WO2024067666A1 - 干法刻蚀装置和方法 - Google Patents

干法刻蚀装置和方法 Download PDF

Info

Publication number
WO2024067666A1
WO2024067666A1 PCT/CN2023/121891 CN2023121891W WO2024067666A1 WO 2024067666 A1 WO2024067666 A1 WO 2024067666A1 CN 2023121891 W CN2023121891 W CN 2023121891W WO 2024067666 A1 WO2024067666 A1 WO 2024067666A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
workpiece
excitation source
plasma
plasma excitation
Prior art date
Application number
PCT/CN2023/121891
Other languages
English (en)
French (fr)
Inventor
高国浩
Original Assignee
北京金派尔电子技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金派尔电子技术开发有限公司 filed Critical 北京金派尔电子技术开发有限公司
Publication of WO2024067666A1 publication Critical patent/WO2024067666A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • H01J2237/3343Problems associated with etching

Definitions

  • the present application relates to the field of etching, and in particular, to a dry etching device and method.
  • Dry etching is a technology that uses plasma to etch thin films.
  • the gas exists in the form of plasma, the chemical activity of the active free radicals in the plasma is much stronger than that of the gas under normal conditions.
  • the appropriate gas can be selected to react with the material faster to achieve the purpose of etching and removal; the electric field can also be used to guide and accelerate the plasma to give it a certain amount of energy. When it bombards the surface of the etched object, it will knock out the atoms of the etched material, thereby achieving the purpose of etching by physical energy transfer.
  • RIE reactive ion etching
  • the device For large-diameter workpieces, there is an etching device in the prior art in which a plasma excitation source and the workpiece move relative to each other so as to perform zone etching on the workpiece.
  • the device also has the following problems: if the plasma excitation source fixes the workpiece and moves, the volume of the etching chamber needs to be relatively large, and the coverage area of the etching chamber is at least twice that of the workpiece; if the workpiece does not move and the plasma excitation source moves, since the components of the plasma excitation source are relatively complex, the sealing of the etching chamber also needs to be ensured during the movement, which increases the processing difficulty of the etching equipment and increases the processing cost.
  • the purpose of the present application includes, for example, providing a dry etching device and method, which can reduce the volume of the etching device, and is particularly convenient for processing some large-diameter workpieces.
  • the present application provides a dry etching device, including a vacuum reaction chamber, wherein a workpiece disk driven by a rotating assembly, an etching zone, and a plasma excitation source emitting plasma toward the etching zone are arranged in the vacuum reaction chamber, wherein the etching zone covers the axis of the workpiece disk and is located on one side of the axis, and a plasma density is arranged between the plasma excitation source and the etching zone. Fix the system.
  • the plasma density correction system includes a correction grid and a motion component that drives the correction grid to rotate and move;
  • the mesh coverage of the correction grid gradually decreases in a direction away from the axis of the workpiece disc
  • the angle between the correction grid and the workpiece disk is 0 to 75°;
  • the correction grid is made of metal or polymer material.
  • a pressure monitoring device and a vacuum obtaining device are provided in the vacuum reaction chamber;
  • a pressure controller is also provided for controlling the vacuum according to the pressure monitored by the pressure monitoring device to obtain the opening diameter of the equipment valve;
  • the pressure controller is a PID controller
  • the four or more vacuum obtaining devices are evenly distributed around the plasma excitation source.
  • the gas outlet of the vacuum pump is connected to an exhaust gas treatment device, a filter is provided in the exhaust gas treatment device, and an anti-corrosion coating is provided at a position where the filter contacts the exhaust gas;
  • the anti-corrosion coating is a polytetrafluoroethylene coating.
  • a temperature monitoring device and a heat exchanger are provided in the vacuum reaction chamber;
  • a temperature controller is also provided for controlling the switch of the heat exchanger according to the temperature monitored by the temperature monitoring device;
  • the temperature controller is a PID controller.
  • the plasma excitation source is provided with a moving component capable of driving the plasma excitation source to move in three directions: X, Y, and Z;
  • the parts in the plasma excitation source that come into contact with etching gas or plasma are all made of duplex stainless steel;
  • the distance between the plasma excitation source and the etching area in the Z-axis direction is between 20 and 100 cm.
  • the rotating assembly includes a motor, a rotating shaft connected to a power output shaft of the motor, and the workpiece disk is mounted on the rotating shaft;
  • the motor is located in the vacuum reaction chamber, and an avoidance hole for the rotating shaft to pass through is provided on the vacuum reaction chamber, and a sealing structure is provided between the avoidance hole and the rotating shaft.
  • a purging device is further included, the purging device includes an air source, an air pipe connected to the air source, and a purging port connected to the air pipe, and the purging port is arranged toward the workpiece disk.
  • the present application provides a dry etching method using the device of the aforementioned embodiment, placing a substrate to be etched on a workpiece disk, driving the workpiece disk, filling it with etching gas, starting a plasma excitation source, and performing micro-nano etching processing on the substrate; before or during etching, the plasma density correction system is adjusted to correct the plasma density emitted by the plasma excitation source.
  • the power of the plasma excitation source is gradually increased to a specified range to perform micro-nano etching on the substrate;
  • an inert gas is first filled to replace the flowing atmosphere in the vacuum reaction chamber, and the filling of the inert gas is stopped after the replacement is completed;
  • the pressure of the vacuum reaction chamber is 3 ⁇ 10 -2 ⁇ 3 ⁇ 10 -1 Pa;
  • the temperature in the vacuum reaction chamber is 80-120°C;
  • the workpiece disk has a rotation speed of 0 to 50 r/min;
  • the purge device is turned on, and the flow rate of the purge gas is 0-1 scm/h.
  • the workpiece disk is rotated so that the workpiece rotates around the center of the workpiece disk so that each position on the workpiece passes through the etching area in turn for etching.
  • the etching area does not need to cover the entire workpiece, but only covers part of the workpiece to perform partition etching on the workpiece.
  • the volume of the device can be greatly reduced, especially for large-diameter workpieces.
  • the device and method of the present application can also be used for processing small-diameter workpieces, and have a wider range of applications.
  • the present application utilizes the uniform area of a plasma excitation source to etch the workpiece that is rotated into the etching area.
  • the time per unit area passing through the uniform area of the ion source decreases as the distance from the axis of the workpiece disk increases, which will cause uneven etching of the workpiece. Therefore, a plasma density correction system is provided between the plasma excitation source and the etching area, which can simultaneously correct the plasma density of the plasma excitation source and the plasma density at different positions of the rotating workpiece, thereby regulating the etching uniformity of large-diameter substrates.
  • FIG1 is a schematic structural diagram of a dry etching device in the present application.
  • Icons 100-dry etching device; 110-vacuum reaction chamber; 120-workpiece disk; 121-rotating assembly; 130-plasma excitation source; 131-gas storage tank; 140-correction grid 140; 150-pressure monitoring device; 151-vacuum acquisition equipment; 152-exhaust gas treatment device; 160-temperature monitoring device; 161-heat exchanger; 170-purge device.
  • This embodiment provides a dry etching device 100, including a vacuum reaction chamber 110.
  • the vacuum reaction chamber 110 is provided with a workpiece disk 120 driven by a rotating component 121, an etching area and a plasma excitation source 130 that emits plasma to the etching area.
  • the etching area covers the axis of the workpiece disk 120 and is located on one side of the axis.
  • a plasma density correction system is provided between the plasma excitation source 130 and the etching area.
  • the positions of the workpiece disk 120 and the plasma excitation source 130 are first adjusted, and then the plasma density correction system is adjusted to adjust the density of the plasma emitted by the plasma excitation source 130. After the device adjustment is completed, the workpiece is fixed on the workpiece disk 120, and then the plasma excitation source 130 is turned on for etching.
  • the workpiece is installed at the center of the workpiece disk 120.
  • the workpiece disk 120 is rotated so that the workpiece rotates around the center of the workpiece disk 120 so that each position of the workpiece passes through the etching area in turn for etching.
  • the etching area does not need to cover the entire workpiece, but only covers part of the workpiece to perform partition etching on the workpiece. Compared with the traditional dry etching system, the volume of the device can be greatly reduced.
  • the plasma generated by the plasma excitation source 130 can be considered uniform within a certain range.
  • This embodiment mainly utilizes the uniform area of the plasma excitation source 130 to etch the workpiece rotated into the etching area.
  • the time per unit area passing through the uniform area of the ion source decreases with the increase of the distance from the axis of the workpiece disk 120, which will cause uneven etching of the workpiece. Therefore, a plasma density correction system is arranged between the plasma excitation source 130 and the etching area.
  • the plasma density correction system includes a correction grid 140 and a motion component that drives the correction grid 140 to rotate and move;
  • the mesh coverage of the correction grid 140 gradually decreases in a direction away from the axis of the workpiece disk 120;
  • the angle between the correction grid 140 and the workpiece disk 120 is 0 to 75°;
  • the correction grid 140 is made of metal or polymer material.
  • the plasma density correction system in this embodiment includes a correction grid 140, which is provided with mesh holes.
  • the plasma can be intercepted when it hits the correction grid 140, and can continue to move forward to the etching area through the mesh holes to etch the workpiece.
  • the density of the plasma passing through the correction grid 140 can be adjusted by adjusting the size and arrangement of the mesh holes.
  • the correction grid 140 is preferably made of metal or polymer material, preferably stainless steel.
  • the running track of the plasma generated by the plasma excitation source 130 is adjusted, and the correction grid 140 is set to be rotatable, which can adjust the running track of the plasma on the one hand, and adjust the etching speed on the other hand.
  • a rotating shaft can be provided in the vacuum reaction chamber 110, and a push rod capable of pushing the correction grid to rotate along the rotating shaft can be provided on one side of the rotating shaft, wherein the push rod can be an electric or pneumatic telescopic rod, and the angle of the correction grid 140 can be controlled by controlling the length of the telescopic rod; in addition, the rotating shaft and the push rod can be provided on a base, and the base can be moved in the vacuum reaction chamber through a transmission structure such as a worm gear, but care must be taken to keep the vacuum reaction chamber sealed.
  • the time per unit area passing through the uniform zone of the ion source decreases as the distance from the axis of the workpiece disk 120 increases.
  • the mesh coverage at different positions on the correction grid is also different, which can be calculated based on discrete mathematics.
  • the plasma generated by the plasma excitation source 130 is not uniformly distributed in terms of plasma density due to the influence of the non-uniformity of the magnetic field strength generated by the coil and the diffusion of the etching gas.
  • non-uniformity is reflected in the fact that the plasma concentration is highest at the center of the source and decreases radially along the center. Therefore, the aforementioned ion source uniform area is actually an approximate uniformity. If the non-uniformity of the ion source is taken into account, the correction grid needs to be "tailor-made" according to the actual situation of the plasma excitation source 130.
  • the plasma excitation source 130 can be configured with multiple gas storage tanks 131, and the flow of the gas in the gas storage tanks 131 is controlled by a gas mass flow controller MFC.
  • a pressure monitoring device 150 and a vacuum obtaining device 151 are provided in the vacuum reaction chamber 110;
  • a pressure controller is also provided for controlling the opening diameter of the valve of the vacuum obtaining device 151 according to the pressure monitored by the pressure monitoring device 150;
  • the pressure controller is a PID controller
  • a pressure monitoring device 150 and a vacuum obtaining device 151 are provided.
  • the pressure monitoring device 150 detects that the pressure in the vacuum reaction chamber 110 is too high, the vacuum obtaining device 151 is turned on.
  • the pressure monitoring device 150 and the vacuum obtaining device 151 in this embodiment can be used as long as they can meet the equipment requirements, and those skilled in the art can make reasonable choices in the prior art.
  • the opening diameter of the vacuum obtaining device 151 can be manually controlled by the operator, but considering that the device may need to work for a long time, in order to reduce the operator's load and save manpower, a pressure controller is set.
  • the pressure controller controls the vacuum obtaining device 151 to increase the diameter to increase the vacuum pumping rate; when the pressure monitored in the vacuum reaction chamber 110 is within the preset value range, the pressure controller controls the vacuum obtaining device 151 to reduce the diameter.
  • the pressure controller in this embodiment can be selected from the existing technology, and only needs to have a simple judgment whether the pressure transmitted by the pressure monitoring device 150 is within the set range and increase or decrease the vacuum pumping rate of the vacuum obtaining device 151 according to the judgment result.
  • a PID controller can be used in this embodiment, which has advantages in control accuracy, response speed, system stability and adaptability; the vacuum obtaining device can select a vacuum pump of suitable specifications.
  • the vacuum obtaining device 151 can be distributed as evenly as possible around the plasma excitation source 130 .
  • the exhaust gas treatment device 152 is connected to the gas outlet of the vacuum obtaining device 151, a filter is arranged in the exhaust gas treatment device 152, and an anti-corrosion coating is arranged at the position where the filter contacts the exhaust gas;
  • the anti-corrosion coating is a polytetrafluoroethylene coating.
  • an exhaust gas treatment device 152 is set.
  • a filter is provided in the exhaust gas treatment device 152 to filter tiny particles.
  • an anti-corrosion coating is provided in order to increase the service life of the filter.
  • a temperature monitoring device 160 and a heat exchanger 161 are provided in the vacuum reaction chamber 110;
  • a temperature controller is also provided for controlling the switching of the heat exchanger 161 according to the temperature monitored by the temperature monitoring device 160;
  • the temperature controller is a PID controller.
  • a temperature monitoring device 160 and a heat exchanger 161 are provided.
  • the heat exchanger 161 When the temperature monitoring device 160 detects that the temperature in the vacuum reaction chamber 110 is too high, the heat exchanger 161 is turned on for cooling; when the temperature monitoring device 160 detects that the temperature in the vacuum reaction chamber 110 is too low, the heat exchanger 161 is turned on for heating.
  • the temperature monitoring device 160 and the heat exchanger 161 in this embodiment can be used as long as they can meet the needs of the equipment, and those skilled in the art can reasonably select them from the prior art.
  • the heat exchange device can be a heating rod.
  • the opening and closing of the heat exchanger 161 can be manually controlled by an operator, but considering that the equipment may take a long time
  • a temperature controller is provided. When the temperature monitored in the vacuum reaction chamber 110 exceeds a predetermined value, the temperature controller controls the heat exchanger 161 to start the refrigeration function to reduce the temperature; when the temperature monitored in the vacuum reaction chamber 110 is within the preset value range, the temperature controller controls the heat exchanger 161 to turn off or reduce the power.
  • the temperature controller in this embodiment can be selected from the prior art, and only needs to have a simple function of judging whether the temperature transmitted by the temperature monitoring device 160 is within the set range and turning on, increasing the power, reducing the power or turning off the heat exchanger 161 according to the judgment result.
  • a PID controller may be used in this embodiment, which has advantages in control accuracy, response speed, system stability and adaptability.
  • the plasma excitation source 130 is provided with a moving component capable of driving the plasma excitation source 130 to move in three directions: X, Y, and Z;
  • the components in the plasma excitation source 130 that are in contact with the etching gas or plasma are all made of duplex stainless steel;
  • the distance between the plasma excitation source 130 and the etching area in the Z-axis direction is between 20 and 100 cm.
  • the distance between the plasma excitation source 130 and the workpiece disk 120 needs to be adjusted according to the condition of the workpiece, so a moving component is provided to drive the plasma excitation source 130 to move.
  • the moving component in this embodiment only needs to be able to drive the plasma excitation source to move in three-dimensional space.
  • the specific implementation method can be selected in the existing technology, and the guide rail and screw structure can be referred to. However, since a certain vacuum degree needs to be maintained in the vacuum reaction chamber 110, it is necessary to pay attention to sealing.
  • the rotating assembly 121 includes a motor and a rotating shaft connected to the power output shaft of the motor, and the workpiece disk 120 is mounted on the rotating shaft;
  • the motor is located in the vacuum reaction chamber 110 , and an avoidance hole for the rotating shaft to pass through is provided on the vacuum reaction chamber 110 , and a sealing structure is provided between the avoidance hole and the rotating shaft.
  • the motor drives the rotating shaft to rotate, thereby driving the workpiece disk 120 to rotate.
  • the motor is arranged outside the vacuum reaction chamber 110. Since a certain vacuum degree needs to be maintained in the vacuum reaction chamber 110, a sealing structure is arranged between the avoidance hole and the rotating shaft.
  • the sealing structure in this embodiment can be selected in the prior art, for example, a sealed bearing can be selected.
  • the workpiece disk 120 can be set to be height-adjustable, and an electric telescopic rod can be set between the rotating shaft and the workpiece disk 120.
  • a purge device 170 is included, and the purge device 170 includes an air source, an air pipe connected to the air source, and a purge port connected to the air pipe, and the purge port is arranged toward the workpiece disk 120.
  • the purge device 170 is turned on to blow the workpieces on the workpiece disk 120 to clean and cool the workpieces.
  • the purge area and the etching area of the purge device 170 may overlap or be separated, but the purge device 170 and the etching area should be avoided.
  • the plasma excitation sources 130 interfere with each other.
  • Another embodiment of the present application provides a dry etching method using the device of the aforementioned embodiment, wherein a substrate to be etched is placed on a workpiece disk 120, the workpiece disk 120 is driven, an etching gas is filled into the workpiece disk 120, a plasma excitation source 130 is started, and micro-nano etching processing is performed on the substrate; before or during etching, a plasma density correction system is adjusted to correct the plasma density emitted by the plasma excitation source.
  • the power of the plasma excitation source is gradually increased to a specified range to perform micro-nano etching on the substrate;
  • an inert gas is first filled to replace the flowing atmosphere in the vacuum reaction chamber, and the filling of the inert gas is stopped after the replacement is completed;
  • the pressure of the vacuum reaction chamber 110 is 3 ⁇ 10 -2 ⁇ 3 ⁇ 10 -1 Pa;
  • the temperature in the vacuum reaction chamber 110 is 80-120°C;
  • the workpiece disk 120 rotates at a speed of 0 to 50 r/min;
  • the purge device 170 is turned on, and the flow rate of the purge gas is 0-1 scm/h.
  • a large-diameter workpiece is placed on the workpiece disk 120 passing through the center of a circle.
  • the workpiece disk 120 rotates so that the large-diameter workpiece gradually passes through the etching zone in sections, and the large-diameter workpiece is etched in sections.
  • the plasma density is adjusted by the plasma density correction system to reduce the unevenness caused by the different times that different positions of the workpiece pass through the uniform area of the ion source.
  • the present application provides a dry etching device and method, wherein the dry etching device includes a vacuum reaction chamber, a workpiece disk driven by a rotating assembly and a plasma excitation source emitting plasma to an etching zone are arranged in the vacuum reaction chamber, the etching zone covers the axis of the workpiece disk and is located on one side of the axis, and a plasma density correction system is arranged between the plasma excitation source and the etching zone.
  • the present application utilizes a uniform area of the plasma excitation source to etch the workpiece rotated into the etching zone, and during etching, the workpiece disk is rotated so that the workpiece rotates around the center of the workpiece disk so that each position on the workpiece passes through the etching zone in turn for etching.
  • the etching zone does not need to cover the entire workpiece, and only covers part of the workpiece to perform partition etching on the workpiece, which can greatly reduce the volume of the device compared to the traditional dry etching system.
  • the dry etching apparatus and method of the present application are reproducible and can be used in a variety of industrial applications.
  • the dry etching apparatus and method of the present application can be used in the field of etching.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本申请的实施例提供了一种干法刻蚀装置和方法,其中干法刻蚀装置,包括真空反应腔室,所述真空反应腔室内设置有由转动组件带动的工件盘和向刻蚀区发射等离子体的等离子体激发源,所述刻蚀区覆盖工件盘的轴心且位于轴心的一侧,所述等离子体激发源和刻蚀区之间设置有等离子体密度修正系统。本申请利用等离子体激发源的均匀区对转动到刻蚀区内的工件进行刻蚀,刻蚀时转动工件盘,使得工件围绕工件盘的圆心转动使得工件上个位置依次经过刻蚀区进行刻蚀,本实施例中刻蚀区不需要覆盖整个工件,仅仅覆盖工件的部分即可对工件进行分区刻蚀,相对于传统干法刻蚀系统可以大大降低装置的体积。

Description

干法刻蚀装置和方法
相关申请的交叉引用
本申请要求于2022年09月28日提交中国国家知识产权局的申请号为202211202559.3、名称为“干法刻蚀装置和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及刻蚀领域,具体而言,涉及一种干法刻蚀装置和方法。
背景技术
干法刻蚀是用等离子体进行薄膜刻蚀的技术。当气体以等离子体形式存在时,等离子体中的气体活性自由基化学活性比常态下的气体时要强很多,根据被刻蚀材料的不同,选择合适的气体,就可以更快地与材料进行反应,实现刻蚀去除的目的;还可以利用电场对等离子体进行引导和加速,使其具备一定能量,当其轰击被刻蚀物的表面时,会将被刻蚀物材料的原子击出,从而达到利用物理上的能量转移来实现刻蚀的目的。
现有的反应离子刻蚀RIE设备刻蚀面积增大后(直径500mm以上),面临刻蚀气体分布不均、稳定性一致性差等难题,难以实现大面积微纳结构图形的均匀刻蚀传递。而在大腔体下由于气体扩散延迟效应影响,导致刻蚀残留反应气体滞留刻蚀区域内,难以形成动态平衡的大面积均匀气体组分,造成基片边缘与中心的刻蚀速率相差很大,所以缩小刻蚀设备腔体体积有助于基片的均匀刻蚀。
对于大口径的工件,现有技术中存在等离子体激发源和工件之间发生相对移动以便对工件进行分区刻蚀的刻蚀装置,但该装置也存在如下问题:若等离子体激发源固定工件移动,则需要刻蚀腔的体积比较大,刻蚀腔的覆盖面积至少是工件的两倍;若工件不动等离子体激发源移动,由于等离子激发源组成部件相对复杂,移动过程中还需要保证刻蚀腔的密封性,增加了刻蚀设备的加工难度,提高了加工成本。
鉴于此,特提出本申请。
发明内容
本申请的目的包括,例如,提供了一种干法刻蚀装置和方法,其能够减小刻蚀装置的体积,尤其方便一些大口径工件的加工。
本申请的实施例可以这样实现:
第一方面,本申请提供一种干法刻蚀装置,包括真空反应腔室,真空反应腔室内设置有由转动组件带动的工件盘、刻蚀区和向刻蚀区发射等离子体的等离子体激发源,刻蚀区覆盖工件盘的轴心且位于轴心的一侧,等离子体激发源和刻蚀区之间设置有等离子体密度 修正系统。
在可选的实施方式中,等离子体密度修正系统包括修正栅网和带动修正栅网转动和移动的运动组件;
优选地,沿远离工件盘轴线的方向,修正栅网的网孔覆盖率逐渐减小;
优选地,修正栅网和工件盘之间的夹角为0~75°;
优选地,修正栅网为金属材质或高分子材料。
在可选的实施方式中,真空反应腔室内设置有压力监测装置和真空获得设备;
优选地,还设置有用于根据压力监测装置监测到的压力控制真空获得设备阀门开启口径的压力控制器;
优选地,压力控制器为PID控制器;
优选地,真空获得设备有四台以上,四台以上真空获得设备均匀分布在等离子体激发源四周。
在可选的实施方式中,真空泵的出气口上连接有尾气处理装置,尾气处理装置内设置有过滤器,过滤器与尾气接触的位置设置有防腐涂层;
优选地,防腐涂层为聚四氟乙烯涂层。
在可选的实施方式中,真空反应腔室内设置有温度监测装置和换热器;
优选地,还设置有用于根据温度监测装置监测到的温度控制换热器开关的温度控制器;
优选地,温度控制器为PID控制器。
在可选的实施方式中,等离子体激发源上设置有能够带动等离子体激发源在X、Y、Z三个方向移动的移动组件;
等离子体激发源中与蚀刻气体或等离子体接触的部件均为双相不锈钢材质;
等离子体激发源和刻蚀区在Z轴方向上的距离在20~100cm之间。
在可选的实施方式中,转动组件包括电机、与电机动力输出轴连接的转轴,工件盘安装在转轴上;
优选地,电机位于真空反应腔室,真空反应腔室上设置有用于转轴穿出的避让孔,避让孔和转轴之间设置有密封结构。
在可选的实施方式中,还包括吹扫装置,吹扫装置包括气源、与气源连接的气管和连接在气管上的吹扫口,吹扫口朝向工件盘设置。
第二方面,本申请提供一种利用前述实施方式装置的干法刻蚀方法,将待刻蚀基片置于工件盘上,驱动工件盘,充入刻蚀气体,启动等离子体激发源,对基片进行刻蚀微纳加工;刻蚀前或刻蚀中调整等离子体密度修正系统对等离子体激发源发射的等离子体密度进行修正。
在可选的实施方式中,启动等离子体激发源后,在气压和等离子体辉光稳定后,逐渐加大等离子体激发源的功率至指定范围,对基片进行刻蚀微纳加工;
优选地,充入刻蚀气体之前,先充入惰性气体对真空反应腔室内的流动气氛进行置换,置换完成后停止充入惰性气体;
真空反应腔室压力为3×10-2~3×10-1Pa;
优选地,真空反应腔室内温度为80-120℃;
优选地,工件盘转速0~50r/min;
优选地,刻蚀完成后,开启吹扫装置,吹扫气体的流量为0~1scm/h。
本申请实施例的有益效果包括,例如:
刻蚀时转动工件盘,使得工件围绕工件盘的圆心转动使得工件上个位置依次经过刻蚀区进行刻蚀,本实施例中刻蚀区不需要覆盖整个工件,仅仅覆盖工件的部分即可对工件进行分区刻蚀,相对于传统干法刻蚀系统可以大大降低装置的体积,尤其对于大口径工件,可以显著降低装置的体积。但是同时,本申请的装置和方法也可以用于小口径工件的加工,适用范围更广。
本申请利用等离子体激发源的均匀区对转动到刻蚀区内的工件进行刻蚀,但是对于工件而言,单位面积经过离子源均匀区的时间随着与工件盘轴线距离的增加而减小,因此会造成工件刻蚀的不均匀性,因此在等离子体激发源和刻蚀区之间设置有等离子体密度修正系统,可同时修正等离子体激发源的等离子密度和旋转工件不同位置的等离子密度,进而调控大口径基片的刻蚀均匀性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请中干法刻蚀装置的结构示意图。
图标:100-干法刻蚀装置;110-真空反应腔室;120-工件盘;121-转动组件;130-等离子体激发源;131-气体储罐;140-修正栅网140;150-压力监测装置;151-真空获得设备;152-尾气处理装置;160-温度监测装置;161-换热器;170-吹扫装置。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例 的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,若出现术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,若出现术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
需要说明的是,在不冲突的情况下,本申请的实施例中的特征可以相互结合。
请参考图1,本实施例提供了一种干法刻蚀装置100,包括真空反应腔室110,真空反应腔室110内设置有由转动组件121带动的工件盘120、刻蚀区和向刻蚀区发射等离子体的等离子体激发源130,刻蚀区覆盖工件盘120的轴心且位于轴心的一侧,等离子体激发源130和刻蚀区之间设置有等离子体密度修正系统。
本实施例提供的干法刻蚀装置100使用时,首先对工件盘120和等离子体激发源130的位置进行调整,然后调整等离子体密度修正系统,对等离子体激发源130发射的等离子体的密度进行调整。装置调整完毕后,将工件固定在工件盘120上,然后开启等离子体激发源130进行刻蚀。
工件安装在工件盘120圆心位置,刻蚀时转动工件盘120,使得工件围绕工件盘120的圆心转动使得工件上个位置依次经过刻蚀区进行刻蚀,本实施例中刻蚀区不需要覆盖整个工件,仅仅覆盖工件的部分即可对工件进行分区刻蚀,相对于传统干法刻蚀系统可以大大降低装置的体积。
等离子体激发源130产生的等离子体在一定范围内可以看做是均匀的,本实施例主要是利用等离子体激发源130的均匀区对转动到刻蚀区内的工件进行刻蚀,但是对于工件而言,单位面积经过离子源均匀区的时间随着与工件盘120轴线距离的增加而减小,因此会造成工件刻蚀的不均匀性,因此在等离子体激发源130和刻蚀区之间设置有等离子体密度修正系统。
进一步地,等离子体密度修正系统包括修正栅网140和带动修正栅网140转动和移动的运动组件;
优选地,沿远离工件盘120轴线的方向,修正栅网140的网孔覆盖率逐渐减小;
优选地,修正栅网140和工件盘120之间的夹角为0~75°;
优选地,修正栅网140为金属材质或高分子材料。
本实施例中的等离子体密度修正系统包括修正栅网140,修正栅网140上设置有网孔,等离子体撞击在修正栅网140上即可被拦截,透过网孔即可继续向前移动至刻蚀区对工件进行刻蚀,通过调整网孔的尺寸和排布,可以调整穿过修正栅网140的等离子体的密度,为了能够有效拦截等离子体,修正栅网140优选金属材质或高分子材料,优选的为不锈钢材质。
等离子体激发源130产生的等离子体的运行轨迹进行调整,将修正栅网140设置成可转动的,一方面可以调整等离子体的运行轨迹,另一方面可以调整刻蚀速度。
运动组件本领域技术人员可以在现有技术中进行选择,具体的,可以在真空反应腔室110内设置转轴,转轴一侧设置有能够推动修正栅网沿转轴转动的推杆即可,其中推杆可以是电动或气动伸缩杆,通过控制伸缩杆长度、从而控制修正栅网140的角度;另外,转轴和推杆均可以设置在一个底座上,底座通过了涡轮蜗杆等传动结构在真空反应腔室内移动即可,但需注意保持真空反应腔室的密封。
如前,单位面积经过离子源均匀区的时间随着与工件盘120轴线距离的增加而减小,为了修正这种位置带来的不均匀性,修正栅板上不同位置的网孔覆盖率也有所不同,具体可以根据离散数学进行计算。
另外,需要考虑的是,等离子体激发源130产生的等离子体,由于受线圈产生的磁场强度的非均匀性、刻蚀气体扩散的影响,产生的等离子体密度分布并不均匀,通常,这样的不均匀体现在其等离子体浓度在源中心最高,并沿该中心径向减少,因此前述的离子源均匀区实际上是一种近似的均匀,若考虑到离子源的不均匀性,则修正栅板需要根据等离子体激发源130的实际情况“量身定做”。
刻蚀过程中,需要选择不同的气体以适应不同材料的工件,所以等离子体激发源130可以配置有多个气体储罐131,气体储罐131内气体的流量由气体质量流量控制器MFC控制。
进一步地,真空反应腔室110内设置有压力监测装置150和真空获得设备151;
优选地,还设置有用于根据压力监测装置150监测到的压力控制真空获得设备151阀门开启口径的压力控制器;
优选地,压力控制器为PID控制器;
优选地,真空获得设备151有四台以上,四台以上真空获得设备151均匀分布在等离子体激发源130四周。
为保证真空反应腔室110内的真空度,设置压力监测装置150和真空获得设备151,当压力监测装置150监测到真空反应腔室110内压力过高,则开启真空获得设备151,本实施例中的压力监测装置150和真空获得设备151只要能够满足设备需要即可,本领域技术人员可以在现有技术中合理选择。
真空获得设备151的开启口径可以由操作人员手动控制,但是考虑到设备可能需要长时间工作,为了降低操作者的负荷,节约人力,设置压力控制器,当真空反应腔室110内监测到压力超过预定值时,压力控制器控制真空获得设备151口径增加以增加抽真空速率;当真空反应腔室110内监测到压力在预设值范围内时,压力控制器控制真空获得设备151减小口径。本实施例中的压力控制器可以在现有技术中进行选择,仅需要具有简单的判断压力监测装置150传输的压力是否在设定范围内并根据判断结果增加或减小真空获得设备151抽真空的速率即可。具体地,本实施例中可以采用PID控制器,在控制精度、响应速度、系统稳定性与适应能力方面均具有优势;真空获得设备可以选择合适规格的真空泵。
为了减少真空获得设备151抽真空时对反应腔室内气流的扰动,真空获得设备151可以尽量均匀分布在分布在等离子体激发源130四周。
进一步地,真空获得设备151的出气口上连接有尾气处理装置152,尾气处理装置152内设置有过滤器,过滤器与尾气接触的位置设置有防腐涂层;
优选地,防腐涂层为聚四氟乙烯涂层。
刻蚀过程中,需要选择不同的气体以适应不同材料的工件,这些气体由真空获得设备151抽出真空反应腔室110,气体在真空反应腔室110内经过一些列反应后有些形成了有毒有害气体或微小粒子,为了降低对环境的污染设置尾气处理装置152。
尾气处理装置152内设置有过滤器,对微小粒子进行过滤,为了提高过滤器的使用寿命,设置防腐涂层。
进一步地,真空反应腔室110内设置有温度监测装置160和换热器161;
优选地,还设置有用于根据温度监测装置160监测到的温度控制换热器161开关的温度控制器;
优选地,温度控制器为PID控制器。
为保证真空反应腔室110内的温度在指定范围内,设置温度监测装置160和换热器161,当温度监测装置160监测到真空反应腔室110内温度过高,则开启换热器161进行降温;当温度监测装置160监测到真空反应腔室110内温度过低,则开启换热器161进行加热。本实施例中的温度监测装置160和换热器161只要能够满足设备需要即可,本领域技术人员可以在现有技术中合理选择。具体的,换热装置可以为加热棒。
换热器161的开启和关闭可以由操作人员手动控制,但是考虑到设备可能需要长时间 工作,为了降低操作者的负荷,节约人力,设置温度控制器,当真空反应腔室110内监测到温度超过预定值时,温度控制器控制换热器161开启制冷功能降低温度;当真空反应腔室110内监测到温度在预设值范围内时,温度控制器控制换热器161关闭或减小功率。本实施例中的温度控制器可以在现有技术中进行选择,仅需要具有简单的判断温度监测装置160传输的温度是否在设定范围内并根据判断结果开启、增加功率、减小功率或关闭换热器161即可。
具体地,本实施例中可以采用PID控制器,在控制精度、响应速度、系统稳定性与适应能力方面均具有优势。
进一步地,等离子体激发源130上设置有能够带动等离子体激发源130在X、Y、Z三个方向移动的移动组件;
等离子体激发源130中与蚀刻气体或等离子体接触的部件均为双相不锈钢材质;
等离子体激发源130和刻蚀区在Z轴方向上的距离在20~100cm之间。
进行刻蚀时,需要根据工件情况对等离子体激发源130和工件盘120之间的距离进行调整,因此设置移动组件,带动等离子体激发源130移动。
本实施例中的移动组件只要能够带动离子体激发源在三维空间内移动即可,具体实施方式可以在现有技术中选择,可以参考导轨丝杠结构,但是由于真空反应腔室110内需要保持一定的真空度,因此需要注意密封。
进一步地,转动组件121包括电机、与电机动力输出轴连接的转轴,工件盘120安装在转轴上;
优选地,电机位于真空反应腔室110,真空反应腔室110上设置有用于转轴穿出的避让孔,避让孔和转轴之间设置有密封结构。
具体工作时,电机带动转轴转动,从而带动工件盘120进行转动,为了方便控制电机的开关,将电机设置在真空反应腔室110外,由于真空反应腔室110内需要保持一定的真空度,因此在避让孔和转轴之间设置有密封结构。
本实施例中的密封结构可以在现有技术中选择,例如可以选择密封轴承。
为了方便调整工件盘120和等离子体激发源130之间的距离,可以将工件盘120设置成高度可调的,具体的转轴和工件盘120之间可以设置电动伸缩杆。进一步地,还包括吹扫装置170,吹扫装置170包括气源、与气源连接的气管和连接在气管上的吹扫口,吹扫口朝向工件盘120设置。
刻蚀结束后,开启吹扫装置170对工件盘120上的工件进行吹到,实现工件的清洗和降温。
吹扫装置170的吹扫区和刻蚀区可以重叠也可以分开,但均需避免吹扫装置170和等 离子体激发源130之间相互干扰。
本申请的另一个实施例提供了一种利用前述实施方式装置的干法刻蚀方法,将待刻蚀基片置于工件盘120上,驱动工件盘120,充入刻蚀气体,启动等离子体激发源130,对基片进行刻蚀微纳加工;刻蚀前或刻蚀中调整等离子体密度修正系统对等离子体激发源发射的等离子体密度进行修正。
进一步地,启动等离子体激发源130后,在气压和等离子体辉光稳定后,逐渐加大等离子体激发源的功率至指定范围,对基片进行刻蚀微纳加工;
优选地,充入刻蚀气体之前,先充入惰性气体对真空反应腔室内的流动气氛进行置换,置换完成后停止充入惰性气体;
真空反应腔室110压力为3×10-2~3×10-1Pa;
优选地,真空反应腔室110内温度为80-120℃;
优选地,工件盘120转速0~50r/min;
优选地,刻蚀完成后,开启吹扫装置170,吹扫气体的流量为0~1scm/h。
本实施例中,将大口径工件置于工件盘120上过圆心处,通过工件盘120的转动使得大口径工件分区域逐渐经过刻蚀区,对大口径工件进行分区刻蚀,通过等离子体密度修正系统调整等离子体密度,减轻工件不同位置经过离子源均匀区的时间不同造成的不均匀性。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
工业实用性
本申请提供了一种干法刻蚀装置和方法,其中干法刻蚀装置包括真空反应腔室,真空反应腔室内设置有由转动组件带动的工件盘和向刻蚀区发射等离子体的等离子体激发源,刻蚀区覆盖工件盘的轴心且位于轴心的一侧,等离子体激发源和刻蚀区之间设置有等离子体密度修正系统。本申请利用等离子体激发源的均匀区对转动到刻蚀区内的工件进行刻蚀,刻蚀时转动工件盘,使得工件围绕工件盘的圆心转动使得工件上个位置依次经过刻蚀区进行刻蚀,本实施例中刻蚀区不需要覆盖整个工件,仅仅覆盖工件的部分即可对工件进行分区刻蚀,相对于传统干法刻蚀系统可以大大降低装置的体积。
此外,可以理解的是,本申请的干法刻蚀装置和方法是可以重现的,并且可以用在多种工业应用中。例如,本申请的干法刻蚀装置和方法可以用于刻蚀领域。

Claims (10)

  1. 一种干法刻蚀装置,其特征在于,包括真空反应腔室,所述真空反应腔室内设置有由转动组件带动的工件盘、刻蚀区和向刻蚀区发射等离子体的等离子体激发源,所述刻蚀区覆盖工件盘的轴心且位于所述轴心的一侧,所述等离子体激发源和刻蚀区之间设置有等离子体密度修正系统。
  2. 根据权利要求1所述的干法刻蚀装置,其特征在于,所述等离子体密度修正系统包括修正栅网和带动所述修正栅网转动和移动的运动组件;
    优选地,沿远离工件盘轴线的方向,所述修正栅网的网孔覆盖率逐渐减小;
    优选地,所述修正栅网和工件盘之间的夹角为0~75°;
    优选地,所述修正栅网为金属材质或高分子材料。
  3. 根据权利要求1所述的干法刻蚀装置,其特征在于,所述真空反应腔室内设置有压力监测装置和真空获得设备;
    优选地,还设置有用于根据压力监测装置监测到的压力控制真空获得设备阀门开启口径的压力控制器;
    优选地,压力控制器为PID控制器;
    优选地,所述真空获得设备有四台以上,四台以上所述真空获得设备均匀分布在等离子体激发源四周。
  4. 根据权利要求3所述的干法刻蚀装置,其特征在于,所述真空获得设备的出气口上连接有尾气处理装置,所述尾气处理装置内设置有过滤器,所述过滤器与尾气接触的位置设置有防腐涂层;
    优选地,所述防腐涂层为聚四氟乙烯涂层。
  5. 根据权利要求1所述的干法刻蚀装置,其特征在于,所述真空反应腔室内设置有温度监测装置和换热器;
    优选地,还设置有用于根据温度监测装置监测到的温度控制换热器开关的温度控制器;
    优选地,温度控制器为PID控制器。
  6. 根据权利要求1所述的干法刻蚀装置,其特征在于,所述等离子体激发源上设置有能够带动等离子体激发源在X、Y、Z三个方向移动的移动组件;
    优选地,等离子体激发源中与蚀刻气体或等离子体接触的部件均为双相不锈钢材质;
    优选地,等离子体激发源和刻蚀区在Z轴方向上的距离在20~100cm之间。
  7. 根据权利要求1所述的干法刻蚀装置,其特征在于,所述转动组件包括电机、与电机动力输出轴连接的转轴,所述工件盘安装在转轴上;
    优选地,所述电机位于真空反应腔室,所述真空反应腔室上设置有用于转轴穿出的避让孔,所述避让孔和转轴之间设置有密封结构。
  8. 根据权利要求1所述的干法刻蚀装置,其特征在于,还包括吹扫装置,所述吹扫装置包括气源、与气源连接的气管和连接在气管上的吹扫口,所述吹扫口朝向工件盘设置。
  9. 一种利用权利要求1-8任意一项所述装置的干法刻蚀方法,其特征在于,将待刻蚀基片置于工件盘上,驱动工件盘,充入刻蚀气体,启动等离子体激发源,对基片进行刻蚀微纳加工;刻蚀前或刻蚀中调整等离子体密度修正系统对等离子体激发源发射的等离子体密度进行修正。
  10. 根据权利要求9所述的干法刻蚀方法,其特征在于,启动等离子体激发源后,在气压和等离子体辉光稳定后,逐渐加大等离子体激发源的功率至指定范围,对基片进行刻蚀微纳加工;
    优选地,充入刻蚀气体之前,先充入惰性气体对真空反应腔室内的流动气氛进行置换,置换完成后停止充入惰性气体;
    所述真空反应腔室压力为3×10-2~3×10-1Pa;
    优选地,所述真空反应腔室内温度为80-120℃;
    优选地,工件盘转速0.01~50r/min;
    优选地,刻蚀完成后,开启吹扫装置,吹扫气体的流量为0.01~1scm/h。
PCT/CN2023/121891 2022-09-28 2023-09-27 干法刻蚀装置和方法 WO2024067666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211202559.3 2022-09-28
CN202211202559.3A CN115410893A (zh) 2022-09-28 2022-09-28 干法刻蚀装置和方法

Publications (1)

Publication Number Publication Date
WO2024067666A1 true WO2024067666A1 (zh) 2024-04-04

Family

ID=84169047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121891 WO2024067666A1 (zh) 2022-09-28 2023-09-27 干法刻蚀装置和方法

Country Status (2)

Country Link
CN (1) CN115410893A (zh)
WO (1) WO2024067666A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115410893A (zh) * 2022-09-28 2022-11-29 北京金派尔电子技术开发有限公司 干法刻蚀装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070068272A (ko) * 2005-12-26 2007-06-29 엔지뉴어티 시스템즈 인코포레이티드 플라즈마 식각 시스템
US20160358794A1 (en) * 2015-06-02 2016-12-08 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
CN107516625A (zh) * 2017-07-13 2017-12-26 江苏鲁汶仪器有限公司 一种等离子体刻蚀系统的喷淋头
CN111566793A (zh) * 2017-11-10 2020-08-21 朗姆研究公司 各向异性图案蚀刻和处理的方法和设备
CN115410893A (zh) * 2022-09-28 2022-11-29 北京金派尔电子技术开发有限公司 干法刻蚀装置和方法
CN218123350U (zh) * 2022-09-28 2022-12-23 北京金派尔电子技术开发有限公司 干法刻蚀装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070068272A (ko) * 2005-12-26 2007-06-29 엔지뉴어티 시스템즈 인코포레이티드 플라즈마 식각 시스템
US20160358794A1 (en) * 2015-06-02 2016-12-08 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
CN107516625A (zh) * 2017-07-13 2017-12-26 江苏鲁汶仪器有限公司 一种等离子体刻蚀系统的喷淋头
CN111566793A (zh) * 2017-11-10 2020-08-21 朗姆研究公司 各向异性图案蚀刻和处理的方法和设备
CN115410893A (zh) * 2022-09-28 2022-11-29 北京金派尔电子技术开发有限公司 干法刻蚀装置和方法
CN218123350U (zh) * 2022-09-28 2022-12-23 北京金派尔电子技术开发有限公司 干法刻蚀装置

Also Published As

Publication number Publication date
CN115410893A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2024067666A1 (zh) 干法刻蚀装置和方法
US7655092B2 (en) Tandem process chamber
US9543220B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, substrate processing method, and recording medium
JP6293499B2 (ja) 真空処理装置
TW201818469A (zh) 氣體導入機構及處理裝置
KR20150146440A (ko) 기판 처리 방법, 기판 처리 장치, 기판 처리 시스템 및 기억 매체
TWI467692B (zh) Substrate processing method and substrate processing device
TW201438089A (zh) 基板處理方法及基板處理裝置
JP6491891B2 (ja) 真空処理装置
JP2015056447A (ja) 基板処理方法および基板処理装置
US3524426A (en) Apparatus for coating by thermal evaporation
US10861718B2 (en) Substrate processing method and substrate processing apparatus
WO2021102712A1 (zh) 一种半导体真空处理设备及处理半导体的方法
US20210214845A1 (en) Substrate processing apparatus and rotary drive method
CN218123350U (zh) 干法刻蚀装置
US20160265107A1 (en) Substrate holder and substrate processing apparatus
JP6900412B2 (ja) 基板処理装置及び半導体装置の製造方法及びプログラム
WO2021059492A1 (ja) 基板処理装置、昇降機構、半導体装置の製造方法及びプログラム
JPH0252428A (ja) 処理装置
JP2009117554A (ja) 基板処理装置
US20210164098A1 (en) Rotation driving mechanism and rotation driving method, and substrate processing apparatus and substrate processing method using same
CN211828678U (zh) 等离子体反应设备
JP2003273088A (ja) プラズマリーク検出装置及び処理システム
JP6475877B2 (ja) 真空処理装置
JP4865253B2 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870893

Country of ref document: EP

Kind code of ref document: A1