換器(16)の近傍に第1ファン(16f)が配置される。第1ファン(16f)は、第1モータ(16m)により駆動される。また、第2熱交換器(17)の近傍に第2ファン(17f)が配置される。第2ファン(17f)は、第2モータ(17m)により駆動される。第1モータ(16m)及び第2モータ(17m)は、制御部(30)によって駆動制御される。
 本変形例の特徴は、前記実施形態のデフロスト運転において、以下に説明するように、ファン(16f,17f)の運転制御を行うことである。
 第1ファン制御では、第2熱交換器(17)の温度が当該第2熱交換器(17)の周囲温度よりも高い場合、デフロスト運転では第2ファン(17f)を停止する。このようにすると、第2熱交換器(17)が低温側熱交換器(例えば室外熱交換器)であって当該室外熱交換器の温度が外気温度よりも高いときに第2ファン(17f)を停止することによって、当該室外熱交換器から外気への放熱を防ぎ、デフロストを効率良く行うことができる。
 或いは、第1ファン制御に代えて、或いは、第1ファン制御に加えて、以下に説明する第2ファン制御を行ってもよい。
 第2ファン制御では、第1熱交換器(16)は室内熱交換器であり、デフロスト運転では第1ファン(室内ファン)(16f)を停止する。これにより、室内熱交換器が設けられた室内機から冷風が送出されて室内空間の温度が低下することを抑制できる。
 (その他の実施形態)
 以上の実施形態及び変形例では、固体冷凍装置である磁気冷凍装置について例示してきたが、固体冷凍装置は、磁気作業物質(12)に磁気熱量効果を誘発する磁気冷凍以外の他の方式を用いたものであってもよい。尚、本開示において、固体冷媒物質には、柔軟結晶などの液体と固体の中間の性質を有するものも含む。
 他の方式の固体冷凍装置としては、例えば、1)固体冷媒物質に電気熱量効果を誘発する方式、2)固体冷媒物質に圧力熱量効果を誘発する方式、3)固体冷媒物質に弾性熱量効果を誘発する方式のものが挙げられる。
 1)の方式の固体冷凍装置では、力場印加部(以下、誘発部ともいう)が固体冷媒物質に電場変動を付与する。これにより、固体冷媒物質が強誘電体から常誘電体へ相転移するなどして、固体冷媒物質が発熱又は吸熱する。
 2)の方式の固体冷凍装置では、誘発部が固体冷媒物質に圧力変動を付与することによって、固体冷媒物質が相転移して発熱又は吸熱する。
 3)の方式の固体冷凍装置では、誘発部が固体冷媒物質に応力変動を付与することによって、固体冷媒物質が相転移して発熱又は吸熱する。
 以上、実施形態及び変形例を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態及び変形例は、適宜組み合わせたり、置換したりしてもよい。また、以上に述べた「第1」、「第2」、・・・という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
 以上に説明したように、本開示は、固体冷凍装置、特に磁気冷凍装置について有用である。
   1 磁気冷凍装置(固体冷凍装置)
  11 収容部
  11a~11e 部分収容部
  12 磁気作業物質(固体冷媒物質)
  12a~12e 熱量効果が最大となる温度が異なる複数の物質
  13 内部流路
  15 磁場変調部(力場変調部)
  16 第1熱交換器
  16f 第1ファン(室内ファン)
  17 第2熱交換器
  17f 第2ファン(ファン)
  21 往復式ポンプ(熱媒体搬送部)
  50 熱媒体搬送部
  100 回転バルブ型多方切換弁(熱媒体搬送部)
   C 熱媒体回路

Claims (9)

  1.  固体冷媒物質(12)、及び熱媒体が前記固体冷媒物質(12)と熱交換して流れる内部流路(13)を有する収容部(11)と、
     前記収容部(11)内の前記固体冷媒物質(12)に力場変動を付与して熱量効果を誘発させる力場変調部(15)と、
     第1熱交換器(16)と、
     第2熱交換器(17)と、
     前記第1熱交換器(16)と前記第2熱交換器(17)と前記内部流路(13)とが接続される熱媒体回路(C)と、
     前記熱媒体回路(C)において前記力場変動に応じて前記熱媒体を前記収容部(11)内の前記固体冷媒物質(12)に対して往復的に搬送する熱媒体搬送部(21,50,100)とを備え、
     前記固体冷媒物質(12)により加熱した前記熱媒体を前記第1熱交換器(16)で放熱させ且つ前記固体冷媒物質(12)により冷却した前記熱媒体を前記第2熱交換器(17)で吸熱させる加熱運転と、前記加熱運転で前記第2熱交換器(17)に付着した霜を取り除くデフロスト運転とを行う固体冷凍装置(1)であって、
     前記固体冷媒物質(12)は、熱量効果が最大となる温度が異なる複数の物質(12a~12e)を含み、
     前記複数の物質(12a~12e)は、前記内部流路(13)に沿って前記温度の高低順に配置され、
     前記デフロスト運転において、前記力場変動の位相に対する前記内部流路(13)における前記熱媒体の搬送方向を、前記加熱運転とは反対向きに切り替える、
    固体冷凍装置。
  2.  請求項1の固体冷凍装置において、
     前記収容部(11)は、前記熱媒体回路(C)において互いに直列接続された複数の部分収容部(11a~11e)を含み、
     前記複数の部分収容部(11a~11e)のそれぞれは、前記複数の物質(12a~12e)のうち少なくとも1つの物質を有する、
    固体冷凍装置。
  3.  請求項1又は2の固体冷凍装置において、
     前記力場変調部(15)と前記熱媒体搬送部(21,50,100)とを電気的に制御して、前記力場変動の位相に対する前記内部流路(13)における前記熱媒体の搬送方向を切り替える、
    固体冷凍装置。
  4.  請求項1又は2の固体冷凍装置において、
     前記力場変調部(15)と前記熱媒体搬送部(100)とを機械的に制御して、前記力場変動の位相に対する前記内部流路(13)における前記熱媒体の搬送方向を切り替える、
    固体冷凍装置。
  5.  請求項1~4のいずれか1項の固体冷凍装置において、
     前記第2熱交換器(17)に送風するファン(17f)をさらに備え、
     前記第2熱交換器(17)の温度が当該第2熱交換器(17)の周囲温度よりも高い場合、前記デフロスト運転では前記ファン(17f)を停止する、
    固体冷凍装置。
  6.  請求項1~5のいずれか1項の固体冷凍装置において、
     前記第1熱交換器(16)は、室内熱交換器であり、
     前記室内熱交換器に送風する室内ファン(16f)をさらに備え、
     前記デフロスト運転では前記室内ファン(16f)を停止する、
    固体冷凍装置。
  7.  請求項1~6のいずれか1項の固体冷凍装置において、
     前記デフロスト運転では前記力場変動の周波数を高くする、
    固体冷凍装置。
  8.  請求項1~7のいずれか1項の固体冷凍装置において、
     前記デフロスト運転では、前記熱媒体回路(C)における前記熱媒体の流量を増大させる、
    固体冷凍装置。
  9.  請求項1~8のいずれか1項の固体冷凍装置において、
     前記固体冷媒物質(12)は、磁気作業物質(12)であり、
     前記力場変調部(15)は、前記磁気作業物質(12)に磁場変動を付与する磁場変調部(15)である、
    固体冷凍装置。
PCT/JP2023/028107 2022-09-30 2023-08-01 固体冷凍装置 WO2024070197A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022157813A JP2024051573A (ja) 2022-09-30 2022-09-30 固体冷凍装置
JP2022-157813 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070197A1 true WO2024070197A1 (ja) 2024-04-04

Family

ID=90477006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028107 WO2024070197A1 (ja) 2022-09-30 2023-08-01 固体冷凍装置

Country Status (2)

Country Link
JP (1) JP2024051573A (ja)
WO (1) WO2024070197A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220184A (ja) * 2011-04-11 2012-11-12 Cui Jun 熱弾性冷却
CN103438615A (zh) * 2013-09-12 2013-12-11 哈尔滨工业大学 一种旋转电磁热泵系统
JP2015068567A (ja) * 2013-09-30 2015-04-13 ダイキン工業株式会社 空気調和装置
JP2016011799A (ja) * 2014-06-30 2016-01-21 株式会社フジクラ 磁気ヒートポンプ装置及び空気調和装置
JP2016507714A (ja) * 2012-12-17 2016-03-10 アストロノーティックス コーポレイション オブ アメリカ 磁気冷却システムの一方向流モードの使用
WO2021065397A1 (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 固体冷凍装置
JP2021511477A (ja) * 2018-01-18 2021-05-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 熱交換システム
JP6902543B2 (ja) * 2015-12-11 2021-07-14 フラウンホーファー−ゲゼルシャフト ツール フエルデルング デア アンゲヴァンテン フォルシュング エー.ファオ. 循環プロセス型システムを運転する方法及び装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220184A (ja) * 2011-04-11 2012-11-12 Cui Jun 熱弾性冷却
JP2016507714A (ja) * 2012-12-17 2016-03-10 アストロノーティックス コーポレイション オブ アメリカ 磁気冷却システムの一方向流モードの使用
CN103438615A (zh) * 2013-09-12 2013-12-11 哈尔滨工业大学 一种旋转电磁热泵系统
JP2015068567A (ja) * 2013-09-30 2015-04-13 ダイキン工業株式会社 空気調和装置
JP2016011799A (ja) * 2014-06-30 2016-01-21 株式会社フジクラ 磁気ヒートポンプ装置及び空気調和装置
JP6902543B2 (ja) * 2015-12-11 2021-07-14 フラウンホーファー−ゲゼルシャフト ツール フエルデルング デア アンゲヴァンテン フォルシュング エー.ファオ. 循環プロセス型システムを運転する方法及び装置
JP2021511477A (ja) * 2018-01-18 2021-05-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 熱交換システム
WO2021065397A1 (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 固体冷凍装置

Also Published As

Publication number Publication date
JP2024051573A (ja) 2024-04-11

Similar Documents

Publication Publication Date Title
US9927155B2 (en) Magnetic refrigeration system with unequal blows
KR102217279B1 (ko) 자기열 물질을 사용하는 가변 히트 펌프
KR101639544B1 (ko) 자기 냉각 시스템들의 단방향 흐름 모드들의 사용
EP1454098B1 (en) Rotating magnet magnetic refrigerator
JP2020204459A (ja) 熱搬送システム
EP1946024A1 (en) Refrigeration system including thermoelectric module
JP2007147136A (ja) 磁気冷凍機
JP2017003176A (ja) 冷凍装置及びそれを備えた冷蔵庫
JP2006194565A (ja) 空気調和装置
KR101954538B1 (ko) 자기 냉각 시스템
US20220214091A1 (en) Solid-state refrigeration device
WO2024070197A1 (ja) 固体冷凍装置
KR101893165B1 (ko) 자기 냉각 시스템
WO2024070090A1 (ja) 固体冷凍装置
JP2020041742A (ja) 磁気冷凍装置
JP7295462B2 (ja) 固体冷凍装置
JP2023141836A (ja) 固体冷媒による冷凍装置
JP5817353B2 (ja) 磁気冷暖房装置
JPH08210713A (ja) 極低温冷凍機
JP2022150260A (ja) 固体冷凍装置
JP5857554B2 (ja) 磁気冷暖房装置
JPH0949649A (ja) ヒートポンプ式冷暖房装置
JP2023142130A (ja) 磁気冷凍装置
CN114857674A (zh) 一种制冷系统和空调器
JPH0953843A (ja) ヒートポンプ式冷暖房装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871439

Country of ref document: EP

Kind code of ref document: A1