WO2023005212A1 - 储能模块、车载充电系统及其充电方法 - Google Patents

储能模块、车载充电系统及其充电方法 Download PDF

Info

Publication number
WO2023005212A1
WO2023005212A1 PCT/CN2022/079699 CN2022079699W WO2023005212A1 WO 2023005212 A1 WO2023005212 A1 WO 2023005212A1 CN 2022079699 W CN2022079699 W CN 2022079699W WO 2023005212 A1 WO2023005212 A1 WO 2023005212A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage module
electrical connection
connection port
charging
Prior art date
Application number
PCT/CN2022/079699
Other languages
English (en)
French (fr)
Inventor
胡勇
刘俊军
Original Assignee
西安快舟机电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安快舟机电科技有限公司 filed Critical 西安快舟机电科技有限公司
Publication of WO2023005212A1 publication Critical patent/WO2023005212A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention belongs to the technical field of electric vehicles, and in particular relates to an energy storage module, a vehicle charging system and a charging method thereof.
  • charging piles need to be connected to the power grid and special parking spaces are required. Uncharged vehicles are not suitable for occupying charging parking spaces for a long time. At the moment when the utilization rate of charging piles is very low, it is obviously a waste of parking space resources that are already in short supply.
  • Battery swap technology is also a development direction for electric vehicles, but due to the difficulty of unifying the battery specifications of various car manufacturers and the low utilization rate of private cars, its development in family cars is limited.
  • the current charging facilities must have a dedicated distribution network capacity, and the current fast charging method for electric vehicles cannot use the idle capacity of the grid for charging (private car owners usually use public charging piles to charge their cars during the day. ), increasing the burden on the power grid. After the widespread use of electric vehicles, the disorderly charging of a large number of electric vehicles will also pose a huge challenge to the power distribution network.
  • the existing energy storage charging and various mobile charging solutions can solve the problem of distribution network capacity, but they still need to stop for charging, which cannot solve the problem of waiting time.
  • the corresponding capacity is too small to allow multiple devices to be used together, which can only solve emergency problems.
  • range-extending technology can solve the problem of mileage anxiety, it is still a fuel solution in essence.
  • the range-extending system increases the cost of vehicle manufacturing and increases the weight of the vehicle, reducing the mobility and economy of the vehicle.
  • the present invention provides an energy storage module, a vehicle charging system and a charging method thereof.
  • An object of the present invention is to solve at least the above problems and/or disadvantages and to provide at least the advantages as will be described hereinafter.
  • Another object of the present invention is to provide an energy storage module, a vehicle-mounted charging system and a charging method thereof, which avoid the problems of hard to find charging piles, special parking spaces, long-time charging, and low utilization rate.
  • an energy storage module comprising:
  • a bidirectional DC-DC converter one end of which is connected to the battery pack, and the other end of the bidirectional DC-DC converter is connected to the power line;
  • a controller which is respectively connected to the BMS, the bidirectional DC-DC converter, and a communication line;
  • the energy storage module is provided with a first electrical connection port and a second electrical connection port, and the two ends of the power line and the communication line are respectively connected to the first electrical connection port and the second electrical connection port.
  • the second electrical connection port is a socket, and the first electrical connection port is a plug with a short wire;
  • the first electrical connection port, the second electrical connection port and the power line constitute a power path for the energy storage module to work.
  • the second electrical connection port is provided on the housing, and the housing is provided with a storage device at a position close to the first electrical connection port, the first The electrical connection port is located in the storage device; the handle is arranged on the casing, and the auxiliary wheels are arranged at the corners of the casing.
  • the BMS includes multiple sub-modules, the multiple sub-modules are connected to the BMS bus through their respective communication ports, and the BMS bus is connected to the controller.
  • the controller includes a first communication interface, a second communication interface and a third communication interface, the first communication interface communicates with the first electrical connection port, the second electrical connection through the communication line
  • the connection port forms the external communication path of the energy storage module; the second communication interface and the third communication interface are respectively connected with the bidirectional DC-DC converter and the BMS to form the internal communication path of the energy storage module. communication path.
  • the present invention also provides a vehicle charging system, comprising:
  • An energy storage converter connected to the grid for rectifying the current in the grid
  • At least one energy storage module connected to the energy storage converter
  • a cloud management system which is connected to the energy storage converter, and controls the charging and discharging of the energy storage module through the energy storage converter;
  • the energy storage module is the above-mentioned energy storage module.
  • the electric energy of the energy storage module is connected to the grid after being inverted by the energy storage converter.
  • it also includes an energy storage and power exchange cabinet, which is provided with a plurality of boxes, the energy storage module is located in the box, and the energy storage converter is arranged in the energy storage and power exchange cabinet.
  • the present invention also provides a vehicle charging method, comprising:
  • An energy storage module is placed in the electric vehicle, and the first electrical connection port on the energy storage module is connected to the charging interface in the electric vehicle;
  • the first electrical connection port of the first energy storage module is connected to the charging interface in the electric vehicle, and the first electrical connection port of the nth energy storage module is inserted into the nth- A second electrical connection port of the energy storage module;
  • the energy storage module is the above-mentioned energy storage module, which is used to transfer electric energy between the grid and the electric vehicle.
  • the multiple energy storage modules are connected in parallel.
  • the energy storage module provided by the present invention can be placed in the electric vehicle, and there is no need to wait for charging, and no special parking space is required, which improves the charging efficiency.
  • the energy storage module provided by the present invention has a lightweight design, which can realize purely manual battery replacement, and the vehicle group can select an appropriate number for parallel connection according to needs.
  • the power replenishment of the device is completed under the control of the background system, which can be completed by using the idle capacity of the power grid.
  • the equipment installation does not need to increase the capacity of the power grid, and at the same time, it can also enable electric vehicles to realize off-grid charging. Prevent the impact of disorderly charging of electric vehicles on the grid.
  • the vehicle-mounted charging system uses an energy storage module that cooperates with an energy storage converter to reversibly generate alternating current and incorporate it into the power grid.
  • the vehicle-mounted charging method provided by the present invention makes up for the disadvantage that the charging pile cannot be moved, and can provide charging for vehicles lacking electric energy during driving, or increase the mileage.
  • Fig. 1 is a functional block diagram of the energy storage module of the present invention
  • Fig. 2 is a schematic structural view of an embodiment of the energy storage module of the present invention.
  • Fig. 3 is a cross-sectional view of the structure of an embodiment of the energy storage module of the present invention.
  • Fig. 4 is a schematic diagram of the charging of the energy storage module in the energy storage and power exchange cabinet in the on-board charging system of the present invention
  • Fig. 5 is a schematic diagram of the grid energy storage and discharge performed by the energy storage module in the energy storage power exchange cabinet in the vehicle-mounted charging system of the present invention
  • FIG. 6 is a schematic diagram of an energy storage module charging a vehicle in the vehicle charging method of the present invention.
  • FIG. 7 is a schematic diagram of a plurality of energy storage modules charging a vehicle in the vehicle charging method of the present invention.
  • Fig. 8 is an effect diagram of electrical connection of multiple energy storage modules end to end according to the present invention.
  • 1-energy storage module 101-first electrical connection port, 102-second electrical connection port, 103-bidirectional DC-DC converter communication line, 104-controller, 105-battery pack output line, 106-BMS Bus, 107-BMS, 108-BMS acquisition balance harness, 109-battery pack, 110-bidirectional DC-DC converter, 111-power line, 112-communication line, 113-BMS submodule, 2-electric vehicle, 201-electric Car battery pack, 202-charging interface, 3-energy storage power exchange cabinet, 301-energy storage converter, 302-busbar, 303-grid, 304-Internet of things, 4-cloud management system, 501-auxiliary wheel, 502-handle, 503-instruction label, 504-shell.
  • the present invention provides an energy storage module 1, as shown in Figure 1, comprising:
  • BMS107 which is connected to the battery pack 109;
  • a bidirectional DC-DC converter 110 one end of which is connected to the battery pack 109, and the other end of the bidirectional DC-DC converter 110 is connected to a power line 111;
  • controller 104 which is respectively connected to the BMS 107, the bidirectional DC-DC converter 110, and the communication line 112;
  • the controller 104 is an embedded MCU, which realizes the acquisition of external signals, the control of external devices and the communication interaction with other devices according to the setting of internal programs. Almost all commercially available single-chip microcomputers, ARM, and DSP can meet the needs of this application.
  • the energy storage module 1 is provided with a first electrical connection port 101 and a second electrical connection port 102, and the two ends of the power line 111 and the communication line 112 are respectively connected to the first electrical connection port 101 and the second electrical connection port. Port 102 is connected.
  • the key problem to be solved by the energy storage module of the present invention is the problem that the energy storage module can be conveniently put into the car, so it is necessary to find a suitable balance point between the volume weight and the monomer capacity, and then achieve the user's overall satisfaction through parallel connection.
  • capacity needs.
  • the total voltage of a single power bank battery pack is 300V
  • the capacity can be set at 6 kWh
  • the weight is more than 40 kg
  • the volume is about 30 liters.
  • Parallel connection of 3 can maintain ordinary vehicles traveling more than 100 kilometers.
  • the DC-DC converter can make different energy storage modules output the same voltage, and can also control the energy storage modules to output in the form of a current source, so that multiple energy storage modules can be safely used in parallel.
  • a general-purpose bidirectional DC-DC converter is selected here, so that the converter can be used as a bidirectional charger, that is, it can be used to charge the car, and it can be used to directly power the battery through an external DC power supply.
  • the internal battery of the energy storage module is charged, which makes the structure and operation and maintenance of the equipment very simple and efficient.
  • the power of the converters is set at about 5kW, and the electric power of 15kW can be output after three parallel connections, which is enough to meet the needs of ordinary vehicles traveling at a speed of 100 km/h.
  • the controller After connecting multiple energy storage modules in parallel, the controller needs to automatically reduce the output power of each energy storage module to ensure that the total output current does not exceed the maximum current limit due to the need to consider the limit of the maximum current carrying capacity of the line, connector and vehicle, that is, Automatic diversion function.
  • the energy storage module is provided with two electrical connection ports, the first electrical connection port 101 is designed as a plug with a short wire, and the second electrical connection port 102 is designed as a socket installed on the shell of the energy storage module.
  • the controller has three communication interfaces, one external communication interface is connected to the first electrical connection port 101 and the second electrical connection port 102 through the communication line between the interfaces, which constitutes the external communication path of the energy storage module.
  • the controller 104 can communicate with any energy storage module in the connected group.
  • the external communication includes communicating with the electric vehicle, communicating with the energy storage cabinet, communicating with other energy storage modules, and electrically connecting with other possible external devices.
  • the two internal communication interfaces of the controller 104 are respectively connected to the BMS bus 106 and the bidirectional DC-DC converter communication line 103, which constitute the internal communication path of the energy storage module.
  • BMS107 can be composed of multiple sub-modules. Each sub-module is connected to the BMS bus 106 through its own communication port.
  • the bidirectional DC-DC converter 110 has two DC power interfaces, the battery pack 109 is connected to the bidirectional DC-DC converter 110 through the battery pack output line 105, and then the bidirectional DC-DC converter 110 is connected to the power line 111 between the interfaces.
  • the first electrical connection port 101 and the second electrical connection port 102, these connections constitute the power input/output path inside the energy storage module.
  • the input/output described this time includes: the external device charges the energy storage module, the energy storage module charges the electric vehicle, and the energy storage module discharges the external device.
  • the power line 111 between the interfaces, the first electrical connection port 101 and the second electrical connection port 102 constitute a power path when a single module works and/or multiple modules work in parallel.
  • the BMS107 is connected to each battery cell of the battery pack 109 through the BMS acquisition and equalization harness 108, and then connected to the controller 104 through the BMS bus 106, and then connected to the bidirectional DC-DC converter through the bidirectional DC-DC converter communication line 103 110 , forming a channel for exchanging information between the BMS 107 and the controller 104 and the bidirectional DC-DC converter 110 .
  • BMS107 can be composed of multiple sub-modules. Each sub-module is connected to the BMS bus 106 through its own communication port.
  • the BMS sub-module 113 here consists of six BMS sub-modules 113 to form the BMS107 component in FIG. 1 .
  • FIG. 2 Figure 3 and Figure 8
  • FIG. 2 another embodiment, as shown in Figure 2, Figure 3 and Figure 8, also includes a housing 504, a handle 502 and auxiliary wheels 501, and the second electrical connection port 102 is arranged on the housing 504
  • the housing 504 is provided with a storage device at a position close to the first electrical connection port 101, and the first electrical connection port 101 is located in the storage device;
  • the handle 502 is provided on the housing 504,
  • the auxiliary wheels 501 are arranged at the peripheral corners of the housing, and also include an instruction label 503 .
  • the reason for adopting the injection molding shell 504 is that the injection molding method is easy to realize large-scale standardized production, and the shell has good consistency.
  • the elongated module and the handles and auxiliary wheels at both ends are convenient for one person to tow, two people to lift and other handling methods, and it is easy to stack in the car.
  • the effect of the end-to-end electrical connection and stacking of multiple modules is shown in Figure 8.
  • the figure shows the effect of connecting five modules to each other, and the first electrical connection port 101 shown in the figure is used to connect to the charging port in the car.
  • the number of modules shown in the figure is 5, but the number of modules in actual use is not limited to 5, and the specific number of modules that need to be connected is selected by the user according to the needs and actual conditions.
  • the label 503 of instructions for use and precautions is affixed on the casing where it is easy to be seen by the user, and provides necessary operation guidance for the user.
  • the energy storage module provided by the present invention has the function of charging and discharging control itself, and can charge the vehicle without connecting an external power electronic device.
  • the present invention also provides a vehicle charging system, comprising:
  • An energy storage converter 301 which is connected to the grid 303 and used to rectify the current in the grid 303;
  • At least one energy storage module 1 which is connected to the energy storage converter 301;
  • the cloud management system 4 is connected to the energy storage converter 301, and controls the charging and discharging of the energy storage module 1 through the energy storage converter 301; the cloud management system 4 is running on the network background server
  • the software system is used to control the operation of the energy storage converter 301 and the energy storage module 1 through the Internet of Things, as well as the lease management of the energy storage module 1.
  • the energy storage module 1 is the energy storage module 1 described above, and the composition, structure and working principle of the energy storage module will not be described in detail here.
  • the battery exchange system for an electric vehicle charges the vehicle and/or extends the range of the vehicle by means of battery exchange.
  • the on-board charging system provided by the present invention, for a private car, when the vehicle is idle, the self-contained battery of the vehicle can meet the basic needs of the vehicle, which is very friendly compared to a purely battery-changing vehicle.
  • the owner also needs to pay rent for the occupied battery.
  • the power supply of the energy storage module is completed under the control of the background system, and the idle capacity of the power grid can be used to complete this work, and the equipment installation does not need to increase the capacity of the power grid.
  • this system can also enable electric vehicles to realize off-grid charging, preventing the impact of disorderly charging of electric vehicles 2 on the grid.
  • the on-board charging system provided by the present invention is easier to set up in large areas in various residential quarters, and the number can be far greater than the number of existing gas stations, so that car owners can use it anywhere nearby. It can greatly increase the user experience of charging.
  • an embodiment can also be added, that is, it also includes an energy storage power exchange cabinet 3, which is provided with a plurality of boxes, the energy storage module 1 is located in the box, and the energy storage converter 301 is set In the energy storage switch cabinet 3 , all the energy storage modules 1 in the energy storage switch cabinet 3 are connected to the grid through the energy storage converter 301 .
  • the energy storage and replacement cabinet 3 is a place for charging and storing the energy storage module, and the used energy storage module 1 needs to be returned to the energy storage and replacement cabinet 3 for unified charging and storage; and the energy storage and replacement cabinet 3 occupies
  • the land area is small, no special parking space is required, no dedicated distribution network capacity is required, and it can also be used as a free backup power supply for residential areas.
  • the energy storage and power exchange cabinet 3 is a complete vehicle charging facility, which is a standardized product produced by the factory, and the charging facility layout site does not require a professional team to carry out construction and debugging.
  • the energy storage module 1 charges the module in the energy storage switch cabinet 3 .
  • the electric energy is input into the energy storage converter 301 inside the energy storage switching cabinet 3 through the grid 303 and rectified into DC current, and flows into the energy storage module 1 connected to it through the busbar 302 , and the cloud management system 4 passes through the energy storage through the Internet of Things 304
  • the converter 301 communicates with each energy storage module 1 in the energy storage switch cabinet 3 to control the charging work of each energy storage module 1 .
  • the energy flow path is from the grid 303 to the energy storage converter 301 and then to the energy storage module 1 . Whether the energy storage module 1 is charged, and the charging power can be controlled by the cloud management system 4 .
  • the electric energy of the energy storage module 1 is inverted by the energy storage converter 301 and then merged into the power grid 303, wherein the cloud management System 4 can control the energy storage converter 301 to invert the electric energy in the charging module back to the grid 303, that is, the on-board charging system provided by the present invention can also be used as a grid user-side energy storage system.
  • the usage rate is too high.
  • the system can automatically start the grid energy storage function, actively use the energy storage module 1, adjust the peak and frequency for the grid, and turn itself into a grid energy storage facility.
  • the energy storage module 1 is used as the energy storage function of the power grid.
  • the electric energy flows out from the energy storage module 1, flows back through the busbar 302, flows into the energy storage converter 301, and then is inverted by the energy storage converter 301.
  • the direction of energy flow is from each energy storage module 1 to the energy storage converter 301 and then to the grid 303 .
  • the work of all energy storage modules 1 and energy storage converters 301 is controlled by the cloud management system 4 .
  • the shared energy storage charging system provided by the present invention can be automatically used for grid energy storage when it is idle, and there is no need to worry about the impact of the number of electric vehicles on the minimum income of charging facilities.
  • the energy storage module can also cooperate with other corresponding equipment to reversibly generate alternating current and become a mobile power supply, which can be used to replace fuel oil generators and outdoor power supplies to meet the needs of power supplies in different occasions, and is not limited to the storage provided by the present invention. energy converter.
  • the present invention also provides a vehicle charging method, including:
  • An energy storage module 1 is placed in the electric vehicle 2, and the first electrical connection port 101 on the energy storage module 1 is connected to the charging interface 202 in the electric vehicle 2; or
  • a plurality of energy storage modules 1 are placed in the electric vehicle 2, the first electrical connection port 101 of the first energy storage module 1 is connected to the charging interface 202 in the electric vehicle 2, the first of the nth energy storage module 1
  • the electrical connection port 101 is inserted into the second electrical connection port 102 of the n-1th energy storage module 1, and multiple energy storage modules 1 are connected in parallel to charge the car or extend the range;
  • the energy storage module 1 is the above-mentioned energy storage module 1, which is used to transfer electric energy between the grid and the electric vehicle.
  • the method for charging the electric vehicle in the present invention is a vehicle-mounted charging method, which is quite different from the charging method supported by the existing electric vehicle.
  • the charging ports of electric vehicles are non-vehicle charging ports, and the charging ports are arranged outside the vehicle body.
  • the vehicle is not suitable for moving. Therefore, in order to better use the energy storage module and the on-board charging system disclosed in the present invention to charge the electric vehicle, it is necessary to add a special on-board charging port in the vehicle to facilitate the movement of the vehicle during charging and to avoid the energy storage module occupying the external space of the vehicle.
  • a single energy storage module 1 charges an electric vehicle 2, and a vehicle that needs to be charged by this device needs to add a DC charging interface 202 in the vehicle.
  • a plurality of energy storage modules 1 are placed in the car and connected end to end to output in parallel to charge the electric car 2.
  • a DC charging interface 202 needs to be added in the car.
  • the first electrical connection port 101 of the first energy storage module 1 is connected to the DC charging interface 202 in the electric vehicle 2, and the first electrical connection port 101 of the second energy storage module 1 is inserted into the first electrical connection port 101 of the first energy storage module 1.
  • the second electrical connection port 102, the first electrical connection port 101 of the nth energy storage module 1 is inserted into the second electrical connection port 102 of the (n-1)th energy storage module 1, and a plurality of them are used in parallel.
  • a DC charging interface 202 added in the vehicle is connected to the battery pack 201 of the electric vehicle, so that the energy storage module 1 can charge the electric vehicle 2 .
  • the energy storage module has a lightweight design, and is suitable for multiple placements in a conventional plug-in electric vehicle, including a trunk, a dedicated energy storage module box, a vehicle seat, and a front trunk.
  • the present invention adopts the method of end-to-end connection, which can facilitate the car owner to connect multiple energy storage modules together.
  • the energy storage module can be used in a car, which can be used individually or in parallel. Due to single use, the output power is limited, and it can only support charging or maintain low-speed driving of the vehicle.
  • the car manufacturer installs a car charging interface in the car, there is no need to add it later.
  • the automatic grouping in the present invention is as follows: after the user sequentially connects the energy storage modules to external devices (such as electric vehicles), the controller of the first energy storage module connected to the external device will automatically list itself as the main control device . It will automatically search for all energy storage modules connected to the communication bus through the communication line at regular intervals. Incorporate the energy storage modules that can be searched into its own control list, so that all energy storage modules can work together to form a stable and reliable working group.
  • external devices such as electric vehicles
  • automatic shunting refers to the process of outputting external equipment (such as electric vehicles), due to the limited current carrying capacity of peripheral equipment or power lines or energy storage modules themselves, it is necessary to control the total power of multiple energy storage modules connected in groups.
  • the output current is limited and/or the current of each energy storage module is reasonably distributed, so as to ensure the safety and stability of all devices in the system.
  • automatic identification can determine the required operations by communicating with external devices (such as electric vehicles), such as charging or discharging and the required current, voltage, protection threshold, etc., so as to use the energy storage module and its on-board charging for the user
  • external devices such as electric vehicles
  • charging or discharging and the required current, voltage, protection threshold, etc.
  • the number of energy storage modules that can be loaded on an electric vehicle is related to the vehicle's load and interior space. Car owners need to comprehensively consider relevant factors to ensure safe use. When charging/extending range while driving, the total weight of people and goods on the vehicle needs to be considered, and the allowable load of the vehicle should not be exceeded, so as to ensure the acceleration and braking performance of the vehicle.
  • the user prepares or rents an inverter compatible with the energy storage module, and cooperates with this device to realize a shared mobile power supply. It is used to replace the generator and provide a steady stream of electric energy for the user's outdoor work.
  • the energy storage and power exchange cabinet recharges the energy storage module when the power consumption is low, making full use of the remaining capacity of the local original power distribution network. Avoid the impact of disorderly charging of equipment on the power grid, and reduce the cost of equipment construction and use.
  • the leased energy storage module ID is automatically bound to the tenant user ID, and the tenant has the obligation to keep and return the leased energy storage module to the system. When returning it, the system takes photos of the energy storage module to determine whether the user has damaged the energy storage module.
  • the present invention adopts a charging scheme combining battery replacement and charging, and retains the respective advantages of the two schemes.
  • the battery replacement method is fast, but requires a car factory to unify the battery standard, and in addition to paying for the electricity charge, it also needs to pay for the duration of use. This method of battery replacement is not friendly to private cars with low usage rates.
  • charging through the method of on-board battery replacement has both the charging effect and the range-extending effect.
  • the cruising range of the vehicle no longer depends only on the body battery, and users can adjust the cruising range of their own vehicles at will. There is no need to worry about the impact of the capacity fading of the body battery on the vehicle anymore.
  • the vehicle is charged. Since the energy of ordinary charging piles comes from the power grid, the charging piles cannot be moved. As a result, special parking spaces must be allocated for the charging piles. The charging parking spaces can only be used for charging, resulting in a waste of limited parking space resources. .
  • the on-board charging method does not require a dedicated parking space, and it also has a range-extending effect, and does not require the car to stop and wait while charging.
  • Energy storage modules are shared, which improves the utilization rate of equipment, lowers the threshold for users to use, and provides the necessary conditions for the rapid popularization of electric vehicles.
  • the charging method not only has the function of charging the electric vehicle, but also has the function of increasing the cruising range.
  • the battery life of the vehicle is equal to the sum of the battery life of the body and the battery life of all energy storage modules in the car.
  • the on-vehicle charging method provided by the invention has no special requirements on the use of the vehicle. There is no such thing as the traditional method of battery swapping. Huge batteries must be completed by machines, and the battery specifications must be the same. Electric vehicles do not need a large battery life. The owner can increase or decrease the number of charging systems according to the needs of each driving, and dynamically adjust the cruising range. In this way, the phenomenon that the battery life is too long compared with the life of the whole vehicle can be avoided, and the waste of battery resources can be avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

提供了一种储能模块(1)、车载充电系统及充电方法,一种储能模块(1)包括电池组(109);BMS(107),与电池组(109)连接;双向DC-DC变换器(110),一端与电池组(109)连接,双向DC-DC变换器(110)的另一端与电力线(111)连接;控制器(104),分别与BMS(107)、双向DC-DC变换器(110)、通讯线(112)连接;储能模块(1)上设置第一电连接口(101)和第二电连接口(102),电力线(111)和通讯线(112)的两端分别与第一电连接口(101)、第二电连接口(102)连接。利用储能模块(1)的车载充电方法为电动汽车充电,具有无需等待、无需专用车位等优点,利用储能模块(1)实现的电动汽车共享储能充电系统,具有电网储能、汽车换电/充电/增程等多种优势。

Description

储能模块、车载充电系统及其充电方法 技术领域
本发明属于电动汽车的技术领域,具体涉及一种储能模块、车载充电系统及其充电方法。
背景技术
充电难,一直是消费者拒绝购买电动汽车的首要理由。快充技术和换电技术都不足以完美解决家用车充电难的问题。没有充电设施,无法推广电动汽车,但提前建设充电设施,又会遇到使用率低的问题,导致收回建设投资遥遥无期。阻碍了充电基础设置的进一步普及。据《“新基建”背景下公共充电桩发展问题及策略分析》一文所述我国公共充电桩仅为4%。北京,上海公共充电桩日均使用仅20分钟,使用率仅为1.3%。
另外充电桩需要连接电网,需要专用停车位,未进行充电的车辆不适合长时间占用充电车位,在充电桩利用率很低的当下,显然是造成了本已紧缺的停车车位资源的浪费。
换电技术也是电动汽车的一个发展方向,但由于各车厂电池规格难于统一,以及私家车使用率低等问题,限制了其在家用车上的发展。
对于电能的提供者电网来说,现在的充电设施都须专用的配网容量,现行的电动汽车快充充电方式无法利用电网闲时容量充电(私家车主一般是在白天用公共充电桩给车充电),加重了电网负担。待电动汽车大量普及后,大量电动汽车的无序充电,对配电网络来说也会是巨大挑战。
现有的储能充电和各种移动充电方案,能解决配网容量问题,但还都需要停车充电,无法解决等待时间问题。虽然现有一些便携充电方式的技术专 利,但是相应容量太小,不能多个设备一起使用,只能解决应急问题。
增程技术虽然可以很好的解决里程焦虑问题,但本质上还属于燃油方案。另外增程系统增加了造车成本还增加了车重,降低了车辆的机动性以及经济性。
为了解决这些问题,本发明提供了一种储能模块、车载充电系统及其充电方法。
发明内容
本发明的一个目的是解决至少上述问题和/或缺陷,并提供至少后面将说明的优点。
本发明还有一个目的是提供储能模块、车载充电系统及其充电方法,其避免了难找充电桩、专用车位和长时间充电、利用率低的问题。
为了实现根据本发明的这些目的和其它优点,本发明提供了一种储能模块,包括:
电池组;
BMS,其与所述电池组连接;
双向DC-DC变换器,其一端与所述电池组连接,所述双向DC-DC变换器的另一端与电力线连接;
控制器,其分别与所述BMS、所述双向DC-DC变换器、通讯线连接;
其中,所述储能模块上设置第一电连接口和第二电连接口,所述电力线和所述通讯线的两端分别与第一电连接口、第二电连接口连接。
优选的是,所述第二电连接口为一插座,所述第一电连接口为带有短线的插头;
其中,所述第一电连接口、所述第二电连接口与所述电力线组成所述储能模块工作时的电力路径。
优选的是,还包括外壳、把手及辅助轮,所述第二电连接口设置在所述 外壳上,所述外壳在靠近所述第一电连接口的位置处设置收纳装置,所述第一电连接口位于所述收纳装置内;所述把手设置在所述外壳上,所述辅助轮设置在所述外壳的周角处。
优选的是,所述BMS包括多个子模块,多个所述子模块通过各自的通讯口连接到BMS总线,所述BMS总线与所述控制器连接。
优选的是,所述控制器包括第一通讯接口、第二通讯接口及第三通讯接口,所述第一通讯接口通过所述通讯线,与所述第一电连接口、所述第二电连接口组成所述储能模块的外部通讯路径;所述第二通讯接口和所述第三通讯接口分别与所述双向DC-DC变换器、所述BMS连接,组成所述储能模块的内部通讯路径。
本发明还提供了一种车载充电系统,包括:
储能变流器,其与电网连接,用于整流电网中的电流;
至少一个储能模块,其与所述储能变流器连接;
云端管理系统,其与所述储能变流器连接,通过所述储能变流器控制所述储能模块的充电和放电;
其中,所述储能模块为上述的储能模块。
优选的是,所述储能模块的电能通过所述储能变流器逆变后,并入电网。
优选的是,还包括储能换电柜,其设置有多个箱体,所述储能模块位于所述箱体中,所述储能变流器设置在所述储能换电柜中。
本发明还提供了一种车载充电方法,包括:
在电动汽车内放置一个储能模块,所述储能模块上的第一电连接口与电动汽车内的充电接口连接;或者
在电动汽车内放置多个储能模块,第一个储能模块的第一电连接口与电动汽车内的充电接口连接,第n个所述储能模块的第一电连接口插入第n-1个所述储能模块的第二电连接口;
其中,所述储能模块为上述的储能模块,其用于在电网和电动汽车之间 转移电能。
优选的是,在电动汽车内放置多个所述储能模块时,多个所述储能模块采用并联连接方式。
本发明至少包括以下有益效果
1、本发明提供的储能模块,其能够放置在电动汽车内,充电时无需等待,无需专用车位,提高了充电效率。
2、本发明提供的储能模块,其为轻量化设计,可实现纯人工换电,车组可根据需要选择合适数量进行并联。
3、本发明提供的车载充电系统,其装置补电在后台系统控制下完成,完全可采用电网空闲容量完成,设备安装不需要对电网进行增容,同时还能让电动汽车实现离网充电,防止电动汽车无序充电对电网的冲击。
4、本发明提供的车载充电系统,其采用的储能模块配合储能变流器,可逆变产生交流电,并入电网。
5、本发明提供的车载充电方法,其弥补了充电桩无法移动的缺点,可为行驶中缺乏电能的汽车提供充电,或者增加里程。
附图说明
图1为本发明所述储能模块的原理框图;
图2为本发明所述储能模块的一个实施例的结构示意图;
图3为本发明所述储能模块的一个实施例结构的截面图;
图4为本发明所述车载充电系统中储能模块在储能换电柜内充电的原理图;
图5为本发明所述车载充电系统中储能模块在储能换电柜内进行电网储能放电原理图;
图6为本发明所述车载充电方法中一个储能模块为车辆充电的原理图;
图7为本发明所述车载充电方法中多个储能模块为车辆充电的原理图;
图8为本发明多个储能模块首尾电连接的效果图;
其中,1-储能模块,101-第一电连接口,102-第二电连接口,103-双向DC-DC变换器通讯线,104-控制器,105-电池组输出线,106-BMS总线,107-BMS,108-BMS采集均衡线束,109-电池组,110-双向DC-DC变换器,111-电力线,112-通讯线,113-BMS子模块,2-电动汽车,201-电动汽车电池组,202-充电接口,3-储能换电柜,301-储能变流器,302-母排,303-电网,304-物联网,4-云端管理系统,501-辅助轮,502-把手,503-使用说明标签,504-外壳。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
在本说明书中,当一个元件被提及为“连接至或耦接至”另一个元件或“设置在另一个元件中”时,其可以“直接”连接至或耦接至另一元件或“直接”设置在另一元件中。或以其他元件介于其间的方式连接至或耦接至另一元件或设置在另一元件中,除非其被体积为“直接耦接至或连接至”另一元件或“直接设置”在另一元件中。此外,应理解,当一个元件被提及为“在另一元件上”、“在另一元件上方”、“在另一元件下”或“在另一元件下方”时,其可与另一元件“直接”接触或以其间介入有其他元件的方式与另一元件接触,除非其被提及为与另一元件直接接触。
本发明提供了储能模块1,如图1所示,包括:
电池组109;
BMS107,其与所述电池组109连接;
双向DC-DC变换器110,其一端与所述电池组109连接,所述双向DC-DC变换器110的另一端与电力线111连接;
控制器104,其分别与所述BMS107、所述双向DC-DC变换器110、通讯线112连接;
控制器104为嵌入式MCU,其根据内部程序的设定,实现对外部信号采集、对外部设备的控制和与其它设备的通讯交互。目前所有市售的单片机,ARM,DSP几乎都可满足本应用的需求。
其中,所述储能模块1上设置第一电连接口101和第二电连接口102,所述电力线111和所述通讯线112的两端分别与第一电连接口101、第二电连接口102连接。
本发明的储能模块重点要解决的问题是储能模块方便放入车内的问题,所以必须在体积重量和单体容量之间找到合适的平衡点,然后再通过并联的方式达到用户对总容量的需求。本实施例中单个充电宝电池组总电压为300V,容量可设置在6千瓦时,重量40多公斤,体积约为30升。并联3个即可维持普通车辆行驶100公里以上。不同的电池组,由于荷电量和电压的不同,并联会产生环流,容量也会因木桶而效应而减小,所以串联后的电池组不能随意并联,由于环流可能很大,随意并联会发生危险,轻者损坏电池,重者发生电池火灾。要实现不同的电池组随意并联,必须通过DC-DC变换器来实现。DC-DC变换器可使不同的储能模块输出相同的电压,也可以将储能模块控制为电流源方式输出,让多个储能模块能够安全的并联使用。为了兼顾对储能模块的充电与放电,这里选用通用的双向DC-DC变换器,这样变换器可以作为双向的充电器使用,即可用它为汽车充电,又可以用它通过外部直流电源直接为储能模块内部电池充电,这样使得设备的结构和运维都变得非常简单高效。
对于双向DC-DC变换器的功率选择,这个需要综合考虑电池充放电温升,变换器体积,充电速度等因素。根据综合分析考虑,本实施例将变换器 功率设置在5kW左右,3个并联后可输出15kW的电功率,足以满足普通车辆以100公里/小时时速行驶的需求。并联多个储能模块后,由于需要可考虑线路、连接器以及车辆的最大载流量限制,控制器需要自动减小每个储能模块的输出功率,保证输出总电流不超出最大电流限制,即自动分流功能。
储能模块上设置有两个电连接口,第一电连接口101设计为带有短线的插头,第二电连接口102设计为安装在储能模块外壳上的插座。
控制器具有三个通讯接口,一个对外通讯接口通过接口间的通讯线连接到第一电连接口101和第二电连接口102,这构成了储能模块对外通讯路径。控制器104可与连接组中的任一储能模块进行通讯。所述对外通讯包括与电动汽车通讯,与储能柜通讯,与其它储能模块通讯,以及与其电连接其它可能的外部设备。
控制器104的两个内部通讯接口,分别连接BMS总线106和双向DC-DC变换器通讯线103,这构成了储能模块的内部通讯路径。BMS107可由多个子模块组成。每个子模块通过自己的通讯口连接到BMS总线106上。
双向DC-DC变换器110具有两个直流电力接口,电池组109通过电池组输出线105连接到双向DC-DC变换器110,再由双向DC-DC变换器110经接口间的电力线111连接到第一电连接口101和第二电连接口102,这些连接构成了储能模块内部的电力输入/输出路径。此次所述输入/输出包含:外部设备对储能模块充电,储能模块对电动汽车充电,储能模块对外部设备放电。
接口间的电力线111、第一电连接口101和第二电连接口102构成了单模块工作和/或多模块并联工作时的电力路径。
BMS107通过BMS采集均衡线束108连接到电池组109的每一颗电芯,再由BMS总线106连接到控制器104,再经双向DC-DC变换器通讯线103,连接到双向DC-DC变换器110,构成了BMS107与控制器104和双向DC-DC变换器110交互信息的通道。BMS107可由多个子模块组成。每个子模块通过自己的通讯口连接到BMS总线106。
BMS子模块113这里由6个BMS子模块113组成了图1中的BMS107组件。
在上述情况的基础上,又一个实施例,如图2、图3和图8所示,还包括外壳504、把手502及辅助轮501,所述第二电连接口102设置在所述外壳504上,所述外壳504在靠近所述第一电连接口101的位置处设置收纳装置,所述第一电连接口101位于所述收纳装置内;所述把手502设置在所述外壳504上,所述辅助轮501设置在所述外壳的周角处,还包括使用说明标签503。
采用注塑外壳504的原因为,注塑方式易于实现大规模标准化生产,壳体一致性好。长条形设计的模块以及两端的把手和辅助轮,可方便一人拖行,两人抬举等搬运方式,且便于在车内堆放。多模块首尾电连接和堆放的效果如图8所示。图中展示了5个模块互相连接的效果,图中所示第一电连接口101用于连接车内充电接口。图中展示的模块数量为5个,但实际使用时模块的数量不限于5个,具体需要连接的数量由使用者根据需求和实际条件限制选择。使用说明及注意事项标签503贴在外壳上易被使用者看见的位置,为使用者提供必要的操作指导。
本发明提供的储能模块自身具有充、放电控制功能,无需外接电力电子装置即可为车辆充电。
如图4所示,本发明还提供了一种车载充电系统,包括:
储能变流器301,其与电网303连接,用于整流电网303中的电流;
至少一个储能模块1,其与所述储能变流器301连接;
云端管理系统4,其与所述储能变流器301连接,通过所述储能变流器301控制所述储能模块1的充电和放电;所述云端管理系统4为运行网络后台服务器上的软件系统,用于通过物联网控制储能变流器301和储能模块1的运行,以及储能模块1租赁管理。
其中,所述储能模块1为上述描述的储能模块1,在这里就不详细介绍储能模块的组成结构和工作原理。
本发明提供的电动汽车换电系统,该系统用换电的方式为车辆进行充电和/或为车辆增程。
采用本发明提供的车载充电系统,对于私家车来说,车辆闲置时,车辆自带电池可以满足车辆的基本需求,相比于纯换电的车辆非常友好。纯换电车辆,车辆闲置时,车主也需要为占用的电池付出租金。
而且,储能模块补电在后台系统控制下完成,完全可采用电网空闲容量完成此工作,设备安装不需要对电网进行增容。同时本系统还能让电动汽车实现离网充电,防止电动汽车2无序充电对电网的冲击。
采用本发明提供的的车载充电系统,其相比于加油站,其更易于大面积设置在各个居民小区内,数量可以远远大于现有加油站数量,让车主可随处就近使用。可大大增加充电的用户体验。
具体的,还可以增加一个实施例,即还包括储能换电柜3,其设置有多个箱体,所述储能模块1位于所述箱体中,所述储能变流器301设置在所述储能换电柜3中,储能换电柜3内的所有储能模块1通过储能变流器301连接到电网。
其中,所述储能换电柜3为储能模块充电与存放的场所,使用过的储能模块1需归还到储能换电柜3进行统一充电和存放;而且储能换电柜3占地面积小,不需要配备专用车位,不需要占用专门配网容量,还可作为居民小区免费的备用电源。所述储能换电柜3为完整的汽车充电设施,其为工厂生产的标准化产品,充电设施布置现场无需专业团队进行施工和调试。
如图4所示,储能模块1在储能换电柜3内为模块充电。电能通过电网303输入储能换电柜3内部的储能变流器301整流为直流电流,通过母排302流入连接在其上的储能模块1,云端管理系统4通过物联网304经过储能变流器301与储能换电柜3里各储能模块1进行通讯,控制每个储能模块1的充电工作。此时能量流动路径为由电网303流向储能变流器301再流向储能模块1。储能模块1是否进行充电,充电功率大小全部可受云端管理系统4 控制。
在上述情况的基础上,再一个实施例,如图5所示,所述储能模块1的电能通过所述储能变流器301逆变后,并入电网303,其中,所述云端管理系统4可控制储能变流器301将充电模块内电能逆变回电网303,即本发明提供的车载充电系统还可以作为一种电网用户侧储能系统,当作为充电设施使用,使用率过低时,系统可自动启动电网储能功能,对储能模块1进行主动利用,为电网调峰调频,将自己变为电网储能设施。
将闲置的设备用于电网储能,避免超前建设的充电设施使用率过低,导致资源浪费,降低投资风险。
如图5所示,储能模块1作为电网储能功能使用,电能由储能模块1流出,经母排302回流后流入储能变流器301,然后经储能变流器301逆变后并入电网303。能量流动方向为从各储能模块1流入储能变流器301再流入电网303。此状态下所有储能模块1和储能变流器301工作受云端管理系统4控制。
采用本发明提供的共享储能充电系统,其在闲置时,可自动用于电网储能,无需担心电动汽车保有量对充电设施最低收益的影响。
当然,所述储能模块还可以配合其他相应的设备可逆变产生交流电,成为移动电源,可用于代替燃油发电机和户外电源,满足不同场合对电源的需求,而不限于本发明提供的储能变流器。
如图6和图7所示,本发明还提供了一种车载充电方法,包括:
在电动汽车2内放置一个储能模块1,所述储能模块1上的第一电连接口101与电动汽车2内的充电接口202连接;或者
在电动汽车2内放置多个储能模块1,第一个储能模块1的第一电连接口101与电动汽车2内的充电接口202连接,第n个所述储能模块1的第一电连接口101插入第n-1个所述储能模块1的第二电连接口102,多个储能模块1并联为车充电或者增程;
其中,所述储能模块1为上述的储能模块1,其用于在电网和电动汽车之间转移电能。
本发明为电动汽车充电的方式为车载充电方式,与现有的电动汽车所支持的充电方式有较大区别。现在电动汽车的充电口都是非车载方式的充电口,充电口设置在车身外部,外部充电口在充电时,车辆不适合移动。所以为了更好的使用本发明公开的储能模块、车载充电系统为电动汽车充电,就需要在车内增加车载专用充电口,以方便充电时移动车辆,以及避免储能模块占用车辆外部空间。
如图6所示,单个储能模块1为电动汽车2充电,需要采用本装置充电的汽车,需要再车内增加一个直流的充电接口202。
如图7所示,多个储能模块1放在车内首尾连接并联输出为电动汽车2充电,需要采用本装置充电的汽车,需要在车内增加一个直流的充电接口202。第1个储能模块1的第一电连接口101与电动汽车2车内直流的充电接口202相连,第2个储能模块1的第一电连接口101插入第1个储能模块1的第二电连接口102,第n个储能模块1的第一电连接口101插入第n-1个储能模块1的第二电连接口102,多个并联使用。
其中,车内增加的一个直流的充电接口202与电动汽车电池组201连接,使得储能模块1给电动汽车2充电。
所述储能模块为轻量化设计,适合多个放入常规插电式电动汽车内部,包括放置到后备箱,专用储能模块箱,车座,前备箱。
由于复杂的操作会带来人为失误,本发明采用首尾相接的方式可方便车主将多个储能模块连接到一起。无论什么品牌的车辆,只要在车内增加一个车载充电接口,就可以以车载方式使用本储能模块,可单个使用,也可多个并联使用。由于单个使用,输出功率有限,仅支持充电或维持车辆低速行驶。当然,如果汽车厂家在车内设置了车载充电接口,就无需后期再增加。
由于采用了自动编组、自动分流、自动识别,用户使用时只需要将所需储能模块首尾连接,然后接入电动汽车的车载充电口,不需要对储能模块进行任何设置和操作,储能模块即可自动启动工作。待充满电动汽车或者储能模块放电完成后,储能模块会自动停止工作。用户只需要在方便的时候将模块归还到储能换电柜即可。
其中,本发明中的自动编组如下:用户顺次连接储能模块到外部设备(如电动汽车)后,与外部设备连接的第一个储能模块的控制器会自动将自己列为主控设备。它会定时自动通过通讯线路搜索连接到通讯总线上的所有储能模块。将能搜索到的储能模块,都纳入自己的控制清单中,使所有储能模块能协同工作,形成一个稳定可靠的工作组。
其中,自动分流是指对外部设备(如电动汽车)输出的过程中,由于外设或电力线路或储能模块自身的电流承载能力有限,需要对连接成组后的多个储能模块的总输出电流进行限制和/或对各储能模块电流进行合理分配,从而保证系统中所有设备的安全稳定。
其中,自动识别可以通过与外部设备(如电动汽车)进行通讯来确定需要进行的操作,如充电或放电以及所需电流,电压,保护阈值等等,从而为用户使用储能模块及其车载充电系统提供更多的准确数据,避免了人为失误操作带来的安全风险。
电动汽车能装载储能模块的数量,与车辆的载重和车内空间有关。车主需要综合考虑相关因素,以保证使用安全。用于行驶中充电/增程时,需要考虑车上人和货总重量,不能超过车辆的允许载重,以保证车辆的加速和制动性能。
在应用于停车充电时,由于车上一般属于无人状态,多放储能模块不容易超重。此时也不需要车辆的操控性能,所以停车充电放置储能模块的数量,主要取决于对电量的需求。
用户自备或者租用与储能模块适配的逆变器,配合本装置可实现共享移动电源。用以代替发电机,为用户的户外工作提供源源不断的电能。
其中,当储能模块需要补电时,用户放回储能换电柜完成,储能换电柜在用电低谷时对储能模块进行补电,充分利用本地原有配电网络剩余容量。避免设备无序充电对电网的冲击,降低设备建设和使用成本。
被租用的储能模块ID自动与承租用户ID绑定,承租用户对所租用的储能模块有保管和归还到系统的义务。归还时系统对储能模块拍照,以确定用户是否对储能模块有损坏。
本发明采用换电与充电相结合的充电方案,保留两个方案各自的优点。换电方式速度快,但需要个车厂统一电池标准,且除了支付电量费用还需要支付占用时长费用,对于使用率低的私家车这种换电方式并不友好。
所以,第一、通过车载换电方法进行充电,既有充电效果,又有增程作用。车辆的续航不再只依赖于车身电池,用户可随意调整自己车辆的续航里程。不再需要担心车身电池使用中的容量衰减对车辆的影响。
第二、通过车载方式来充电,由于普通充电桩能源来自电网,所以充电桩无法移动,导致必须为充电桩配置专用车位,充电车位只能用于充电,造成了本来就有限的车位资源的浪费。车载充电方式不需要专用车位,而且还具有增程效果,不需要车载在充电时停车等待。
储能模块共享,这提高了设备使用率,降低用户使用门槛,为电动汽车迅速推广普及提供必要条件。
本充电方法除了有给电动汽车充电的功能,同时也具备增加续航里程作用。车辆续航等于车身电池续航与车内所有储能模块续航的总和。
本发明提供的车载充电方法对使用车辆没有特殊要求。不存在传统换电方式,巨大的电池必须机器配合完成,且需要电池规格相同的问题;电动汽车无需大续航,车主可根据每次的行车需求增减搭载充电系统的数量,动态 调节续航里程。这样可以避免相比于整车寿命,电池寿命过长的现象出现,避免电池资源浪费。
显而易见的是,本领域的技术人员可以从本发明的实施方式的各种结构中不麻烦地获得其它尚未直接提到的各个实施方式和各种效果。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用。它完全可以被适用于各种适合本发明的领域。对于熟悉本领域的人员而言,可容易地实现另外的修改。因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (10)

  1. 一种储能模块,其特征在于,包括:
    电池组;
    BMS,其与所述电池组连接;
    双向DC-DC变换器,其一端与所述电池组连接,所述双向DC-DC变换器的另一端与电力线连接;
    控制器,其分别与所述BMS、所述双向DC-DC变换器、通讯线连接;
    其中,所述储能模块上设置第一电连接口和第二电连接口,所述电力线和所述通讯线的两端分别与第一电连接口、第二电连接口连接。
  2. 如权利要求1所述的储能模块,其特征在于,所述第二电连接口为一插座,所述第一电连接口为带有短线的插头;
    其中,所述第一电连接口、所述第二电连接口与所述电力线组成所述储能模块工作时的电力路径。
  3. 如权利要求2所述的储能模块,其特征在于,还包括外壳、把手及辅助轮,所述第二电连接口设置在所述外壳上,所述外壳在靠近所述第一电连接口的位置处设置收纳装置,所述第一电连接口位于所述收纳装置内;所述把手设置在所述外壳上,所述辅助轮设置在所述外壳的周角处。
  4. 如权利要求1所述的储能模块,其特征在于,所述BMS包括多个子模块,多个所述子模块通过各自的通讯口连接到BMS总线,所述BMS总线与所述控制器连接。
  5. 如权利要求1所述的储能模块,其特征在于,所述控制器包括第一通讯接口、第二通讯接口及第三通讯接口,所述第一通讯接口通过所述通讯线,与所述第一电连接口、所述第二电连接口组成所述储能模块的外部通讯路径;所述第二通讯接口和所述第三通讯接口分别与所述双向DC-DC变换器、所述BMS连接,组成所述储能模块的内部通讯路径。
  6. 一种车载充电系统,其特征在于,包括:
    储能变流器,其与电网连接,用于整流电网中的电流;
    至少一个储能模块,其与所述储能变流器连接;
    云端管理系统,其与所述储能变流器连接,通过所述储能变流器控制所述储能模块的充电和放电;
    其中,所述储能模块为权利要求1至5中任意一个所述的储能模块。
  7. 如权利要求6所述的车载充电系统,其特征在于,所述储能模块的电能通过所述储能变流器逆变后,并入电网。
  8. 如权利要求6所述的车载充电系统,其特征在于,还包括储能换电柜,其设置有多个箱体,所述储能模块位于所述箱体中,所述储能变流器设置在所述储能换电柜中。
  9. 一种车载充电方法,其特征在于,包括:
    在电动汽车内放置一个储能模块,所述储能模块上的第一电连接口与电动汽车内的充电接口连接;或者
    在电动汽车内放置多个储能模块,第一个储能模块的第一电连接口与电动汽车内的充电接口连接,第n个所述储能模块的第一电连接口插入第n-1个所述储能模块的第二电连接口;
    其中,所述储能模块为权利要求1至权利要求5中任意一项所述的储能模块,其用于在电网和电动汽车之间转移电能。
  10. 如权利要求9所述的车载充电方法,其特征在于,在电动汽车内放置多个所述储能模块时,多个所述储能模块采用并联连接方式。
PCT/CN2022/079699 2021-07-26 2022-03-08 储能模块、车载充电系统及其充电方法 WO2023005212A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110841060.6 2021-07-26
CN202110841060.6A CN113276691B (zh) 2021-07-26 2021-07-26 储能模块、车载充电系统及其充电方法

Publications (1)

Publication Number Publication Date
WO2023005212A1 true WO2023005212A1 (zh) 2023-02-02

Family

ID=77287205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079699 WO2023005212A1 (zh) 2021-07-26 2022-03-08 储能模块、车载充电系统及其充电方法

Country Status (2)

Country Link
CN (1) CN113276691B (zh)
WO (1) WO2023005212A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113276691B (zh) * 2021-07-26 2021-10-12 西安快舟机电科技有限公司 储能模块、车载充电系统及其充电方法
WO2023057970A1 (en) * 2021-10-08 2023-04-13 Seygnux Solutions Private Limited Multi-functional energy vending machine and method of operation thereof
CN114454735A (zh) * 2022-01-18 2022-05-10 绿水青山(辽宁)电力设计院有限公司 一种具有离网充电功能的电动汽车

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009054818A1 (de) * 2009-12-17 2011-06-22 Robert Bosch GmbH, 70469 Umrichter für ein Energiespeichersystem und Verfahren zum Ladungsdifferenzenausgleich zwischen Speichermodulen eines Energiespeichersystems
CN106992585A (zh) * 2016-06-16 2017-07-28 吉林大学 电动汽车充电宝
CN108092348A (zh) * 2016-11-23 2018-05-29 辽宁东鹰新能源科技股份有限公司 车载式电动汽车充电站
CN207926198U (zh) * 2018-02-01 2018-09-28 国网安徽省电力有限公司黄山供电公司 储能装置及储能系统
CN108768201A (zh) * 2018-07-27 2018-11-06 深圳英飞源技术有限公司 一种双向变换器组成的储能系统及其控制方法
CN110932298A (zh) * 2019-12-03 2020-03-27 浙江华友电力技术有限公司 储充电站中整包梯次利用废旧蓄电池的系统及控制方法
JP2021019464A (ja) * 2019-07-22 2021-02-15 住友電気工業株式会社 蓄電池、及び電源システム
CN113276691A (zh) * 2021-07-26 2021-08-20 西安快舟机电科技有限公司 储能模块、车载充电系统及其充电方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862631B2 (ja) * 2013-10-08 2016-02-16 トヨタ自動車株式会社 蓄電システム
CN204179732U (zh) * 2014-11-13 2015-02-25 温州大学 基于v2g的多功能车载充放电器
FR3074374B1 (fr) * 2017-11-28 2019-10-18 Saft Architecture de modules batterie connectes en parallele
CN207719855U (zh) * 2018-01-09 2018-08-10 深圳市普兰德储能技术有限公司 一种充储一体化移动补电车系统
CN108819791A (zh) * 2018-08-14 2018-11-16 爱驰汽车有限公司 移动式储能设备
CN112821480A (zh) * 2020-12-30 2021-05-18 国网上海能源互联网研究院有限公司 基于多移动储能电源并联的保电系统及并联增容方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009054818A1 (de) * 2009-12-17 2011-06-22 Robert Bosch GmbH, 70469 Umrichter für ein Energiespeichersystem und Verfahren zum Ladungsdifferenzenausgleich zwischen Speichermodulen eines Energiespeichersystems
CN106992585A (zh) * 2016-06-16 2017-07-28 吉林大学 电动汽车充电宝
CN108092348A (zh) * 2016-11-23 2018-05-29 辽宁东鹰新能源科技股份有限公司 车载式电动汽车充电站
CN207926198U (zh) * 2018-02-01 2018-09-28 国网安徽省电力有限公司黄山供电公司 储能装置及储能系统
CN108768201A (zh) * 2018-07-27 2018-11-06 深圳英飞源技术有限公司 一种双向变换器组成的储能系统及其控制方法
JP2021019464A (ja) * 2019-07-22 2021-02-15 住友電気工業株式会社 蓄電池、及び電源システム
CN110932298A (zh) * 2019-12-03 2020-03-27 浙江华友电力技术有限公司 储充电站中整包梯次利用废旧蓄电池的系统及控制方法
CN113276691A (zh) * 2021-07-26 2021-08-20 西安快舟机电科技有限公司 储能模块、车载充电系统及其充电方法

Also Published As

Publication number Publication date
CN113276691A (zh) 2021-08-20
CN113276691B (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2023005212A1 (zh) 储能模块、车载充电系统及其充电方法
CN101436689B (zh) 用于插入式车辆的电网负载管理
CN104517198B (zh) 基于gps卫星定位和远程无线通讯的充电车运营管理系统
CN101834455B (zh) 电动汽车充电站系统及其匹配充电方法
CN106696746A (zh) 一种可移动的电动汽车充电系统
CN203416032U (zh) 多功能电动汽车充电装置
CN103151820B (zh) 移动式蓄能电池电动汽车充电系统
CN102280903A (zh) 一种v2g智能充放电系统
CN107571817A (zh) 车载复合电源系统
CN110605986B (zh) 一种离网可移动快充系统及其管理方法
CN205395805U (zh) 移动充电栓
CN104527498B (zh) 基于gps卫星定位和远程无线通讯的充电车的上门式充电服务系统
CN110171323A (zh) 一种基于v2g的电动汽车充放电控制系统及使用方法
CN201752076U (zh) 一种v2g智能充放电装置
CN212304790U (zh) 带有太阳能电池板的车载微电网及其聚合而成的发电厂
Shuguang et al. Progress and prospect of electric vehicle’s v2g technology
CN102427240A (zh) 实现电动车辆与电网互动的系统
CN103457324A (zh) 移动式电动汽车充电站
CN217804367U (zh) 一种充电桩系统及换电站充电系统
CN104578302A (zh) 一种节能环保型充电车
CN204304564U (zh) 一种节能环保型充电车
CN106696723B (zh) 移动式模块化充电平台
CN204633373U (zh) 一种可灵活配置随车携带的电动车充电装置
CN210309958U (zh) 一种可移动的快速充电装置
CN202333915U (zh) 箱变式充电站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE