WO2021102712A1 - 一种半导体真空处理设备及处理半导体的方法 - Google Patents

一种半导体真空处理设备及处理半导体的方法 Download PDF

Info

Publication number
WO2021102712A1
WO2021102712A1 PCT/CN2019/121089 CN2019121089W WO2021102712A1 WO 2021102712 A1 WO2021102712 A1 WO 2021102712A1 CN 2019121089 W CN2019121089 W CN 2019121089W WO 2021102712 A1 WO2021102712 A1 WO 2021102712A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
plasma
vacuum
gas
working cavity
Prior art date
Application number
PCT/CN2019/121089
Other languages
English (en)
French (fr)
Inventor
伍凯义
钟光韦
杨然翔
江仁杰
沈佳辉
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to PCT/CN2019/121089 priority Critical patent/WO2021102712A1/zh
Priority to CN201980002719.XA priority patent/CN111033682B/zh
Publication of WO2021102712A1 publication Critical patent/WO2021102712A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • the present invention relates to the technical field of semiconductor manufacturing, in particular to a semiconductor vacuum processing equipment and a method for processing semiconductors.
  • the technical problem to be solved by the present invention is to provide a semiconductor vacuum processing equipment and a method for processing semiconductors in view of the above-mentioned defects of the prior art, aiming to solve the problem that the existing semiconductor vacuum processing equipment cannot adjust the gas flow in the working chamber after leaving the factory.
  • the change of the field causes the problem of local unevenness in the etching or deposition of the semiconductor.
  • a semiconductor vacuum processing equipment which includes:
  • a gas input part arranged on the working cavity and used for inputting reaction gas into the working cavity;
  • a plasma generating part arranged inside the working cavity and used for converting the contacted reaction gas into plasma
  • a stage for placing the semiconductor element to be processed which is arranged under the plasma generating part and inside the working cavity;
  • a plurality of vacuum exhaust holes arranged under the carrier and arranged on the surface of the working cavity, and used to circulate the plasma in the working cavity outwards;
  • a plurality of moving baffles located on the plurality of vacuum exhaust holes, the plurality of moving baffles are used to control the opening and closing sizes of the plurality of vacuum exhaust holes to adjust the flow into the semiconductor element to be processed The flow rate of the plasma on the surface.
  • the plurality of vacuum exhaust holes are symmetrically distributed around the carrier.
  • the size of the plurality of moving baffles is larger than the size of the plurality of vacuum exhaust holes.
  • the plurality of moving baffles are further connected with a driving part, and the driving part is used to drive the plurality of moving baffles to perform a straight line around the plurality of vacuum exhaust holes. Movement or circular movement.
  • the driving component includes a servo motor or a stepping motor.
  • the plurality of moving baffles are circular or elliptical.
  • the plurality of moving baffles are made of 304 stainless steel as a base, and are plated with an anode protective film.
  • the plurality of moving baffles are processed by forging or casting.
  • the semiconductor vacuum processing equipment further includes a motion sensor for monitoring the movement of the plurality of moving baffles.
  • a method of processing semiconductors wherein the method includes:
  • the gas input part inputs the reaction gas into the working chamber
  • the plasma generating part converts the contacted reaction gas into plasma
  • the plasma performs corresponding processing on the semiconductor components to be processed on the carrier;
  • the flow rate of the plasma flowing into the surface of the semiconductor element to be processed can be adjusted.
  • the method for processing semiconductors wherein, before the gas input part inputs the reaction gas into the working cavity, the method further includes:
  • a vacuum pumping process is performed on the working cavity to make the working cavity reach a target vacuum degree.
  • the plasma includes an inert gas or a mixture of an inert gas and a reactive gas.
  • the method for processing semiconductors wherein the corresponding processing of the semiconductor elements to be processed on the carrier by the plasma specifically includes:
  • the semiconductor element to be processed placed on the stage is etched or deposited.
  • the method for processing semiconductors wherein, performing etching processing on the semiconductor element to be processed placed on the carrier includes:
  • the thin film on the semiconductor surface layer is removed by collision to perform etching treatment
  • the deposition process is performed by depositing a thin film on the surface layer of the semiconductor by using plasma of an inert gas or a mixture of an inert gas and a reactive gas as a carrier gas.
  • a method for processing semiconductors wherein the opening and closing sizes of the plurality of movable baffles arranged on the plurality of vacuum exhaust holes are adjusted to adjust the plasma flow into the surface of the semiconductor element to be processed
  • the flow rate specifically includes:
  • the size of the opening and closing of the vacuum exhaust hole controls the movement speed of the gas flowing out of the working chamber, so as to adjust the flow rate of the plasma flowing into the surface of the semiconductor element to be processed.
  • the present invention provides a semiconductor vacuum processing equipment and a method for processing semiconductors.
  • the equipment includes a working cavity; and is arranged on the working cavity and used for inputting reaction gas into a gas input part inside the working cavity Is located inside the working cavity and is used to convert the contacted reaction gas into a plasma generating part; located below the plasma generating part, located inside the working cavity, used to place the semiconductor element to be processed
  • the carrier set below the carrier, set on the surface of the working chamber, a plurality of vacuum exhaust holes for circulating plasma in the working chamber, and located on the plurality of vacuum exhaust holes
  • Multiple moving baffles the opening and closing sizes of the multiple vacuum suction holes are controlled by the multiple moving baffles to adjust the flow rate of the plasma flowing into the surface of the semiconductor element to be processed, so as to achieve local etching on the semiconductor Or the position of uneven deposition can adjust the opening and closing size of the moving baffle at the corresponding position to change the local plasma flow rate change on the semiconductor, thereby adjusting the local etching or deposition
  • FIG. 1 is a schematic diagram of the structure of a semiconductor vacuum processing equipment in the present invention
  • Fig. 2 is a working schematic diagram of a semiconductor vacuum processing equipment in the present invention
  • FIG. 3 is a schematic diagram of the positional relationship between the moving baffle and the vacuum exhaust hole in a semiconductor vacuum processing equipment of the present invention
  • FIG. 4 is a working schematic diagram of a moving baffle in a semiconductor vacuum processing equipment of the present invention.
  • FIG. 5 is a flowchart of a method of processing semiconductors according to the present invention.
  • the improved semiconductor vacuum processing equipment of the present invention is different from the existing semiconductor processing equipment.
  • the semiconductor processing equipment in the prior art can also be used for the etching or deposition of semiconductors.
  • the principle is that the reaction gas enters the working chamber through the gas input channel, and is converted into plasma after passing through the plasma generating part;
  • the method generates the gas flow field of the working cavity, so that the plasma falls into the semiconductor components on the stage, and the semiconductor components are etched or deposited.
  • the uniformity of the gas flow in the working cavity is not well controlled, it is difficult to control the uniformity of etching or deposition.
  • the semiconductor vacuum processing equipment of the present invention can control the movement speed of the gas flow field through the different opening and closing positions of the movable baffle movably arranged on the vacuum exhaust hole to achieve the desired value of the user.
  • the control of local etching rate or deposition rate makes the equipment more optimized.
  • FIG. 1 is a schematic structural diagram of a semiconductor vacuum processing equipment of the present invention.
  • the semiconductor vacuum processing equipment includes a working chamber 10; The gas input part 20 inside the cavity; the plasma generating part 30 arranged inside the working cavity 10 and used to convert the reacted gas into plasma; arranged under the plasma generating part 30 and located in the working cavity Inside the body 10, a carrier 40 for placing the semiconductor components to be processed; arranged below the carrier 40, on the surface of the working chamber 10, for circulating a plurality of plasma in the working chamber outwards Vacuum exhaust holes 50; and a plurality of movable baffles 60 located on the plurality of vacuum exhaust holes 50, the plurality of movable baffles 60 are used to control the opening and closing sizes of the plurality of vacuum exhaust holes 50 to adjust The flow rate of plasma flowing onto the surface of the semiconductor element to be processed.
  • the position of the carrier 40 shown in FIG. 1 is only an example.
  • the carrier 40 can also be placed in other positions.
  • the stage 40 is arranged at a position close to the bottom of the plasma generating part 30; similarly, when the required plasma concentration is small, the stage 40 can be arranged at the bottom of the cavity to be far away from the plasma generating part 30.
  • the working chamber 10 is connected to an external gas input part 20, and the working chamber 10 is provided with a plasma generating part 30, a stage 40, a plurality of vacuum exhaust holes 50, and the A plurality of movable baffles 60 movably connected to a plurality of vacuum exhaust holes 50, the gas input part 20 inputs the external reaction gas into the working chamber 10, and the plasma generation part 30 will contact the reaction gas and convert it into plasma
  • a stage 40 is provided between the plasma generating part 30 and the bottom of the working cavity 10, and the semiconductor element to be processed is placed on the stage 40.
  • the plasma flows in the working cavity to achieve the etching or deposition of semiconductors.
  • the opening and closing movement of the plurality of movable baffles 60 on the plurality of vacuum exhaust holes 50 changes the opening and closing sizes of the plurality of vacuum exhaust holes 50, and the different opening and closing positions or opening and closing sizes of the plurality of movable baffles 60 make the inflow
  • the plasma gas volume of the plurality of vacuum exhaust holes 50 is different, that is, the replacement speed of the plasma gas in the working cavity 10 is accelerated, so as to realize the control of the flow field change in the working cavity, and different etchings are required for semiconductors.
  • the deposition position can be realized by the opening and closing movement of the movable baffles at different positions relative to the carrier in the plurality of movable baffles 60.
  • etching or deposition is a process flow of semiconductor processing in the prior art, such as semiconductor thin film deposition technology, which involves a series of adsorption of atoms, diffusion of adsorbed atoms on the surface, and coalescence at appropriate locations.
  • Gradually forming the process of film growth, and etching refers to the removal of the protective film of the area to be etched after exposure, plate making and development, and exposure to chemical solutions during etching to achieve the effect of dissolving and corroding, forming unevenness or hollowing out.
  • the present invention will not be repeated here.
  • Figure 2 is a working schematic diagram of a semiconductor vacuum processing equipment in the present invention
  • Figure 3 is a moving baffle and vacuum exhaust holes in a semiconductor vacuum processing equipment in the present invention
  • the plurality of vacuum exhaust holes 50 are symmetrically distributed around the carrier 40, wherein, as a more preferred implementation, the carrier 40 may be circular, and the carrier 40 may be Four vacuum exhaust holes are respectively arranged around the four sides of the carrier, and the four vacuum exhaust holes are symmetrically distributed around the carrier, so that when the gas is extracted, the gas evenly flows through the semiconductor placed on the carrier.
  • the present invention does not limit the specific number of the vacuum exhaust holes, and the present invention does not limit the specific shape of the carrier 40, and the above is only for illustration.
  • the size of the plurality of moving baffles 60 is greater than the size of the plurality of vacuum exhaust holes 50.
  • the vacuum exhaust holes 50 when required to be fully closed, it only needs to cover the vacuum exhaust holes.
  • the size of the moving baffle does not need to be too large.
  • the size of the moving baffle can be slightly larger than the vacuum exhaust hole. If it is too large, it will waste space and increase the production cost.
  • the size of the moving baffle can be adjusted in actual production according to specific needs. Make changes.
  • FIG. 4 is a working schematic diagram of a plurality of moving baffles 60 in a semiconductor vacuum processing equipment of the present invention, and the multiple moving baffles 60 are also connected with a driving component (FIG. Not marked in), the driving component is used to drive the plurality of moving baffles 60 to move linearly or circularly around the plurality of vacuum exhaust holes 50.
  • the moving baffle covers the vacuum
  • the suction hole is on
  • the working chamber 10 needs to etch or deposit a certain part of the semiconductor on the carrier 40
  • the moving baffle around the corresponding semiconductor can be adjusted, and the vacuum can be controlled by opening and closing the moving baffle.
  • the size of the suction hole, the size of the vacuum suction hole determines the corresponding change in the flow field in the working chamber, and the change in different areas of the flow field results in the local etching or deposition of the semiconductor, and the specific control of whether the moving baffle is linear or circular
  • the movement can be controlled according to the location where the semiconductor is to be etched or deposited.
  • the movement of the moving baffle in the right area can be controlled to make the vacuum exhaust hole in the right area larger, which makes the high plasma flow rate faster and increases the working chamber
  • the driving component includes a servo motor or a stepping motor.
  • the moving baffle can be driven in a variety of ways, such as a servo motor or a stepping motor.
  • the specific driving method can be adjusted by the user according to different experimental designs. Different opening and closing degrees of the moving baffle until the best driving mode is established.
  • the plurality of moving baffles 60 are circular or elliptical. In specific production, it depends on the positions of the vacuum pumping pipes of various equipment and machines. Therefore, the pumps of any different equipment manufacturers The design of the vacuum pipeline may be slightly different. Generally, the vacuum pipeline is designed to be circular. The purpose of the moving baffle is to adjust the pumping efficiency of the vacuum pipeline (using the change of the vacuum pipeline cross-sectional area to change the pumping efficiency and Change the gas replacement rate). Therefore, in actual production, different shapes of the moving baffle can be made according to the shape of the vacuum pipeline. The above is only an example, and the present invention does not specifically limit the shape of the moving baffle.
  • the plurality of moving baffles 60 are made of 304 stainless steel as a base and are plated with an anode protective film. Specifically, they can be made of grade 304 stainless steel. Of course, other wear-resistant materials can also be used, as long as they meet the corresponding requirements. At the same time, in order to increase the surface hardness and wear resistance of the material, the surface treatment of the moving baffle is also carried out. The application range of the moving baffle is expanded through anodizing technology and its service life is prolonged.
  • the multiple moving baffles 60 are processed by forging or casting.
  • the processing method of the multiple moving baffles 60 can be based on the application occasions and the suction vacuum pipelines of different equipment manufacturers. In order to adapt to different pipelines, different processing methods can be adopted. For example, in the case of complicated vacuum exhaust pipes, multiple moving baffles can be cast to obtain complex-shaped moving baffles. Of course, the forging processing method can be used. It should be understood that the processing method described above is only for illustration and does not limit the present invention.
  • it also includes a motion sensor for monitoring the movement of the plurality of moving baffles 60.
  • a motion sensor for monitoring the movement of the plurality of moving baffles 60.
  • the opening and closing degree of the moving baffle relative to the vacuum exhaust hole can be monitored by the motion sensor to control
  • the size of the vacuum exhaust hole is changed, so as to accurately control the flow field change in the working chamber to achieve the control of the local etching rate or deposition rate desired by the user, so that the equipment is more optimized.
  • the present invention also provides a method for processing semiconductors. As shown in FIG. 5, it is a flowchart of a method for processing semiconductors of the present invention. The method includes:
  • the gas input part inputs the reaction gas into the working chamber
  • the plasma generating part converts the contacted reaction gas into plasma
  • the plasma performs corresponding processing on the semiconductor components to be processed on the carrier;
  • the method before the gas input part inputs the reaction gas into the working chamber, the method further includes:
  • S02. Perform a vacuum pumping process on the working chamber to make the working chamber reach a target vacuum degree.
  • the target vacuum degree of the working chamber can be determined according to actual production requirements, and the present invention is not limited here; wherein the plasma includes an inert gas or a mixture of an inert gas and a reaction gas,
  • noble gases include seven helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn, radioactivity) and gas (Og, radioactivity, man-made elements)
  • the specific use of gas can be selected based on actual production requirements.
  • the plasma processing of the semiconductor components to be processed on the carrier specifically includes:
  • S31 Perform etching or deposition processing on the semiconductor element to be processed placed on the carrier.
  • etching the semiconductor element to be processed placed on the carrier includes:
  • adjusting the opening and closing sizes of the plurality of movable baffles arranged on the plurality of vacuum exhaust holes to adjust the flow rate of the plasma flowing into the surface of the semiconductor element to be processed specifically includes:
  • S42 Control the speed of the gas flowing out of the working cavity by the size of the opening and closing of the vacuum exhaust hole, so as to adjust the flow rate of the plasma flowing into the surface of the semiconductor element to be processed.
  • the working chamber is connected to an external gas input part, and the working chamber is provided with a plasma generating part, a carrier, a plurality of vacuum exhaust holes, and a plurality of vacuum exhaust holes movably connected to the plurality of vacuum exhaust holes.
  • a movable baffle The gas input part inputs the external reaction gas into the working chamber. The plasma generation part will contact these reaction gases and convert them into plasma.
  • a load is set between the plasma generation part and the bottom of the working chamber.
  • a stage on which a semiconductor element to be processed is placed.
  • the plasma flow in the working chamber realizes the etching or deposition of the semiconductor, and the amount is changed by the opening and closing movement of a plurality of movable baffles on a plurality of vacuum exhaust holes.
  • the size of the opening and closing of the vacuum exhaust holes, the different opening and closing positions or opening and closing sizes of the multiple movable baffles make the plasma gas volume flowing into the multiple vacuum exhaust holes different, and accelerate the plasma gas in the working chamber.
  • the replacement speed is thus achieved to control the flow field changes in the cavity.
  • semiconductors that require different etching or deposition positions it can be achieved by the opening and closing movement of multiple moving baffles in different positions. It has been explained in detail, so I won’t repeat it here.
  • the present invention provides a semiconductor vacuum processing equipment and a method for processing semiconductors.
  • the equipment includes a working chamber; Input part; disposed inside the working cavity, used to convert the contacted reaction gas into a plasma generating part; disposed below the plasma generating part, located inside the working cavity, used to place the to-be-processed A stage for a semiconductor element; a plurality of vacuum pumping holes arranged under the stage and on the surface of the working cavity for circulating plasma in the working cavity, and located in the plurality of vacuum pumping holes
  • the multiple moving baffles are used to control the opening and closing sizes of the multiple vacuum exhaust holes to adjust the flow rate of the plasma flowing into the surface of the semiconductor element to be processed, so as to achieve the Partially etched or deposited uneven position can adjust the opening and closing size of the moving baffle at the corresponding position to change the local plasma flow rate change on the semiconductor, thereby adjusting the local etching or deposition change on the semiconductor, and finally obtaining the etching of the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

一种半导体真空处理设备及处理半导体的方法,所述设备包括工作腔体(10)、设置在工作腔体(10)上的气体输入部(20)、设置在工作腔体(10)内部的等离子产生部(30)、设置在等离子产生部(30)下方,位于工作腔体(10)内部的载台(40)、设置在所述载台(40)下方,设置在工作腔体(10)表面上的多个真空抽气孔(50),以及位于多个真空抽气孔(50)上的多个运动挡板(60)。通过多个运动挡板(60)控制所述多个真空抽气孔(50)的开合大小,以调节流入到所述待处理的半导体元件表面上的等离子体的流速,实现针对半导体上局部蚀刻或沉积不均匀的位置可调节相应位置的运动挡板(60)的开合大小以改变半导体上局部的等离子体的流速变化,从而调整对半导体上局部的蚀刻或沉积的变化,最终获得半导体的蚀刻率或沉积率的局部均匀性。

Description

一种半导体真空处理设备及处理半导体的方法 技术领域
本发明涉及半导体制造技术领域,尤其涉及的是一种半导体真空处理设备及处理半导体的方法。
背景技术
随着真空技术的不断发展,在半导体的制造领域也相应有半导体的真空处理设备,例如在用于半导体的蚀刻或沉积的方面,而控制蚀刻率或是沉积率的均匀性是一个问题,真空处理设备不论是蚀刻或是沉积,靠的是腔体内解离后的分子或是离子于腔壁内的流动再藉由流场的设计来达到制程均匀性的控制,而现有技术中控制蚀刻或沉积的均匀性的方式众多,但是都是整体上均匀性,对于局部蚀刻或沉积的均匀性达不到好的处理效果,并且由于真空处理设备应客户均匀性需求,蚀刻率等高线图需求(Etch Rate Mapping),沉积率等高线图(Deposition Rate Mapping)等等需求,将设备设计出厂后规格大致已设定,因此,造成在后续使用中要再根据需求做调整的机率很低。
因此,现有技术还有待于改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种半导体真空处理设备及处理半导体的方法,旨在解决现有半导体的真空处理设备在出厂后无法调整工作腔体内气体流场的变化,而造成的半导体的蚀刻或沉积局部不均匀的问题。
本发明解决技术问题所采用的技术方案如下:
一种半导体真空处理设备,其中,包括:
工作腔体;
设置在所述工作腔体上,用于将反应气体输入到工作腔体内部的气体输入部;
设置在所述工作腔体内部,用于将接触到的反应气体转换成等离子体的等离子产生部;
设置在等离子产生部下方,位于所述工作腔体内部,用于放置待处理的半导体元件的载台;
设置在所述载台下方,设置在所述工作腔体表面上,用于向外流通工作腔体内等离子体的多个真空抽气孔;
以及位于所述多个真空抽气孔上的多个运动挡板,所述多个运动挡板用于控制所述多个真空抽气孔的开合大小,以调节流入到所述待处理的半导体元件表面上的等离子体的流速。
进一步的,所述的半导体真空处理设备,其中,所述多个真空抽气孔对称分布在所述载台四周。
进一步的,所述的半导体真空处理设备,其中,所述多个运动挡板的尺寸大于所述多个真空抽气孔的尺寸。
进一步的,所述的半导体真空处理设备,其中,所述多个运动挡板还连接有驱动部件,所述驱动部件用于驱动所述多个运动挡板围绕所述多个真空抽气孔进行直线运动或是圆周运动。
进一步的,所述的半导体真空处理设备,其中,所述驱动部件包括伺服马达或步进马达。
进一步的,所述的半导体真空处理设备,其中,所述多个运动挡板呈圆形或椭圆形。
进一步的,所述的半导体真空处理设备,其中,所述多个运动挡板通过304不锈钢为基底制成,并镀有阳极保护膜。
进一步的,所述的半导体真空处理设备,其中,所述多个运动挡板通过锻造或铸造方式加工。
进一步的,所述的半导体真空处理设备,其中,还包括用于监测所述多个运动挡板运动的运动传感器。
一种处理半导体的方法,其中,所述方法包括:
气体输入部将反应气体输入到工作腔体内部;
等离子产生部将接触到的反应气体转换成等离子体;
等离子体对载台上的待处理的半导体元件进行相应处理;
通过调节设置在多个真空抽气孔上的多个运动挡板的开合大小,以调节流入到所述待处理的半导体元件表面上的等离子体的流速。
进一步的,处理半导体的方法,其中,气体输入部将反应气体输入到工作腔体内部之前还包括:
将所述待处理的半导体放置在载台上;
对所述工作腔体进行真空抽气处理,使所述工作腔体达到目标真空度。
进一步的,处理半导体的方法,其中,所述等离子体包括惰性气体或惰性气体与反应气体的混合物。
进一步的,处理半导体的方法,其中,等离子体对载台上的待处理的半导体元件进行相应处理具体包括:
对放置在载台上待处理的半导体元件进行蚀刻或沉积处理。
进一步的,处理半导体的方法,其中,对放置在载台上待处理的半导体元件进行蚀刻处理包括:
通过采用惰性气体或惰性气体与反应气体的混合物的等离子体作为载气通过碰撞清除掉半导体表层上的薄膜以进行蚀刻处理;
通过采用惰性气体或惰性气体与反应气体的混合物的等离子体作为载气通过在半导体表层上沉积薄膜以进行沉积处理。
进一步的,处理半导体的方法,其中,所述通过调节设置在多个真空抽气孔上的多个运动挡板的开合大小,以调节流入到所述待处理的半导体元件表面上的等离子体的流速具体包括:
控制所述多个运动挡板围绕所述多个真空抽气孔进行直线运动或是圆周运动,以控制所述多个真空抽气孔的开合大小;
通过所述真空抽气孔开合的大小控制气体流出工作腔体的运动速度,以调节流入到 所述待处理的半导体元件表面上的等离子体的流速。
有益效果:本发明提供一种半导体真空处理设备及处理半导体的方法,所述设备包括工作腔体;设置在所述工作腔体上,用于将反应气体输入到工作腔体内部的气体输入部;设置在所述工作腔体内部,用于将接触到的反应气体转换成等离子体的等离子产生部;设置在等离子产生部下方,位于所述工作腔体内部,用于放置待处理的半导体元件的载台;设置在所述载台下方,设置在所述工作腔体表面上,用于向外流通工作腔体内等离子体的多个真空抽气孔,以及位于所述多个真空抽气孔上的多个运动挡板;通过多个运动挡板控制所述多个真空抽气孔的开合大小,以调节流入到所述待处理的半导体元件表面上的等离子体的流速,实现针对半导体上局部蚀刻或沉积不均匀的位置可调节相应位置的运动挡板的开合大小以改变半导体上局部的等离子体的流速变化,从而调整对半导体上局部的蚀刻或沉积的变化,最终获得半导体的蚀刻率或沉积率的局部均匀性。
附图说明
图1是本发明中一种半导体真空处理设备的结构示意图;
图2是本发明中一种半导体真空处理设备的工作示意图;
图3是本发明中一种半导体真空处理设备中的运动挡板与真空抽气孔的位置关系示意图;
图4是本发明中一种半导体真空处理设备中的运动挡板的工作示意图;
图5是本发明的一种处理半导体的方法的流程图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明改进后的半导体真空处理设备与现有的半导体处理设备不同。现有技术中的半导体处理设备,也可用于半导体的蚀刻或沉积,其原理是,反应气体通过气体输入通 道进入工作腔体,经过等离子产生部后将转换成等离子;真空抽气孔通过抽真空的方式产生工作腔体的气体流场,从而使得等离子落入载台上的半导体元件,对半导体元件进行蚀刻或沉积,但是由于工作腔体内气流均匀性不好控制,所以不易控制蚀刻或沉积的均匀性,从而造成局部不均匀,而本发明中半导体真空处理设备通过活动设置于真空抽气孔上的运动挡板的不同的开合位置以控制气体流场的运动速度,来达到使用者想要的局部蚀刻率或是沉积率的控制,使设备更为优化。
请参阅图1,图1是本发明中一种半导体真空处理设备的结构示意图,所述半导体真空处理设备包括工作腔体10;设置在所述工作腔体上,用于将反应气体输入到工作腔体内部的气体输入部20;设置在所述工作腔体10内部,用于将接触到的反应气体转换成等离子体的等离子产生部30;设置在等离子产生部30下方,位于所述工作腔体10内部,用于放置待处理的半导体元件的载台40;设置在所述载台40下方,设置在所述工作腔体10表面上,用于向外流通工作腔体内等离子体的多个真空抽气孔50;以及位于所述多个真空抽气孔50上的多个运动挡板60,所述多个运动挡板60用于控制所述多个真空抽气孔50的开合大小,以调节流入到所述待处理的半导体元件表面上的等离子体的流速。
值得一提的是,图1所示载台40所处位置仅为示例,当然载台40也可放置于其他位置,例如当载台40上的待处理半导体需求等离子体浓度较大时,可将载台40设置在靠近等离子产生部30的下方的位置;同理,当需求等离子体浓度较小时,则可将载台40设置为腔体底部以远离等离子产生部30。
在本实施例中,所述工作腔体10连接外部的气体输入部20,并且所述工作腔体10内设置有等离子产生部30、载台40、多个真空抽气孔50,以及与所述多个真空抽气孔50活动连接的多个运动挡板60,气体输入部20将外部的反应气体输入到工作腔体10内,等离子产生部30将接触到这些反应气体后将其转换成等离子体,在等离子产生部30和工作腔体10底部之间设置有载台40,所述载台40上放置有待处理的半导体元件,等离子体在工作腔体内的流动实现半导体的蚀刻或是沉积,通过多个运动挡板60在多个真空抽气孔50上的开合运动来改变多个真空抽气孔50的开合大小,通过多个运动挡 板60不同的开合位置或是开合大小使得流入多个真空抽气孔50的等离子体的气体体量不同,即是加快工作腔体10内的等离子体气体的置换速度,从而实现了控制工作腔体内的流场变化,而针对半导体需要不同的蚀刻或沉积位置,可以通过多个运动挡板60中相对于载台不同位置的运动挡板的开合运动实现。
需要说明的是,蚀刻或沉积为现有技术中半导体加工的工艺流程,例如半导体的薄膜沉积技术,是连串涉及原子的吸附、吸附原子在表面的扩散及在适当的位置下聚结,以渐渐形成薄膜生长的过程,而蚀刻是指通过曝光制版、显影后,将要蚀刻区域的保护膜去掉,在蚀刻接触化学溶液,达到溶解腐蚀的作用,形成凹凸或者镂空成型的效果。针对具体的处理过程本发明在此不做赘述。
作为进一步的方案,请参阅图2和图3,图2是本发明中一种半导体真空处理设备的工作示意图,图3是本发明中一种半导体真空处理设备中的运动挡板与真空抽气孔的位置关系示意图,所述多个真空抽气孔50对称分布在所述载台40四周,其中,作为比较优选的实现方式,所述载台40可以是圆形的,可以将所述载台40的四周分别设置四个真空抽气孔,并且所述四个真空抽气孔呈对称分布在所述载台的四周,以达到在抽取气体时,气体均匀的流过放置在载台上的半导体,当然可以想到的是,对于所述真空抽气孔的具体数量本发明不做限定,对于载台40的具体形状,本发明不做限定,上述仅用于举例说明。
需要说明的是,所述多个运动挡板60的尺寸大于所述多个真空抽气孔50的尺寸,举例说明,在需求真空抽气孔50全闭合时只要能覆盖住真空抽气孔即可,关于运动挡板的尺寸不需过大,运动挡板的尺寸略大于真空抽气孔即可,过大会造成空间的浪费与增加制作的成本,当然可以视具体需求在实际生产中对运动挡板的尺寸做出更改。
作为更进一步的方案,请参阅图4,图4是本发明中一种半导体真空处理设备中的多个运动挡板60的工作示意图,所述多个运动挡板60还连接有驱动部件(图中未标出),所述驱动部件用于驱动所述多个运动挡板60围绕所述多个真空抽气孔50进行直线运动或是圆周运动,具体的,当所述运动挡板覆盖在真空抽气孔上时,工作腔体内10需要对载台40上的半导体某局部做蚀刻或是沉积处理时,就可调整相应半导体周围的所处 的运动挡板,通过开合运动挡板来控制真空抽气孔的大小,真空抽气孔的大小决定了工作腔体内的流场产生相应变化,流场不同区域的变化从而对半导体局部的蚀刻或是沉积处理,而具体控制运动挡板是直线运动还是圆周运动可以根据半导体所要蚀刻或是沉积的位置的不同来控制。
举例说明,请继续参阅图2和图3,假设我们认为载台40上半导体左边区域的蚀刻率或沉积率过快或需要将左边区域的蚀刻率或沉积率慢一点,用户可以调整左边区域的运动挡板的开合程度,使左边区域的真空抽气孔变小一些,进而降低附近区域的气体置换率,使半导体左边区域附近的蚀刻率或沉积率变慢,同理,当载台40上半导体右边区域的蚀刻率或沉积率过慢,则可以控制右边区域的运动挡板运动,使右边区域的真空抽气孔开得更大一些,使得高等离子体的流出速度变快,增加工作腔体内的气体置换率,当然也可通过调整其他区域的运动挡板的运动来达到用户需求的目的。
作为更进一步的方案,所述驱动部件包括伺服马达或步进马达。在本实施例中,所述运动挡板的驱动方式有多种,例如伺服马达或步进马达方式驱动,在具体的生产过程中,对于具体的驱动方式可以由使用者依据不同实验设计来调整运动挡板不同的开合程度,直至最佳的驱动方式成立。
作为更进一步的方案,所述多个运动挡板60呈圆形或椭圆形,在具体的生产中,视各类不同设备机台的真空抽气管路位置而定,所以任何不同设备厂商的抽吸真空管路设计可能都略有不同,一般真空管路都是设计为圆形,运动挡板的目的在于调解真空管路抽气时的抽气效率(利用真空管路截面积的变化来改变抽气效率与改变气体置换率),因此,在实际生产中可配合真空管路的形状制作不同形状的运动档板,上述只是举例说明,对于运动挡板的形状本发明不做具体限定。
作为更进一步的方案,所述多个运动挡板60通过304不锈钢为基底制成,并镀有阳极保护膜,具体可以采用为牌号304不锈钢,当然也可采用其他耐磨的材料,只要符合相应的机械性能即可,同时,为了再增加材料的表面硬度和耐磨损性还对运动挡板进行了表面处理,通过阳极氧化技术扩大了运动挡板的应用范围,延长了其使用寿命。
作为更进一步的方案,所述多个运动挡板60通过锻造或铸造方式加工,对于多个 运动挡板60的加工方式,可以视其所要应用的场合,视各不同设备厂商的抽吸真空管路的设计,为了适应不同的管路可以采取不同的加工方式,例如,在真空抽气孔管路复杂的情况下,可以将多个运动挡板采用铸造的方式以获得形状复杂的运动挡板,当然在运动挡板需求具有一定机械性能且形状较为简单的情况下可采用锻造处理方式,应该理解的是上述加工方式只是用于举例说明,并不能限定本发明。
作为更进一步的方案,还包括用于监测所述多个运动挡板60运动的运动传感器,在实际生产中,对于运动挡板相对真空抽气孔的开合程度可以通过运动传感器来监测,以控制真空抽气孔的大小变化,从而准确控制工作腔体内的流场变化,来达到使用者想要的局部蚀刻率或是沉积率的控制,使设备更为优化。
基于上述的半导体真空处理设备,本发明还提供了一种处理半导体的方法,如图5所示,为本发明的一种处理半导体的方法的流程图。所述方法包括:
S1、气体输入部将反应气体输入到工作腔体内部;
S2、等离子产生部将接触到的反应气体转换成等离子体;
S3、等离子体对载台上的待处理的半导体元件进行相应处理;
S4、通过调节设置在多个真空抽气孔上的多个运动挡板的开合大小,以调节流入到所述待处理的半导体元件表面上的等离子体的流速。
作为进一步的方案,在气体输入部将反应气体输入到工作腔体内部之前还包括:
S01、将所述待处理的半导体放置在载台上;
S02、对所述工作腔体进行真空抽气处理,使所述工作腔体达到目标真空度。
需要说明的是,关于所述工作腔体的目标真空度可根据实际生产中的需求来制定,本发明在此不做限定;其中所述等离子体包括惰性气体或惰性气体与反应气体的混合物,举例来说,惰性气体包括氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)、氡(Rn,放射性)和气奥(Og,放射性,人造元素)七个气体,具体使用可视实际生产中的需求来选择。
其中,等离子体对载台上的待处理的半导体元件进行相应处理具体包括:
S31、对放置在载台上待处理的半导体元件进行蚀刻或沉积处理。
作为更进一步的方案,对放置在载台上待处理的半导体元件进行蚀刻处理包括:
S331、通过采用惰性气体或惰性气体与反应气体的混合物的等离子体作为载气通过碰撞清除掉半导体表层上的薄膜以进行蚀刻处理;
S332、通过采用惰性气体或惰性气体与反应气体的混合物的等离子体作为载气通过在半导体表层上沉积薄膜以进行沉积处理。
需要说明的是,对于半导体蚀刻或沉积的具体加工的工艺流程为现有技术,本发明在此不做赘述。
作为更进一步的方案,所述通过调节设置在多个真空抽气孔上的多个运动挡板的开合大小,以调节流入到所述待处理的半导体元件表面上的等离子体的流速具体包括:
S41、控制所述多个运动挡板围绕所述多个真空抽气孔进行直线运动或是圆周运动,以控制所述多个真空抽气孔的开合大小;
S42、通过所述真空抽气孔开合的大小控制气体流出工作腔体的运动速度,以调节流入到所述待处理的半导体元件表面上的等离子体的流速。
在本实施例中,工作腔体连接外部的气体输入部,并且所述工作腔体内设置有等离子产生部、载台、多个真空抽气孔,以及与所述多个真空抽气孔活动连接的多个运动挡板,气体输入部将外部的反应气体输入到工作腔体内,等离子产生部将接触到这些反应气体后将其转换成等离子体,在等离子产生部和工作腔体底部之间设置有载台,所述载台上放置有待处理的半导体元件,等离子体在工作腔体内的流动实现半导体的蚀刻或是沉积,通过多个运动挡板在多个真空抽气孔上的开合运动来改变多个真空抽气孔的开合大小,通过多个运动挡板不同的开合位置或是开合大小使得流入多个真空抽气孔的等离子体的气体体量不同,加快工作腔体内的等离子体气体的置换速度,从而实现了控制腔体内的流场变化,而针对半导体需要不同的蚀刻或沉积位置,可以通过多个不同位置的运动挡板的开合运动实现,由于上述已经对控制运动挡板运动做了详细说明,故在此不做赘述了。
综上所述,本发明提供一种半导体真空处理设备及处理半导体的方法,所述设备包括工作腔体;设置在所述工作腔体上,用于将反应气体输入到工作腔体内部的气体输入 部;设置在所述工作腔体内部,用于将接触到的反应气体转换成等离子体的等离子产生部;设置在等离子产生部下方,位于所述工作腔体内部,用于放置待处理的半导体元件的载台;设置在所述载台下方,设置在所述工作腔体表面上,用于向外流通工作腔体内等离子体的多个真空抽气孔,以及位于所述多个真空抽气孔上的多个运动挡板;通过多个运动挡板控制所述多个真空抽气孔的开合大小,以调节流入到所述待处理的半导体元件表面上的等离子体的流速,实现针对半导体上局部蚀刻或沉积不均匀的位置可调节相应位置的运动挡板的开合大小以改变半导体上局部的等离子体的流速变化,从而调整对半导体上局部的蚀刻或沉积的变化,最终获得半导体的蚀刻率或沉积率的局部均匀性。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本发明旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由权利要求所指出。

Claims (15)

  1. 一种半导体真空处理设备,其特征在于,包括:
    工作腔体;
    设置在所述工作腔体上,用于将反应气体输入到工作腔体内部的气体输入部;
    设置在所述工作腔体内部,用于将接触到的反应气体转换成等离子体的等离子产生部;
    设置在等离子产生部下方,位于所述工作腔体内部,用于放置待处理的半导体元件的载台;
    设置在所述载台下方,设置在所述工作腔体表面上,用于向外流通工作腔体内等离子体的多个真空抽气孔;
    以及位于所述多个真空抽气孔上的多个运动挡板,所述多个运动挡板用于控制所述多个真空抽气孔的开合大小,以调节流入到所述待处理的半导体元件表面上的等离子体的流速。
  2. 根据权利要求1所述的半导体真空处理设备,其特征在于,所述多个真空抽气孔对称分布在所述载台四周。
  3. 根据权利要求2所述的半导体真空处理设备,其特征在于,所述多个运动挡板的尺寸大于所述多个真空抽气孔的尺寸。
  4. 根据权利要求1所述的半导体真空处理设备,其特征在于,所述多个运动挡板还连接有驱动部件,所述驱动部件用于驱动所述多个运动挡板围绕所述多个真空抽气孔进行直线运动或是圆周运动。
  5. 根据权利要求4所述的半导体真空处理设备,其特征在于,所述驱动部件包括伺服马达或步进马达。
  6. 根据权利要求5所述的半导体真空处理设备,其特征在于,所述多个运动挡板呈圆形或椭圆形。
  7. 根据权利要求6所述的半导体真空处理设备,其特征在于,所述多个运动挡板通过304不锈钢为基底制成,并镀有阳极保护膜。
  8. 根据权利要求7所述的半导体真空处理设备,其特征在于,所述多个运动挡板通 过锻造或铸造方式加工。
  9. 根据权利要求1所述的半导体真空处理设备,其特征在于,还包括用于监测所述多个运动挡板运动的运动传感器。
  10. 一种处理半导体的方法,其特征在于,所述方法包括:
    气体输入部将反应气体输入到工作腔体内部;
    等离子产生部将接触到的反应气体转换成等离子体;
    等离子体对载台上的待处理的半导体元件进行相应处理;
    通过调节设置在多个真空抽气孔上的多个运动挡板的开合大小,以调节流入到所述待处理的半导体元件表面上的等离子体的流速。
  11. 根据权利要求10所述的处理半导体的方法,其特征在于,气体输入部将反应气体输入到工作腔体内部之前还包括:
    将所述待处理的半导体放置在载台上;
    对所述工作腔体进行真空抽气处理,使所述工作腔体达到目标真空度。
  12. 根据权利要求10所述的处理半导体的方法,其特征在于,所述等离子体包括惰性气体或惰性气体与反应气体的混合物。
  13. 根据权利要求10所述的处理半导体的方法,其特征在于,等离子体对载台上的待处理的半导体元件进行相应处理具体包括:
    对放置在载台上待处理的半导体元件进行蚀刻或沉积处理。
  14. 根据权利要求13所述的处理半导体的方法,其特征在于,对放置在载台上待处理的半导体元件进行蚀刻处理包括:
    通过采用惰性气体或惰性气体与反应气体的混合物的等离子体作为载气通过碰撞清除掉半导体表层上的薄膜以进行蚀刻处理;
    通过采用惰性气体或惰性气体与反应气体的混合物的等离子体作为载气通过在半导体表层上沉积薄膜以进行沉积处理。
  15. 根据权利要求10所述的处理半导体的方法,其特征在于,所述通过调节设置在多个真空抽气孔上的多个运动挡板的开合大小,以调节流入到所述待处理的半导体元件 表面上的等离子体的流速具体包括:
    控制所述多个运动挡板围绕所述多个真空抽气孔进行直线运动或是圆周运动,以控制所述多个真空抽气孔的开合大小;
    通过所述真空抽气孔开合的大小控制气体流出工作腔体的运动速度,以调节流入到所述待处理的半导体元件表面上的等离子体的流速。
PCT/CN2019/121089 2019-11-27 2019-11-27 一种半导体真空处理设备及处理半导体的方法 WO2021102712A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/121089 WO2021102712A1 (zh) 2019-11-27 2019-11-27 一种半导体真空处理设备及处理半导体的方法
CN201980002719.XA CN111033682B (zh) 2019-11-27 2019-11-27 一种半导体真空处理设备及处理半导体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121089 WO2021102712A1 (zh) 2019-11-27 2019-11-27 一种半导体真空处理设备及处理半导体的方法

Publications (1)

Publication Number Publication Date
WO2021102712A1 true WO2021102712A1 (zh) 2021-06-03

Family

ID=70198335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121089 WO2021102712A1 (zh) 2019-11-27 2019-11-27 一种半导体真空处理设备及处理半导体的方法

Country Status (2)

Country Link
CN (1) CN111033682B (zh)
WO (1) WO2021102712A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114607788A (zh) * 2022-03-22 2022-06-10 上海华力微电子有限公司 抽气阀门、抽气阀门开闭方法及负压腔体组件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965347B (zh) * 2020-11-12 2023-11-03 重庆康佳光电科技有限公司 晶圆显影装置、方法和晶圆
JP2022143281A (ja) * 2021-03-17 2022-10-03 キオクシア株式会社 基板処理装置及び基板の処理方法
CN113113283A (zh) * 2021-04-08 2021-07-13 中国科学院光电技术研究所 一种基于进气分布控制的等离子体密度分布调控方法
CN117810123B (zh) * 2023-12-28 2024-06-28 聚灿光电科技(宿迁)有限公司 一种分bin装置及分bin方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543831A (zh) * 2010-12-20 2012-07-04 诺发系统有限公司 用于半导体制造中的可流动沉积的系统和装置
CN104105816A (zh) * 2012-02-07 2014-10-15 朗姆研究公司 等离子体处理室的压力控制阀组件和快速交替过程
CN108728795A (zh) * 2017-04-13 2018-11-02 北京北方华创微电子装备有限公司 一种工艺设备
US20180334746A1 (en) * 2017-05-22 2018-11-22 Lam Research Corporation Wafer Edge Contact Hardware and Methods to Eliminate Deposition at Wafer Backside Edge and Notch
CN109994357A (zh) * 2017-12-29 2019-07-09 中微半导体设备(上海)股份有限公司 一种等离子体处理装置
CN110062816A (zh) * 2016-10-12 2019-07-26 朗姆研究公司 用于半导体处理的晶片定位基座的垫升高机制

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543831A (zh) * 2010-12-20 2012-07-04 诺发系统有限公司 用于半导体制造中的可流动沉积的系统和装置
CN104105816A (zh) * 2012-02-07 2014-10-15 朗姆研究公司 等离子体处理室的压力控制阀组件和快速交替过程
CN110062816A (zh) * 2016-10-12 2019-07-26 朗姆研究公司 用于半导体处理的晶片定位基座的垫升高机制
CN108728795A (zh) * 2017-04-13 2018-11-02 北京北方华创微电子装备有限公司 一种工艺设备
US20180334746A1 (en) * 2017-05-22 2018-11-22 Lam Research Corporation Wafer Edge Contact Hardware and Methods to Eliminate Deposition at Wafer Backside Edge and Notch
CN109994357A (zh) * 2017-12-29 2019-07-09 中微半导体设备(上海)股份有限公司 一种等离子体处理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114607788A (zh) * 2022-03-22 2022-06-10 上海华力微电子有限公司 抽气阀门、抽气阀门开闭方法及负压腔体组件
CN114607788B (zh) * 2022-03-22 2024-05-17 上海华力微电子有限公司 抽气阀门、抽气阀门开闭方法及负压腔体组件

Also Published As

Publication number Publication date
CN111033682A (zh) 2020-04-17
CN111033682B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2021102712A1 (zh) 一种半导体真空处理设备及处理半导体的方法
JP3595608B2 (ja) 真空処理装置、真空処理装置における真空容器内面堆積膜除去方法及び真空処理装置における真空容器内面膜堆積均一化方法
JP2942239B2 (ja) 排気方法及び排気装置、それを用いたプラズマ処理方法及びプラズマ処理装置
KR20220046004A (ko) 공간 분리를 갖는 단일 웨이퍼 프로세싱 환경들
JP2006148074A5 (ja) スパッタ成膜方法及びプラズマスパッタ成膜装置
US20120285818A1 (en) Plasma doping method with gate shutter
US9869022B2 (en) Substrate processing apparatus
JP2015141908A (ja) 真空処理装置
JP2016136551A (ja) 真空処理装置
KR102003585B1 (ko) 기판 보유 지지구 및 기판 처리 장치
KR101375203B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
JP2010192513A (ja) プラズマ処理装置およびその運転方法
JP2016207788A (ja) 上部電極の表面処理方法、プラズマ処理装置及び上部電極
JP7162483B2 (ja) 成膜装置及び成膜製品の製造方法
JP2008091836A (ja) 基板処理装置
JP2005232554A (ja) スパッタ装置
JPH02244624A (ja) プラズマ処理装置
CN114182227B (zh) 成膜装置
CN221480065U (zh) 晶圆处理装置
US20240200223A1 (en) Control of dissolved gas concentration in electroplating baths
JP6932873B1 (ja) 成膜装置、成膜装置の制御装置及び成膜方法
CN110459493B (zh) 抽真空腔室及抽真空方法
WO2021199479A1 (ja) 成膜装置、成膜装置の制御装置及び成膜方法
TWI520211B (zh) 半導體製程設備
JP2004047558A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954032

Country of ref document: EP

Kind code of ref document: A1