WO2024067460A1 - 氢能自行车整车控制系统及控制方法 - Google Patents

氢能自行车整车控制系统及控制方法 Download PDF

Info

Publication number
WO2024067460A1
WO2024067460A1 PCT/CN2023/121003 CN2023121003W WO2024067460A1 WO 2024067460 A1 WO2024067460 A1 WO 2024067460A1 CN 2023121003 W CN2023121003 W CN 2023121003W WO 2024067460 A1 WO2024067460 A1 WO 2024067460A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
fuel cell
management system
lithium battery
control system
Prior art date
Application number
PCT/CN2023/121003
Other languages
English (en)
French (fr)
Inventor
钱程
朱程
孙祥
岑健
Original Assignee
永安行科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永安行科技股份有限公司 filed Critical 永安行科技股份有限公司
Publication of WO2024067460A1 publication Critical patent/WO2024067460A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25257Microcontroller

Definitions

  • the disclosed embodiments relate to the field of hydrogen-powered bicycles, and in particular to a hydrogen-powered bicycle control system and control method.
  • hydrogen-powered bicycles use hydrogen as energy, generate electricity through the electrochemical reaction of fuel cells, have built-in hydrogen storage devices, and adopt hydrogen exchange or hydrogen filling methods. They are a safe and environmentally friendly means of travel. Compared with lithium-ion vehicles, hydrogen-powered bicycles have more hydrogen storage devices and hydrogen fuel cell stacks, so the whole vehicle system has naturally changed, and the workflow of the central control system and hydrogen fuel cell management system has also become different. At the same time, the shared hydrogen-powered bicycles that the applicant has launched still require lithium batteries to provide more energy, which poses a greater challenge to civilian hydrogen-powered vehicles: civilian vehicles generally focus on the appearance and convenience of use. From the perspective of aesthetics, the car needs to be designed to be light and compact; from the perspective of ease of use, the vehicle needs to be lighter and have a longer range, which can reduce the number of charging times and avoid the need for frequent hydrogen charging operations.
  • One purpose of the embodiments of the present disclosure is to provide a hydrogen-powered bicycle that relies on hydrogen energy to provide driving power, so as to solve the technical problem that hydrogen-powered vehicles in the prior art are highly dependent on lithium batteries and are inconvenient for civilian use, so as to facilitate user use.
  • the technical solution to achieve the purpose of the embodiment of the present disclosure is a control method for a hydrogen bicycle, comprising:
  • Set up the fuel cell stack divide the output into two paths, one is connected to the motor controller after passing through the DC-DC boost circuit, and the other is connected to the hydrogen fuel cell management system after passing through the DC-DC step-down circuit.
  • a meter is provided, which is fully powered by a lithium battery pack and is provided above the middle of the handlebar of the hydrogen energy bicycle.
  • the position of the central control system is reset: placing the central control system under the circuit board of the vehicle instrument makes the design more compact on the one hand, and on the other hand, the limited space also poses a challenge to the design of the central control system. Therefore, the central control system only retains the CPU, communication module and positioning module, and the number of received signals and control components is reduced.
  • a hydrogen storage compartment lock and front and rear lights are provided: the hydrogen storage compartment lock and the front and rear lights are controlled by the hydrogen fuel cell management system; thereby the control complexity of the central control system can be further reduced.
  • left and right brake handles are provided: the output ends of the left and right brake handles are connected to the central control system; the brake handles are directly connected to the central control system located at the handlebars of the vehicle, and the brake signals are sent to the CPU of the central control system through communication, the lines are shorter, and the line reliability is higher; this avoids the high risk of failure caused by the direct connection of the left and right brake handles with the motor controller in the prior art, because the motor controller is installed on the seat tube of the vehicle, which is far away from the left and right brake handles and has a long line.
  • an input device is provided: the output end of the input device is connected to the central control system, and the input device includes a button.
  • the button of the input device includes a button for adjusting the gear position and a button for manually turning on and off the light.
  • the lithium battery pack is arranged so that the heating module is not included in the lithium battery pack; and a charging module is arranged at the same time for charging the lithium battery pack.
  • lithium battery packs all contain heating modules, which are costly on the one hand, and also increase the complexity of the product if they are to be well controlled on the other hand; under the conception of the disclosed embodiment, the lithium battery pack no longer supplies power to the fuel cell stack and hydrogen fuel cell management system, which consume a lot of energy after startup, and does not participate in the endurance, but only needs to supply power to the instrument and the central control system, so the required working current is very small.
  • the applicant has found that the low temperature environment has no effect on the operation of the lithium battery, so when the lithium battery pack is arranged, the heating module is no longer configured; correspondingly, the functions of heating control and charging control of the lithium battery in the hydrogen fuel cell management system are also cancelled, so as to further optimize the components, each of which performs its function and optimizes the cost.
  • a lithium battery pack is set up: the lithium battery pack is never connected to the motor controller.
  • the lithium battery pack is directly connected to the motor controller and the hydrogen fuel cell management system.
  • the process of lithium batteries supplying power to the motor controller is not controlled by the hydrogen fuel cell management system, which consumes a lot of power and the lithium battery is prone to power failure.
  • the lithium battery pack no longer supplies power to the motor controller, further saving energy consumption.
  • the disclosed embodiment also provides a hydrogen energy bicycle control system, including:
  • Fuel cell stack the output is divided into two paths;
  • Hydrogen fuel cell management system fuel cell stack One output of the fuel cell stack is connected to the hydrogen fuel cell management system after DC-DC step-down;
  • the motor controller is used to control the motor of the hydrogen bicycle; one output of the fuel cell stack is connected to the motor controller after passing through the DC-DC boost circuit, and is bidirectionally connected to the hydrogen fuel cell management system;
  • the central control system is bidirectionally connected to the hydrogen fuel cell management system
  • the output end of the lithium battery pack is connected to the central control system and is also connected to the hydrogen fuel cell management system after DC-DC step-down.
  • the whole vehicle control system of the hydrogen-powered bicycle also includes an instrument, and the central control system is arranged below the circuit board of the instrument.
  • the embodiment of the present disclosure has the following advantages: the control method of the embodiment of the present disclosure makes the lithium battery pack no longer supply power to the hydrogen fuel cell management system after startup, thereby saving lithium battery power.
  • the lithium battery standby power consumption can be reduced to achieve long standby time, and the purpose of providing a hydrogen-powered bicycle that relies on hydrogen energy for driving power is achieved, which is convenient for users to use.
  • FIG. 1 is a schematic block diagram of a hydrogen energy bicycle control system according to an embodiment of the present disclosure.
  • a control method for a hydrogen energy bicycle comprising:
  • a lithium battery pack when the hydrogen bicycle is started, it supplies power to the central control system, instruments and hydrogen fuel cell management system; after the hydrogen bicycle is started, it only supplies power to the central control system and instruments; the power consumption of the lithium battery pack is greatly reduced, and after starting, it becomes a pure hydrogen-powered vehicle.
  • the hydrogen fuel cell management system does not include the control of charging and heating of the lithium battery pack; therefore, the hardware structure and software control of the hydrogen fuel cell management system are simpler than those of the prior art, which reduces costs, power consumption, and battery life;
  • Set up a fuel cell stack divide the output into two paths, one path is connected to the motor controller after passing through a DC-DC boost circuit, and the other path is connected to the hydrogen fuel cell management system after passing through a DC-DC step-down circuit; the output of the fuel cell circuit is output after being stepped up or stepped down, and the circuit is stable and reliable and easy to implement.
  • a meter is set, which is fully powered by a lithium battery pack and is set above the middle of the handlebar of the hydrogen-powered bicycle;
  • the central control system Placing the central control system under the circuit board of the vehicle instrument makes the design more compact on the one hand, but on the other hand, limited space also poses a challenge to the design of the central control system. Therefore, the central control system only retains the CPU, communication module and positioning module, and the signals received and the control components are reduced; it only receives signals from the left and right brake handles and input devices, and controls the instrument.
  • the hydrogen storage compartment lock and front and rear lights are controlled by the hydrogen fuel cell management system; thereby further reducing the control complexity of the central control system;
  • Set up left and right brake handles connect the output ends of the left and right brake handles to the central control system; directly connect the brake handles to the central control system located at the handlebars of the vehicle, and send the brake signal to the CPU of the central control system through communication.
  • the line is short and the line reliability is high; avoid the high risk of failure caused by the direct connection between the left and right brake handles and the motor controller in the prior art, because the motor controller is installed on the seat tube of the vehicle, which is far away from the left and right brake handles and the line is long;
  • buttons connect the output end of the input device to the central control system, and the input device includes buttons.
  • the buttons of the input device include buttons for adjusting gears and buttons for manually turning on and off the lights.
  • Such a design is based on the fact that the hydrogen-powered bicycle of the embodiment of the present disclosure needs to take into account the needs of civilian use. Users can shift gears according to their preferences. At the same time, it is not necessary to turn on the lights when the vehicle is started. The lights can be turned on according to actual needs, which will also save more energy consumption;
  • lithium battery pack make sure that the lithium battery pack does not contain a heating module.
  • lithium battery packs all contain heating modules, which are expensive on the one hand, and on the other hand, the need to control them well also increases the complexity of the product; under the conception of the disclosed embodiment, the lithium battery pack no longer supplies power to the fuel cell stack and hydrogen fuel cell management system, which consume a lot of energy after startup, and does not participate in the endurance. It only needs to supply power to the instrument and the central control system, so the required working current is very small.
  • the low temperature environment has no effect on the operation of the lithium battery, so when setting up the lithium battery pack, no heating module is configured; correspondingly, the functions of heating control and charging control of the lithium battery in the hydrogen fuel cell management system are also cancelled, so that the components are further optimized, each performs its own duties, and the cost is optimized; in addition, the lithium battery pack is never connected to the motor controller.
  • the lithium battery pack is directly connected to the motor controller and the hydrogen fuel cell management system, and the process of lithium battery powering the motor controller is not controlled by the hydrogen fuel cell management system, which consumes a lot of electricity and the lithium battery is easy to run out of power.
  • the lithium battery pack no longer supplies power to the motor controller, further saving energy consumption;
  • a charging module also called a charging controller
  • the output of the fuel cell stack is directly connected to the charging module, which is used to charge the lithium battery pack with the electricity generated by the fuel cell stack.
  • the hydrogen fuel cell management system can estimate the soc value of the lithium battery based on the power output and output time of the lithium battery. If it is judged that the remaining power of the lithium battery is insufficient, it is judged whether the rated output power of the fuel cell is greater than the real-time power required by the motor controller. If the real-time power required by the motor controller is less than the rated output power of the fuel cell, the fuel cell stack is used to charge the lithium battery pack through circuit design;
  • a torque sensor is installed on the hydrogen bicycle.
  • the power output by the motor controller is regulated by the torque sensor data.
  • the power required for the motor drive is analyzed in time through the torque sensor data, so that the hydrogen fuel cell management system can adjust the operation mode in real time and output the power required by the motor controller.
  • a sensor is installed on the handlebar of the hydrogen bicycle.
  • the data collected by the sensor is transmitted to the hydrogen fuel cell management system.
  • the hydrogen power assist is turned off; when it senses that the user has both hands off the handlebar, the hydrogen power assist is turned off and an alarm is sounded.
  • the sensor can be selected as needed, as long as it can meet the above functional requirements.
  • a pedal is set up, and a sensor is set on the pedal. If the user does not place both feet on the pedal as required, an alarm will be given. If other abnormal situations are detected, an alarm will also be given separately, such as continuous pedaling.
  • the configuration of the control system of this embodiment is to implement the inventive concept of the control method of the embodiment of the present disclosure.
  • a hydrogen energy bicycle whole vehicle control system comprising:
  • the fuel cell stack has two output paths, one for the motor controller and the other for the hydrogen fuel cell management system, which is also controlled by the hydrogen fuel cell management system.
  • Hydrogen fuel cell management system one output of the fuel cell stack is connected to the hydrogen fuel cell management system after DC-DC step-down; in order to better control the fuel cell stack, a temperature sensor is set between the hydrogen fuel cell management system and the fuel cell stack to collect the real-time temperature of the fuel cell stack; in order to stabilize the gas pressure of the fuel cell stack, an exhaust solenoid valve is set between the hydrogen fuel cell management system and the fuel cell stack, and when the gas pressure of the fuel cell stack exceeds the set threshold, the exhaust solenoid valve is automatically opened for exhaust;
  • the motor controller is used to control the motor of the hydrogen bicycle; one output of the fuel cell stack is connected to the motor controller after passing through the DC-DC boost circuit, and is bidirectionally connected to the hydrogen fuel cell management system;
  • the central control system is bidirectionally connected to the hydrogen fuel cell management system
  • the output end of the lithium battery pack is connected to the central control system and is also connected to the hydrogen fuel cell management system after DC-DC step-down.
  • the lithium battery pack does not contain a heating module and is never connected to the motor controller.
  • the hydrogen storage compartment lock and the front and rear lights, the input ends of the hydrogen storage compartment lock and the front and rear lights are connected to the hydrogen fuel cell management system and are controlled by the hydrogen fuel cell management system; the input ends of the two are connected to the output end of the DC-DC boost circuit, and both are powered by the fuel cell stack;
  • Left and right brake handles the output ends of the left and right brake handles are connected to the central control system
  • buttons are buttons for adjusting the gear position and buttons for manually turning on and off the lights, etc.;
  • the charging module is used to charge the lithium battery pack with the electricity generated by the fuel cell stack.
  • the hydrogen fuel cell management system can estimate the soc value of the lithium battery based on the power output and output time of the lithium battery. If it is judged that the remaining power of the lithium battery is insufficient, it is judged whether the rated output power of the fuel cell is greater than the real-time power required by the motor controller. If the real-time power required by the motor controller is less than the rated output power of the fuel cell, the fuel cell stack is used to charge the lithium battery pack through circuit design.
  • a torque sensor is installed on the hydrogen bicycle.
  • the power output by the motor controller is regulated by the torque sensor data.
  • the data from the torque sensor is used to timely analyze the power required for the motor drive, so that the hydrogen fuel cell management system can adjust the operating mode in real time and output the power required by the motor controller.
  • sensors are installed on the handlebars of hydrogen bicycles.
  • the data collected by the sensors are transmitted to the hydrogen fuel cell management system.
  • the hydrogen power assist is turned off; when it senses that the user has both hands off the handlebars, the hydrogen power assist is turned off and an alarm is sounded.
  • the sensors can be selected as needed, as long as they can meet the above functional requirements.
  • FIG. 1 it also includes a hydrogen storage device, an upper heating module, a lower heating module, a pressure transmitter and an air intake solenoid valve, and the configurations of these are the same as those in the prior art and will not be described in detail.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

公开了一种氢能自行车整车控制系统及控制方法。控制方法包括:设置锂电池组:在氢能自行车启动时,为中控系统和氢燃料电池管理系统供电;在氢能自行车启动后,仅为中控系统和仪表供电;设置氢燃料电池管理系统:使氢燃料电池管理系统不包含对锂电池组充电的控制;设置燃料电池电堆:将输出分成两路,一路经过DC-DC升压电路后与电机控制器连接,一路经过DC-DC降压后与氢燃料电池管理系统连接。该控制方法使得锂电池组在启动后不再给氢燃料电池管理系统供电,节约了锂电池电量,系统关机时可以减少锂电待机功耗,实现长时间待机,而且达到了提供一种依靠氢能源提供行驶动力的氢能自行车,方便用户使用的目的。

Description

氢能自行车整车控制系统及控制方法
本公开要求于2022年09月29日提交中国专利局的申请号为202211201443.8、申请名称为“氢能自行车整车控制系统及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开实施例涉及氢能源助力车领域,特别涉及一种氢能自行车整车控制系统及控制方法。
背景技术
现有技术中,氢能助力车以氢气为能源,通过燃料电池电化学反应产生电力为动力,内置储氢装置,采用换氢或充氢方式,是一种安全环保的出行工具。氢能自行车与锂电车相比,多了储氢装置和氢燃料电池电堆,自然整车系统就发生了变化,其中控系统及氢燃料电池管理系统的工作流程也就变得不一样了。同时,申请人已经推出的共享型氢能源助力车上,依然需要锂电池提供较多能量,这对于民用型的氢能源车就提出了较大的挑战:民用车一般看重点在于外观的美观度以及使用的方便度,从美观的角度,车需要设计得轻巧紧凑;从方便使用的角度,需要车辆较轻、而且续航里程长,能减少充电次数,避免需要频繁的进行充氢充电操作。
发明内容
本公开的实施例的一个目的是提供一种依靠氢能源提供行驶动力的氢能自行车,解决现有技术的氢能源车对锂电池依赖较大,不方便民用的技术问题,以便方便用户使用。
实现本公开实施例目的的技术方案是一种氢能自行车的控制方法,包括:
设置锂电池组:在氢能自行车启动时,为中控系统、仪表和氢燃料电池管理系统供电;在氢能自行车启动后,仅为中控系统和仪表供电;
设置氢燃料电池管理系统:使氢燃料电池管理系统不包含对锂电池组充电的控制;
设置燃料电池电堆:将输出分成两路,一路经过DC-DC升压电路后与电机控制器连接,一路经过DC-DC降压后与氢燃料电池管理系统连接。
进一步的,为了方便用户使用,设置仪表,且完全由锂电池组供电,仪表设置在氢能自行车的车龙头中部上方。
进一步的,重新设置中控系统的位置:将中控系统放置于车辆仪表的电路板下方,一方面使得设计更加紧凑,另一方面,空间有限,也对中控系统的设计提出了难题,因此中控系统仅仅保留CPU、通信模块和定位模块,且接受的信号和控制的部件减少。
进一步的,设置储氢器仓锁和前后灯:使储氢器仓锁和前后灯由氢燃料电池管理系统控制;从而可以进一步降低中控系统的控制复杂度。
进一步的,设置左右刹把:将左右刹把的输出端与中控系统连接;将刹把与位于车龙头的中控系统直连,刹车信号通过通信发送给中控系统的CPU,线路较短,线路可靠性较高;避免了现有技术中左右刹把与电机控制器直连,由于电机控制器安装在车辆座管部位,距离左右刹把较远,线路长,从而带来的高故障风险。
进一步的,设置输入装置:将输入装置的输出端与中控系统连接,所述输入装置包括按键。输入装置的按键包括调节挡位的按键以及手动开关灯的按键等。这样的设计是基于本公开实施例的氢能自行车更需要兼顾民用的需求,用户可以根据自己的喜好换挡,同时,并不需要车辆启动就开灯,可以根据实际需求开灯,同时这样也会更加节省能耗。
进一步的,设置锂电池组:使锂电池组中不包含加热模块;同时设置充电模组,用于锂电池组充电。现有技术中,锂电池组都含有加热模块,一方面成本高,另一方面要控制好也增加了产品的复杂度;在本公开实施例构思下,锂电池组不再为启动后的耗能大的燃料电池电堆和氢燃料电池管理系统供电,不参与续航,只需要为仪表、中控系统供电,因此所需的工作电流很小,申请人发现,低温的环境对锂电池的工作已经没有影响,故设置锂电池组时,不再配置加热模块;对应的,氢燃料电池管理系统中关于对锂电池加热控制和充电控制的功能也均取消,进一步使元器件达到最优化,各司其职,成本最优。
进一步的,设置锂电池组:使锂电池组始终不与电机控制器连接。现有技术中,锂电池组与电机控制器以及氢燃料电池管理系统直接连接,锂电池给电机控制器供电过程不受氢燃料电池管理系统控制,消耗电量较多,锂电池容易亏电。在本公开实施例中,锂电池组不再为电机控制器供电,进一步节省能耗。
本公开实施例同时还提供了一种氢能自行车整车控制系统,包括:
燃料电池电堆,输出分成两路;
氢燃料电池管理系统,燃料电池电堆燃料电池电堆的一路输出经过DC-DC降压后与氢燃料电池管理系统连接;
电机控制器,用于控制氢能自行车的电机;燃料电池电堆的一路输出经过DC-DC升压电路后与电机控制器连接,且与氢燃料电池管理系统双向连接;
中控系统,与氢燃料电池管理系统双向连接;
锂电池组,输出端连接中控系统,同时通过经过DC-DC降压后与氢燃料电池管理系统连接。
进一步的,氢能自行车整车控制系统还包括仪表,所述中控系统设置在仪表的电路板下方。
采用了上述技术方案后,本公开实施例具有以下的优点:本公开实施例的控制方法使得锂电池组在启动后不再给氢燃料电池管理系统供电,节约了锂电池电量,系统关机时可以减少锂电待机功耗,实现长时间待机,而且达到了提供一种依靠氢能源提供行驶动力的氢能自行车,方便用户使用的目的。
附图说明
为了使本公开实施例的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本公开实施例作进一步详细的说明,其中
图1是本公开一个实施例的氢能自行车整车控制系统的原理框图。
具体实施方式
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
为使本公开实施例实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例实施例中的附图,对本公开实施例实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开实施例一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开实施例的实施例的详细描述并非旨在限制要求保护的本公开实施例的范围,而是仅仅表示本公开实施例的选定实施例。基于本公开实施例中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开实施例保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开实施例实施例的描述中,需要理解的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,仅是为了便于描述本公开实施例和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开实施例的限制。
在本公开实施例实施例的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开实施例中的具体含义。下面结合附图对本公开实施例作进一步描述。以下实施例仅用于更加清楚地说明本公开实施例的技术方案,而不能以此来限制本公开实施例的保护范围。
(实施例1)
一种氢能自行车的控制方法,包括:
设置锂电池组:在氢能自行车启动时,为中控系统、仪表和氢燃料电池管理系统供电;在氢能自行车启动后,仅为中控系统和仪表供电;将锂电池组的功耗大幅度降低,启动后,即成为纯氢动力车。
设置氢燃料电池管理系统:使氢燃料电池管理系统不包含对锂电池组充电、加热的控制;因此氢燃料电池管理系统硬件结构、软件控制都比现有技术的简单,成本降低、功耗降低、续航时间也就延长;
设置燃料电池电堆:将输出分成两路,一路经过DC-DC升压电路后与电机控制器连接,一路经过DC-DC降压后与氢燃料电池管理系统连接;将燃料电池电路的输出分别经过升压或者降压后进行输出,电路稳定可靠,易于实现。
为了方便用户使用,设置仪表,且完全由锂电池组供电,仪表设置在氢能自行车的车龙头中部上方;
重新设置中控系统的位置:将中控系统放置于车辆仪表的电路板下方,一方面使得设计更加紧凑,另一方面,空间有限,也对中控系统的设计提出了难题,因此中控系统仅仅保留CPU、通信模块和定位模块,且接受的信号和控制的部件减少;仅仅接收左右刹把以及输入装置的信号,并控制仪表。
设置储氢器仓锁和前后灯:使储氢器仓锁和前后灯由氢燃料电池管理系统控制;从而可以进一步降低中控系统的控制复杂度;
设置左右刹把:将左右刹把的输出端与中控系统连接;将刹把与位于车龙头的中控系统直连,刹车信号通过通信发送给中控系统的CPU,线路较短,线路可靠性较高;避免了现有技术中左右刹把与电机控制器直连,由于电机控制器安装在车辆座管部位,距离左右刹把较远,线路长,从而带来的高故障风险;
设置输入装置:将输入装置的输出端与中控系统连接,所述输入装置包括按键。输入装置的按键包括调节挡位的按键以及手动开关灯的按键等。这样的设计是基于本公开实施例的氢能自行车更需要兼顾民用的需求,用户可以根据自己的喜好换挡,同时,并不需要车辆启动就开灯,可以根据实际需求开灯,同时这样也会更加节省能耗;
设置锂电池组:使锂电池组中不包含加热模块。现有技术中,锂电池组都含有加热模块,一方面成本高,另一方面要控制好也增加了产品的复杂度;在本公开实施例构思下,锂电池组不再为启动后的耗能大的燃料电池电堆和氢燃料电池管理系统供电,不参与续航,只需要为仪表、中控系统供电,因此所需的工作电流很小,申请人发现,低温的环境对锂电池的工作已经没有影响,故设置锂电池组时,不再配置加热模块;对应的,氢燃料电池管理系统中关于对锂电池加热控制和充电控制的功能也均取消,进一步使元器件达到最优化,各司其职,成本最优;此外,使锂电池组始终不与电机控制器连接。现有技术中,锂电池组与电机控制器以及氢燃料电池管理系统直接连接,锂电池给电机控制器供电过程不受氢燃料电池管理系统控制,消耗电量较多,锂电池容易亏电。在本公开实施例中,锂电池组不再为电机控制器供电,进一步节省能耗;
设置充电模组,也叫充电控制器;燃料电池电堆的输出直接与充电模组连接,用于将燃料电池电堆产生的电能给锂电池组充电,氢燃料电池管理系统可以根据锂电池输出的功率以及输出时间估算锂电池的soc值。如果判断锂电池剩余电量不足,则判断燃料电池额定输出功率是否大于电机控制器实时所需功率,如果电机控制器实时所需功率小于燃料电池额定输出功率,则通过电路设计,利用燃料电池电堆给锂电池组充电;
在氢能自行车上设置力矩传感器,电机控制器输出的功率由力矩传感器数据来进行调控,通过力矩传感器的数据及时分析电机驱动所需功率,从而氢燃料电池管理系统能够实时调整运行方式,输出电机控制器所需功率;
在氢能自行车车把上设置传感器,传感器采集的数据传输给氢燃料电池管理系统,当感应到用户单手骑车时,关闭氢助力;当感应到用户双手脱把时,关闭氢助力并且报警。传感器可以根据需要选择,只要能满足前述功能需要即可。
设置脚踏板,在脚踏板上设置传感器,如果用户没有将双脚按照规定放在脚踏板上,则报警提示,若检测到其他异常情形,也分别报警,如持续蹬踏等。
(实施例2)
如图1所示,本实施例的控制系统的配置是为了实现本公开实施例的控制方法的发明构思。
一种氢能自行车整车控制系统,包括:
燃料电池电堆,输出分成两路,一路供给电机控制器,一路供给氢燃料电池管理系统,同时也受氢燃料电池管理系统控制;
氢燃料电池管理系统,燃料电池电堆燃料电池电堆的一路输出经过DC-DC降压后与氢燃料电池管理系统连接;为了更好地控制燃料电池电堆,在氢燃料电池管理系统与燃料电池电堆之间设置温度传感器,采集燃料电池电堆的实时温度;为了稳定燃料电池电堆的气压,在氢燃料电池管理系统与燃料电池电堆之间设置排气电磁阀,当燃料电池电堆的气压超过设定的阈值,则自动打开排期电磁阀进行排气;
电机控制器,用于控制氢能自行车的电机;燃料电池电堆的一路输出经过DC-DC升压电路后与电机控制器连接,且与氢燃料电池管理系统双向连接;
中控系统,与氢燃料电池管理系统双向连接;
锂电池组,输出端连接中控系统,同时通过经过DC-DC降压后与氢燃料电池管理系统连接;其中,锂电池组中不包含加热模块,且始终不与电机控制器连接;
仪表,所述中控系统设置在仪表的电路板下方;
储氢器仓锁和前后灯,储氢器仓锁和前后灯的输入端均连接氢燃料电池管理系统,由氢燃料电池管理系统控制;二者输入端连接DC-DC升压电路的输出端,二者均由燃料电池电堆供电;
左右刹把,左右刹把的输出端与中控系统连接;
输入装置,输入装置的输出端与中控系统连接,所述输入装置包括按键。输入装置的按键包括调节挡位的按键以及手动开关灯的按键等;
充电模组,用于将燃料电池电堆产生的电能给锂电池组充电,氢燃料电池管理系统可以根据锂电池输出的功率以及输出时间估算锂电池的soc值。如果判断锂电池剩余电量不足,则判断燃料电池额定输出功率是否大于电机控制器实时所需功率,如果电机控制器实时所需功率小于燃料电池额定输出功率,则通过电路设计,利用燃料电池电堆给锂电池组充电。
此外,为了更好的骑行体验,在氢能自行车上设置力矩传感器,电机控制器输出的功率由力矩传感器数据来进行调控,通过力矩传感器的数据及时分析电机驱动所需功率,从而氢燃料电池管理系统能够实时调整运行方式,输出电机控制器所需功率。
为了更加安全的骑行,在氢能自行车车把上设置传感器,传感器采集的数据传输给氢燃料电池管理系统,当感应到用户单手骑车时,关闭氢助力;当感应到用户双手脱把时,关闭氢助力并且报警。传感器可以根据需要选择,只要能满足前述功能需要即可。
如图1所示,还包括储氢器、上加热模块、下加热模块、压力变送器以及进气电磁阀,这些的设置和现有技术相同,不再赘述。
以上所述的具体实施例,对本公开实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开实施例的具体实施例而已,并不用于限制本公开实施例,凡在本公开实施例的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开实施例的保护范围之内。

Claims (10)

  1. 一种氢能自行车的供电控制方法,其特征在于包括:
    设置锂电池组:在氢能自行车启动时,为中控系统和氢燃料电池管理系统供电;在氢能自行车启动后,仅为中控系统供电;
    设置氢燃料电池管理系统:使氢燃料电池管理系统不包含对锂电池组充电的控制;
    设置燃料电池电堆:将输出分成两路,一路经过DC-DC升压电路后与电机控制器连接,一路经过DC-DC降压后与氢燃料电池管理系统连接。
  2. 根据权利要求1所述的一种氢能自行车的控制方法,其特征在于:
    设置仪表:由锂电池组供电。
  3. 根据权利要求1所述的一种氢能自行车的控制方法,其特征在于:
    设置中控系统:将中控系统放置于车辆仪表的电路板下方。
  4. 根据权利要求3所述的一种氢能自行车的控制方法,其特征在于:
    设置储氢器仓锁和前后灯:使储氢器仓锁和前后灯由氢燃料电池管理系统控制。
  5. 根据权利要求3所述的一种氢能自行车的控制方法,其特征在于:
    设置左右刹把:将左右刹把的输出端与中控系统连接。
  6. 根据权利要求3所述的一种氢能自行车的控制方法,其特征在于:
    设置输入装置:将输入装置的输出端与中控系统连接,所述输入装置包括按键。
  7. 根据权利要求1所述的一种氢能自行车的控制方法,其特征在于:
    设置锂电池组:
    设置充电模组。
  8. 根据权利要求7所述的一种氢能自行车的控制方法,其特征在于:
    设置锂电池组:使锂电池组始终不与电机控制器连接。
  9. 一种氢能自行车整车控制系统,其特征在于包括:
    燃料电池电堆,输出分成两路;
    氢燃料电池管理系统,燃料电池电堆燃料电池电堆的一路输出经过DC-DC降压后与氢燃料电池管理系统连接;
    电机控制器,用于控制氢能自行车的电机;燃料电池电堆的一路输出经过DC-DC升压电路后与电机控制器连接,且与氢燃料电池管理系统双向连接;
    中控系统,与氢燃料电池管理系统双向连接;
    锂电池组,输出端连接中控系统,同时通过经过DC-DC降压后与氢燃料电池管理系统连接。
  10. 根据权利要求9所述的一种氢能自行车整车控制系统,其特征在于,还包括仪表,所述中控系统设置在仪表的电路板下方。
PCT/CN2023/121003 2022-09-29 2023-09-25 氢能自行车整车控制系统及控制方法 WO2024067460A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211201443.8 2022-09-29
CN202211201443.8A CN115421431A (zh) 2022-09-29 2022-09-29 氢能自行车整车控制系统及控制方法

Publications (1)

Publication Number Publication Date
WO2024067460A1 true WO2024067460A1 (zh) 2024-04-04

Family

ID=84205759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121003 WO2024067460A1 (zh) 2022-09-29 2023-09-25 氢能自行车整车控制系统及控制方法

Country Status (2)

Country Link
CN (1) CN115421431A (zh)
WO (1) WO2024067460A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421431A (zh) * 2022-09-29 2022-12-02 永安行科技股份有限公司 氢能自行车整车控制系统及控制方法
CN118061863B (zh) * 2024-04-17 2024-06-25 山东速力动力科技有限公司 一种氢电混合动力功率控制系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018147831A (ja) * 2017-03-08 2018-09-20 トヨタ自動車株式会社 燃料電池システムの始動方法
CN109606141A (zh) * 2019-01-30 2019-04-12 永安行科技股份有限公司 氢能源助力车
CN111452613A (zh) * 2020-04-23 2020-07-28 清华大学天津高端装备研究院洛阳先进制造产业研发基地 一种氢燃料电池拖拉机
CN113511083A (zh) * 2021-05-31 2021-10-19 永安行科技股份有限公司 氢能源助力车
CN113561802A (zh) * 2021-09-22 2021-10-29 北京亿华通科技股份有限公司 一种车载燃料电池的运行辅助装置及其控制方法
CN215285156U (zh) * 2021-06-30 2021-12-24 畔星科技(浙江)有限公司 一种提升电动自行车续航里程的氢燃料空冷电池系统
CN215621830U (zh) * 2021-09-22 2022-01-25 北京亿华通科技股份有限公司 一种用于车载燃料电池的运行控制装置
CN115421431A (zh) * 2022-09-29 2022-12-02 永安行科技股份有限公司 氢能自行车整车控制系统及控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018147831A (ja) * 2017-03-08 2018-09-20 トヨタ自動車株式会社 燃料電池システムの始動方法
CN109606141A (zh) * 2019-01-30 2019-04-12 永安行科技股份有限公司 氢能源助力车
CN111452613A (zh) * 2020-04-23 2020-07-28 清华大学天津高端装备研究院洛阳先进制造产业研发基地 一种氢燃料电池拖拉机
CN113511083A (zh) * 2021-05-31 2021-10-19 永安行科技股份有限公司 氢能源助力车
CN215285156U (zh) * 2021-06-30 2021-12-24 畔星科技(浙江)有限公司 一种提升电动自行车续航里程的氢燃料空冷电池系统
CN113561802A (zh) * 2021-09-22 2021-10-29 北京亿华通科技股份有限公司 一种车载燃料电池的运行辅助装置及其控制方法
CN215621830U (zh) * 2021-09-22 2022-01-25 北京亿华通科技股份有限公司 一种用于车载燃料电池的运行控制装置
CN115421431A (zh) * 2022-09-29 2022-12-02 永安行科技股份有限公司 氢能自行车整车控制系统及控制方法

Also Published As

Publication number Publication date
CN115421431A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024067460A1 (zh) 氢能自行车整车控制系统及控制方法
Hwang et al. Development of fuel-cell-powered electric bicycle
US8855843B2 (en) Starting control device of electric vehicle
JP4461181B2 (ja) 車載用着脱可能燃料電池電源ユニット
JP5090738B2 (ja) 燃料補給装置及び燃料補給方法
JP5959463B2 (ja) 燃料電池車両及び移動体
JP2001095107A (ja) ハイブリッド駆動式移動体の電源制御方法
WO2001015929A1 (en) Hybrid drive system
CN210733896U (zh) 电动自行车用氢燃料电池动力系统
CN109795374A (zh) 一种混合动力汽车中氢燃料电池的控制方法及系统
CN111993910B (zh) 氢燃料电池助力单车控制系统及其控制方法
CN110696682A (zh) 电动自行车用氢燃料电池动力控制方法、装置及系统
JPH08119180A (ja) 電動自転車
KR20200116575A (ko) 전기운송수단용 배터리 충전 및 교환장치
US20060292405A1 (en) Fuel cell system and method of driving the same
CN112537227A (zh) 一种氢燃料商用车电控系统及方法
TW531504B (en) Power source management system for an electromotive vehicle
JP2001069614A (ja) ハイブリッド駆動式移動体
CN106064560A (zh) 燃料电池混合动力系统及其控制方法
CN113511083A (zh) 氢能源助力车
JP2014192047A (ja) 燃料電池車両の制御方法
JP2001095110A (ja) ハイブリッド駆動式移動体の電力供給方法
CN103241319A (zh) 氢燃料电池电动自行车一体化结构
CN214450327U (zh) 一种换瓶式氢电双动力助力车
CN218122505U (zh) 氢能自行车整车控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870691

Country of ref document: EP

Kind code of ref document: A1