CN109606141A - 氢能源助力车 - Google Patents

氢能源助力车 Download PDF

Info

Publication number
CN109606141A
CN109606141A CN201910094443.4A CN201910094443A CN109606141A CN 109606141 A CN109606141 A CN 109606141A CN 201910094443 A CN201910094443 A CN 201910094443A CN 109606141 A CN109606141 A CN 109606141A
Authority
CN
China
Prior art keywords
hydrogen
fuel cell
module
hydrogen fuel
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910094443.4A
Other languages
English (en)
Inventor
陶安平
殷振亚
周婵鸣
江冰
苗红霞
李威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yongan Polytron Technologies Inc
Youon Technology Co Ltd
Original Assignee
Yongan Polytron Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yongan Polytron Technologies Inc filed Critical Yongan Polytron Technologies Inc
Priority to CN201910094443.4A priority Critical patent/CN109606141A/zh
Publication of CN109606141A publication Critical patent/CN109606141A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62HCYCLE STANDS; SUPPORTS OR HOLDERS FOR PARKING OR STORING CYCLES; APPLIANCES PREVENTING OR INDICATING UNAUTHORIZED USE OR THEFT OF CYCLES; LOCKS INTEGRAL WITH CYCLES; DEVICES FOR LEARNING TO RIDE CYCLES
    • B62H5/00Appliances preventing or indicating unauthorised use or theft of cycles; Locks integral with cycles
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/24Reminder alarms, e.g. anti-loss alarms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种氢能源助力车,包括助力车本体、氢燃料电池和控制系统;所述氢燃料电池固定在助力车本体的车架的中部;所述氢燃料电池包括氢燃料电池盒体和设置在氢燃料电池盒体内的储氢罐、可充电电池、氢燃料电池反应堆和反应堆控制器;所述储氢罐与氢燃料电池反应堆的氢气进气管路连通;所述反应堆控制器控制氢燃料电池反应堆工作产生电能;所述氢燃料电池反应堆产生电能为控制系统供电,以及为可充电电池充电;所述可充电电池为控制系统、氢燃料电池反应堆和反应堆控制器提供启动电压;所述控制系统控制助力车本体及氢燃料电池工作。本发明氢燃料电池作为助力车的电源,缩短了充电时长,安全环保,能够有效实现绿色出行。

Description

氢能源助力车
技术领域
本发明涉及交通工具领域,特别涉及一种氢能源助力车。
背景技术
随着社会的发展,人类活动日趋频繁,活动范围也在不断扩大。对于跨城市的长途出行一般选择长途汽车、火车或者飞机;对于城市内的出行,一般选择驾车、出租车、公交和地铁。然而如今城市机动车数量的猛增,停车问题也成为了一个难题,因此驾车的人群中能够有越来越多的人选择出租车、公交和地铁等城市公共交通工具出行。由于公交和地铁受到线路的制约,只能在一定范围内满足人们的出行需要,为了在进一步解决出行问题,市场上出现了共享单车。共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是一种分时租赁模式。共享单车是一种新型环保共享经济。共享单车作为一种便利又普遍的交通工具,解决人们一到三公里需求已得到市场的极大认可,但是单车本身依然存在其局限性,例如逆风、上坡时会很费力,长时间骑行会非常疲劳,而且无法很好的解决更长距离的出行需求,因此,需要助力车来更好地满足人们的需要。
目前现有的助力车大多采用充电电池供电,充电时间长,行驶里程短。氢燃料电池是一种使用氢气作为燃料,通过与氧气的化学反应而产生电能的装置,氢能源作为最洁净的新型能源,电转化效率高,不需长时间地充电,其副产物只有水,因此氢能源助力车成为了一种理想的绿色出行交通工具。
发明内容
本发明的目的是提供一种能够实现绿色出行的氢能源助力车,减少环境污染,缩短充电时长。
实现本发明目的的技术方案是:氢能源助力车,包括助力车本体、氢燃料电池和控制系统;所述氢燃料电池固定在助力车本体的车架的中部;所述氢燃料电池包括氢燃料电池盒体和设置在氢燃料电池盒体内的储氢罐、可充电电池、氢燃料电池反应堆和反应堆控制器;所述储氢罐与氢燃料电池反应堆的氢气进气管路连通;所述反应堆控制器控制氢燃料电池反应堆工作产生电能;所述氢燃料电池反应堆产生电能为控制系统供电,以及为可充电电池充电;所述可充电电池为控制系统、氢燃料电池反应堆和反应堆控制器提供启动电压;所述控制系统控制助力车本体及氢燃料电池工作。
所述氢燃料电池盒体的氢燃料电池盒体包括储氢罐置物腔和反应堆置物腔;所述储氢罐设置在储氢罐置物腔内;所述可充电电池、氢燃料电池反应堆和反应堆控制器均设置在反应堆置物腔内。
所述氢燃料电池盒体的储氢罐置物腔与反应堆置物腔之间通过通孔连通;所述氢燃料电池反应堆的氢气进气管路和空气进气管路均从通孔中穿过。
所述氢燃料电池盒体的前侧设有喇叭状进气口;所述氢燃料电池反应堆的空气进气管路与喇叭状进气口连通。
所述氢燃料电池盒体上的喇叭状进气口的口部由均匀密布的多个进气孔构成。
所述氢燃料电池盒体的储氢罐置物腔内设有环绕储氢罐设置的换热管道;所述换热管道的两端穿过通孔并且分别与氢燃料电池反应堆的冷却管道的两端连通。
所述氢燃料电池反应堆上设有与氢燃料电池反应堆的冷却管道的两端固定连接的接头;所述换热管道的两端与接头连接。
所述氢燃料电池盒体的前侧面上设有能与氢能源助力车的车架相配合的凹槽。
所述控制系统包括中控系统、电池能量管理系统、电动车控制器、左右刹车把、助力传感器和电机;所述中控系统与电动车控制器双向信号电连接;所述电池能量管理系统与电动车控制器双向信号电连接;所述氢燃料电池盒通过电池能量管理系统对电动车控制器供电,在通过电动车控制器对中控系统供电;所述电动车控制器采集助力传感器的数据,左右刹车把控制对电机的断电。
所述中控系统包括微控制单元、GPS模块、GPRS模块、GPRS天线、锁驱动模块、锁电机和蓝牙天线;所述蓝牙天线与微控制单元双向信号电连接;所述GPS模块与微控制单元信号电连接;所述GPRS模块与微控制单元双向信号电连接;所述GPRS天线与GPRS 模块双向信号电连接;所述微控制单元与锁驱动模块信号电连接,锁驱动模块与锁电机信号电连接。
所述中控系统还包括RFID读写模块和逻辑判断模块;所述锁电机有2个,一个用锁车,另一个用于锁氢燃料电池盒;所述RFID读写模块与逻辑判断模块信号电连接,逻辑判断模块与微控制单元信号电连接;所述RFID读写模块读取RFID卡的信息,并将数据发送至逻辑判断模块,逻辑判断模块将控制信号发送给微控制单元,再由微控制单元将控制信号发送至锁驱动模块,锁驱动模块控制锁车的锁电机动作。
所述电池能量管理系统包括电源管理系统和电池控制系统;所述中控系统包括GPRS 模块;所述电池控制系统包括主控模块、电堆气压传感器、温度传感器、进气电磁阀、出气电磁阀和冷却装置;所述电堆气压传感器、温度传感器、进气电磁阀和出气电磁阀均设置在氢燃料电池反应堆上;所述电堆气压传感器用于检测氢燃料电池反应堆的气体流量,由主控模块对电堆气压传感器的数据进行实时采集,并根据采集的氢燃料电池反应堆的气体流量数据,实时控制进气电磁阀和出气电磁阀做出相应动作,实现对气路的自动控制;所述温度传感器用于检测氢燃料电池反应堆的温度,由主控模块根据实时采集的温度传感器的数据,通过冷却装置控制氢燃料电池反应堆内部处于最佳反应环境温度。
所述电池控制系统还包括储氢罐气压传感器;所述储氢罐气压传感器设置在氢燃料电池的储氢罐上,用于检测储氢罐的氢气量;所述主控模块实时采集储氢罐气压传感器的数据,当储氢罐的氢气量的气压低于下限值时,通过GPRS模块将欠压报警信息发送至后台服务器,提醒运维人员更换储氢罐。
所述主控模块还包括显示模块;所述显示模块与主控模块电连接;所述主控模块实时采集储氢罐气压传感器的数据,当储氢罐的氢气量的气压低于下限值时,通过显示模块显示欠压报警信息;当氢燃料电池反应堆温度高于设定值时,由主控模块通过显示模块显示超温报警信息。
所述电源管理系统包括充电模块和电源稳压模块;所述氢燃料电池包括可充电电池;所述可充电电池采用锂电池;所述电源稳压模块与充电模块电连接,充电模块与可充电电池电连接,电源稳压模块用于对充电模块提供充电电压对可充电电池充电。
所述电源管理系统还包括电源切换模块;所述氢燃料电池与电源稳压模块电连接,电源稳压模块与电源切换模块电连接;所述可充电电池与电源切换模块电连接;所述电源切换模块用于电池控制系统供电电源的切换;当电池控制系统由停止状态进入运行状态时,电源切换模块切换至可充电电池对电池控制系统供电;当氢燃料电池工作稳定时,电源切换模块切换至氢燃料电池对电池控制系统供电。
采用了上述技术方案,本发明具有以下的有益效果:(1)本发明氢燃料电池作为助力车的电源,缩短了充电时长,安全环保,能够有效实现绿色出行。
(2)本发明的氢燃料电池的氢燃料电池反应堆的氢气进气管路和空气进气管路均从储氢罐置物腔与反应堆置物腔之间的通孔中穿过,使管路布置更加方便。
(3)本发明的氢燃料电池盒体的前侧设有喇叭状进气口,氢燃料电池反应堆的空气进气管路与喇叭状进气口连通,由于喇叭状进气口朝向行进方向,因此能够增加空气吸入效率,从而能够为氢燃料电池反应堆提供充足的空气。
(4)本发明的氢燃料电池盒体的喇叭状进气口的口部由均匀密布的多个进气孔构成,能够避免杂物进入喇叭状进气口,防止喇叭状进气口堵塞。
(5)本发明的氢燃料电池盒体的储氢罐置物腔内设有环绕储氢罐设置的换热管道,氢燃料电池反应堆在反应过程中会产生热量进入换热管道后能够为储氢罐加热,促使储氢罐内的氢气充分散发。
(6)本发明的氢燃料电池的换热管道的两端与接头连接,方便了换热管道与氢燃料电池反应堆的冷却管道的连接。
(7)本发明的氢燃料电池盒体的前侧面上设有能与氢能源助力车的车架相配合的凹槽,便于本发明在助力车本体的车架上的定位,同时避免晃动,使安装更加稳定。
(8)本发明的的中控系统通过GPS模块感知位置信息,并采用与GPRS定位相结合的方式进行定位,在通过中控系统的GPRS模块发至后台服务器,从而运维人员能够较准确的定位氢能源助力车,方便管理和找车。
(9)本发明的中控系统通过读写模块感知RFID卡,从而发出控制信号给电子锁自动进行上锁,确保氢能源助力车归还到指定地点,提高城市环境整洁。
(10)用户通过手机或其他移动终端的蓝牙技术控制氢能源助力车,连接控制方便,使用安全可靠。
(11)本发明的中控系统的微控制单元是其它模块进行交互的核心单元,是中控系统的心脏,任何处理的数据都要经过微控制单元。微控制单元调用前端RFID卡、GPS 模块、BMS控制器的信息数据,然后回复响应的命令;同时,微控制单元也接受管理员通过后台服务器发送的命令,做出相应的反应。
(12)本发明的中控系统的GPRS模块是中控系统与后台服务器以及BMS控制器的数据通讯的接口。在使用GPRS模块时,被发送数据已经封装在分组中,只有在发送时才需要分配占用频带容量,可完成高效通过率和即时连接。GPRS是点到点的分组数据转移,同时不占用频带资源,因此是一种低成本的高效无线分组方式,对于突发性、非持续性、同时又是频繁而少量数据的情况非常适合,对于偶尔数据量较大的传输也可轻松应对。
(13)本发明使用时,用户通过手机或其他移动终端查询氢能源助力车的氢燃料电池的运行状态,从而方便用户了解氢能源助力车是否能正常运行。
(14)本发明使用时,当用户手机通过蓝牙天线与微控制单元进行双向信号电连接后,通过用户手机建立与后台服务器的通信。由于现在用户手机基本上都是4G网络,后台服务器通过用户手机与中控系统通信的速率远远高于GPRS模块的传输速率,因此能更加及时的获取氢能源助力车的中控系统的相关数据并进行相应的控制,提高用户的使用靠性。
(15)本发明的电池能量管理系统结构简单,由主控模块对电堆气压传感器的数据进行实时采集,并根据采集的氢燃料电池反应堆的气体流量数据,实时控制进气电磁阀和出气电磁阀做出相应动作,实现对气路的自动控制,使氢燃料电池安全、稳定的应用于供电系统中。
(16)本发明的电池能量管理系统的电源管理系统设有充电模块,且可充电电池采用锂电池,可以通过氢燃料电池对可充电电池充电,使用方便。
(17)本发明的电池能量管理系统的电源管理系统设有电源切换模块,当氢燃料电池工作稳定时,通过电源切换模块实现氢燃料电池对控制系统供电,大大提高了可充电电池的使用次数,保证开机的可靠性。
(18)本发明的电池能量管理系统的电源管理系统设有电源稳压模块,确保输出电压的稳定,有利于延长设备的使用寿命和供电系统的工作稳定性。
(19)本发明的电池能量管理系统的控制系统设有储氢罐气压传感器,用于检测储氢罐的氢气量。由主控模块实时采集储氢罐气压传感器的数据,当储氢罐的氢气量的气压低于下限值时,通过显示模块显示欠压报警信息,提醒使用者储氢罐欠压,不能使用。通过GPRS模块将欠压报警信息发送至后台服务器,提醒运维人员更换储氢罐。
(20)本发明的电池能量管理系统的控制系统设有电堆气压传感器、进气电磁阀和出气电磁阀。由主控模块对电堆气压传感器的数据进行实时采集,并根据采集的氢燃料电池反应堆气体流量数据,实时控制进气电磁阀和出气电磁阀做出相应动作,实现对气路的自动控制。当氢燃料电池反应堆气压高于上限值时,氢燃料电池的供电系统停止工作,同时进气电磁阀关闭,排气电磁阀打开,对供电系统进行保护。
(21)本发明的电池能量管理系统的电池控制系统设有温度传感器,由主控模块根据氢燃料电池反应堆温度,实时调节风扇转速,控制氢燃料电池反应堆内部处于最佳反应环境温度,提高氢燃料电池反应堆的转换效率,同时延长氢燃料电池反应堆的使用寿命。当氢燃料电池反应堆温度高于设定值时,通过显示模块显示超温报警信息,提醒使用者氢燃料电池的供电系统因超温停止工作,当氢燃料电池反应堆温度低于设定值时,氢能源电池供电系统重新启动。
附图说明
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为本发明的氢燃料电池盒体的结构示意图。
图2为本发明的氢燃料电池的氢燃料电池反应堆的空气进气管路的设置示意图。
图3为本发明的氢燃料电池的换热管道的设置示意图。
图4为本发明的控制系统的结构框图。
图5为本发明的中控系统的结构框图。
图6为本发明的电池能量管理系统的结构框图。
附图中的标号为:
氢燃料电池1、氢燃料电池盒体1-1、储氢罐置物腔1-1-1、反应堆置物腔1-1-2、通孔1-1-3、喇叭状进气口1-1-4、进气孔1-1-5、凹槽1-1-6、换热管道1-2、可充电电池1-3、氢燃料电池反应堆1-4、反应堆控制器1-5;
控制系统2;
中控系统2-1、微控制单元2-1-1、GPS模块2-1-2、GPRS模块2-1-3、GPRS天线 2-1-4、锁驱动模块2-1-5、锁电机2-1-6、蓝牙天线2-1-7、RFID读写模块2-1-8、逻辑判断模块2-1-9;
电池能量管理系统2-2;
电源管理系统2-2-1、充电模块2-2-1-1、电源稳压模块2-2-1-2、电源切换模块 2-2-1-3;
电池控制系统2-2-2、主控模块2-2-2-1、电堆气压传感器2-2-2-2、温度传感器 2-2-2-3、进气电磁阀2-2-2-4、出气电磁阀2-2-2-5、冷却装置2-2-2-6、储氢罐气压传感器2-2-2-7和显示模块2-2-2-8;
电动车控制器2-3、左右刹车把2-4、助力传感器2-5、电机2-6;
RFID卡3;
后台服务器4。
具体实施方式
(实施例1)
见图1至图6,本实施例的氢能源助力车,包括助力车本体、氢燃料电池盒1和控制系统2。
氢燃料电池1固定在助力车本体的车架的中部。氢燃料电池1包括氢燃料电池盒体1-1和设置在氢燃料电池盒体1-1内的储氢罐、可充电电池1-3、氢燃料电池反应堆1-4 和反应堆控制器1-5。储氢罐与氢燃料电池反应堆1-4的氢气进气管路连通。反应堆控制器1-5控制氢燃料电池反应堆1-4工作产生电能。氢燃料电池反应堆1-4产生电能为控制系统2供电,以及为可充电电池1-3充电。可充电电池1-3为控制系统2、氢燃料电池反应堆1-4和反应堆控制器1-5提供启动电压。控制系统2控制助力车本体及氢燃料电池1工作。
氢燃料电池盒体1-1的氢燃料电池盒体1-1包括储氢罐置物腔1-1-1和反应堆置物腔1-1-2。储氢罐设置在储氢罐置物腔1-1-1内。可充电电池1-3、氢燃料电池反应堆1-4和反应堆控制器1-5均设置在反应堆置物腔1-1-2内。氢燃料电池盒体1-1的储氢罐置物腔1-1-1与反应堆置物腔1-1-2之间通过通孔1-1-3连通。氢燃料电池反应堆1-4 的氢气进气管路和空气进气管路均从通孔1-1-3中穿过。氢燃料电池盒体1-1的前侧设有喇叭状进气口1-1-4。氢燃料电池反应堆1-4的空气进气管路与喇叭状进气口1-1-4 连通。氢燃料电池盒体1-1上的喇叭状进气口1-1-4的口部由均匀密布的多个进气孔 1-1-5构成。氢燃料电池盒体1-1的前侧面上设有能与氢能源助力车的车架相配合的凹槽1-1-6。
氢燃料电池盒体1-1的储氢罐置物腔1-1-1内设有环绕储氢罐设置的换热管道1-2。氢燃料电池反应堆1-4上设有与氢燃料电池反应堆1-4的冷却管道的两端固定连接的接头1-4-1。换热管道1-2的两端与接头1-4-1连接,从而分别与氢燃料电池反应堆1-4 的冷却管道的两端连通。
换热管道1-2内预先装入水,氢燃料电池反应堆1-4在反应过程中会产生热量,氢燃料电池反应堆1-4的冷却管道起到冷却作用,而后换热管道1-2内的水温上升,经过储氢罐,能够为储氢罐加热,促使储氢罐内的氢气充分散发。
控制系统2包括中控系统2-1、电池能量管理系统2-2、电动车控制器2-3、左右刹车把2-4、助力传感器2-5和电机2-6。中控系统2-1与电动车控制器2-3双向信号电连接。电池能量管理系统2-2与电动车控制器2-3双向信号电连接。氢燃料电池盒1通过电池能量管理系统2-2对电动车控制器2-3供电,在通过电动车控制器2-3对中控系统2-1供电。电动车控制器2-3采集助力传感器2-5的数据,左右刹车把2-4控制对电机2-6的断电。
中控系统2-1包括微控制单元2-1-1、GPS模块2-1-2、GPRS模块2-1-3、GPRS天线2-1-4、锁驱动模块2-1-5、锁电机2-1-6、蓝牙天线2-1-7、RFID读写模块2-1-8 和逻辑判断模块2-1-9。微控制单元2-1-1简称MCU,微控制单元1-1可以选择但不限于市面上常用的stm32系列单片机。蓝牙天线2-1-7与微控制单元2-1-1双向信号电连接。GPS模块2-1-2与微控制单元2-1-1信号电连接。GPRS模块2-1-3与微控制单元2-1-1 双向信号电连接。GPRS天线2-1-4与GPRS模块2-1-3双向信号电连接。微控制单元2-1-1 与锁驱动模块信号电连接,锁驱动模块与锁电机2-1-6信号电连接。锁电机2-1-6有2 个,一个用锁车,另一个用于锁氢燃料电池盒1。
GPS模块2-1-2通过接收卫星信号而获得经度、纬度、速度、方向、GPS时间等信息,微控制单元2-1-1读取GPS模块2-1-2的数据,通过GPRS模块2-1-3和GPRS天线 2-1-4把读取的GPS模块1-2的数据发给后台服务器。
GPRS模块2-1-3是中控系统与后台服务器4的数据通讯的接口。中控系统1的数据通过GPRS的方式发送给后台服务器4。同样,后台服务器4下发的指令也要通过 Internet传输到中控系统2-1的GPRS模块2-1-3上。GPRS模块2-1-3把接收到的数据放到微控制单元2-1-1来解析运算,然后中控系统2-1的微控制单元2-1-1把运算结果通过GPRS模块2-1-3发送给后台服务器4。
RFID读写模块2-1-8与逻辑判断模块2-1-9信号电连接,逻辑判断模块2-1-9与微控制单元2-1-1信号电连接。RFID读写模块2-1-8读取RFID卡3的信息,并将数据发送至逻辑判断模块2-1-9,逻辑判断模块2-1-9将控制信号发送给微控制单元2-1-1,再由微控制单元2-1-1将控制信号发送至锁驱动模块,锁驱动模块控制锁车的锁电机 2-1-6做出相应的上锁或解锁动作。
电池能量管理系统2-2包括电源管理系统2-2-1和电池控制系统2-2-2。电池控制系统2-2-2包括主控模块2-2-2-1、电堆气压传感器2-2-2-2、温度传感器2-2-2-3、进气电磁阀2-2-2-4、出气电磁阀2-2-2-5、冷却装置2-2-2-6、储氢罐气压传感器2-2-2-7 和显示模块2-2-2-8。主控模块2-2-2-1采用微控制器,微控制器可以选择但不限于市面上常用的stm32系列单片机。中控系统2-1的GPRS模块2-1-3与主控模块2-2-2-1 双向信号电连接。电堆气压传感器2-2-2-2、温度传感器2-2-2-3、进气电磁阀2-2-2-4 和出气电磁阀2-2-2-5均设置在氢燃料电池反应堆1-4上。电堆气压传感器2-2-2-2用于检测氢燃料电池反应堆1-4的气体流量,由主控模块2-2-2-1对电堆气压传感器 2-2-2-2的数据进行实时采集,并根据采集的氢燃料电池反应堆1-4的气体流量数据,实时控制进气电磁阀2-2-2-4和出气电磁阀2-2-2-5做出相应动作,实现对气路的自动控制。温度传感器2-2-2-3用于检测氢燃料电池反应堆1-4的温度,由主控模块2-2-2-1 根据实时采集的温度传感器2-2-2-3的数据,通过冷却装置2-2-2-6控制氢燃料电池反应堆1-4内部处于最佳反应环境温度。
储氢罐气压传感器2-2-2-7设置在氢燃料电池1的储氢罐上,用于检测储氢罐的氢气量。主控模块2-2-2-1实时采集储氢罐气压传感器2-2-2-7的数据,当储氢罐的氢气量的气压低于下限值时,通过GPRS模块2-1-3将欠压报警信息发送至后台服务器4,提醒运维人员更换储氢罐。显示模块2-2-2-8与主控模块2-2-2-1电连接。主控模块 2-2-2-1实时采集储氢罐气压传感器2-2-2-7的数据,当储氢罐的氢气量的气压低于下限值时,通过显示模块2-2-2-8显示欠压报警信息。当氢燃料电池反应堆1-4温度高于设定值时,由主控模块2-2-2-1通过显示模块2-2-2-8显示超温报警信息。
电源管理系统2-2-1包括充电模块2-2-1-1、电源稳压模块2-2-1-2和电源切换模块2-2-1-3。氢燃料电池1包括可充电电池1-3。可充电电池1-3电池采用锂电池。电源稳压模块2-2-1-2与充电模块2-2-1-1电连接,充电模块2-2-1-1与可充电电池1-3 电连接,电源稳压模块2-2-1-2用于对充电模块2-2-1-1提供充电电压对可充电电池1-3 充电。
氢燃料电池1与电源稳压模块2-2-1-2电连接,电源稳压模块2-2-1-2与电源切换模块2-2-1-3电连接。可充电电池1-3与电源切换模块2-2-1-3电连接。电源切换模块 2-2-1-3用于电池控制系统2-2-2供电电源的切换。当电池控制系统2-2-2由停止状态进入运行状态时,电源切换模块2-2-1-3切换至可充电电池1-3对电池控制系统2-2-2 供电。当氢燃料电池1工作稳定时,电源切换模块2-2-1-3切换至氢燃料电池1对电池控制系统2-2-2供电。
控制系统的控制方法具有如下步骤:
步骤一:启动时,由可充电电池1-3通过电源切换模块2-2-1-3对控制系统进行供电。控制系统开始工作。
步骤二:电池控制系统2-2-2的主控模块2-2-2-1启动并执行初始化操作。初始化完成后,执行开机操作,此时氢燃料电池1运行在启动阶段。开机操作完成后,氢燃料电池1运行在发电阶段。
步骤三:主控模块2-2-2-1通过储氢罐气压传感器2-2-2-7,每300ms采集一次氢燃料电池1的储氢罐的气压,当储氢罐的氢气量的气压低于下限值时,通过显示模块 2-2-2-8显示欠压报警信息,提醒使用者储氢罐欠压,不能使用。同时,通过中控系统 2-1的GPRS模块1-2将欠压报警信息发送至后台服务器4,提醒运维人员更换储氢罐。
步骤四:主控模块2-2-2-1通过电堆气压传感器2-2-2-2,每300ms采集一次氢燃料电池1的电堆气压,并根据采集的电堆气体流量数据,实时控制进气电磁阀2-2-2-4 和出气电磁阀2-2-2-5做出相应动作,实现对气路的自动控制。当电堆气压高于上限值时,氢燃料电池1的供电系统停止工作,同时进气电磁阀关闭,排气电磁阀打开,对供电系统进行保护。
步骤五:主控模块2-2-2-1通过温度传感器2-2-2-3,每300ms采集一次氢燃料电池1的温度,由主控模块2-2-2-1根据电堆温度,实时调节风扇转速,控制电堆内部处于最佳反应环境温度,提高电堆的转换效率,同时延长电堆的使用寿命。当电堆温度高于设定值时,通过显示模块2-2-2-8显示超温报警信息,提醒使用者氢燃料电池1的供电系统因超温停止工作,当电堆温度低于设定值时,供电系统重新启动。
步骤六:通过上述第三步至第五步使氢燃料电池1的电堆进入并维持在稳定状态,氢燃料电池1进入发电阶段,由氢燃料电池1通过电源切换模块2-2-1-3对控制系统进行供电,并通过充电模块2-2-1-1对可充电电池1-3进行充电。
步骤七:当氢燃料电池能量管理系统停止工作时,由可充电电池1-3通过电源切换模块2-2-1-3对控制系统进行供电,等待关机操作完成后,氢燃料电池停止工作。
步骤八:管理员通过后台服务器4发送定位命令给中控系统2-1,定时上报GPS数据。微控制单元2-1-1请求GPS模块2-1-2搜索卫星,微控制单元2-1-1启动一个定时器,每隔一定时间,GPS模块2-1-2将获得的经纬度信息上报给微控制单元2-1-1,经过运算处理后,微控制单元2-1-1把经纬度信息通过GPRS模块2-1-3上报给后台服务器4,后台服务器4把经纬度信息转换为位置文字描述。通过GPRS天线2-1-4,后台服务器4还可以把位置描述发给氢能源助力车中控系统的GPRS模块2-1-3。
步骤九:当用户需要使用公共氢能源助力车时,用手机或其他移动终端的蓝牙技术通过蓝牙天线1-9与微控制单元2-1-1进行双向信号电连接,对氢能源助力车进行控制,将氢能源助力车解锁后可以使用该车。
步骤十:通过后台服务器4查询氢能源助力车的氢燃料电池的储氢罐的氢气量。后台服务器4下发指令,通过中控系统2-1与电池能量管理系统2-2通信。GPRS模块2-1-3 接到后台服务器4的指令后由中控系统对指令进行解析,然后通过GPRS模块2-1-3直接到电池能量管理系统2-2读取氢燃料电池当前状态,将采集的储氢罐的氢气量,通过 GPRS模块2-1-3发送至后台服务器4,从而方便后台运维人员判断该氢能源助力车是否需要更换储氢罐。
步骤十一:通过后台服务器4查询氢能源助力车的氢燃料电池的辅助电池的电量。后台服务器4下发指令,通过中控系统2-1与电池能量管理系统2-2通信。GPRS模块 2-1-3接到后台服务器4的指令后由中控系统对指令进行解析,然后通过GPRS模块2-1-3 直接到电池能量管理系统2-2读取氢燃料电池当前状态,将采集的可充电电池的电量,通过GPRS模块2-1-3发送至后台服务器4,从而方便后台运维人员判断该氢能源助力车是否需要对可充电电池充电或更换可充电电池。
步骤十二:用户通过手机或其他移动终端查询氢能源助力车的氢燃料电池的运行状态。手机或其他移动终端下发指令,通过中控系统2-1与电池能量管理系统2-2通信。GPRS模块2-1-3接到指令后由中控系统对指令进行解析,然后通过GPRS模块2-1-3直接到电池能量管理系统2-2读取氢燃料电池当前运行状态的数据,将采集的氢燃料电池的电堆气体流量数据和电堆温度,通过蓝牙天线2-1-7发送至用户手机或其他移动终端,从而方便用户了解氢能源助力车是否能正常运行。
步骤十三:当用户手机通过蓝牙天线2-1-7与微控制单元2-1-1进行双向信号电连接后,此时可以通过用户手机建立与后台服务器4的通信,从而后台服务器4能从用户手机获取氢能源助力车的中控系统2-1的相关数据并进行相应的控制,提高用户的使用靠性。
步骤十四:当用户使用完毕归还公共氢能源助力车时,将公共氢能源助力车停放到指定地点,先通过蓝牙天线感知电子围栏,再通过RFID读写模块2-1-8读取RFID卡3 的信息,再通过逻辑判断模块2-1-9发出控制信号,由微控制单元2-1-1将控制信号发送至锁驱动模块2-1-5,锁驱动模块2-1-5控制锁车的锁电机2-1-6做出相应的上锁动作,从而使电子锁将氢能源助力车锁住。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

1.氢能源助力车,其特征在于:包括助力车本体、氢燃料电池(1)和控制系统(2);所述氢燃料电池(1)固定在助力车本体的车架的中部;所述氢燃料电池(1)包括氢燃料电池盒体(1-1)和设置在氢燃料电池盒体(1-1)内的储氢罐、可充电电池(1-3)、氢燃料电池反应堆(1-4)和反应堆控制器(1-5);所述储氢罐与氢燃料电池反应堆(1-4)的氢气进气管路连通;所述反应堆控制器(1-5)控制氢燃料电池反应堆(1-4)工作产生电能;所述氢燃料电池反应堆(1-4)产生电能为控制系统(2)供电,以及为可充电电池(1-3)充电;所述可充电电池(1-3)为控制系统(2)、氢燃料电池反应堆(1-4)和反应堆控制器(1-5)提供启动电压;所述控制系统(2)控制助力车本体及氢燃料电池(1)工作。
2.根据权利要求1所述的氢能源助力车,其特征在于:所述氢燃料电池盒体(1-1)的氢燃料电池盒体(1-1)包括储氢罐置物腔(1-1-1)和反应堆置物腔(1-1-2);所述储氢罐设置在储氢罐置物腔(1-1-1)内;所述可充电电池(1-3)、氢燃料电池反应堆(1-4)和反应堆控制器(1-5)均设置在反应堆置物腔(1-1-2)内。
3.根据权利要求2所述的氢能源助力车,其特征在于:所述氢燃料电池盒体(1-1)的储氢罐置物腔(1-1-1)与反应堆置物腔(1-1-2)之间通过通孔(1-1-3)连通;所述氢燃料电池反应堆(1-4)的氢气进气管路和空气进气管路均从通孔(1-1-3)中穿过。
4.根据权利要求3所述的氢能源助力车,其特征在于:所述氢燃料电池盒体(1-1)的前侧设有喇叭状进气口(1-1-4);所述氢燃料电池反应堆(1-4)的空气进气管路与喇叭状进气口(1-1-4)连通。
5.根据权利要求4所述的氢能源助力车,其特征在于:所述氢燃料电池盒体(1-1)上的喇叭状进气口(1-1-4)的口部由均匀密布的多个进气孔(1-1-5)构成。
6.根据权利要求3所述的氢能源助力车,其特征在于:所述氢燃料电池盒体(1-1)的储氢罐置物腔(1-1-1)内设有环绕储氢罐设置的换热管道(1-2);所述换热管道(1-2)的两端穿过通孔(1-1-3)并且分别与氢燃料电池反应堆(1-4)的冷却管道的两端连通。
7.根据权利要求6所述的氢能源助力车,其特征在于:所述氢燃料电池反应堆(1-4)上设有与氢燃料电池反应堆(1-4)的冷却管道的两端固定连接的接头(1-4-1);所述换热管道(1-2)的两端与接头(1-4-1)连接。
8.根据权利要求1所述的氢能源助力车,其特征在于:所述氢燃料电池盒体(1-1)的前侧面上设有能与氢能源助力车的车架相配合的凹槽(1-1-6)。
9.根据权利要求1所述的氢能源助力车,其特征在于:所述控制系统(2)包括中控系统(2-1)、电池能量管理系统(2-2)、电动车控制器(2-3)、左右刹车把(2-4)、助力传感器(2-5)和电机(2-6);所述中控系统(2-1)与电动车控制器(2-3)双向信号电连接;所述电池能量管理系统(2-2)与电动车控制器(2-3)双向信号电连接;所述氢燃料电池(1)通过电池能量管理系统(2-2)对电动车控制器(2-3)供电,在通过电动车控制器(2-3)对中控系统(2-1)供电;所述电动车控制器(2-3)采集助力传感器(2-5)的数据,左右刹车把(2-4)控制对电机(2-6)的断电。
10.根据权利要求9所述的氢能源助力车,其特征在于:所述中控系统(2-1)包括微控制单元(2-1-1)、GPS模块(2-1-2)、GPRS模块(2-1-3)、GPRS天线(2-1-4)、锁驱动模块(2-1-5)、锁电机(2-1-6)和蓝牙天线(2-1-7);所述蓝牙天线(2-1-7)与微控制单元(2-1-1)双向信号电连接;所述GPS模块(2-1-2)与微控制单元(2-1-1)信号电连接;所述GPRS模块(2-1-3)与微控制单元(2-1-1)双向信号电连接;所述GPRS天线(2-1-4)与GPRS模块(2-1-3)双向信号电连接;所述微控制单元(2-1-1)与锁驱动模块信号电连接,锁驱动模块与锁电机(2-1-6)信号电连接。
11.根据权利要求10所述的氢能源助力车,其特征在于:所述中控系统(2-1)还包括RFID读写模块(2-1-8)和逻辑判断模块(2-1-9);所述锁电机(2-1-6)有2个,一个用锁车,另一个用于锁氢燃料电池(1);所述RFID读写模块(2-1-8)与逻辑判断模块(2-1-9)信号电连接,逻辑判断模块(2-1-9)与微控制单元(2-1-1)信号电连接;所述RFID读写模块(2-1-8)读取RFID卡(3)的信息,并将数据发送至逻辑判断模块(2-1-9),逻辑判断模块(2-1-9)将控制信号发送给微控制单元(2-1-1),再由微控制单元(2-1-1)将控制信号发送至锁驱动模块,锁驱动模块控制锁车的锁电机(2-1-6)动作。
12.根据权利要求9所述的氢能源助力车,其特征在于:所述电池能量管理系统(2-2)包括电源管理系统(2-2-1)和电池控制系统(2-2-2);所述中控系统(2-1)包括GPRS模块(2-1-3);所述电池控制系统(2-2-2)包括主控模块(2-2-2-1)、电堆气压传感器(2-2-2-2)、温度传感器(2-2-2-3)、进气电磁阀(2-2-2-4)、出气电磁阀(2-2-2-5)和冷却装置(2-2-2-6);所述电堆气压传感器(2-2-2-2)、温度传感器(2-2-2-3)、进气电磁阀(2-2-2-4)和出气电磁阀(2-2-2-5)均设置在氢燃料电池反应堆(1-4)上;所述电堆气压传感器(2-2-2-2)用于检测氢燃料电池反应堆(1-4)的气体流量,由主控模块(2-2-2-1)对电堆气压传感器(2-2-2-2)的数据进行实时采集,并根据采集的氢燃料电池反应堆(1-4)的气体流量数据,实时控制进气电磁阀(2-2-2-4)和出气电磁阀(2-2-2-5)做出相应动作,实现对气路的自动控制;所述温度传感器(2-2-2-3)用于检测氢燃料电池反应堆(1-4)的温度,由主控模块(2-2-2-1)根据实时采集的温度传感器(2-2-2-3)的数据,通过冷却装置(2-2-2-6)控制氢燃料电池反应堆(1-4)内部处于最佳反应环境温度。
13.根据权利要求12所述的氢能源助力车,其特征在于:所述电池控制系统(2-2-2)还包括储氢罐气压传感器(2-2-2-7);所述储氢罐气压传感器(2-2-2-7)设置在氢燃料电池(1)的储氢罐上,用于检测储氢罐的氢气量;所述主控模块(2-2-2-1)实时采集储氢罐气压传感器(2-2-2-7)的数据,当储氢罐的氢气量的气压低于下限值时,通过GPRS模块(2-1-3)将欠压报警信息发送至后台服务器(4)。
14.根据权利要求13所述的氢能源助力车,其特征在于:所述主控模块(2-2-2-1)还包括显示模块(2-2-2-8);所述显示模块(2-2-2-8)与主控模块(2-2-2-1)电连接;所述主控模块(2-2-2-1)实时采集储氢罐气压传感器(2-2-2-7)的数据,当储氢罐的氢气量的气压低于下限值时,通过显示模块(2-2-2-8)显示欠压报警信息;当氢燃料电池反应堆(1-4)温度高于设定值时,由主控模块(2-2-2-1)通过显示模块(2-2-2-8)显示超温报警信息。
15.根据权利要求12至14之一所述的氢能源助力车,其特征在于:所述电源管理系统(2-2-1)包括充电模块(2-2-1-1)和电源稳压模块(2-2-1-2);所述氢燃料电池(1)包括可充电电池(1-3);所述可充电电池(1-3)电池采用锂电池;所述电源稳压模块(2-2-1-2)与充电模块(2-2-1-1)电连接,充电模块(2-2-1-1)与可充电电池(1-3)电连接,电源稳压模块(2-2-1-2)用于对充电模块(2-2-1-1)提供充电电压对可充电电池(1-3)充电。
16.根据权利要求15所述的氢能源助力车,其特征在于:所述电源管理系统(2-2-1)还包括电源切换模块(2-2-1-3);所述氢燃料电池(1)与电源稳压模块(2-2-1-2)电连接,电源稳压模块(2-2-1-2)与电源切换模块(2-2-1-3)电连接;所述可充电电池(1-3)与电源切换模块(2-2-1-3)电连接;所述电源切换模块(2-2-1-3)用于电池控制系统(2-2-2)供电电源的切换;当电池控制系统(2-2-2)由停止状态进入运行状态时,电源切换模块(2-2-1-3)切换至可充电电池(1-3)对电池控制系统(2-2-2)供电;当氢燃料电池(1)工作稳定时,电源切换模块(2-2-1-3)切换至氢燃料电池(1)对电池控制系统(2-2-2)供电。
CN201910094443.4A 2019-01-30 2019-01-30 氢能源助力车 Pending CN109606141A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910094443.4A CN109606141A (zh) 2019-01-30 2019-01-30 氢能源助力车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910094443.4A CN109606141A (zh) 2019-01-30 2019-01-30 氢能源助力车

Publications (1)

Publication Number Publication Date
CN109606141A true CN109606141A (zh) 2019-04-12

Family

ID=66019288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910094443.4A Pending CN109606141A (zh) 2019-01-30 2019-01-30 氢能源助力车

Country Status (1)

Country Link
CN (1) CN109606141A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993993A (zh) * 2019-11-29 2020-04-10 山东明宇新能源技术有限公司 一种燃料电池观光车
CN111038330A (zh) * 2019-12-31 2020-04-21 永安行科技股份有限公司 氢燃料电池电堆的供电方法、系统、氢能源助力车及其传动方法、系统
CN114312492A (zh) * 2022-03-03 2022-04-12 杭叉集团股份有限公司 一种氢燃料电池叉车及其上下电控制系统
WO2024067460A1 (zh) * 2022-09-29 2024-04-04 永安行科技股份有限公司 氢能自行车整车控制系统及控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112406A (ja) * 2005-10-19 2007-05-10 Masashi Sato 電動車輛
CN201385732Y (zh) * 2009-01-07 2010-01-20 管登峰 燃料电池电动助力车
CN201663196U (zh) * 2010-03-02 2010-12-01 管登峰 双筒金属储氢气罐紧固装置
CN103241319A (zh) * 2012-02-03 2013-08-14 江苏华源氢能科技发展有限公司 氢燃料电池电动自行车一体化结构
CN104828199A (zh) * 2015-05-26 2015-08-12 昆山弗尔赛能源有限公司 一种氢能电动自行车动力系统
CN105059131A (zh) * 2015-08-28 2015-11-18 山东德汇新能源科技发展有限公司 一种燃料电池电动车管理监控系统
JP2018010816A (ja) * 2016-07-14 2018-01-18 株式会社デンソー 燃料電池車の情報送信装置、情報送信方法
CN107634242A (zh) * 2016-07-19 2018-01-26 北京晟泽科技有限公司 一种用于高空无人机燃料电池模块的热管理系统及方法
CN107808513A (zh) * 2017-10-17 2018-03-16 深圳市中易腾达科技股份有限公司 一种基于手机app的共享单车有序停车管理系统
CN109088473A (zh) * 2018-08-16 2018-12-25 深圳亚华伟翌科技有限公司 一种电池能量管理控制系统
CN209505478U (zh) * 2019-01-30 2019-10-18 永安行科技股份有限公司 氢能源助力车

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112406A (ja) * 2005-10-19 2007-05-10 Masashi Sato 電動車輛
CN201385732Y (zh) * 2009-01-07 2010-01-20 管登峰 燃料电池电动助力车
CN201663196U (zh) * 2010-03-02 2010-12-01 管登峰 双筒金属储氢气罐紧固装置
CN103241319A (zh) * 2012-02-03 2013-08-14 江苏华源氢能科技发展有限公司 氢燃料电池电动自行车一体化结构
CN104828199A (zh) * 2015-05-26 2015-08-12 昆山弗尔赛能源有限公司 一种氢能电动自行车动力系统
CN105059131A (zh) * 2015-08-28 2015-11-18 山东德汇新能源科技发展有限公司 一种燃料电池电动车管理监控系统
JP2018010816A (ja) * 2016-07-14 2018-01-18 株式会社デンソー 燃料電池車の情報送信装置、情報送信方法
CN107634242A (zh) * 2016-07-19 2018-01-26 北京晟泽科技有限公司 一种用于高空无人机燃料电池模块的热管理系统及方法
CN107808513A (zh) * 2017-10-17 2018-03-16 深圳市中易腾达科技股份有限公司 一种基于手机app的共享单车有序停车管理系统
CN109088473A (zh) * 2018-08-16 2018-12-25 深圳亚华伟翌科技有限公司 一种电池能量管理控制系统
CN209505478U (zh) * 2019-01-30 2019-10-18 永安行科技股份有限公司 氢能源助力车

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993993A (zh) * 2019-11-29 2020-04-10 山东明宇新能源技术有限公司 一种燃料电池观光车
CN111038330A (zh) * 2019-12-31 2020-04-21 永安行科技股份有限公司 氢燃料电池电堆的供电方法、系统、氢能源助力车及其传动方法、系统
CN111038330B (zh) * 2019-12-31 2021-06-25 永安行科技股份有限公司 氢燃料电池电堆的供电方法、系统、氢能源助力车及其传动方法、系统
CN114312492A (zh) * 2022-03-03 2022-04-12 杭叉集团股份有限公司 一种氢燃料电池叉车及其上下电控制系统
CN114312492B (zh) * 2022-03-03 2022-06-14 杭叉集团股份有限公司 一种氢燃料电池叉车及其上下电控制系统
WO2024067460A1 (zh) * 2022-09-29 2024-04-04 永安行科技股份有限公司 氢能自行车整车控制系统及控制方法

Similar Documents

Publication Publication Date Title
CN109606141A (zh) 氢能源助力车
CN105186654B (zh) 一种手提式电动汽车用可移动电源
CN105946607B (zh) 以甲醇为燃料的离网式多功能充电桩
CN103762689B (zh) 一种电动汽车交直流组合充电控制系统及控制方法
CN109625150A (zh) 氢能源助力车控制系统及其控制方法
CN205670705U (zh) 直接配接国标充电桩的低压电动车用智能快速充电转换器
CN205811565U (zh) 一种移动充电桩
CN209505478U (zh) 氢能源助力车
CN107910906A (zh) 一种电动汽车的移动充电方法和系统
CN106274534A (zh) 智能电动车充电桩控制系统
CN113815440A (zh) 一种车对车充电系统及其控制方法
CN109693577A (zh) 电动车的预约换电方法及预约换电系统
CN109435737A (zh) 一种电动车智能充电桩及其工作方法
WO2023005212A1 (zh) 储能模块、车载充电系统及其充电方法
CN105818701A (zh) 一种电动汽车自动充用电及充卖电控制系统
CN111452613A (zh) 一种氢燃料电池拖拉机
CN113306429A (zh) 一种用于新能源汽车的充电系统及方法
CN208993498U (zh) 电动汽车充电站系统
CN108394288B (zh) 用于电动汽车直流充电的充电装置
CN107020966A (zh) 一种电动车不间断充电系统
CN106965678B (zh) 一种基于整车控制器vms的新能源整车管理系统
CN205853914U (zh) 一种一体式直流充电机
CN202103458U (zh) 一种基于物联网的电动汽车充电桩系统
CN116001572A (zh) 一种电池包及电池包管理方法
CN101905678A (zh) 用于优化能流控制的seg(智能能量网关)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination