WO2021059492A1 - 基板処理装置、昇降機構、半導体装置の製造方法及びプログラム - Google Patents

基板処理装置、昇降機構、半導体装置の製造方法及びプログラム Download PDF

Info

Publication number
WO2021059492A1
WO2021059492A1 PCT/JP2019/038175 JP2019038175W WO2021059492A1 WO 2021059492 A1 WO2021059492 A1 WO 2021059492A1 JP 2019038175 W JP2019038175 W JP 2019038175W WO 2021059492 A1 WO2021059492 A1 WO 2021059492A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
partition plate
drive unit
gas
support
Prior art date
Application number
PCT/JP2019/038175
Other languages
English (en)
French (fr)
Inventor
竹林 雄二
平野 誠
剛吏 柴田
優作 岡嶋
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2019/038175 priority Critical patent/WO2021059492A1/ja
Priority to JP2021548125A priority patent/JP7256887B2/ja
Priority to KR1020227008050A priority patent/KR20220042464A/ko
Priority to CN201980100442.4A priority patent/CN114402421A/zh
Priority to TW109129824A priority patent/TWI792051B/zh
Publication of WO2021059492A1 publication Critical patent/WO2021059492A1/ja
Priority to US17/691,641 priority patent/US20220199443A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45576Coaxial inlets for each gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a batch of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft

Definitions

  • the present disclosure relates to a substrate processing device for processing a substrate in a semiconductor device manufacturing process, an elevating mechanism, a semiconductor device manufacturing method, and a program.
  • a vertical substrate processing device is used in the heat treatment of a substrate (wafer) in the manufacturing process of a semiconductor device.
  • a substrate wafer
  • the substrate holder is carried into the processing chamber.
  • the processing gas is introduced into the processing chamber while the processing chamber is heated, and the thin film forming treatment is performed on the substrate.
  • Patent Document 1 describes a substrate processing apparatus in which a gas outlet for ejecting gas into a processing chamber is provided in a slot shape so as to span at least a plurality of substrates in a direction perpendicular to a substrate processing surface. ing.
  • the present disclosure provides a technique capable of improving the uniformity of the thickness of the film formed on each substrate when a plurality of substrates are processed at the same time.
  • a substrate support that holds a plurality of substrates at intervals in the vertical direction and a plurality of partition plates arranged between the plurality of substrates held by the substrate support are provided.
  • a substrate holder having a partition plate support portion for supporting, a reaction tube for accommodating the substrate holder while holding a plurality of substrates on the substrate support, and a reaction tube for driving the substrate holder in the vertical direction.
  • a first drive unit that moves in and out of the inside and the first drive unit drives the substrate holder in the vertical direction together with the substrate holder to rotate the substrate holder in a state where the substrate holder is inserted inside the reaction tube.
  • either one of the substrate support or the partition plate support portion is driven in the vertical direction to change the distance between the plurality of substrates held by the substrate support and the plurality of partition plates supported by the partition plate support portion.
  • Gas is supplied to the drive unit of No. 2, the heating unit provided around the reaction tube to heat the substrate, and a plurality of substrates held by the substrate support of the substrate holder housed inside the reaction tube.
  • a gas supply unit having a nozzle having a hole for forming a hole, an exhaust unit for exhausting the gas supplied from the gas supply unit from the reaction tube, and a first drive unit for driving the substrate holder of the reaction tube.
  • a condition in which the relative positions in the vertical direction of a plurality of substrates or a plurality of partition plates and a plurality of holes formed in a nozzle for supplying gas by driving a second drive unit in a state of being inserted inside are set in advance.
  • a substrate processing apparatus having a gas supply unit and a control unit that controls a second drive unit so as to supply gas to a plurality of substrates while changing according to the above.
  • the present disclosure when a plurality of substrates are processed at the same time, it is possible to control the distribution of gas concentration on the substrates and improve the uniformity of the thickness of the film formed on each substrate. Can be done.
  • the efficiency of the material gas supplied can be improved by controlling the distribution of the gas concentration on the substrate and processing the substrate. It is possible to reduce the waste and reduce the cost.
  • FIG. 5 is a schematic cross-sectional view of a processing chamber and a storage chamber showing a state in which a boat on which a substrate is mounted is carried into a transfer chamber in the substrate processing apparatus according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view of a processing chamber and a storage chamber showing a state in which a boat on which a substrate is mounted is raised and carried into the processing chamber in the substrate processing apparatus according to the first embodiment.
  • FIG. 5 is a cross-sectional view of a substrate and a partition plate showing a distance between the substrate and the partition plate in the processing chamber of the substrate processing apparatus according to the first embodiment.
  • FIG. 3 (c) It is a perspective view of the substrate which shows the concentration distribution of the material gas on the surface of the substrate in this case.
  • FIG. 3 (c) It is a block diagram which shows the structural example of the controller of the substrate processing apparatus which concerns on Example 1.
  • FIG. It is a flow chart which shows the outline of the semiconductor device manufacturing process which concerns on Example 1.
  • FIG. 1 It is a table which shows the list of the process recipe which shows an example of the process recipe read by the CPU of the substrate processing apparatus which concerns on Example 1. It is a schematic cross-sectional view which shows the schematic structure of the substrate processing apparatus which concerns on Example 2. FIG. It is a schematic cross-sectional view which shows the schematic structure of the substrate processing apparatus which concerns on Example 3. FIG. It is a schematic cross-sectional view which shows the schematic structure of the substrate processing apparatus which concerns on Example 4. FIG.
  • the present disclosure supports a boat on which a plurality of substrates are mounted, a plurality of partition plates which are configured separately from the boat and are arranged on the upper portions of the substrates mounted on the boat, and a plurality of partition plates. It relates to a substrate processing apparatus having a partition plate support having a support portion and a first elevating mechanism for elevating and lowering a boat, and having a second elevating mechanism for changing the positional relationship between the substrate and the partition plate in the vertical direction. is there.
  • the substrate processing apparatus 100 includes a cylindrical reaction tube 110 extending in the vertical direction, a heater 101 as a heating unit (furnace body) installed on the outer periphery of the reaction tube 110, and a gas supply unit constituting the gas supply unit.
  • a nozzle 120 is provided.
  • the heater 101 is composed of a zone heater which is divided into a plurality of blocks in the vertical direction and the temperature can be set for each block.
  • the reaction tube 110 is made of a material such as quartz or SiC.
  • the inside of the reaction pipe 110 is exhausted from the exhaust pipe 130 constituting the exhaust unit by an exhaust means (not shown).
  • the inside of the reaction tube 110 is hermetically sealed with respect to the outside air by means (not shown).
  • the technique of the present disclosure can be applied even if a second reaction tube is provided inside the reaction tube 110.
  • the gas supply nozzle 120 (hereinafter, may be simply referred to as a nozzle) 120 is formed with a large number of holes 121 for supplying gas inside the reaction tube 110.
  • a raw material gas, a reaction gas, and an inert gas (carrier gas) are introduced into the reaction tube 110 through a large number of holes 121 formed in the gas supply nozzle 120.
  • the raw material gas, reaction gas, and inert gas (carrier gas) are mass flow controllers (MFC: Mass Flow Controller) not shown because of the raw material gas supply source, reaction gas supply source, and inert gas supply reduction, which are not shown, respectively.
  • MFC Mass Flow Controller
  • the flow rate is adjusted by, and is supplied to the inside of the reaction tube 110 from a large number of holes 121 formed in the nozzle 120.
  • the inside of the reaction pipe 110 is evacuated from the exhaust pipe 130 formed in the manifold 111 to a vacuum by an exhaust means (not shown).
  • the chamber 180 is installed below the reaction tube 110 via a manifold 111 and includes a storage chamber 500.
  • the substrate 10 is mounted (mounted) on the substrate support (boat) 300 by a transfer machine (not shown) via the substrate carry-in entrance 310, or the substrate 10 is mounted on the substrate support (boat) 300 by the transfer machine. (Hereinafter, it may be simply referred to as a boat) 300 is taken out.
  • the chamber 180 is made of a metal material such as SUS (stainless steel) or Al (aluminum).
  • a substrate support (boat) 300, a partition plate support 200, and a substrate support (boat) 300 and a partition plate support 200 are vertically oriented. It is provided with a vertical drive mechanism unit 400 that constitutes a first drive unit that drives in the rotational direction.
  • the board support portion is composed of at least a board support (boat) 300, and the board 10 is transferred or transferred inside the storage chamber 500 via a board carry-in port 310 by a transfer machine (not shown).
  • the substrate 10 is conveyed to the inside of the reaction tube 110 to form a thin film on the surface of the substrate 10.
  • the substrate support portion may include the partition plate support portion 200.
  • a plurality of disc-shaped partition plates 203 are fixed at a predetermined pitch to a support column 202 supported between the base portion 201 and the top plate 204. ing.
  • a plurality of support rods 302 are supported by the base 301, and the plurality of substrates 10 are supported by the plurality of support rods 302 at predetermined intervals. It has a configuration to be used.
  • a plurality of boards 10 are placed at predetermined intervals by a plurality of support rods 302 supported by the base 301.
  • the plurality of substrates 10 supported by the support rod 302 are partitioned by a disk-shaped partition plate 203 fixed (supported) to a support column 202 supported by the partition plate support portion 200 at predetermined intervals. ..
  • the partition plate 203 is arranged on either or both of the upper part and the lower part of the substrate 10.
  • the predetermined spacing between the plurality of boards 10 mounted on the board support (boat) 300 is the same as the vertical spacing between the partition plates 203 fixed to the partition plate support portion 200. Further, the diameter of the partition plate 203 is formed to be larger than the diameter of the substrate 10.
  • the boat 300 uses a plurality of support rods 302 to vertically support a plurality of, for example, five substrates 10 in multiple stages.
  • the vertical distance between the top and bottom of the substrate 10 that is supported in multiple stages in the vertical direction is set to, for example, about 60 mm.
  • the base 301 and the plurality of support rods 302 constituting the boat 300 are made of a material such as quartz or SiC.
  • the boat 300 may be configured to support about 5 to 50 substrates 10.
  • the partition plate 203 of the partition plate support portion 200 is also referred to as a separator.
  • the partition plate support portion 200 and the substrate support (boat) 300 are supported by the vertical drive mechanism portion 400 in the vertical direction between the reaction tube 110 and the storage chamber 500 and by the substrate support (boat) 300. It is driven in the direction of rotation around the center of the substrate 10.
  • the vertical drive mechanism unit 400 constituting the first drive unit has a vertical drive motor 410, a rotary drive motor 430, and a substrate support (boat) as drive sources.
  • a boat up / down mechanism 420 provided with a linear actuator as a board support elevating mechanism for driving the 300 in the vertical direction is provided.
  • the vertical drive motor 410 as a partition plate support elevating mechanism moves the nut 412 screwed on the ball screw 412 up and down along the ball screw 412 by rotationally driving the ball screw 411.
  • the partition plate support portion 200 and the substrate support (boat) 300 are driven in the vertical direction between the reaction tube 110 and the storage chamber 500 together with the base plate 402 fixing the nut 412.
  • the base plate 402 is also fixed to the ball guide 415 that is engaged with the guide shaft 414, and is configured to be able to move smoothly in the vertical direction along the guide shaft 414.
  • the upper end and the lower end of the ball screw 411 and the guide shaft 414 are fixed to the fixing plates 413 and 416, respectively.
  • the partition plate support elevating mechanism may include a member for transmitting the power of the vertical drive motor 410.
  • the rotary drive motor 430 and the boat vertical mechanism 420 provided with the linear actuator form a second drive unit, and are fixed to the base flange 401 as a lid supported by the side plate 403 on the base plate 402.
  • the covering shape is formed in a tubular shape or a columnar shape.
  • a hole communicating with the transfer chamber is provided on a part of the cover shape or on the bottom surface. Due to the communicating holes, the inside of the cover shape is configured to have the same pressure as the pressure in the transfer chamber.
  • a support column may be used instead of the side plate 403. In this case, maintenance of the vertical mechanism and the rotating mechanism becomes easy.
  • the rotation drive motor 430 drives a rotation transmission belt 432 that engages with the tooth portion 431 attached to the tip portion, and rotatesly drives a support 440 that engages with the rotation transmission belt 432.
  • the support tool 440 supports the partition plate support portion 200 by the base portion 201, and is driven by the rotation drive motor 430 via the rotation transmission belt 432 to rotate the partition plate support portion 200 and the boat 300. ..
  • the support 440 is partitioned from the inner cylinder portion 4011 of the base flange 401 by a vacuum seal 444, and the lower portion thereof is rotatably guided with respect to the inner cylinder portion 4011 of the base flange 401 by a bearing 445.
  • the boat vertical mechanism 420 equipped with a linear actuator drives the shaft 421 in the vertical direction.
  • a plate 422 is attached to the tip of the shaft 421.
  • the plate 422 is connected to a support portion 441 fixed to the base 301 of the boat 300 via a bearing 423.
  • the support portion 441 is supported by the support tool 440 via the linear guide bearing 442.
  • the shaft 421 is driven in the vertical direction by the boat vertical mechanism 420 equipped with a linear actuator, the shaft 421 is fixed to the boat 300 with respect to the support 440 fixed to the partition plate support portion 200.
  • the support portion 441 can be driven relatively in the vertical direction.
  • this embodiment is not limited to this, and the support tool 440 and the support portion 441 may be arranged separately rather than concentrically.
  • the support 440 fixed to the partition plate support 200 and the support 441 fixed to the boat 300 are connected by a vacuum bellows 443.
  • An O-ring 446 for vacuum sealing is installed on the upper surface of the base flange 401 as a lid, and as shown in FIG. 2, the upper surface of the base flange 401 is pressed against the chamber 180 by being driven by the vertical drive motor 410.
  • the inside of the reaction chamber 110 can be kept airtight by raising the reaction tube 110 to a certain position.
  • the O-ring 446 for vacuum sealing is not always necessary, and the inside of the reaction tube 110 is kept airtight by pressing the upper surface of the base flange 401 against the chamber 180 without using the O-ring 446 for vacuum sealing. You may. Further, the vacuum bellows 443 does not necessarily have to be provided.
  • the substrate support portion is inserted into the reaction tube 110 by being driven by the vertical drive motor 410 and raised until the upper surface of the base flange 401 is pressed against the chamber 180 as shown in FIG.
  • the raw material gas, the reaction gas, or the inert gas (carrier gas) is introduced into the reaction tube 110 through a large number of holes 121 formed in the gas supply nozzle 120.
  • the pitch of the large number of holes 121 formed in the gas supply nozzle 120 is the same as the vertical spacing of the substrate 10 mounted on the boat 300 and the vertical spacing of the partition plate 203 fixed to the partition plate support portion 200. Is.
  • the position in the height direction of the partition plate 203 fixed to the support column 202 of the partition plate support portion 200 is fixed, whereas it is linear.
  • the boat vertical mechanism 420 provided with the actuator to move the support portion 441 fixed to the base 301 of the boat 300 up and down, the position of the substrate 10 supported by the boat 300 in the height direction with respect to the partition plate 203.
  • the position of the hole 121 formed in the gas supply nozzle 120 is also fixed, the position (relative position) of the substrate 10 supported by the boat 300 in the height direction can be changed with respect to the hole 121 as well. it can.
  • the position of the substrate 10 supported by the boat 300 is adjusted in the vertical direction by driving the boat vertical mechanism 420 equipped with a linear actuator with respect to the reference positional relationship of transportation as shown in FIG. 3A.
  • the positional relationship between the hole 121 formed in the nozzle 120 and the partition plate 203 is set so that the position of the substrate 10 is higher than the transport position (home position) 10-1 as shown in FIG. 3 (b).
  • the gap G1 between the partition plate 2032 and the partition plate 2032 is narrowed, or the position of the substrate 10 is made lower than the transport position (home position) 10-1 as shown in FIG.
  • the gap G2 between them can be widened.
  • the position of the substrate 10 is raised to narrow the gap G1 between the substrate 10 and the upper partition plate 2032, and as shown in FIG. 3C, the position of the substrate 10 is lowered. Then, when the silicon dichloride gas (SiCl 2 ) is supplied from the hole 121 formed in the nozzle 120 in a state where the gap G2 between the upper partition plate 2032 and the partition plate 2032 is widened, it is formed on the surface of the substrate 10. The result of simulating the in-plane distribution of the film is shown in FIG.
  • SiCl 2 silicon dichloride gas
  • the point sequence 510 indicated by Narrow is in a state as shown in FIG. 3 (b), that is, the position of the substrate 10 is raised to narrow the gap G1 between the substrate 10 and the upper partition plate 2032.
  • the film is formed in a state where the film is formed higher than the position of the gas flow 1211 ejected from the hole 121.
  • a relatively thick film is formed on the peripheral portion of the substrate 10, and the thickness of the film formed on the central portion of the substrate 10 is a concave film thickness distribution that is thinner than that on the peripheral portion.
  • the state as shown in FIG. 3C that is, the position of the substrate 10 is lowered to widen the gap G2 between the substrate 10 and the upper partition plate 2032, and the substrate is widened.
  • the case where the film formation is carried out in a state where 10 is made lower than the position of the gas flow 1211 ejected from the hole 121 is shown.
  • the central portion of the substrate 10 has a convex film thickness distribution in which a film relatively thicker than the peripheral portion is formed.
  • FIG. 5 when the relationship between the substrate 10 and the holes 121 formed in the partition plate 2032 and the nozzle 120 is set to the positional relationship as shown in FIG. 3 (c), the silicon dichloride gas (2) from the direction of arrow 611.
  • the results obtained by simulating the partial pressure distribution of the SiCl 2 gas on the surface of the substrate 10 when the SiCl 2) is supplied are shown.
  • the film thickness distribution in FIG. 4 corresponds to the film thickness distribution in the aa'cross section of FIG.
  • the hole 121 formed in the nozzle 120 As shown in FIG. 5, when the relationship between the substrate 10 and the hole 121 formed in the partition plate 2032 and the nozzle 120 is set to the positional relationship as shown in FIG. 3C, the hole 121 formed in the nozzle 120 The partial pressure of the SiCl 2 gas is relatively high in the portion displayed in dark color from the portion close to the portion to the central portion of the substrate 10. On the other hand, the partial pressure of the SiCl 2 gas in the peripheral portion of the substrate 10 away from the hole 121 formed in the nozzle 120 is relatively low.
  • the rotary drive motor 430 is driven to rotate the support 440 to rotate the partition plate support portion 200 and the boat 300, thereby rotating the substrate 10 supported by the boat 300.
  • the variation in film thickness (thickness distribution) in the circumferential direction of the substrate 10 can be reduced.
  • controller As shown in FIG. 1, the substrate processing apparatus 100 is connected to a controller 260 that controls the operation of each unit.
  • the controller 260 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 260a, a RAM (Random Access Memory) 260b, a storage device 260c, and an input / output port (I / O port) 260d. There is.
  • the RAM 260b, the storage device 260c, and the I / O port 260d are configured so that data can be exchanged with the CPU 260a via the internal bus 260e.
  • the controller 260 is configured to be connectable to an input / output device 261 configured as, for example, a touch panel or the like, or an external storage device 262.
  • the storage device 260c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing apparatus, a process recipe in which the procedures and conditions for substrate processing described later are described, a database, and the like are readablely stored.
  • the process recipe is a combination of the process recipes so that the controller 260 can execute each procedure in the substrate processing process described later and obtain a predetermined result, and functions as a program.
  • this program recipe, control program, etc. are collectively referred to as a program.
  • program may include only the program recipe alone, the control program alone, or both.
  • the RAM 260b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 260a are temporarily held.
  • the I / O port 260d includes a board carry-in port 310, a vertical drive motor 410, a boat vertical mechanism 420 equipped with a linear actuator, a rotary drive motor 430, a heater 101, a mass flow controller (not shown), and a temperature controller (not shown). ), Vacuum pump (not shown), etc.
  • connection in the present disclosure includes the meaning that each part is connected by a physical cable, but means that the signal (electronic data) of each part can be directly or indirectly transmitted / received. Also includes. For example, equipment for relaying signals and equipment for converting or calculating signals may be provided between each unit.
  • the CPU 260a is configured to read and execute a control program from the storage device 260c and read a process recipe from the storage device 260c in response to an input of an operation command from the controller 260. Then, the CPU 260a operates the opening / closing operation of the board carry-in inlet 310, drives the vertical drive motor 410, drives the boat vertical mechanisms 420 and 1240 provided with the linear actuator, and rotates the drive so as to follow the contents of the read process recipe. It is configured to control the rotation operation of the motor 430, the power supply operation to the heater 101, and the like.
  • the controller 260 is not limited to the case where it is configured as a dedicated computer, and may be configured as a general-purpose computer.
  • an external storage device for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as MO, a semiconductor memory such as a USB memory or a memory card
  • the controller 260 according to the present embodiment can be configured by preparing the 262 and installing the program on a general-purpose computer using the external storage device 262.
  • the means for supplying the program to the computer is not limited to the case of supplying the program via the external storage device 262.
  • a communication means such as a network 263 (Internet or a dedicated line) may be used to supply the program without going through the external storage device 262.
  • the storage device 260c and the external storage device 262 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium when the term recording medium is used in this specification, it may include only the storage device 260c alone, it may include only the external storage device 262 alone, or it may include both of them.
  • SiO 2 (as an example of a process of forming a thin film on a substrate 10 as one step of a manufacturing process of a semiconductor device (device)).
  • the process of forming the silicon oxide) layer will be described.
  • the step of forming a film such as a SiO 2 layer is executed inside the reaction tube 110 of the substrate processing apparatus 100 described above. As described above, the execution of the manufacturing process is performed by executing the program of the CPU 260a of the controller 260 of FIG.
  • the substrate processing step (manufacturing step of the semiconductor device) according to the present embodiment, first, it is driven by the vertical drive motor 410 and raised until the upper surface of the base flange 401 is pressed against the chamber 180 as shown in FIG.
  • the substrate support is inserted inside the reaction tube 110.
  • the height (interval) of the substrate 10 mounted on the boat 300 with respect to the partition plate 203 is shown in FIG.
  • the substrate 10 is raised as shown in FIG. 3 (b) and the distance G1 between the substrate 10 and the partition plate 203 is small, or as shown in FIG. 3 (c).
  • the height of the substrate 10 with respect to the partition plate 203 is desired. Adjust so that it becomes a value.
  • (A) A step of supplying Si 2 Cl 6 (disilicon hexachloride) gas from the gas supply nozzle 120 to the substrate 10 housed inside the reaction tube 110.
  • (B) A step of removing residual gas inside the reaction tube 110 and
  • (C) A step of supplying O 2 (oxygen) (or O 3 (ozone) or H 2 O (water)) from the gas supply nozzle 120 to the substrate 10 housed inside the reaction tube 110.
  • (D) A step of removing residual gas inside the reaction tube 110 and The above steps (a) to (d) are repeated a plurality of times to form the SiO 2 layer on the substrate 10.
  • the rotation drive motor 430 is connected to the rotation transmission belt 432. While the support 440 is rotationally driven by the rotary drive motor 430, the height (interval) of the substrate 10 with respect to the partition plate 203 is raised by raising the substrate 10 as shown in FIG. 3B to increase the height (interval) between the substrate 10 and the partition plate 203. Execution is performed while periodically changing between a state in which the distance G1 from 203 is small and a state in which the substrate 10 is lowered to increase the distance G2 between the substrate 10 and the partition plate 203 as shown in FIG. 3C. To do. As a result, the film thickness of the film formed on the substrate 10 can be made uniform.
  • board when the word “board” is used in this specification, it means “the board itself” or “a laminate (aggregate) of a board and a predetermined layer or film formed on the surface thereof). “(That is, a substrate including a predetermined layer, film, etc. formed on the surface) may be used.
  • surface of the substrate when the term “surface of the substrate” is used in the present specification, it means “the surface of the substrate itself (exposed surface)” or “the surface of a predetermined layer or film formed on the substrate”. That is, it may mean “the outermost surface of the substrate as a laminated body”.
  • board is also used in the present specification and is synonymous with the term “wafer”.
  • Process condition setting S701
  • the CPU 260a reads the process recipe and the related database stored in the storage device 260c and sets the process conditions.
  • process recipes and related databases may be obtained via the network.
  • FIG. 8 shows an example of the process recipe 800 read by the CPU 260a.
  • the main items of the process recipe 800 include gas flow rate 810, temperature data 820, number of processing cycles 830, boat height 840, boat height adjustment time interval 850, and the like.
  • the gas flow rate 810 includes items such as a raw material gas flow rate 811, a reaction gas flow rate 812, and a carrier gas flow rate 813.
  • the temperature data 820 includes the heating temperature 821 inside the reaction tube 110 by the heater 101.
  • the boat height 840 includes set values of a minimum value (G1) and a maximum value (G2) of the distance between the substrate 10 and the partition plate 203 as described with reference to FIGS. 3 (b) and 3 (c). Is done.
  • the boat height adjustment time interval 850 maintains the interval between the substrate 10 and the partition plate 203 at the minimum value as shown in FIG. 3 (b) and the maximum value as shown in FIG. 3 (c).
  • Set the time interval for switching from the time to do That is, when the distance between the surface of the substrate 10 and the partition plate 203 (the position of the substrate 10 with respect to the position of the gas supply hole 121 of the nozzle 120) is set as shown in FIG. 3 (b) and in FIG. 3 (c).
  • a thin film is formed on the substrate 10 by processing while alternately switching between the case where the setting is made and the case where the setting is made.
  • a thin film having a flat film thickness distribution in which the film thicknesses of the central portion and the outer peripheral portion are substantially the same can be formed on the surface of the substrate 10.
  • the vertical drive motor 410 is driven to rotate the ball screw 411 in a state where the board carry-in inlet 310 is closed and the inside of the storage chamber 500 is sealed to the outside.
  • the screw boat 300 is raised, and the boat 300 is carried into the inside of the reaction tube 110 from the storage chamber 500.
  • the height of the boat 300 lifted by the vertical drive motor 410 is set from the nozzle 120 to the inside of the reaction tube 110 through the hole 123 formed in the tube wall of the reaction tube 110 based on the process recipe read in S701. Difference from the blowout position (height of the tip portion of the nozzle 120) of the supplied gas The difference in the position in the height direction is set to the state shown in FIG. 3 (b) or FIG. 3 (c).
  • Step S704 Based on the recipe read in step S704 in a state of being evacuated by a vacuum pump (not shown), the inside of the reaction tube 110 is evacuated by the heater 101 so that the inside of the reaction tube 110 has a desired pressure (vacuum degree). Heat. At this time, the amount of electricity supplied to the heater 101 is feedback-controlled based on the temperature information detected by the temperature sensor (not shown) so that the inside of the reaction tube 110 has a desired temperature distribution. The heating of the inside of the reaction tube 110 by the heater 101 is continuously performed at least until the treatment on the substrate 10 is completed.
  • the pitch (the distance between the back surface of the substrate 10 and the partition plate 203 on the lower side of the substrate 10) is narrowed (state in FIG. 3C). This pitch is narrowed at least before the supply of the raw material gas. After supplying the raw material gas, the pitch is gel during the day. Further, the pitch may be different between the supply of the raw material gas and the supply of the reaction gas. Further, the pitch may be changed during the supply of the raw material gas (reaction gas). Furthermore, the operation timing at which the substrate support and the partition plate support are relatively moved in the vertical direction can be arbitrarily set.
  • Si 2 Cl 6 gas which is a raw material gas
  • Si 2 Cl 6 gas is flowed from the hole 121 of the nozzle 120 into the reaction tube 110 in a state where the flow rate is adjusted.
  • the gas that did not contribute to the reaction on the surface of the substrate 10 is exhausted from the exhaust pipe 130.
  • the relative position (height) of the surface of the substrate 10 mounted on the boat 300 with respect to the hole 121 of the nozzle 120 and the partition plate 203 of the partition plate support portion 200 is based on the process recipe read in step S701.
  • the boat up / down mechanism 420 provided with the linear actuator to drive the shaft 421 in the up / down direction
  • the boat is moved up and down at predetermined time intervals, and is shown in a plurality of positions (for example, FIG. 3B). It can be switched between the position and the position shown in FIG. 3 (c).
  • the Si 2 Cl 6 gas By introducing the Si 2 Cl 6 gas into the reaction tube 110 from the hole 121 of the nozzle 120, the Si 2 Cl 6 gas is supplied to the substrate 10 mounted on the boat 300.
  • the flow rate of the supplied Si 2 Cl 6 gas is set in the range of 0.002 to 1 slm (Standard liter per minute), more preferably in the range of 0.1 to 1 slm.
  • an inert gas such as N 2 (nitrogen) gas or Ar (argon) gas is supplied to the inside of the reaction pipe 110 as a carrier gas together with the Si 2 Cl 6 gas, and is exhausted from the exhaust pipe 130.
  • the specific flow rate of the carrier gas is set in the range of 0.01 to 5 slm, more preferably in the range of 0.5 to 5 slm.
  • the N 2 gas of the carrier gas is supplied to the inside of the reaction pipe 110 via the nozzle 120 and exhausted from the exhaust pipe 130.
  • the temperature of the heater 101 is set so that the temperature of the substrate 10 is in the range of, for example, 250 to 550 ° C.
  • the only gases flowing inside the reaction tube 110 are Si 2 Cl 6 gas and N 2 gas, and by supplying the Si 2 Cl 6 gas to the reaction tube 110, on the substrate 10 (surface base film), for example.
  • a Si-containing layer having a thickness of less than one atomic layer to several atomic layers is formed.
  • the Si 2 Cl 6 gas which is a raw material gas, is supplied to the inside of the reaction tube 110 via the nozzle 120 for a predetermined time to form a Si-containing layer on the surface of the substrate 10, and then the supply of the Si 2 Cl 6 gas is stopped. To do. At this time, the inside of the reaction tube 110 is evacuated by a vacuum pump (not shown), and the Si 2 Cl 6 gas remaining in the reaction tube 110 after contributing to the formation of the unreacted or Si-containing layer is discharged into the inside of the reaction tube 110. Exclude from.
  • the supply of the N 2 gas, which is the carrier gas, from the nozzle 120 to the inside of the reaction tube 110 is maintained.
  • the N 2 gas acts as a purge gas, and can enhance the effect of removing the unreacted or Si 2 Cl 6 gas remaining inside the reaction tube 110 from the inside of the reaction tube 110 after contributing to the formation of the Si-containing layer.
  • reaction gas supply S7053
  • the O 2 gas which is the reaction gas
  • the rotation drive motor 430 is driven to maintain the rotation of the boat 300.
  • the O 2 gas that did not contribute to the reaction is exhausted from the exhaust pipe 130.
  • the flow rate of the O 2 gas to be supplied is set in the range of 0.2 to 10 slm, more preferably in the range of 1 to 5 slm.
  • the supply of the N 2 gas is stopped so that the N 2 gas is not supplied to the inside of the reaction tube 110 together with the O 2 gas. That is, since the O 2 gas is supplied to the inside of the reaction tube 110 without being diluted with the N 2 gas, it is possible to improve the film formation rate of the SiO 2 layer.
  • the temperature of the heater 101 at this time is set to the same temperature as that of the Si 2 Cl 6 gas supply step.
  • the relative position (height) of the surface of the substrate 10 mounted on the boat 300 with respect to the hole 121 of the nozzle 120 and the partition plate 203 of the partition plate support portion 200 is set in step S701 as in step S7051.
  • the boat up / down mechanism 420 equipped with a linear actuator is operated to drive the shaft 421 in the up / down direction, so that the boat can be moved up and down at predetermined time intervals to a plurality of positions (for example, FIG. 3). It can be switched between the position shown in (b) and the position shown in FIG. 3 (c).
  • the only gas flowing inside the reaction tube 110 is O 2 gas.
  • the O 2 gas undergoes a substitution reaction with at least a part of the Si-containing layer formed on the substrate 10 in the raw material gas (Si 2 Cl 6) supply step (S7051).
  • Si contained in the Si-containing layer and O contained in the O 2 gas are combined to form a SiO 2 layer containing Si and O on the substrate 10.
  • SiO having a predetermined thickness (for example, 0.1 to 2 nm) is placed on the substrate 10. Form two layers.
  • the above cycle is preferably repeated a plurality of times, for example, preferably about 10 to 80 times, and more preferably about 10 to 15 times.
  • the boat is moved up and down at predetermined time intervals by operating the boat up and down mechanism 420 provided with the linear actuator to drive the shaft 421 in the up and down direction based on the process recipe read in step S701.
  • the position shown in FIG. 3 (b) and the position shown in FIG. 3 (c) are repeatedly executed while switching between the raw material gas supply step (S7051) and the reaction gas supply step (S7053).
  • a thin film having a uniform film thickness distribution can be formed on the surface of the substrate 10.
  • the substrate 10 on which the thin film is formed from the boat 300 is taken out to the outside of the storage chamber 500 via the substrate carry-in entrance 310, and the processing of the substrate 10 is completed.
  • a SiO 2 film on the substrate 10 has been described, but the present embodiment is not limited to this.
  • a Si 3 N 4 (silicon nitride) film or a TiN (titanium nitride) film can be formed instead of the SiO 2 film.
  • the above-mentioned halogen-containing gas or a gas containing at least one of a halogen element, an amino group, a cyclopenta group, oxygen (O), carbon (C), an alkyl group, and the like is used.
  • a gas containing at least one of a halogen element, an amino group, a cyclopenta group, oxygen (O), carbon (C), an alkyl group, and the like is used.
  • the positional relationship between the substrate 10 and the hole 121 of the nozzle 120 for supplying the film-forming gas is changed based on preset conditions according to the surface area of the substrate 10 and the type of film to be formed. Since the film can be formed, the in-plane uniformity of the film thickness distribution of the thin film formed on the substrate 10 mounted on the boat 300 can be improved.
  • the film forming process has been described as an application example of the present disclosure, the present disclosure is not limited to this, and can be applied to the etching process.
  • the distance between the substrate 10 and the upper partition plate 203 of the substrate 10 is narrowed by operating the boat vertical mechanism 420 provided with a linear actuator to drive the shaft 421 in the vertical direction.
  • the E treatment among the DED (Depo Etch Depo) treatments becomes possible.
  • the DED process means a process of repeatedly performing a film forming process and an etching process to form a predetermined film.
  • the above-mentioned E treatment means an etching treatment.
  • parameters for adjusting the distance between the substrate 10 and the partition plate 203 on the upper side of the substrate 10 include film thickness distribution, temperature, gas flow rate, pressure, time, gas type, surface area of the substrate, and the like.
  • a film thickness measuring device is provided in the substrate processing apparatus, and the distance between the substrate 10 and the partition plate 203 on the upper side of the substrate 10 is changed based on the film thickness measurement result.
  • the decomposition amount of the gas may be detected by a sensor, and the distance between the substrate 10 and the partition plate 203 on the upper side of the substrate 10 may be changed based on the decomposition amount data.
  • FIG. 9 shows the configuration of the substrate processing apparatus 900 according to the second embodiment.
  • the same configuration as that of the first embodiment is assigned the same number and the description thereof will be omitted.
  • the configurations of the heater 101, the reaction pipe 110, the gas supply nozzle 120, the manifold 111, the exhaust pipe 130, and the controller 260 described in the first embodiment are the same as those in the first embodiment. Since there are, those displays are omitted.
  • the support 9440 is driven to rotate and driven in the rotational direction around the center of the board 10 supported by the board support (boat) 300, and the boat vertical mechanism 9420 equipped with a linear actuator via the shaft 9421.
  • the point that the plate 9422 is driven in the vertical direction and the support portion 9441 fixed to the boat 300 is relatively driven in the vertical direction with respect to the support 9440 fixed to the partition plate support portion 200 is described in the first embodiment. It is the same.
  • the partition plate support portion 200 and the substrate support (boat) 300 are raised by the vertical drive mechanism portion 400, and the base flange 9401 is placed in the chamber 180 with the O-ring 446 sandwiched between them.
  • the configuration of the substrate processing apparatus 100 described in the first embodiment is that the partition plate support portion 200 and the substrate support (boat) 300 are provided with a mechanism portion that can independently adjust the heights of the partition plate support portion 200 and the substrate support (boat) 300 while being pressed against the substrate. different.
  • the substrate processing apparatus 900 includes a second linear actuator for independently moving the partition plate support portion 200 up and down with respect to the substrate support (boat) 300. It is equipped with a boat up / down mechanism 9460.
  • the boat vertical mechanism 9460 equipped with the second linear actuator drives the plate 9462 in the vertical direction via the shaft 9461 to move the partition plate support portion 200 up and down independently of the substrate support (boat) 300. ..
  • the plate 9462 is connected to the support tool 9440 that supports the partition plate support portion 200 by the base portion 201 with the rotary seal mechanism 9423 sandwiched therein.
  • the boat up / down mechanism 9420 equipped with a linear actuator and the boat up / down mechanism 9460 equipped with a second linear actuator are fixed to a base flange 9401 supported by a side plate 9403 on a base plate 9402.
  • the rotary drive motor 9430 is attached to a plate 9462 driven in the vertical direction by a boat vertical mechanism 9460 equipped with a second linear actuator.
  • the rotation drive motor 9430 drives a rotation transmission belt 9432 that engages with the tooth portion 9431 attached to the tip portion, and rotatesly drives a support 9440 that engages with the rotation transmission belt 9432.
  • the support 9440 supports the partition plate support portion 200 by the base portion 201, and is driven by the rotation drive motor 9430 via the rotation transmission belt 9432 to rotate the partition plate support portion 200 and the boat 300. ..
  • the substrate 10 mounted on the boat 300 is in the height direction with respect to the holes 121 formed in the nozzle 120 as shown in FIGS. 1 and 2.
  • the position and the position in the height direction of the partition plate 203 fixed to the partition plate support portion 200 can be adjusted independently.
  • the height direction of the substrate 10 mounted on the boat 300 is relative to the hole 121 formed in the nozzle 120. Since the film thickness can be formed while independently adjusting the position and the position in the height direction of the partition plate 203 fixed to the partition plate support portion 200, the thin film formed on the substrate 10 mounted on the boat 300. It is possible to improve the in-plane uniformity of the film thickness distribution.
  • FIG. 10 shows the configuration of the substrate processing apparatus 1000 according to the third embodiment.
  • the same configuration as that of the first embodiment is assigned the same number and the description thereof will be omitted.
  • the substrate support (boat) 3001 is independently moved up and down with respect to the partition plate support portion 2001.
  • the configuration is different from the configuration of the substrate processing apparatus 100 described in the first embodiment.
  • the vertical drive mechanism portion 400 is used to move the reaction tube 110 and the storage chamber 500 in the vertical direction and the substrate support (boat) 300.
  • the plate 9422 is driven in the vertical direction via the shaft 9421 by a boat vertical mechanism 9420 equipped with a linear actuator and a point driven in the rotational direction around the center of the substrate 10 supported by the partition plate support portion 200.
  • the point that the support portion 441 fixed to the boat 300 is driven in the vertical direction relative to the fixed support 9440 is the same as that of the first embodiment.
  • the board support (boat) 3001 is moved up and down independently of the partition plate support 2001 by the boat up / down mechanism 1420 provided with the linear actuator.
  • the boat vertical mechanism 1420 equipped with a linear actuator drives the shaft 1421 in the vertical direction.
  • a plate 1422 is attached to the tip of the shaft 1421.
  • the plate 1422 is connected to a support portion 1441 fixed to the partition plate support portion 2001 base portion 3011 via a bearing 1423.
  • the support portion 1441 is supported by the support tool 1440 via the linear guide bearing 1442.
  • the upper surface of the support 1440 is connected to the base portion 3011 of the substrate support (boat) 3001, and is partitioned from the inner cylinder portion 14011 of the base flange 1401 by a vacuum seal 1444, and the lower portion thereof is partitioned by a bearing 1445. It is rotatably guided with respect to the inner cylinder portion 14011 of 1401.
  • the partition plate support portion 2001 can also rotate together with the boat 3001 when the boat 3001 is rotationally driven by the rotary drive motor 1430. it can.
  • the support portion 1441 fixed to the partition plate support portion 2001 and the support tool 1440 fixed to the boat 300 are connected by a vacuum bellows 1443.
  • the height of the substrate 10 mounted on the boat 3001 is fixed (fixed) with respect to the hole 121 formed in the nozzle 120, and the partition plate is used.
  • the position of the partition plate 2031 fixed to the support portion 2001 in the height direction can be adjusted.
  • the partition plate 2031 that covers the upper surface and the lower surface of the substrate 10 and the holes 121 and positions of the nozzle 120 for supplying the film-forming gas are located according to the surface area of the substrate 10 and the type of film to be formed. Since the film can be formed while changing the relationship based on preset conditions, it is possible to improve the in-plane uniformity of the film thickness distribution of the thin film formed on the substrate 10 mounted on the boat 3001. it can.
  • FIG. 11 shows the configuration of the substrate processing apparatus 1100 according to the fourth embodiment.
  • the same configuration as that of the first embodiment is assigned the same number and the description thereof will be omitted.
  • the substrate processing apparatus 1100 has a structure capable of vacuum exhausting the inside of the storage chamber 5001 by using a vacuum exhaust means (not shown) with respect to the configuration of the substrate processing apparatus 100 described in the first embodiment. .. This eliminates the need to vacuum seal between the reaction tube 110 and the storage chamber 500 using the O-ring 446 as described in FIG. 2 in Example 1, and changes the height of the base flange 401 during substrate processing. Made it possible.
  • Example 1 the same configurations as those described with reference to FIGS. 1 and 2 are given the same numbers, and the description thereof will be omitted.
  • the vertical drive mechanism unit 4001 is arranged outside the storage chamber 5001, is fixed to the vertical drive mechanism unit 4001, and is displaced in the vertical direction by the vertical drive mechanism unit 4001.
  • the plate 4021 and the storage chamber 5001 are connected by a vacuum bellows 417 so that the inside of the storage chamber 5001 can be sealed and vacuum-sealed.
  • the space sandwiched between the base flange 1401 and the plate 1422 is covered with the side wall 4031 to ensure the airtightness of the inside of the storage chamber 5001.
  • the vacuum state inside the storage chamber 5001 can be maintained while the space surrounded by the plate 1422 and the side wall 4031 is at atmospheric pressure.
  • the electrical wiring of the elevating / rotating mechanism and the cooling water for protecting the vacuum seal (not shown) are connected. Can be provided.
  • the substrate support (boat) 300 and the partition plate support Since the position in the height direction with respect to the hole 121 formed in the gas supply nozzle 120 together with the portion 200 can be changed, the position in the height direction with respect to the hole 121 formed in the gas supply nozzle 120 during the processing of the substrate 10 can be changed.
  • the height of the partition plate 203 fixed to the partition plate support portion 200 and the height of the substrate 10 mounted on the substrate support (boat) 300 can be individually controlled.
  • a method of forming a uniform film on a substrate by changing the positional relationship between the substrate and a nozzle for supplying a film-forming gas according to the surface area of the substrate and the type of film to be formed is possible.
  • the nozzle for supplying the film-forming gas is fixed to the reaction chamber, and the substrate support (boat) on which the substrates are installed in multiple stages moves up and down by the vertical drive mechanism unit. It is composed of.
  • the O-ring seal is not performed and the reaction chamber and the vacuum loading area (inside the storage chamber 500) are in a communicative space. ..
  • the inert gas is supplied from the vacuum loading area and a pressure gradient is applied to shut off the gas.
  • the film forming gas injected from the nozzle for supplying the film forming gas is adjusted to the position near and far from the surface of the substrate by rotating the substrate during the film formation, and the gas flow velocity of the wafer surface layer is adjusted. It is possible to adjust the decomposition state until the film-forming gas, which can be supplied while being variable and easily undergoes a gas-phase reaction, reaches the wafer surface layer and contributes to film-forming.
  • the basic support in a state where a plurality of substrates are stacked at intervals in the vertical direction and held by the substrate support, the basic support is driven by the vertical drive mechanism unit to drive the inside of the reaction tube.
  • the substrate supported on the substrate support housed inside the reaction tube is heated by a heating unit arranged around the reaction tube, and the substrate support housed inside the reaction tube is heated.
  • the raw material gas is supplied from the plurality of holes of the gas supply nozzle to the substrate held in the above and the supplied raw material gas is exhausted from the reaction tube, and the reaction gas is supplied to the substrate from the plurality of holes of the gas supply nozzle.
  • the raw material gas is supplied from a plurality of holes of a gas supply nozzle and the reaction gas.
  • the height of the base support to be accommodated in the reaction tube is controlled by the vertical drive unit, and the distance between the plurality of substrates held by the substrate support and the plurality of holes of the gas supply nozzle is controlled. The (height) is adjusted according to the preset conditions.
  • the raw material gas and the reaction gas are supplied from a plurality of holes of the gas supply nozzles arranged at the same interval as the vertical interval of the plurality of substrates held by the substrate support. It is the one that was made.
  • the height of the substrate support accommodated in the reaction tube is determined by the vertical drive mechanism unit to supply the raw material gas and the reaction gas from a plurality of holes of the gas supply nozzle. It is controlled so that the interval (height) between the plurality of substrates held by the substrate support and the plurality of gas supply nozzles is changed and repeated.
  • the vertical drive mechanism unit to supply the raw material gas and the reaction gas from a plurality of holes of the gas supply nozzle. It is controlled so that the interval (height) between the plurality of substrates held by the substrate support and the plurality of gas supply nozzles is changed and repeated.
  • a substrate processing apparatus having a control unit for controlling a substrate support elevating mechanism so as to change the vertical positional relationship between a substrate and a partition plate.
  • Appendix 2 The device according to Appendix 1. It has a partition plate support elevating mechanism that elevates and elevates the partition plate support.
  • Appendix 3 The device according to Appendix 2.
  • the control unit raises and lowers either the substrate support elevating mechanism or the partition plate support elevating mechanism to change the vertical positional relationship between the partition plate and the substrate.
  • Appendix 4 The device according to Appendix 2.
  • the elevating shaft of the substrate support elevating mechanism and the elevating shaft of the partition plate support elevating mechanism are configured concentrically.
  • the elevating shaft of the substrate support elevating mechanism means the support portion 9441. Further, the elevating shaft of the partition plate support elevating mechanism means a support 9440.
  • the elevating shaft of the substrate support lowering mechanism is arranged in the elevating shaft of the partition plate support elevating mechanism.
  • the elevating shaft of the partition plate support elevating mechanism is arranged in the elevating shaft of the substrate support elevating mechanism.
  • [Appendix 7] The device according to Appendix 2.
  • the drive unit of the substrate support elevating mechanism is configured to elevate and elevate the drive unit of the partition plate support elevating mechanism.
  • Appendix 8 The device according to Appendix 2.
  • a transport chamber is provided below the processing chamber, and the lower end of the transport chamber is It is sealed by the substrate support elevating mechanism and the partition plate support elevating mechanism.
  • Appendix 9 The device according to Appendix 2. It has a lid that supports the partition plate support, and has a lid. The lower end of the processing chamber for processing the substrate is closed by the lid.
  • [Appendix 10] The device according to Appendix 2. Has a lid to support the substrate support, The lower end of the processing chamber for processing the substrate is closed by the lid.
  • [Appendix 11] The device according to Appendix 1.
  • the diameter of the partition plate is configured to be larger than the diameter of the substrate.
  • [Appendix 12] The device according to Appendix 1.
  • the area of the partition plate is configured to be larger than the area of the substrate.
  • [Appendix 13] The device according to Appendix 1.
  • the control unit is based on the distance data between the substrate and the partition plate. Controls either or both of the board support elevating mechanism and the partition plate support elevating mechanism.
  • the distance data is an actual distance, n times from a predetermined distance, and the like.
  • the distance data is recorded in the RAM 260b, the storage device 260c, or the like.
  • [Appendix 14] The device according to Appendix 1.
  • the control unit is based on the set film thickness data.
  • the distance between the upper surface of the substrate and the partition plate is changed by driving either or both of the substrate support elevating mechanism and the partition plate support elevating mechanism.
  • the set film thickness data includes any of film thickness information, film thickness distribution, film thickness uniformity, film thickness difference ⁇ X% between the center and the outer circumference, actual film thickness data, etc., and is the recipe data. Another data. These data may be obtained via the network.
  • the relationship between the set film thickness data and the distance is a data table showing at least the relationship between the film thickness (data such as temperature, gas flow rate, pressure, supply time, gas type, surface area of the substrate, etc.) and pitch. Refer to and decide. Alternatively, it may be calculated using a predetermined function.
  • the pitch (position of the first elevating mechanism) is calculated based on the set film thickness data and the related data.
  • Data such as the set film thickness data and the data table shown here are recorded in the RAM 260b, the storage device 260c, and the like.
  • Appendix 15 The device according to Appendix 1.
  • the control unit makes the distance between the upper surface of the substrate and the partition plate smaller than the transport position (home position). Controls either or both of the substrate support elevating mechanism and the partition plate support elevating mechanism.
  • [Appendix 16] The device according to Appendix 1.
  • the control unit makes the distance between the upper surface of the substrate and the partition plate larger than the transport position (home position). Controls either or both of the substrate support elevating mechanism and the partition plate support elevating mechanism.
  • the partition plate has a notch in the board support, The partition plate may support the substrate.
  • Substrate processing device 101 Heater 110 .
  • Reaction tube 120 Gas supply nozzle 121 ... Hole 200 .
  • Partition plate support part 203 ... Partition plate 260 .
  • Controller 300 ... Board support (boat) 400 ... Vertical drive mechanism 500 ... Storage room.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Robotics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

複数の基板上に形成する膜の厚さの均一性を向上させるために、基板処理装置を、複数枚の基板を保持する基板支持具とこの複数の基板の間に配置された複数の仕切板を支持する仕切板支持部とを有する基板保持具と、基板保持具を収容する反応管と、基板保持具を反応管に出し入れする第1の駆動部と、基板保持具を回転させるとともに基板支持具又は仕切板支持部のいずれか一方を上下方向に駆動する第2の駆動部と、基板を加熱する加熱部と、反応管の内部でガスを供給するガス供給部と、ガスを反応管から排気する排気部と、基板保持具を反応管の内部に挿入した状態で、第2の駆動部を駆動して複数の基板又は複数の仕切板とノズルの複数の穴との上下方向の相対位置を予め設定した条件に応じて変化させながらガスを供給するようガス供給部と第2の駆動部とを制御する制御部とを備えて構成した。

Description

基板処理装置、昇降機構、半導体装置の製造方法及びプログラム
 本開示は、半導体デバイスの製造工程において基板を処理する基板処理装置、昇降機構、半導体装置の製造方法及びプログラムに関する。
 半導体デバイスの製造工程における基板(ウエハ)の熱処理では、例えば縦型基板処理装置が使用されている。縦型基板処理装置では、基板保持具によって複数の基板を垂直方向に配列して保持し、基板保持具を処理室内に搬入する。その後、処理室を加熱した状態で処理室内に処理ガスを導入し、基板に対して薄膜形成処理が行われる。例えば特許文献1には、処理室にガスを噴出するガス噴出口が基板処理面に対して垂直方向に少なくとも複数枚の基板にまたがるような大きさでスロット状に設けた基板処理装置が記載されている。
特開2003-297818号公報
 本開示は、複数の基板を同時に処理する場合において、それぞれの基板上に形成する膜の厚さの均一性を向上させることが可能な技術を提供するものである。
 本開示の一態様によれば、例えば、複数の基板を上下方向に間隔をあけて保持する基板支持具とこの基板支持具に保持された複数の基板の間に配置された複数の仕切板を支持する仕切板支持部とを有する基板保持具と、この基板支持具に複数の基板を保持した状態で基板保持具を収容する反応管と、基板保持具を上下方向に駆動して反応管の内部に対して出し入れする第1の駆動部と、この第1の駆動部により基板保持具と共に上下方向に駆動されて基板保持具が反応管の内部に挿入された状態で基板保持具を回転させるとともに基板支持具又は仕切板支持部のいずれか一方を上下方向に駆動して基板支持具に保持された複数の基板と仕切板支持部に支持された複数の仕切板との間隔を変化させる第2の駆動部と、反応管の周囲に設けられて基板を加熱する加熱部と、反応管の内部に収容された基板保持具の基板支持具に保持された複数の基板に対してガスを供給する穴が形成されたノズルを備えたガス供給部と、このガス供給部から供給されたガスを反応管から排気する排気部と、第1の駆動部を駆動して基板保持具を反応管の内部に挿入した状態で、第2の駆動部を駆動して複数の基板又は複数の仕切板と、ノズルに形成されたガスを供給する複数の穴との上下方向の相対位置を予め設定した条件に応じて変化させながら複数の基板にガスを供給するようガス供給部と第2の駆動部とを制御する制御部とを有する基板処理装置が提供される。
 本開示によれば、複数の基板を同時に処理する場合において、基板上のガス濃度の分布を制御することが可能になり、それぞれの基板上に形成する膜の厚さの均一性を向上させることができる。
 また、本開示によれば、複数の基板を同時に処理する場合において、基板上のガス濃度の分布を制御して基板を処理することにより供給する材料ガスの効率化を図ることができ、材料ガスの無駄を低減してコストを低減することが可能になる。
実施例1に係る基板処理装置において、基板を搭載したボートを移載室に搬入した状態を示す処理室と収納室の略断面図である。 実施例1に係る基板処理装置において、基板を搭載したボートを上昇させて処理室に搬入した状態を示す処理室と収納室の略断面図である。 実施例1に係る基板処理装置の処理室における基板と仕切り板との間隔を示す基板と仕切り板との断面図である。 実施例1に係る基板処理装置の処理室における基板と仕切り板との間隔を切り替えたときの基板表面における材料ガス濃度の分布を示すグラフである。 実施例1に係る基板処理装置の処理室における基板の表面における材料ガスの濃度分布を可視化して表示した図で、基板と仕切り板との間隔が図3(c)に示したように広く設定した場合の基板の表面における材料ガスの濃度分布をしめす、基板の斜視図である。 実施例1に係る基板処理装置のコントローラの構成例を示すブロック図である。 実施例1に係る半導体装置製造工程の概略を示すフロー図である。 実施例1に係る基板処理装置のCPUが読み込むプロセスレシピ一例を示すプロセスレシピの一覧を示す表である。 実施例2に係る基板処理装置の概略の構成を示す略断面図である。 実施例3に係る基板処理装置の概略の構成を示す略断面図である。 実施例4に係る基板処理装置の概略の構成を示す略断面図である。
 本開示は、複数の基板を載置するボートと、ボートとは別体に構成され、ボートに載置された基板それぞれの上部に配置される複数の仕切り板と、複数の仕切り板を支持する支持部を有する仕切り板支持具と、ボートを昇降する第1昇降機構とを有し、基板と仕切り板との上下方向の位置関係を変更させる第2昇降機構を備えた基板処理装置に関するものである。
 以下、本開示の実施の形態を図面に基づいて詳細に説明する。本実施の形態を説明するための全図において同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は原則として省略する。
 ただし、本開示は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本開示の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
 図1及び図2を用いて、実施例1に係る基板処理装置の構成について説明する。 
 [基板処理装置100] 
 基板処理装置100は、鉛直方向に延びた円筒形状の反応管110と、反応管110の外周に設置された加熱部(炉体)としてのヒータ101と、ガス供給部を構成するガス供給用のノズル120を備える。ヒータ101は上下方向に複数のブロックに分割されて個々のブロックごとに温度を設定することが可能なゾーンヒータにより構成されている。
 反応管110は、例えば石英やSiC等の材料で形成される。排気部を構成する排気管130から図示していない排気手段により反応管110の内部が排気される。反応管110の内部は外気に対して図示していない手段により気密にシールされる。
 ここで、反応管110の内部に第2反応管を備えて構成しても、本開示の技術を適用することができる。
 ガス供給用のノズル(以下、単にノズルと記す場合もある)120は、反応管110の内部にガスを供給する多数の穴121が形成されている。
 ガス供給用のノズル120に形成された多数の穴121を通して、反応管110の内部には、原料ガス、反応ガス及び不活性ガス(キャリアガス)が導入される。
 原料ガス、反応ガス、不活性ガス(キャリアガス)は、それぞれ図示していない原料ガス供給源、反応ガス供給源及び不活性ガス供給減から、図示していないマスフローコントローラ(MFC:Mass Flow Controller)で流量が調整され、ノズル120に形成された多数の穴121から反応管110の内部に供給される。
 反応管110の内部は、マニホールド111に形成された排気管130から、図示していない排気手段により真空に排気される。
 [チャンバ180] 
 チャンバ180は反応管110の下部にマニホールド111を介して設置され、収納室500を備えている。収納室500では、基板搬入口310を介して図示していない移載機により基板10を基板支持具(ボート)300に載置(搭載)したり、移載機により基板10を基板支持具(以下、単にボートと記す場合もある)300から取り出すことが行われる。
 ここで、チャンバ180は、SUS(ステンレス)又はAl(アルミニウム)等の金属材料で構成される。
 チャンバ180の内部には、基板支持具(ボート)300、仕切板支持部200、及び基板支持具(ボート)300と仕切板支持部200と(これらを合わせて基板保持具と呼ぶ)を上下方向と回転方向に駆動する第1の駆動部を構成する上下方向駆動機構部400を備えている。
 [基板支持部] 
 基板支持部は、少なくとも基板支持具(ボート)300で構成され、収納室500の内部で基板搬入口310を介して図示していない移載機により基板10の移し替えを行ったり、移し替えた基板10を反応管110の内部に搬送して基板10の表面に薄膜を形成する処理を行ったりする。なお、基板支持部に、仕切板支持部200を含めて考えても良い。
 仕切板支持部200は、図1及び図2に示すように、基部201と天板204との間に支持された支柱202に複数枚の円板状の仕切板203が所定のピッチで固定されている。基板支持具(ボート)300は、図1及び図2に示すように、基部301に複数の支持ロッド302が支持されており、この複数の支持ロッド302により複数の基板10が所定の間隔で支持される構成を有している。
 基板支持具(ボート)300には、基部301に支持された複数の支持ロッド302により複数の基板10が所定の間隔で載置されている。この支持ロッド302により支持された複数の基板10の間は、仕切板支持部200に支持された支柱202に所定に間隔で固定(支持)された円板状の仕切板203によって仕切られている。ここで、仕切板203は、基板10の上部と下部のいずれか又は両方に配置される。
 基板支持具(ボート)300に載置されている複数の基板10の所定の間隔は、仕切板支持部200に固定された仕切板203の上下の間隔と同じである。また、仕切板203の直径は、基板10の直径よりも大きく形成されている。
 ボート300は、複数の支持ロッド302で、複数枚、例えば5枚の基板10を垂直方向に多段に支持する。この垂直方向に多段に支持する基板10の上下の間隔は、例えば約60mm程度に設定する。ボート300を構成する基部301及び複数の支持ロッド302は、例えば石英やSiC等の材料で形成される。なお、ここでは、ボート300に5枚の基板10を支持した例を示すが、これに限るもので無い。例えば、基板10を5~50枚程度、支持可能にボート300を構成しても良い。なお、仕切板支持部200の仕切板203は、セパレータとも呼ぶ。
 仕切板支持部200と基板支持具(ボート)300とは、上下方向駆動機構部400により、反応管110と収納室500との間の上下方向、及び基板支持具(ボート)300で支持された基板10の中心周りの回転方向に駆動される。
 第1の駆動部を構成する上下方向駆動機構部400は、図1及び図2に示すように、駆動源として、上下駆動用モータ410と、回転駆動用モータ430と、基板支持具(ボート)300を上下方向に駆動する基板支持具昇降機構としてのリニアアクチュエータを備えたボート上下機構420を備えている。
 仕切板支持部昇降機構としての上下駆動用モータ410は、ボールねじ411を回転駆動することにより、ボールねじ412に螺合しているナット412をボールねじ412に沿って上下に移動させる。これにより、ナット412を固定しているベースプレート402と共に仕切板支持部200と基板支持具(ボート)300とが反応管110と収納室500との間で上下方向に駆動される。ベースプレート402はガイド軸414と係合しているボールガイド415にも固定されており、ガイド軸414に沿って上下方向にスムーズに移動できる構成となっている。ボールねじ411とガイド軸414との上端部と下端部とは、それぞれ、固定プレート413と416に固定されている。なお、仕切板支持部昇降機構には、上下駆動用モータ410の動力が伝わる部材を含めても良い。
 回転駆動用モータ430とリニアアクチュエータを備えたボート上下機構420とは第2の駆動部を構成し、ベースプレート402に側板403で支持されている蓋体としてのベースフランジ401に固定されている。側板403を用いることにより、上下機構や回転機構等から、出るパーティクルの拡散を抑制することができる。覆う形状は、筒状や、柱状に構成される。カバー形状の一部または、底面に、移載室と連通する孔が設けられる。連通する孔により、カバー形状の内部は、移載室内の圧力と同様の圧力に構成される。
 一方、側板403に替えて、支柱を用いてもよい。この場合、上下機構や回転機構のメンテナンスが容易になる。
 回転駆動用モータ430は先端部に取り付けた歯部431と係合する回転伝達ベルト432を駆動し、回転伝達ベルト432と係合している支持具440を回転駆動する。支持具440は、仕切板支持部200を基部201で支持しており、回転伝達ベルト432を介して回転駆動用モータ430で駆動されることにより、仕切板支持部200とボート300とを回転させる。
 支持具440は、ベースフランジ401の内筒部分4011との間を真空シール444で仕切られ、その下部を軸受け445でベースフランジ401の内筒部分4011に対して回転可能にガイドされている。
 リニアアクチュエータを備えたボート上下機構420は軸421を上下方向に駆動する。軸421の先端部分にはプレート422が取り付けられている。プレート422は、軸受け423を介してボート300の基部301に固定された支持部441と接続されている。支持部441が軸受け423を介してプレート422と接続されることにより、回転駆動用モータ430で仕切板支持部200を回転駆動したときに、ボート300も仕切板支持部200と一緒に回転することができる。
 一方、支持部441は、リニアガイド軸受け442を介して支持具440に支持されている。このような構成とすることにより、リニアアクチュエータを備えたボート上下機構420で軸421を上下方向に駆動した場合、仕切板支持部200に固定された支持具440に対してボート300に固定された支持部441を相対的に上下方向に駆動することができる。
 このように、支持具440と支持部441とを同心状に構成することで、回転駆動用モータ430を用いた回転機構の構造をシンプルにすることができる。また、ボート300と仕切板支持部200との回転の同期化制御が容易になる。
 ただし、本実施例はこれに限らず、支持具440と支持部441とを同心上ではなく、別々に配置してもよい。
 仕切板支持部200に固定された支持具440とボート300に固定された支持部441との間は、真空ベローズ443で接続されている。
 蓋体としてのベースフランジ401の上面には真空シール用のOリング446が設置されており、図2に示すように上下駆動用モータ410で駆動されてベースフランジ401の上面がチャンバ180に押し当てられる位置まで上昇させることにより、反応管110の内部を気密に保つことができる。
 なお、真空シール用のOリング446は必ずしも必要ではなく、真空シール用のOリング446を用いずにベースフランジ401の上面をチャンバ180に押し当てることにより反応管110の内部を気密に保つようにしてもよい。更に、真空ベローズ443も、必ずしも設けなくてもよい。
 上記したような構成において、上下駆動用モータ410で駆動して図2に示したようにベースフランジ401の上面がチャンバ180に押し当てられるまで上昇させて基板支持部を反応管110の内部に挿入した状態において、ガス供給用のノズル120に形成された多数の穴121を通して、反応管110の内部に原料ガス、又は反応ガス、又は不活性ガス(キャリアガス)を導入する。
 ガス供給用のノズル120に形成された多数の穴121のピッチは、ボート300に載置された基板10の上下の間隔及び仕切板支持部200に固定された仕切板203の上下の間隔と同じである。
 ここで、ベースフランジ401の上面がチャンバ180に押し当てられた状態において、仕切板支持部200の支柱202に固定された仕切板203の高さ方向の位置は固定であるのに対して、リニアアクチュエータを備えたボート上下機構420を駆動してボート300の基部301に固定された支持部441を上下動させることにより、ボート300に支持されている基板10の仕切板203に対する高さ方向の位置を変えることができる。ガス供給用のノズル120に形成された穴121の位置も固定されているので、穴121に対してもボート300に支持されている基板10の高さ方向の位置(相対位置)を変えることができる。
 すなわち、図3(a)に示すような搬送の基準位置関係に対して、ボート300に支持されている基板10の位置をリニアアクチュエータを備えたボート上下機構420を駆動して上下方向に調整することで、ノズル120に形成された穴121及び仕切板203との位置関係を、図3(b)に示すように基板10の位置を搬送ポジション(ホーム位置)10-1よりも高くして上側の仕切板2032との間の隙間G1を狭くしたり、図3(c)に示すように基板10の位置を搬送ポジション(ホーム位置)10-1よりも低くして、上側の仕切板2032との間の隙間G2を広くすることができる。
 このように、ノズル120に形成された穴121に対する基板10の位置を変えることにより、穴121から噴出されるガス流1211と基板10との位置関係を変えることができる。
 図3(b)に示したように基板10の位置を高くして上側の仕切板2032との間の隙間G1を狭くした状態、及び図3(c)に示すように基板10の位置を低くして、上側の仕切板2032との間の隙間G2を広くした状態において、ノズル120に形成された穴121から2塩化シリコンガス(SiCl)を供給した場合に、基板10の表面に形成される膜の面内分布をシミュレーションした結果を図4に示す。
 図4において、Narrowで示す点列510は、図3(b)のような状態、すなわち、基板10の位置を高くして上側の仕切板2032との間の隙間G1を狭くして、基板10を穴121から噴出されるガス流1211の位置よりも高くした状態で成膜した場合を示す。この場合、基板10の周辺部に比較的厚い膜が形成され、基板10の中央部分に形成される膜の厚さが周辺部と比べて薄い凹状の膜厚分布となる。
 これに対して、Wide で示す点列520は、図3(c)のような状態、すなわち、基板10の位置を低くして上側の仕切板2032との間の隙間G2を広くして、基板10を穴121から噴出されるガス流1211の位置よりも低くした状態で成膜した場合を示す。この場合、基板10の中央部分が周辺部と比べて比較的厚い膜が形成される凸状の膜厚分布となる。
 このように、基板10の位置を変えることにより、基板10の表面に形成される薄膜の基板10の面内分布が変化することがわかる。
 図5には、基板10と仕切板2032及びノズル120に形成された穴121との関係を図3(c)のような位置関係に設定した場合に、矢印611の方向から2塩化シリコンガス(SiCl)を供給したときの基板10の表面におけるSiClガスの分圧の分布をシミュレーションにより求めた結果を示す。図4の膜厚分布は、図5のa-a‘断面における膜厚の分布に相当する。
 図5に示すように、基板10と仕切板2032及びノズル120に形成された穴121との関係を図3(c)のような位置関係に設定した場合に、ノズル120に形成された穴121に近い部分から基板10の中心部分にかけた濃い色で表示された部分において、SiClガスの分圧が比較的高くなっている。一方、ノズル120に形成された穴121から離れた基板10の周辺部分におけるSiClガスの分圧は比較的低くなっている。
 この状態で、回転駆動用モータ430を駆動して支持具440を回転駆動することにより仕切板支持部200とボート300とを回転させてボート300に支持されている基板10を回転させることにより、基板10の周方向における膜厚のばらつきを(膜厚分布)を低減することができる。
 [コントローラ]
 図1に示す様に、基板処理装置100は、各部の動作を制御するコントローラ260と接続されている。
 コントローラ260の概略を図6に示す。制御部(制御手段)であるコントローラ260は、CPU(Central Processing Unit)260a、RAM(Random Access Memory)260b、記憶装置260c、入出力ポート(I/Oポート)260dを備えたコンピュータとして構成されている。RAM260b、記憶装置260c、I/Oポート260dは、内部バス260eを介して、CPU260aとデータ交換可能なように構成されている。コントローラ260には、例えばタッチパネル等として構成された入出力装置261や、外部記憶装置262が接続可能に構成されている。
 記憶装置260cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置260c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプロセスレシピおよびデータベース等が読み出し可能に格納されている。
 なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ260に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。
 以下、このプログラムレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プログラムレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM260bは、CPU260aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート260dは、基板搬入口310,上下駆動用モータ410、リニアアクチュエータを備えたボート上下機構420、回転駆動用モータ430、ヒータ101、マスフローコントローラ(不図示)、温度調整器(不図示)、真空ポンプ(不図示)、等に接続されている。
 なお、本開示における「接続」とは、各部が物理的なケーブルで繋がっているという意味も含むが、各部の信号(電子データ)が直接または間接的に送信/受信可能になっているという意味も含む。例えば、各部の間に、信号を中継する機材や、信号を変換または演算する機材が設けられていても良い。
 CPU260aは、記憶装置260cからの制御プログラムを読み出して実行すると共に、コントローラ260からの操作コマンドの入力等に応じて記憶装置260cからプロセスレシピを読み出すように構成されている。そして、CPU260aは、読み出されたプロセスレシピの内容に沿うように、基板搬入口310の開閉動作、上下駆動用モータ410の駆動、リニアアクチュエータを備えたボート上下機構420及び1240の駆動、回転駆動用モータ430の回転動作、ヒータ101への電力供給動作などを制御するように構成されている。
 なお、コントローラ260は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていても良い。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MOなどの光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)262を用意し、係る外部記憶装置262を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態に係るコントローラ260を構成することができる。
 なお、コンピュータにプログラムを供給するための手段は、外部記憶装置262を介して供給する場合に限らない。例えば、ネットワーク263(インターネットや専用回線)等の通信手段を用い、外部記憶装置262を介さずにプログラムを供給するようにしても良い。なお、記憶装置260cや外部記憶装置262は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。なお、本明細書において、記録媒体という言葉を用いた場合は、記憶装置260c単体のみを含む場合、外部記憶装置262単体のみを含む場合、または、その両方を含む場合が有る。
 [基板処理工程(成膜工程)] 
 次に、図1及び図2で説明した基板処理装置を用いて基板上に膜を形成する基板処理工程(成膜工程)について図7を用いて説明する。
 本開示は、成膜プロセス及びエッチングプロセスの何れにも適用することができるが、半導体装置(デバイス)の製造工程の一工程として、基板10上に、薄膜を形成する工程の一例としてSiO(酸化シリコン)層を形成する工程について説明する。SiO層などの膜を形成する工程は、上述した基板処理装置100の反応管110の内部で実行される。上述した通り、製造工程の実行は、図6のコントローラ260のCPU260aのプログラム実行によってなされる。
 本実施形態による基板処理工程(半導体装置の製造工程)では、まず、上下駆動用モータ410で駆動して図2に示したようにベースフランジ401の上面がチャンバ180に押し当てられるまで上昇させて基板支持部を反応管110の内部に挿入する。
 次に、この状態において、リニアアクチュエータを備えたボート上下機構420で軸421を上下方向に駆動することにより、ボート300に載置された基板10の仕切板203に対する高さ(間隔)を、図3(a)に示した初期状態から、図3(b)に示すように基板10を上昇させて基板10と仕切板203との間隔G1が小さい状態、または、図3(c)に示すように基板10を下降させて基板10と仕切板203との間隔G2を大きくした状態に設定することにより、仕切板203に対する基板10の高さ(仕切板203と基板10との間隔)が所望の値となるように調整する。
 この状態で、
(a)反応管110の内部に収容された基板10に対して、ガス供給用のノズル120からSiCl(六塩化二ケイ素)ガスを供給する工程と、
(b)反応管110の内部の残留ガスを除去する工程と、
(c)反応管110の内部に収容された基板10に対して、ガス供給用のノズル120からO(酸素)(又はO(オゾン)又はHO(水))を供給する工程と、
(d)反応管110の内部の残留ガスを除去する工程と、
を有し、上記(a)~(d)の工程を複数回繰り返して、SiO層を基板10上に形成する。
 また、上記(a)~(d)の工程を複数回繰り返して実行している間、又は上記(a)と(c)の工程において、回転駆動用モータ430に回転伝達ベルト432で接続されている支持具440を回転駆動用モータ430で回転駆動させながら、基板10の仕切板203に対する高さ(間隔)を、図3(b)に示すような基板10を上昇させて基板10と仕切板203との間隔G1が小さい状態と、図3(c)に示すように基板10を下降させて基板10と仕切板203との間隔G2を大きくした状態との間で周期的に変化させながら実行する。これにより、基板10上に形成される膜の膜厚を均一にすることができる。
 なお、本明細書において「基板」という言葉を用いた場合は、「基板そのもの」を意味する場合や、「基板とその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合(すなわち、表面に形成された所定の層や膜等を含めて基板と称する場合)がある。また、本明細書において「基板の表面」という言葉を用いた場合は、「基板そのものの表面(露出面)」を意味する場合や、「基板上に形成された所定の層や膜等の表面、すなわち、積層体としての基板の最表面」を意味する場合がある。
なお、本明細書において「基板」という言葉を用いた場合も、「ウェハ」という言葉を用いた場合と同義である。
 次に、具体的な成膜工程の例について、図7に示したフロー図に沿って説明する。
 (プロセス条件設定):S701 
 まず、CPU260aは、記憶装置260cに記憶されたプロセスレシピ及び関連するデータベースを読み込んで、プロセス条件を設定する。記憶装置260cに替えて、ネットワークを介してプロセスレシピ及び関連するデータベースを入手するようにしてもよい。
 図8に、CPU260aが読み込むプロセスレシピ800の一例を示す。プロセスレシピ800の主な項目としては、ガス流量810、温度データ820、処理サイクル数830、ボート高さ840、ボート高さ調整時間間隔850などがある。
 ガス流量810には、原料ガス流量811、反応ガス流量812、キャリアガス流量813などの項目がある。温度データ820としては、ヒータ101による反応管110内部における加熱温度821がある。
 ボート高さ840には、図3(b)及び図3(c)で説明したように、基板10と仕切板203との間隔の最小値(G1)と最大値(G2)の設定値が含まれる。
 ボート高さ調整時間間隔850は、基板10と仕切板203との間隔を図3(b)に示したような最小値に維持する時間及び図3(c)に示したような最大値に維持する時間との切り替えの時間間隔を設定する。すなわち、基板10の表面と仕切板203との間隔(ノズル120のガス供給用の穴121の位置に対する基板10の位置)を図3(b)のように設定した場合と図3(c)のように設定した場合とに交互に切り替えながら処理して基板10上に薄膜を形成する。これにより、基板10の表面に、中心部分と外周部分の膜厚がほぼ同じである平坦な膜厚分布を有する薄膜を形成することができる。
 (基板搬入):S702 
 ボート300を収納室500に収納した状態で、上下駆動用モータ410を駆動してボールねじ411を回転駆動し、ボート300をピッチ送りして、収納室500の基板搬入口310を介して、新たな基板10を1枚ずつボート300に搭載して保持する。
 ボート300への新たな基板10の搭載が完了すると、基板搬入口310を閉じて収納室500の内部を外部に対して密閉した状態で上下駆動用モータ410を駆動してボールねじ411を回転駆動しボート300を上昇させて、ボート300を収納室500から反応管110の内部に搬入する。
 この時、上下駆動用モータ410によって持ち上げられるボート300の高さは、S701で読み込んだプロセスレシピに基づいて、反応管110の管壁に形成された穴123を通してノズル120から反応管110の内部に供給されるガスの吹き出し位置(ノズル120の先端部分の高さ)との差高さ方向の位置の差が、図3(b)又は図3(c)に示すような状態に設定される。
 (圧力調整):S703
 ボート300が反応管110の内部に搬入された状態で、反応管110の内部を図示していない真空ポンプによって排気管130から真空排気し、反応管110の内部が所望の圧力となるように調整する。
 (温度調整):S704
 図示していない真空ポンプによって真空排気された状態で、ステップS704で読み込んだレシピに基づいて、反応管110の内部が所望の圧力(真空度)となるように反応管110の内部をヒータ101によって加熱する。この際、反応管110の内部が所望の温度分布となるように、図示していない温度センサが検出した温度情報に基づきヒータ101への通電量がフィードバック制御される。ヒータ101による反応管110の内部の加熱は、少なくとも基板10に対する処理が完了するまでの間は継続して行われる。
 また、ヒータ101により加熱されることによる基板の昇温時は、ピッチ(基板10の裏面と基板10の下側の仕切板203との間隔)を狭くする(図3Cの状態)。このピッチを狭くすることは、少なくとも原料ガス供給前まで行う。原料ガスを供給以降は、ピッチを昼ゲル。また、原料ガス供給時と反応ガス供給時とでピッチを異ならせても良い。さらに、原料ガス(反応ガス)の供給中にピッチを可変させても良い。さらにまた、基板支持具と仕切板支持部とが相対的に上下方向移動する動作タイミングは任意に設定可能である。
 [SiO層形成工程]:S705 
 続いて、第1の層として例えばSiO層を形成するために、以下のような詳細なステップを実行する。
(原料ガス供給):S7051 
 まず、回転駆動用モータ430を回転駆動して、回転伝達ベルト432を介して支持具440を回転させることにより、支持具440に支持されている仕切板支持部200とボート300とを回転させる。
 このボート300の回転を維持した状態で、ノズル120の穴121から反応管110の内部に原料ガスであるSiClガスを流量調整された状態で流す。反応管110に供給された原料ガスのうち、基板10の表面での反応に寄与しなかったガスは、排気管130から排気される。
 ここで、ノズル120の穴121、及び仕切板支持部200の仕切板203に対するボート300に搭載された基板10の表面の相対的な位置(高さ)は、ステップS701で読み込んだプロセスレシピに基づいてリニアアクチュエータを備えたボート上下機構420を作動させて軸421を上下方向に駆動することにより、ボートを所定の時間間隔で上下させて、複数の位置(例えば、図3(b)に示した位置と図3(c)に示した位置)の間で切り替えられる。
 ノズル120の穴121から反応管110の内部にSiClガスを導入することにより、ボート300に搭載された基板10に対してSiClガスが供給されることとなる。供給するSiClガスの流量は、一例として、0.002~1slm(Standard liter per minute)の範囲、より好ましくは、0.1~1slmの範囲に設定する。
 このときSiClガスと一緒にキャリアガスとして、N(窒素)ガス、又はAr(アルゴン)ガス等の不活性ガスが反応管110の内部に供給され、排気管130から排気される。キャリアガスの具体的な流量は、0.01~5slmの範囲、より好ましくは、0.5~5slmの範囲に設定する。
 キャリアガスのNガスは、ノズル120を介して反応管110の内部に供給され、排気管130から排気される。このときヒータ101の温度は、基板10の温度が、例えば250~550℃の範囲内の温度となるような温度に設定する。
 反応管110の内部に流しているガスはSiClガスとNガスのみであり、SiClガスの反応管110への供給により、基板10(表面の下地膜)上に、例えば1原子層未満から数原子層程度の厚さのSi含有層が形成される。
 (原料ガス排気):S7052 
 反応管110の内部に所定の時間ノズル120を介して原料ガスであるSiClガスを供給して基板10の表面にSi含有層が形成された後、SiClガスの供給を停止する。このとき、図示していない真空ポンプにより反応管110の内部を真空排気し、反応管110内に残留する未反応もしくはSi含有層形成に寄与した後のSiClガスを反応管110の内部から排除する。
 このときノズル120からのキャリアガスであるNガスの反応管110内部への供給を維持する。Nガスはパージガスとして作用し、反応管110の内部に残留する未反応もしくはSi含有層形成に寄与した後のSiClガスを反応管110の内部から排除する効果を高めることができる。
 (反応ガス供給):S7053 
 反応管110の内部の残留ガスを除去した後、回転駆動用モータ430を駆動してボート300の回転を維持した状態で、反応ガスであるOガスをノズル120から反応管110の内部に供給し、反応に寄与しなかったOガスを排気管130から排気する。これにより、基板10に対してOが供給されることとなる。具体的に供給するOガスの流量は、0.2~10slmの範囲、より好ましくは、1~5slmの範囲に設定する。
 このとき、Nガスの供給は停止した状態として、NガスがOガスと一緒に反応管110の内部に供給されないようにする。すなわち、OガスはNガスで希釈されることなく、反応管110の内部に供給されるので、SiO層の成膜レートを向上させることが可能である。このときのヒータ101の温度は、SiClガス供給ステップと同様の温度に設定する。
 ここで、ノズル120の穴121、及び仕切板支持部200の仕切板203に対するボート300に搭載された基板10の表面の相対的な位置(高さ)は、ステップS7051と同様に、ステップS701で読み込んだプロセスレシピに基づいてリニアアクチュエータを備えたボート上下機構420を作動させて軸421を上下方向に駆動することにより、ボートを所定の時間間隔で上下させて、複数の位置(例えば、図3(b)に示した位置と図3(c)に示した位置)の間で切り替えられる。
 このとき反応管110の内部に流しているガスは、Oガスのみである。Oガスは、原料ガス(SiCl)供給ステップ(S7051)で基板10上に形成されたSi含有層の少なくとも一部と置換反応する。置換反応の際には、Si含有層に含まれるSiとOガスに含まれるOとが結合して、基板10上にSiとOとを含むSiO層が形成される。
 (残留ガス排気):S7054 
 SiO層を形成した後、ノズル120から反応管110の内部へのOガスの供給を停止する。そして、ステップS7052と同様の処理手順により、反応管110の内部に残留する未反応もしくはSiO層の形成に寄与した後のOガスや反応副生成物を反応管110の内部から排除する。
 (所定回数実施) 
 ステップS705における上記した詳細ステップS7051~ステップS7055を順に行うサイクルを1回以上(所定回数(n回))行うことにより、基板10上に、所定の厚さ(例えば0.1~2nm)のSiO層を形成する。上述のサイクルは、複数回繰り返すのが好ましく、例えば10~80回ほど行うことが好ましく、より好ましくは10~15回ほど行う。
 このように、ステップS701で読み込んだプロセスレシピに基づいてリニアアクチュエータを備えたボート上下機構420を作動させて軸421を上下方向に駆動することにより、ボートを所定の時間間隔で上下させて、複数の位置(例えば、図3(b)に示した位置と図3(c)に示した位置)の間で切り替えながら原料ガス供給工程(S7051)と反応ガス供給工程(S7053)とを繰り返して実行することにより、基板10の表面には、均一な膜厚分布を有する薄膜を形成することができる。
 なお、上記に説明した例においては、原料ガス供給工程(S7051)と反応ガス供給工程(S7053)とにおいて、回転駆動用モータ430で基板10を搭載したボート300を回転させる例を説明したが、残留ガス排気工程(S7052とS7054)の間も継続して回転させるようにしてもよい。
 (アフターパージ):S706 
 上記ステップS705の一連の工程を所定の回数繰り返して実行した後、ノズル120からNガスを反応管110の内部へ供給し、排気管130から排気する。Nガスはパージガスとして作用し、これにより反応管110の内部が不活性ガスでパージされ、反応管110の内部に残留するガスや副生成物が反応管110内から除去される。
(基板搬出):S707
 その後、上下駆動用モータ410を駆動してボールねじ411を逆方向に回転駆動し、仕切板支持部200とボート300を反応管110から下降させて、表面に所定の厚さの薄膜が形成された基板10を搭載したボート300を収納室500に搬送する。
 収納室500において、ボート300から薄膜が形成された基板10を基板搬入口310を介して、収納室500の外部に取り出して基板10の処理を終了する。
 上記に説明した例においては、基板10上にSiO膜を形成する例について説明したが、本実施例はこれに限られるものではない。例えば、SiO膜の替わりに、Si(窒化シリコン)膜、又はTiN(窒化チタン)膜を形成することもできる。また、これらの膜に限るものでは無い。例えば、W、Ta、Ru、Mo、Zr、Hf、Al、Si、Ge、Ga等又は、これら元素と同族の元素、で構成される元素単体の膜や、これら元素と窒素との化合物膜(窒化膜)、これら元素と酸素との化合物膜(酸化膜)等にも適用することが可能である。なお、これらの膜を形成する際には、上述のハロゲン含有ガスや、ハロゲン元素、アミノ基、シクロペンタ基、酸素(O)、炭素(C)、アルキル基、等の少なくともいずれかを含むガスを用いることができる。
 本実施例によれば、基板10の表面積や成膜する膜種に応じて、基板10と成膜ガス供給用のノズル120の穴121と位置関係を予め設定した条件に基づいて変化させながら成膜することができるので、ボート300に載置された基板10上に形成する薄膜の膜厚分布の面内での均一性を向上させることができる。
 本開示の適用例として成膜処理工程について説明したが、本開示はこれに限られず、エッチングプロセスに適用することもできる。
 本開示をエッチングプロセスに適当する場合、リニアアクチュエータを備えたボート上下機構420を作動させて軸421を上下方向に駆動することにより、基板10と基板10の上側の仕切板203との間隔を狭くした状態(図3(b)の状態)でエッチングガスを供給することで、DED(Depo Etch Depo)処理の内、E処理が可能となる。ここで、DED処理とは、成膜処理とエッチング処理を繰り返し行い、所定の膜を形成する処理を意味する。上述のE処理とは、エッチング処理を意味する。
 また、エッチングガス供給中に、基板10と基板10の上側の仕切板203との間隔を広げることにより(図3(c)の状態)、エッチングの基板面内均一性を調整することが可能となる。
 本開示において、基板10と基板10の上側の仕切板203との間隔調整のパラメータとしては、膜厚分布、温度、ガス流量、圧力、時間、ガス種、基板の表面積、等がある。パラメータとして膜厚分布情報を用いる場合、膜厚測定装置を基板処理装置内に設け、膜厚測定結果を基に、基板10と基板10の上側の仕切板203との間隔を変更する。
 また、ガスの分解量をセンサで検出し、分解量データを基に、基板10と基板10の上側の仕切板203との間隔を変更させても良い。
 実施例2に係る基板処理装置900の構成を図9に示す。実施例1と同じ構成については同じ番号を付して説明を省略する。ただし、図9に示した構成においては、実施例1で説明したヒータ101、反応管110、ガス供給用のノズル120、マニホールド111、排気管130及びコントローラ260の構成については実施例1と同じであるので、それらの表示を省略してある。
 本実施例の仕切板支持部200と基板支持具(ボート)300とを、上下方向駆動機構部400により反応管110と収納室500との間の上下方向に駆動する点、回転駆動用モータ9451で支持具9440を回転駆動して基板支持具(ボート)300で支持された基板10の中心周りの回転方向に駆動される点、及びリニアアクチュエータを備えたボート上下機構9420で軸9421を介してプレート9422を上下方向に駆動して、仕切板支持部200に固定された支持具9440に対してボート300に固定された支持部9441を相対的に上下方向に駆動する点は、実施例1と同じである。
 本実施例に係る基板処理装置900においては、上下方向駆動機構部400で仕切板支持部200と基板支持具(ボート)300とを上昇させて、Oリング446を挟んでベースフランジ9401をチャンバ180に押し当てた状態で、仕切板支持部200と基板支持具(ボート)300の高さをそれぞれ独立に調整できる機構部を備えた点が、実施例1で説明した基板処理装置100の構成と異なる。
 すなわち、本実施例に係る基板処理装置900においては、図9に示すように、仕切板支持部200を基板支持具(ボート)300に対して独立に上下させるための第二のリニアアクチュエータを備えたボート上下機構9460を備えている。この第二のリニアアクチュエータを備えたボート上下機構9460で、軸9461を介してプレート9462を上下方向に駆動して、仕切板支持部200を基板支持具(ボート)300に対して独立に上下させる。
 プレート9462は、回転シール機構9423を挟んで、仕切板支持部200を基部201で支持している支持具9440と接続している。
 リニアアクチュエータを備えたボート上下機構9420と第二のリニアアクチュエータを備えたボート上下機構9460とは、ベースプレート9402に側板9403で支持されているベースフランジ9401に固定されている。
 回転駆動用モータ9430は、第二のリニアアクチュエータを備えたボート上下機構9460で上下方向に駆動されるプレート9462に取り付けられている。
 回転駆動用モータ9430は先端部に取り付けた歯部9431と係合する回転伝達ベルト9432を駆動し、回転伝達ベルト9432と係合している支持具9440を回転駆動する。支持具9440は、仕切板支持部200を基部201で支持しており、回転伝達ベルト9432を介して回転駆動用モータ9430で駆動されることにより、仕切板支持部200とボート300とを回転させる。
 本実施例による基板処理装置900の構成によれば、図1及び図2に示したようなノズル120に形成された穴121に対して、ボート300に載置された基板10の高さ方向の位置と、仕切板支持部200に固定された仕切板203の高さ方向の位置とが独立に調整することができる。
 これにより、本実施例によれば、基板10の表面積や成膜する膜種に応じて、ノズル120に形成された穴121に対して、ボート300に載置された基板10の高さ方向の位置と、仕切板支持部200に固定された仕切板203の高さ方向の位置とが独立に調整しながら成膜することができるので、ボート300に載置された基板10上に形成する薄膜の膜厚分布の面内での均一性を向上させることができる。
 実施例3に係る基板処理装置1000の構成を図10に示す。実施例1と同じ構成については同じ番号を付して説明を省略する。
 本実施例に係る基板処理装置1000においては、実施例1で説明したのとは逆に、仕切板支持部2001に対して基板支持具(ボート)3001を独立に上下させる構成とした点が、実施例1で説明した基板処理装置100の構成と異なる。
 本実施例の仕切板支持部2001と基板支持具(ボート)3001とにおいて、上下方向駆動機構部400により、反応管110と収納室500との間の上下方向、及び基板支持具(ボート)300で支持された基板10の中心周りの回転方向に駆動される点と、リニアアクチュエータを備えたボート上下機構9420で軸9421を介してプレート9422を上下方向に駆動して、仕切板支持部200に固定された支持具9440に対してボート300に固定された支持部441を相対的に上下方向に駆動する点は、実施例1と同じである。
 すなわち、本実施例においては、リニアアクチュエータを備えたボート上下機構1420で基板支持具(ボート)3001を仕切板支持部2001に対して独立に上下させる構成とした。
 リニアアクチュエータを備えたボート上下機構1420は軸1421を上下方向に駆動する。軸1421の先端部分にはプレート1422が取り付けられている。プレート1422は、軸受け1423を介して仕切板支持部2001基部3011に固定された支持部1441と接続されている。
 一方、支持部1441は、リニアガイド軸受け1442を介して支持具1440に支持されている。支持具1440は、上面が基板支持具(ボート)3001の基部3011と接続しており、ベースフランジ1401の内筒部分14011との間を真空シール1444で仕切られ、その下部を軸受け1445でベースフランジ1401の内筒部分14011に対して回転可能にガイドされている。
 このような構成とすることにより、リニアアクチュエータを備えたボート上下機構1420で軸1421を上下方向に駆動した場合、ボート3001に固定された支持部1441に対して仕切板支持部2001に固定された仕切板2031を相対的に上下方向に駆動することができる。
 また、支持部1441が軸受け1423を介してプレート1422と接続されることにより、回転駆動用モータ1430でボート3001を回転駆動したときに、仕切板支持部2001もボート3001と一緒に回転することができる。
 仕切板支持部2001に固定された支持部1441とボート300に固定された支持具1440との間は、真空ベローズ1443で接続されている。
 本実施例による基板処理装置1000の構成によれば、ノズル120に形成された穴121に対して、ボート3001に載置された基板10の高さを一定(固定)にした状態で、仕切板支持部2001に固定された仕切板2031の高さ方向の位置を調整することができる。
 これにより、本実施例によれば、基板10の表面積や成膜する膜種に応じて、基板10の上面と下面とを覆う仕切板2031と成膜ガス供給用のノズル120の穴121と位置関係を予め設定した条件に基づいて変化させながら成膜することができるので、ボート3001に載置された基板10上に形成する薄膜の膜厚分布の面内での均一性を向上させることができる。
 実施例4に係る基板処理装置1100の構成を図11に示す。実施例1と同じ構成については同じ番号を付して説明を省略する。
 本実施例に係る基板処理装置1100においては、実施例1で説明した基板処理装置100の構成に対して、収納室5001の内部を図示していない真空排気手段を用いて真空排気できる構造とした。これにより実施例1において図2で説明したようなOリング446を用いて反応管110と収納室500との間を真空シールする必要がなくなり、基板処理中にベースフランジ401の高さを変化させることを可能にした。
 その結果、本実施例においては、実施例1で説明したように、基板10を処理中に仕切板支持部200に対して基板支持具(ボート)300の高さを変えられることに加えて、基板支持具(ボート)300と仕切板支持部200とを一緒にガス供給用のノズル120に形成した穴121に対する高さ方向の位置を変えられるようにした。
 実施例1において、図1及び図2を用いて説明した構成と同じものについては同じ番号を付して、説明を省略する。
 本実施例においては、図11に示すように、上下方向駆動機構部4001を収納室5001の外部に配置し、上下方向駆動機構部4001に固定されて上下方向駆動機構部4001により上下方向に変位するプレート4021と収納室5001との間を真空ベローズ417で接続して、収納室5001の内部を密閉して真空シールできるように構成した。
 すなわち、ベースフランジ1401とプレート1422とで挟まれる空間を側壁4031で覆って収納室5001に対して内部の気密性を確保できるような構造とし、側壁4031から延びる管4023及び4022を通してベースフランジ1401とプレート1422と側壁4031とで囲まれた空間を大気圧にした状態で、収納室5001の内部の真空状態を維持できるようにした。
 ベースフランジ1401とプレート1422とで挟まれる空間を側壁4031で覆った空間を利用して、昇降・回転機構の電気配線等の接続や図示しない真空シール保護用の冷却水などを接続する構成等を設けることができる。
 本実施例によれば、基板10を処理中に仕切板支持部200に対して基板支持具(ボート)300の高さを変えられることに加えて、基板支持具(ボート)300と仕切板支持部200とを一緒にガス供給用のノズル120に形成した穴121に対する高さ方向の位置を変えられるようにしたので、基板10を処理中に、ガス供給用のノズル120に形成した穴121に対する仕切板支持部200に固定された仕切板203の高さと基板支持具(ボート)300に載置された基板10の高さとを、個別に制御することができる。
 これにより、本実施例によれば、ボート300に載置された基板10上に形成する薄膜の膜厚分布の面内での均一性を向上させることができる。
 以上説明したように、本開示によれば、基板表面積や成膜する膜種に応じて、基板と成膜ガス供給用のノズルの位置関係を変化させて基板上に均一な膜を形成する方法が可能となる。
 更に、本開示によれば、成膜ガス供給用のノズルは、反応室に対し固定されており、基板を多段に設置した基板支持具(ボート)が、上下方向駆動機構部にて上下するように構成される。成膜処理を行う反応室と反応室の下に位置する収納室をガス遮断又は圧力遮断の為に仕切る必要がある場合は、Oリングシールにて仕切り、基板支持具の上下動作(ノズル位置関係可変)のストロークに対応した伸縮式のシール構造(ベロー)にてシールする。一方、ローディングエリア(収納室500内)が反応室(反応管110内)と同等の圧力の場合はOリングシールは行わず反応室とバキュームローディングエリア(収納室500内)は通じた空間となる。この場合はバキュームローディングエリアから不活性ガスを供給し圧力勾配をつけてガス遮断を行う。
 また、本開示によれば、成膜中に基板を回転させることにより成膜ガス供給用のノズルから噴射された成膜ガスを基板表面に近い位置と遠い位置を調整しウェハ表層のガス流速を可変させながら供給でき、気相反応しやすい成膜ガスがウェハ表層に届き成膜に寄与するまでの分解状態を調整することが可能となる。
 以上に説明した本開示によれば、複数枚の基板を上下方向に間隔をあけて重ねて基板支持具に保持した状態でこの基支持具を上下方向駆動機構部で駆動して反応管の内部に収容し、反応管内の内部に収容された基板支持具上に保持された基板を反応管の周囲を囲んで配置された加熱部で加熱し、反応管の内部に収容された前記基板支持具に保持された前記基板にガス供給用ノズルの複数の穴から原料ガスを供給して供給した原料ガスを反応管から排気することと基板にガス供給用ノズルの複数の穴から反応ガスを供給して供給した反応ガスを反応管から排気することを繰り返すことにより複数の基板上に薄膜を形成する半導体装置の製造方法において、ガス供給用ノズルの複数の穴から原料ガスを供給することと反応ガスを供給することとを、反応管に収容する基支持具の高さを上下駆動部で制御して、基板支持具に保持された複数枚の基板とガス供給用ノズルの複数の穴との間隔(高さ)を予め設定した条件に応じて調整した状態で行うようにしたものである。
 また、本開示においては、原料ガスと反応ガスとは、基板支持具に保持された複数枚の基板の上下方向の間隔と同じ間隔で配置されたガス供給用ノズルの複数の穴から供給するようにしたものである。
 さらに、本開示においては、ガス供給用ノズルの複数の穴から原料ガスを供給することと反応ガスを供給することとを、反応管に収容する基板支持具の高さを上下方向駆動機構部で制御して、基板支持具に保持された複数枚の基板と複数のガス供給用ノズルとの間隔(高さ)を変化させて繰り返し行うようにしたものである。
<本開示による好ましい態様>
 以下に、本開示による好ましい態様を記載する。
[付記1]
複数の基板を載置する基板支持具と、
基板支持具とは別体に構成され、
前記基板それぞれの上部に配置される複数の仕切板と、
前記複数の仕切板を支持する支持部を有する仕切板支持部と、
基板支持具を昇降する基板支持具昇降機構と、を有し、
基板と仕切板との上下方向の位置関係を変更させる様、基板支持具昇降機構を制御する制御部と、を有する基板処理装置が提供される。
[付記2]
付記1に記載の装置であって、
仕切板支持部を昇降する仕切板支持部昇降機構を有する。
[付記3]
付記2に記載の装置であって、
制御部は、基板支持具昇降機構と、仕切板支持部昇降機構のいずれかを昇降させて仕切板と基板との上下方向の位置関係を変更する。
[付記4]
付記2に記載の装置であって、
前記基板支持具昇降機構の昇降軸と前記仕切板支持部昇降機構の昇降軸は同心状に構成される。
このように、各昇降軸を同心状に構成することで、回転機構の構造をシンプル化できる。
また、基板支持具回転と仕切板支持部の回転の同期化制御が容易となる。なお、基板支持具昇降機構の昇降軸とは、支持部9441を意味する。また、仕切板支持部昇降機構の昇降軸は、支持具9440を意味する。
[付記5]
付記2に記載の装置であって、
前記基板支持具降機構の昇降軸は、前記仕切板支持部昇降機構の昇降軸の中に配置される。 
[付記6]
付記2に記載の装置であって、
前記仕切板支持部昇降機構の昇降軸は、前記基板支持具昇降機構の昇降軸の中に配置される。
[付記7]
付記2に記載の装置であって、
前記基板支持具昇降機構の駆動部は、前記仕切板支持部昇降機構の駆動部も昇降させるよう構成される。
[付記8]
付記2に記載の装置であって、
処理室の下方に搬送室が設けられ、搬送室の下方端部は、
前記基板支持具昇降機構と前記仕切板支持部昇降機構で密閉されている。
[付記9]
付記2に記載の装置であって、
仕切板支持部を支持する蓋体を有し、
基板を処理する処理室の下端は、前記蓋体で閉塞される。
[付記10]
付記2に記載の装置であって、
基板支持具を支持する蓋体を有し、
基板を処理する処理室の下端は、前記蓋体で閉塞される。
[付記11]
付記1に記載の装置であって、
前記仕切板の直径は、前記基板の直径よりも大きく構成される。
[付記12]
付記1に記載の装置であって、
前記仕切板の面積は、前記基板の面積よりも大きく構成される。
[付記13]
付記1に記載の装置であって、
前記制御部は、基板と仕切板の間の距離データに基づいて、
基板支持具昇降機構と仕切板支持部昇降機構のいずれか又は両方を制御する。
ここで、距離データは、実際の距離、所定の距離からn倍、等である。ここで、距離データは、RAM260bや記憶装置260c等に記録される。
[付記14]
付記1に記載の装置であって、
前記制御部は、設定膜厚データに基づいて、
前記基板の上面と前記仕切板との距離を基板支持具昇降機構と仕切板支持部昇降機構のいずれか又は両方を駆動して変更させる。
ここで、設定膜厚データは、膜厚情報、膜厚分布、膜厚の均一性、中心と外周の膜厚差±X%、実際の膜厚データなどの何れかを含み、レシピデータとは別のデータである。これらのデータを、ネットワークを介して入手するようにしてもよい。また、設定膜厚データと距離との関係は、少なくとも膜厚(温度、ガス流量、圧力、供給時間、ガス種、基板の表面積等のデータも含んで良い)とピッチの関係を示すデータテーブルを参照して決定する。又は、所定の関数を用いて算出するようにしてもよい。この場合、設定膜厚データと関係データとを基に、ピッチ(第1昇降機構の位置)を算出する。ここに示す設定膜厚データ、データテーブル、等のデータは、RAM260bや記憶装置260c等に記録される。
[付記15]
付記1に記載の装置であって、
前記制御部は、前記基板の上面と前記仕切板との距離を搬送ポジション(ホーム位置)よりも小さくする様に、
前記基板支持具昇降機構と仕切板支持部昇降機構のいずれか又は両方を制御する。
[付記16]
付記1に記載の装置であって、
前記制御部は、前記基板の上面と前記仕切板との距離を搬送ポジション(ホーム位置)よりも大きくする様に、
前記基板支持具昇降機構と仕切板支持部昇降機構のいずれか又は両方を制御する。
[付記17]
付記1に記載の装置であって、
基板の昇温時のピッチを可変させる。
この場合、ヒータ101により加熱されることによる昇温時は、ピッチ(基板10の裏面と基板10の下側の仕切板203との間隔)を狭くする(図3Cの状態)。このピッチを狭くすることは、少なくとも原料ガス供給前まで行う。
また、原料ガス供給時と反応ガス供給時とで異ならせても良い。
さらに、原料ガス(反応ガス)の供給中にピッチを可変させても良い。
さらにまた、基板支持具と仕切板支持部の動作タイミングは任意に設定可能である。
[付記18]
付記17に記載の装置であって、
基板の昇温時は、基板裏面と仕切り板との距離を処理時よりも近接させる。
[付記19]
付記17に記載の装置であって、
仕切り板に基板支持部の切り欠きを有し、
仕切り板が基板を支持する様にしても良い。
 100,900,1000,1100・・・基板処理装置  101・・・ヒータ  110・・・反応管  120・・・ガス供給用のノズル  121・・・穴  200・・・仕切板支持部  203・・・仕切板  260・・・コントローラ  300・・・基板支持具(ボート)  400・・・上下方向駆動機構部  500・・・収納室。

Claims (18)

  1.  複数の基板を上下方向に間隔をあけて保持する基板支持具と前記基板支持具に保持された前記複数の基板の間に配置された複数の仕切板を支持する仕切板支持部とを有する基板保持具と、
     前記基板支持具に前記複数の基板を保持した状態で前記基板保持具を収容する反応管と、
     前記基板保持具を上下方向に駆動して前記反応管の内部に対して出し入れする第1の駆動部と、
     前記第1の駆動部により前記基板保持具と共に前記上下方向に駆動されて前記基板保持具が前記反応管の内部に挿入された状態で前記基板保持具を回転させるとともに前記基板支持具又は前記仕切板支持部のいずれか一方を前記上下方向に駆動して前記基板支持具に保持された前記複数の基板と前記仕切板支持部に支持された前記複数の仕切板との間隔を変化させる第2の駆動部と、
     前記反応管の周囲に設けられ、前記基板を加熱する加熱部と、
     前記反応管の内部に収容された前記基板保持具の前記基板支持具に保持された前記複数の基板に対してガスを供給する穴が形成されたノズルを備えたガス供給部と、
     前記ガス供給部から供給されたガスを前記反応管から排気する排気部と、
     前記第1の駆動部を駆動して前記基板保持具を前記反応管の内部に挿入した状態で、前記第2の駆動部を駆動して前記複数の基板又は前記複数の仕切板と、前記ノズルに形成された前記ガスを供給する穴との前記上下方向の相対位置を予め設定した条件に応じて変化させながら前記複数の基板に前記ガスを供給するよう前記ガス供給部と前記第2の駆動部とを制御する制御部と、
    を有する基板処理装置。
  2.  前記第2の駆動部は、前記基板支持具と前記仕切板支持部とを回転駆動する回転駆動部と、前記仕切板支持部に対して前記基板支持具を前記上下方向に駆動して前記ノズルの前記ガスを供給する穴に対する高さを予め設定した条件に応じて変化させる基板支持具上下駆動部とを備える請求項1記載の基板処理装置。
  3.  前記第2の駆動部は、前記基板支持具と前記仕切板支持部とを回転駆動する回転駆動部と、前記基板支持具に対して前記仕切板支持部を前記上下方向に駆動して前記仕切板の前記ガスを供給する穴に対する高さを予め設定した条件に応じて変化さる仕切板支持部上下駆動部とを備える請求項1記載の基板処理装置。
  4.  前記第2の駆動部は、前記基板支持具と前記仕切板支持部とを回転駆動する回転駆動部と、前記仕切板支持部に対して前記基板支持具を前記上下方向に駆動する基板支持具上下駆動部と、前記基板支持具に対して前記仕切板支持部を前記上下方向に駆動する仕切板支持部上下駆動部とを備える請求項1記載の基板処理装置。
  5.  前記基板保持具の前記基板支持具と前記仕切板支持部とは真空ベローズで接続されている請求項1乃至4の何れか1項に記載の基板処理装置。
  6.  前記第2の駆動部は、大気中に配置されている請求項5に記載の基板処理装置。
  7.  前記第2の駆動部と、前記第1の駆動部で駆動された前記反応管から下降した状態の前記基板保持具とを収納する収納室を更に備える請求項6記載の基板処理装置。
  8.  前記収納室は、前記第1の駆動部を更に内部に収納する請求項7記載の基板処理装置。
  9.  前記収納室の内部は外部に対して密閉された状態で形成されており、前記第2の駆動部は前記収納室に対して密閉されて内部が大気圧の容器の内部に収納された状態で前記収納室の内部に配置され、前記第2の駆動部は前記収納室の外部に配置された前記第1の駆動部により前記上下方向に駆動される請求項7記載の基板処理装置。
  10.  複数の基板を上下方向に間隔をあけて保持する基板支持具と前記基板支持具に保持された前記複数の基板の間に配置された仕切板を支持する仕切板支持部とを有する基板保持具を前記上下方向に駆動して反応管の内部に対して出し入れする第1の駆動部と、
     前記第1の駆動部により前記基板保持具と共に前記上下方向に駆動されて前記基板保持具が前記反応管の内部に挿入された状態で前記基板保持具を回転させるとともに前記基板保持具と仕切板支持部との相対的な位置を前記上下方向に変位させる第2の駆動部と、
    を備える昇降機構。
  11.  前記第2の駆動部は、前記基板支持具と前記仕切板支持部とを回転駆動する回転駆動部と、前記仕切板支持部に対して前記基板支持具を前記上下方向に駆動する基板支持具上下駆動部とを備える請求項10記載の昇降機構。
  12.  前記第2の駆動部は、前記基板支持具と前記仕切板支持部とを回転駆動する回転駆動部と、前記基板支持具に対して前記仕切板支持部を前記上下方向に駆動する仕切板支持部上下駆動部とを備える請求項10記載の昇降機構。
  13.  前記第2の駆動部は、前記基板支持具と前記仕切板支持部とを回転駆動する回転駆動部と、前記仕切板支持部に対して前記基板支持具を前記上下方向に駆動する基板支持具上下駆動部と、前記基板支持具に対して前記仕切板支持部を前記上下方向に駆動する仕切板支持部上下駆動部とを備える請求項10記載の昇降機構。
  14.  複数の基板を上下方向に間隔をあけて保持する基板支持具と前記基板支持具に載置された前記複数の基板の間に配置された複数の仕切板を支持する仕切板支持部とを有する基板保持具を第1の上下駆動部で駆動して反応管の内部に収容する工程と、
     前記複数の基板を前記反応管の周囲を囲んで配置された加熱部で加熱する工程と、
     ガス供給用のノズルに形成された複数のガス供給穴から前記複数の基板にガスを供給する工程と、
     前記ガスを排気する工程と、
    を有し、
     前記複数の基板に前記ガスを供給する工程において、予め設定した条件に応じて、前記ガス供給用のノズルの前記複数のガス供給穴に対する前記複数の基板の高さ又は前記仕切板の高さを第2の上下駆動部で調整する
    半導体装置の製造方法。
  15.  前記第2の上下駆動部は、前記基板支持具と前記仕切板支持部とを回転駆動する回転駆動部と、前記仕切板支持部に対して前記基板支持具を前記上下方向に駆動する基板支持具上下駆動部とを備え、前記基板支持具上下駆動部で前記複数の基板の前記ガス供給用のノズルの前記複数のガス供給穴に対する高さを予め設定した条件に応じて変化させる請求項14記載の半導体装置の製造方法。
  16.  前記第2の上下駆動部は、前記基板支持具と前記仕切板支持部とを回転駆動する回転駆動部と、前記基板支持具に対して前記仕切板支持部を前記上下方向に駆動する仕切板支持部上下駆動部とを備え、前記仕切板支持部上下駆動部で前記複数の仕切板の前記複数のガス供給穴に対する高さを予め設定した条件に応じて変化させる請求項14記載の半導体装置の製造方法。
  17.  前記第2の上下駆動部は、前記基板支持具と前記仕切板支持部とを回転駆動する回転駆動部と、前記仕切板支持部に対して前記基板支持具を前記上下方向に駆動する基板支持具上下駆動部と、前記基板支持具に対して前記仕切板支持部を前記上下方向に駆動する仕切板支持部上下駆動部とを備え、前記基板支持具上下駆動部で前記複数の基板の前記ガス供給用のノズルの前記複数のガス供給穴に対する高さを予め設定した条件に応じて変化させるとともに、前記仕切板支持部上下駆動部で前記仕切板の前記ガスを供給する穴に対する高さを予め設定した条件に応じて変化させる請求項14記載の半導体装置の製造方法。
  18.  複数の基板を上下方向に間隔をあけて保持する基板支持具と前記基板支持具に保持された前記複数の基板の間に配置された複数の仕切板を支持する仕切板支持部とを有する基板保持具を第1の上下駆動部で駆動して反応管の内部に収容する手順と、
     前記反応管の周囲を囲んで配置された加熱部で前記複数の基板を加熱する手順と、
     ガス供給用のノズルに形成された複数のガス供給穴から前記複数の基板にガスを供給する手順と、
     前記ガスを排気する手順と、
    を有し、
     前記複数の基板に前記ガスを供給する手順は、予め設定した条件に応じて、前記ガス供給用のノズルの前記複数のガス供給穴に対する前記複数の基板の高さ又は前記複数の仕切板の高さを第2の上下駆動部で調整する手順を含む
    コンピュータによって基板処理装置に実行させるプログラム。
PCT/JP2019/038175 2019-09-27 2019-09-27 基板処理装置、昇降機構、半導体装置の製造方法及びプログラム WO2021059492A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/038175 WO2021059492A1 (ja) 2019-09-27 2019-09-27 基板処理装置、昇降機構、半導体装置の製造方法及びプログラム
JP2021548125A JP7256887B2 (ja) 2019-09-27 2019-09-27 基板処理装置、昇降機構、半導体装置の製造方法及びプログラム
KR1020227008050A KR20220042464A (ko) 2019-09-27 2019-09-27 기판 처리 장치, 승강 기구, 반도체 장치의 제조 방법 및 프로그램
CN201980100442.4A CN114402421A (zh) 2019-09-27 2019-09-27 基板处理装置、升降机构、半导体器件的制造方法及程序
TW109129824A TWI792051B (zh) 2019-09-27 2020-09-01 基板處理裝置、昇降機構、半導體裝置之製造方法及程式
US17/691,641 US20220199443A1 (en) 2019-09-27 2022-03-10 Substrate processing apparatus, elevator and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038175 WO2021059492A1 (ja) 2019-09-27 2019-09-27 基板処理装置、昇降機構、半導体装置の製造方法及びプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/691,641 Continuation US20220199443A1 (en) 2019-09-27 2022-03-10 Substrate processing apparatus, elevator and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2021059492A1 true WO2021059492A1 (ja) 2021-04-01

Family

ID=75165206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038175 WO2021059492A1 (ja) 2019-09-27 2019-09-27 基板処理装置、昇降機構、半導体装置の製造方法及びプログラム

Country Status (6)

Country Link
US (1) US20220199443A1 (ja)
JP (1) JP7256887B2 (ja)
KR (1) KR20220042464A (ja)
CN (1) CN114402421A (ja)
TW (1) TWI792051B (ja)
WO (1) WO2021059492A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175849A1 (ja) * 2022-03-17 2023-09-21 株式会社Kokusai Electric 基板処理装置、基板支持具、半導体装置の製造方法、基板処理方法およびプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429252B2 (ja) 2022-03-18 2024-02-07 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法、基板処理方法及びプログラム
CN115976489A (zh) * 2022-12-28 2023-04-18 苏州普锐仕精密光学科技有限公司 一种高效可控的类金刚石碳膜沉积装置
KR20240109498A (ko) * 2023-01-04 2024-07-11 주식회사 원익아이피에스 기판 처리 장치 및 기판 처리 방법
CN118149598B (zh) * 2024-05-10 2024-07-19 安徽旭腾微电子设备有限公司 一种双管真空立式炉用升降炉门装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217762A (ja) * 2006-02-17 2007-08-30 Seiko Epson Corp 処理装置及び処理方法
JP2008258595A (ja) * 2007-03-09 2008-10-23 Hitachi Kokusai Electric Inc 基板処理装置
JP2013030751A (ja) * 2011-06-21 2013-02-07 Tokyo Electron Ltd バッチ式処理装置
JP2017028260A (ja) * 2015-07-20 2017-02-02 ユ−ジーン テクノロジー カンパニー.リミテッド 基板処理装置
JP2017027985A (ja) * 2015-07-16 2017-02-02 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957549B2 (ja) 2002-04-05 2007-08-15 株式会社日立国際電気 基板処埋装置
KR100491161B1 (ko) * 2002-11-26 2005-05-24 주식회사 테라세미콘 반도체 제조장치
KR100549276B1 (ko) * 2003-12-31 2006-02-03 주식회사 테라세미콘 반도체 제조장치의 기판홀더 교환장치
JP2008235865A (ja) * 2007-02-21 2008-10-02 Hitachi Kokusai Electric Inc 基板処理装置、及び基板処理方法
US7900579B2 (en) * 2007-09-26 2011-03-08 Tokyo Electron Limited Heat treatment method wherein the substrate holder is composed of two holder constituting bodies that move relative to each other
JP4924395B2 (ja) * 2007-12-07 2012-04-25 東京エレクトロン株式会社 処理装置及び処理方法
JP5029382B2 (ja) * 2008-01-22 2012-09-19 東京エレクトロン株式会社 処理装置及び処理方法
JP2010073822A (ja) * 2008-09-17 2010-04-02 Tokyo Electron Ltd 成膜装置、成膜方法、プログラム及びコンピュータ可読記憶媒体
JP6368850B2 (ja) * 2015-03-02 2018-08-01 株式会社日立国際電気 クリーニング方法、半導体装置の製造方法、基板処理装置およびプログラム
JP6478330B2 (ja) * 2016-03-18 2019-03-06 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP6566904B2 (ja) * 2016-03-29 2019-08-28 東京エレクトロン株式会社 基板処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217762A (ja) * 2006-02-17 2007-08-30 Seiko Epson Corp 処理装置及び処理方法
JP2008258595A (ja) * 2007-03-09 2008-10-23 Hitachi Kokusai Electric Inc 基板処理装置
JP2013030751A (ja) * 2011-06-21 2013-02-07 Tokyo Electron Ltd バッチ式処理装置
JP2017027985A (ja) * 2015-07-16 2017-02-02 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム
JP2017028260A (ja) * 2015-07-20 2017-02-02 ユ−ジーン テクノロジー カンパニー.リミテッド 基板処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175849A1 (ja) * 2022-03-17 2023-09-21 株式会社Kokusai Electric 基板処理装置、基板支持具、半導体装置の製造方法、基板処理方法およびプログラム

Also Published As

Publication number Publication date
US20220199443A1 (en) 2022-06-23
CN114402421A (zh) 2022-04-26
JP7256887B2 (ja) 2023-04-12
TW202127542A (zh) 2021-07-16
TWI792051B (zh) 2023-02-11
KR20220042464A (ko) 2022-04-05
JPWO2021059492A1 (ja) 2021-04-01

Similar Documents

Publication Publication Date Title
WO2021059492A1 (ja) 基板処理装置、昇降機構、半導体装置の製造方法及びプログラム
US10475641B2 (en) Substrate processing apparatus
US9543220B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, substrate processing method, and recording medium
WO2018003072A1 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
US10546761B2 (en) Substrate processing apparatus
US20190221468A1 (en) Substrate Processing Apparatus
US20140087567A1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP2010073823A (ja) 成膜装置、成膜方法、及びコンピュータ可読記憶媒体
WO2007018139A1 (ja) 半導体装置の製造方法および基板処理装置
WO2021033461A1 (ja) 基板処理装置、半導体装置の製造方法、プログラムおよび記録媒体
KR20200112696A (ko) 열 처리 장치 및 성막 방법
TW202101650A (zh) 半導體裝置的製造方法、基板處理裝置及記錄媒體
WO2021176505A1 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
JP7407521B2 (ja) 成膜方法及び成膜装置
TW202303810A (zh) 成膜設備
WO2022195886A1 (ja) 基板保持具、基板処理装置、半導体装置の製造方法およびプログラム
JP2018148099A (ja) 基板処理装置
WO2022064606A1 (ja) 半導体装置の製造方法及び基板処理装置並びにプログラム
WO2023047552A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP6224263B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
KR20210082079A (ko) 성막 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548125

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227008050

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947362

Country of ref document: EP

Kind code of ref document: A1