WO2024066883A1 - 电池容量估算的方法、电子设备及存储介质 - Google Patents

电池容量估算的方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2024066883A1
WO2024066883A1 PCT/CN2023/115799 CN2023115799W WO2024066883A1 WO 2024066883 A1 WO2024066883 A1 WO 2024066883A1 CN 2023115799 W CN2023115799 W CN 2023115799W WO 2024066883 A1 WO2024066883 A1 WO 2024066883A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
capacity
estimated
battery
frozen
Prior art date
Application number
PCT/CN2023/115799
Other languages
English (en)
French (fr)
Inventor
林海军
李建杰
易行云
陈斌斌
Original Assignee
欣旺达动力科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欣旺达动力科技股份有限公司 filed Critical 欣旺达动力科技股份有限公司
Publication of WO2024066883A1 publication Critical patent/WO2024066883A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing

Definitions

  • the present application relates to the field of battery technology, and in particular to a method for estimating battery capacity, an electronic device, and a storage medium.
  • temperature sampling points are arranged in various places of the battery pack.
  • the temperature of local points rises rapidly due to the concentrated heat of the batteries, while the temperature rise at the relative edges of the batteries is slower than that of local points.
  • Due to the limitation of the number of temperature sampling points when the temperature sampling points fail to cover the relative edges, that is, the actual lowest temperature of the battery cannot be collected, the temperature collection result will be higher than the actual temperature; and during the static state of the low-temperature battery, since the temperature sampling points are closer to the external environment than the battery, their sampling temperature is lower than the actual battery temperature. Therefore, during the entire temperature change process of the battery pack, the actual temperature change of the battery will lag behind the sampling temperature. Therefore, using the temperature collected by the temperature sensor to estimate the total available discharge capacity of the battery will result in lower estimation accuracy.
  • the main purpose of the embodiments of the present application is to provide a method, electronic device and storage medium for estimating battery capacity, aiming to improve the estimation accuracy of the total available discharge capacity of the battery.
  • a first aspect of an embodiment of the present application provides a method for estimating battery capacity, the method comprising:
  • the estimated freezing temperature corresponding to the current estimation period is obtained.
  • the estimated capacity of the battery is determined according to the estimated frozen capacity.
  • the second aspect of an embodiment of the present application proposes an electronic device, which includes a memory and a processor, the memory stores a computer program, and the processor implements the method described in the first aspect when executing the computer program.
  • the third aspect of an embodiment of the present application proposes a storage medium, which is a computer-readable storage medium and stores a computer program.
  • the computer program is executed by a processor, the method described in the first aspect is implemented.
  • the method, electronic device and storage medium for estimating battery capacity proposed in the present application calculate the first temperature rise variation coefficient corresponding to the current estimation period according to the hysteresis coefficient, and update the first estimated temperature according to the first temperature rise variation coefficient, the first estimated temperature and the sensor temperature collected in the current estimation period, so as to use the updated first estimated temperature as the hysteresis temperature relative to the actual temperature detected by the sensor, and obtain the estimated frozen capacity corresponding to the current estimation period according to the hysteresis temperature and the preset reference parameter to obtain the estimated capacity.
  • the present application uses the hysteresis temperature to calculate the estimated capacity, and the calculated estimated capacity is more accurate; therefore, the embodiments of the present application can improve the estimation accuracy of the available total discharge capacity of the battery.
  • FIG. 1( a ) is a composition illustration of the rated capacity of a battery
  • FIG1( b ) is a composition illustration of the rated capacity of a battery
  • FIG2 is a flow chart of a method for estimating battery capacity according to an embodiment of the present application.
  • FIG3 is a schematic diagram of average current calculation in the method for estimating battery capacity provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a first estimated temperature calculation in a specific embodiment of the method for estimating battery capacity provided in an embodiment of the present application;
  • FIG. 5 is a flowchart of adjusting the estimated frozen capacity in a specific embodiment of the method for estimating battery capacity provided in an embodiment of the present application;
  • FIG6 is a result verification diagram of the method for estimating battery capacity provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the hardware structure of an electronic device provided in an embodiment of the present application.
  • temperature sensing sampling points are arranged at various locations in the battery pack. During the discharge process, the temperature of local points rises rapidly due to the concentrated heat generation of the batteries, while the temperature rise at the relative edges of the batteries is slower than that of local points. Due to the limitation of the number of temperature sensing sampling points, when the temperature sensing sampling points fail to cover the relative edges, that is, the actual lowest temperature of the battery cannot be collected, the temperature sensing collection result will be higher than the actual temperature; and during the static state of the low-temperature battery, since the temperature sensing sampling points are closer to the external environment than the battery, their sampling temperature is lower than the actual battery temperature. Therefore, during the entire temperature change process of the battery pack, the actual temperature change of the battery will lag behind the sampling temperature.
  • the rated total capacity of the battery is divided into the battery discharge consumption capacity Q_Expended and the available discharge capacity Q_Available.
  • the temperature changes such as during the cooling process from the standard temperature, or during the heating process from a lower temperature to the standard temperature
  • the rated total capacity of the same battery is divided into the battery discharge consumption capacity Q_Expended, the battery frozen capacity Q_Frozen, and the available discharge capacity Q_Available at the current temperature, wherein the battery discharge consumption capacity Q_Expended and the available discharge capacity Q_Available are the total available discharge capacity of the battery; and the temperature is strongly correlated with the battery frozen capacity Q_Frozen, therefore, directly using the temperature collected by the temperature sensor to estimate the total available discharge capacity of the battery will result in a lower estimation accuracy.
  • the embodiments of the present application provide a method, electronic device, and storage medium for estimating battery capacity
  • the method for estimating battery capacity, electronic device and storage medium provided in the embodiments of the present application are specifically described through the following embodiments. First, the method for estimating battery capacity in the embodiments of the present application is described.
  • the method for estimating battery capacity provided in the embodiment of the present application relates to the field of battery technology.
  • the method for estimating battery capacity provided in the embodiment of the present application can be applied to a terminal, can also be applied to a server, and can also be software running in a terminal or a server.
  • the terminal can be a smart phone, a tablet computer, a laptop computer, a desktop computer, etc.
  • the server can be configured as an independent physical server, or as a server cluster or distributed system composed of multiple physical servers, and can also be configured to provide cloud services, cloud databases, cloud computing, cloud functions, cloud storage, and network
  • the software may include cloud servers for basic cloud computing services such as cloud services, cloud communications, middleware services, domain name services, security services, CDN, and big data and artificial intelligence platforms; the software may be an application of a method for realizing battery capacity estimation, etc., but is not limited to the above forms.
  • the present application can be used in many general or special computer system environments or configurations. For example: personal computers, server computers, handheld or portable devices, tablet devices, multiprocessor systems, microprocessor-based systems, set-top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments including any of the above systems or devices, etc.
  • the present application can be described in the general context of computer executable instructions executed by a computer, such as program modules.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • the present application can also be practiced in distributed computing environments, in which tasks are performed by remote processing devices connected through a communication network.
  • program modules can be located in local and remote computer storage media including storage devices.
  • FIG. 2 is an optional flow chart of a method for estimating battery capacity provided in an embodiment of the present application.
  • the method in FIG. 2 may include but is not limited to steps S101 to S106 .
  • Step S101 calculating a hysteresis coefficient corresponding to a current estimation cycle and calculating a first temperature rise variation coefficient corresponding to the current estimation cycle according to the hysteresis coefficient; wherein the hysteresis coefficient represents a hysteresis relationship between an actual battery thermal power per unit time and an average battery thermal power.
  • the first temperature rise variation coefficient represents the relationship between the collected temperature and time.
  • Step S102 Obtain a first estimated temperature.
  • the first estimated temperature is the temperature value estimated in the previous estimation cycle; it takes the starting temperature of the battery as the initial value and is updated in each estimation cycle.
  • the starting temperature can be converted according to the current actual collected temperature, or calculated according to the estimated temperature before power failure.
  • the value of the first estimated temperature in the second estimation cycle is the value of the first estimated temperature at the end of the first estimation cycle.
  • Step S103 updating the first estimated temperature according to the first temperature rise variation coefficient, the first estimated temperature and the sensed temperature.
  • the sensed temperature is the temperature collected by the collection point set on the battery; when multiple collection points are set on the battery, the sensed temperature is the lowest temperature collected by the multiple collection points. It should be noted that by judging whether to update the first estimated temperature for the calculation of the estimated capacity of the battery according to the first temperature rise variation coefficient, the first estimated temperature and the sensed temperature, the estimated capacity calculation of the battery is updated only when the temperature changes within a certain threshold, thereby improving the user experience, and when the first estimated temperature is updated, the first temperature rise variation coefficient and the sensed temperature are comprehensively considered, so that the first estimated temperature can be further made closer to the actual battery temperature.
  • Step S104 Obtain an estimated frozen capacity corresponding to a current estimation period according to the updated first estimated temperature and the preset reference parameter.
  • the benchmark parameter records the reference value of the available discharge capacity at different temperatures measured according to the experimental data. At this time, based on the reference value of the available discharge capacity, the estimated frozen capacity can be obtained.
  • Step S105 Determine the estimated capacity of the battery according to the estimated frozen capacity.
  • the estimated capacity represents the total available discharge capacity of the battery. Referring to FIG. 1( a ) and FIG. 1( b ), the total available discharge capacity is calculated based on the rated capacity and the estimated frozen capacity.
  • the first temperature rise variation coefficient corresponding to the current estimation period is calculated, and the first estimated temperature is updated according to the first temperature rise variation coefficient, the first estimated temperature and the sensor temperature collected in the current estimation period, so that the updated first estimated temperature is used as the hysteresis temperature relative to the actual temperature detected by the sensor, and the estimated frozen capacity corresponding to the current estimation period is obtained according to the hysteresis temperature and the preset reference parameters.
  • the present application uses the hysteresis temperature to calculate the estimated capacity, and the calculated estimated capacity is more accurate; therefore, the embodiments of the present application can improve the estimation accuracy of the available total discharge capacity of the battery.
  • the estimated capacity of the battery can be calculated in sequence with reference to steps S104 to S105. In other embodiments, after the starting temperature is determined after power-on, the estimated capacity is calculated with reference to steps S101 to S105. It should be noted that steps S101 to S103 are judged and processed within one estimation cycle. Whether steps S104 and S105 are within the same estimation cycle is not restricted by the embodiments of this application, and those skilled in the art can make adaptive changes according to actual conditions.
  • step S101 the calculation of the first temperature rise variation coefficient corresponding to the current estimation period according to the hysteresis coefficient in step S101 includes:
  • the first temperature rise variation coefficient is obtained by multiplying the hysteresis coefficient by the second temperature rise variation coefficient.
  • the average current represents the average value of the current over a continuous period of time. For example, as shown in FIG3 , the average current represents the average value of the current within 30 seconds. At this time, a 30-second current window can be set to collect the current sum collected within 30 seconds and averaged to obtain the average current corresponding to the current moment. If the current moment is at the 30th second, the current window moves to the 1st second, and the sum of the currents from the 1st second to the 30th second is collected and averaged to obtain the average current.
  • step S102 obtaining the first estimated temperature corresponding to the current estimation cycle, includes:
  • the historical estimated temperature is read from the preset location and the battery sleep time and power-on temperature are obtained;
  • the second temperature difference is calculated based on the historical estimated temperature and the power-on temperature
  • the second estimated temperature is used as the first estimated temperature to be updated in the current estimation cycle.
  • the historical estimated temperature is the latest estimated temperature calculated before power failure.
  • the sleep duration indicates the time interval from power failure to power on, and the power-on temperature is the lowest temperature collected by multiple sensors set on the battery.
  • the third temperature rise variation coefficient is the temperature change trend when the battery is in a dormant state.
  • an estimated dormant temperature difference can be calculated based on the third temperature rise variation coefficient and the dormant duration, the dormant temperature difference is compared with the second temperature difference, and the first estimated temperature can be determined based on the comparison result.
  • the third temperature rise variation coefficient is k 0 and the dormant duration is t 0
  • the dormant temperature difference is t 0 *k 0
  • the second temperature difference ⁇ T T c0 -T1
  • T c0 is the power-on temperature
  • T1 is the historical estimated temperature.
  • the second estimated temperature T 0 T1-t 0 *k 0 ; when ⁇ T>0 and
  • the power-on temperature represents the sensed temperature collected when the power is on.
  • step S103 updating the first estimated temperature according to the first temperature rise variation coefficient, the first estimated temperature and the sensed temperature, includes:
  • the comparison result is matched with a preset update rule and the first estimated temperature is updated according to the matching result.
  • the threshold temperature difference is used to determine whether to adjust the first estimated temperature to update the first estimated temperature.
  • the first estimated temperature remains unchanged, and the estimated capacity of the battery does not need to be recalculated.
  • a supplementary process is performed to reduce the probability of missed processing of the estimated capacity.
  • the update rule is to increase the threshold temperature difference or decrease the threshold temperature difference on the first estimated temperature or to set the first estimated temperature to the minimum temperature T detected by the sensor at the current moment according to the magnitude of the values of the sensed temperature and the first estimated temperature.
  • the first temperature difference used to determine the first estimated temperature can be close to the actual temperature difference, so that the measurement step of the first estimated temperature is more accurate.
  • matching the comparison result with a preset update rule and updating the first estimated temperature according to the matching result includes:
  • the first estimated temperature is updated to the sensed temperature.
  • the temperature hysteresis step represents the temperature difference value increased or decreased from the first estimated temperature in each estimation cycle.
  • the temperature hysteresis step can be set to the same value as the threshold temperature difference, and in other embodiments, it can also be set according to actual conditions.
  • the threshold temperature difference and the temperature hysteresis step are both set to 1°C
  • the first temperature rise variation coefficient k is updated according to the preset estimation cycle
  • the current estimation cycle is the first estimation cycle
  • the first estimated temperature is updated to the second estimated temperature plus 1.
  • the current estimation cycle is the second estimation cycle
  • the current value of the first estimated temperature is updated to the value of the first estimated temperature updated in the first estimation cycle plus 1.
  • step S105 obtaining the estimated frozen capacity corresponding to the current estimation period according to the updated first estimated temperature and the preset reference parameter, includes:
  • the updated first estimated temperature is matched with the capacity data table to determine the target total available capacity corresponding to the first estimated temperature;
  • the capacity data table is one of the reference parameters;
  • the estimated frozen capacity is determined based on the rated baseline capacity and the target total available capacity, where the rated baseline capacity is one of the baseline parameters.
  • the capacity data table records the relationship between temperature and available total discharge capacity.
  • the rated base capacity is the total capacity of the battery at standard temperature. For example, refer to the following Table 1:
  • the rated reference capacity selects the total capacity of the battery at a temperature of 25°C as the rated reference capacity.
  • the estimated frozen capacity is determined based on the rated baseline capacity and the target total available capacity, including:
  • the reference freezing parameter represents the ratio of the available discharge capacity of the battery to the rated total capacity (i.e., the rated reference capacity in this application) at the standard temperature.
  • the capacity freezing coefficient table records the capacity freezing coefficients corresponding to different reference freezing parameters at different temperatures. For example, the capacity freezing coefficient table is shown in Table 2 below:
  • the reference freezing parameter is 70%
  • the capacity freezing coefficient is 0.9
  • the estimated frozen capacity is the reference frozen capacity*0.9.
  • the method further includes:
  • the estimated frozen capacity at the current moment is compared with the last adjusted estimated frozen capacity
  • the estimated frozen capacity at the current moment is adjusted according to the preset adjustment rules and the adjustment time interval is recalculated;
  • step S106 determining the estimated capacity of the battery according to the estimated frozen capacity, includes:
  • the rated reference capacity is subtracted from the estimated frozen capacity after adjustment to obtain the estimated capacity of the battery, wherein the rated reference capacity is one of the reference parameters.
  • the adjustment time interval represents the time interval between two adjustments to the estimated frozen capacity.
  • the statistics of the adjustment time interval are processed by a timer. For example, if the preset duration is set to 1s, a 200ms timer is used to continuously count 5 times, or a 1S timer is directly used.
  • the present application uses a timer to perform statistics in a multiple-timed manner, and adjusts the estimated frozen capacity.
  • the preset duration can be set according to actual conditions.
  • the adjustment rule is used to determine whether to adjust the estimated frozen capacity by the preset capacity threshold or to add or subtract the estimated frozen capacity from the preset adjustment threshold.
  • the adjusted estimated frozen capacity is used to calculate the estimated capacity.
  • the preset duration is set to 1S, and a 200ms timer is used to count the adjustment time intervals.
  • the estimated frozen capacity corresponding to the last adjustment time interval is Q_Frozen_Pre
  • the estimated frozen capacity at the current moment is Q_Frozen_Cur
  • the initial estimated frozen capacity Q_Frozen_Pre is assigned to Q_Frozen_Cur
  • the timer is turned on to count the adjustment time; when the counted adjustment time interval is greater than 1S, the difference between Q_Frozen_Cur and Q_Frozen_Pre is When the absolute value (i.e.
  • 100mAH is the adjustment threshold set in the adjustment rule.
  • the Q_Frozen_Cur updated at the current moment is the Q_Frozen_Pre at the next moment. Therefore, in this way, the estimated frozen capacities used for the estimated capacity calculation before and after are smoothly transitioned.
  • the second estimated temperature T0 of the battery at power-on is determined by the historical estimated temperature T1 stored at power-off, the sleep time t0, and the lowest temperature Tc0 among the multiple temperatures sampled by the temperature sensor at power-on.
  • the logic is as follows:
  • the estimated initial temperature value T 0 T c0 . If the battery is powered on for the first time, the historical estimated temperature T1 is a preset value set according to experimental data.
  • the initial second temperature rise coefficient of variation is k 1 , unit: °C/min;
  • k k 1 ⁇ a, unit: °C/min;
  • the threshold temperature difference is set to 1°C
  • the first temperature rise change coefficient k is updated according to the preset estimation cycle
  • the capacity data table is queried with the updated first estimated temperature to obtain a corresponding capacity value as the current target total available capacity
  • the updated first estimated temperature and the reference freezing parameter corresponding to the rated reference capacity are matched with the preset capacity freezing coefficient table (i.e., Table 2) to obtain the capacity freezing coefficient;
  • the embodiment of the present application also provides an electronic device, the electronic device includes a memory and a processor, the memory stores a computer program, and the processor implements the above-mentioned battery capacity estimation method when executing the computer program.
  • the electronic device can be any intelligent terminal including a tablet computer, a car computer, etc.
  • FIG. 7 schematically shows the hardware structure of an electronic device according to another embodiment.
  • the electronic device includes:
  • the processor 201 may be implemented by a general-purpose CPU (Central Processing Unit), a microprocessor, an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits, and is used to execute relevant programs to implement the technical solutions provided in the embodiments of the present application;
  • a general-purpose CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the memory 202 can be implemented in the form of a read-only memory (ROM), a static storage device, a dynamic storage device, or a random access memory (RAM).
  • the memory 202 can store an operating system and other application programs.
  • the relevant program code is stored in the memory 202, and the processor 201 calls and executes the battery capacity estimation method of the embodiment of the present application;
  • Input/output interface 203 used to implement information input and output
  • the communication interface 204 is used to realize the communication interaction between the device and other devices.
  • the communication can be realized through a wired manner (such as USB, network cable, etc.) or a wireless manner (such as mobile network, WIFI, Bluetooth, etc.);
  • Bus 205 which transmits information between various components of the device (e.g., processor 201 , memory 202 , input/output interface 203 , and communication interface 204 );
  • the processor 201 , the memory 202 , the input/output interface 203 and the communication interface 204 are connected to each other in communication within the device via the bus 205 .
  • An embodiment of the present application further provides a storage medium, which is a computer-readable storage medium and stores a computer program.
  • a storage medium which is a computer-readable storage medium and stores a computer program.
  • the memory can be used to store non-transitory software programs and non-transitory computer executable programs.
  • the memory can include high-speed random access memory and non-transitory memory, such as at least one disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory may optionally include a memory remotely arranged relative to the processor, and these remote memories may be connected to the processor via a network. Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • At least one (item) means one or more, and “plurality” means two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: only A exists, only B exists, and A and B exist at the same time, where A and B can be singular or plural.
  • the character “/” generally indicates that the objects associated before and after are in an “or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c", where a, b, c can be single or multiple.
  • the technical solution of the present application in essence, or the part that contributes to the relevant technology, or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium and includes multiple instructions for a computer device (which can be a personal computer, server, or network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, etc., various media that can store programs.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供了一种电池容量估算的方法、电子设备及存储介质,属于电池技术领域。该方法包括:计算当前估算周期对应的滞后系数并根据所述滞后系数计算当前估算周期对应的第一温升变化系数;其中,所述滞后系数表征单位时间内的实际电池热功率相对于平均电池热功率的滞后关系;获取第一预估温度;根据所述第一温升变化系数、所述第一预估温度以及传感温度,更新所述第一预估温度;根据更新后的所述第一预估温度以及预设的基准参数,得到当前估算周期对应的预估冻结容量;根据所述预估冻结容量,确定电池的预估容量;因此,本申请的实施例能提升电池的可用总放电量的估算精度。

Description

电池容量估算的方法、电子设备及存储介质
相关申请的交叉引用
本申请基于申请号为202211189620.5、申请日为2022年09月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电池技术领域,尤其涉及一种电池容量估算的方法、电子设备及存储介质。
背景技术
电池成组之后,在电池包的各处会布置温感采样点。在放电过程中,由于电池集中发热导致局部点位的温度迅速上升,而电池的相对边缘处的温升比局部点位慢,而受限于温感采样点的个数,当温感采样点未能覆盖相对边缘处,即电池的实际最低温度无法采集,会导致温感采集结果较实际温度高;且在低温电池静置的过程中,由于温感采样点相对于电池更接近外部环境,其采样温度比实际电池温度更低。因此,在电池包整个温度变化过程中,电池实际的温度变化会比采样温度相对要滞后,因此,采用温感采集的温度进行电池的可用总放电量的估算会导致估算的精度较低。
发明内容
本申请实施例的主要目的在于提出一种电池容量估算的方法、电子设备及存储介质,旨在提升电池的可用总放电量的估算精度。
为实现上述目的,本申请实施例的第一方面提出了一种电池容量估算的方法,所述方法包括:
计算当前估算周期对应的滞后系数并根据所述滞后系数计算当前估算周期对应的第一温升变化系数;其中,所述滞后系数表征单位时间内的实际电池热功率相对于平均电池热功率的滞后关系;
获取第一预估温度;
根据所述第一温升变化系数、所述第一预估温度以及传感温度,更新所述第一预估温度;
根据更新后的所述第一预估温度以及预设的基准参数,得到当前估算周期对应的预估冻 结容量;
根据所述预估冻结容量,确定电池的预估容量。
为实现上述目的,本申请实施例的第二方面提出了一种电子设备,所述电子设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述第一方面所述的方法。
为实现上述目的,本申请实施例的第三方面提出了一种存储介质,所述存储介质为计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面所述的方法。
本申请提出的电池容量估算的方法、电子设备及存储介质,其根据滞后系数,计算当前估算周期对应的第一温升变化系数,并根据第一温升变化系数、第一预估温度以及当前估算周期采集的传感温度,更新第一预估温度,以将更新后的第一预估温度作为相对于传感器检测到的实际温度的滞后温度,并根据该滞后温度和预设的基准参数得到当前估算周期对应的预估冻结容量得到预估容量,因此,相对于相关技术中直接采用传感器采用的实际温度进行预估容量的计算,本申请中采用滞后温度进行预估容量的计算,计算得到的预估容量更为准确;因此,本申请的实施例能提升电池的可用总放电量的估算精度。
附图说明
图1(a)是电池的额定容量的组成说明;
图1(b)是电池的额定容量的组成说明;
图2是本申请实施例提供的电池容量估算的方法的流程示意图;
图3是本申请实施例提供的电池容量估算的方法中平均电流计算的示意图;
图4是本申请实施例提供的电池容量估算的方法中一个具体实施例的第一预估温度计算的示意图;
图5是本申请实施例提供的电池容量估算的方法中一个具体实施例的预估冻结容量调整的流程图;
图6是本申请实施例提供的采用电池容量估算的方法的结果验证图;
图7是本申请实施例提供的电子设备的硬件结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申 请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
电池成组之后,在电池包的各处会布置温感采样点。在放电过程中,由于电池集中发热导致局部点位的温度迅速上升,而电池的相对边缘处的温升比局部点位慢,而受限于温感采样点的个数,当温感采样点未能覆盖相对边缘处,即电池的实际最低温度无法采集,会导致温感采集结果较实际温度高;且在低温电池静置的过程中,由于温感采样点相对于电池更接近外部环境,其采样温度比实际电池温度更低。因此,在电池包整个温度变化过程中,电池实际的温度变化会比采样温度相对要滞后,而对于电池的可用放电容量的估算,参照图1(a)所示,假设在标准温度下,电池的额定总容量被划分为电池放电消耗容量Q_Expended以及可用放电容量Q_Available。当温度产生变化时(如从标准温度降温过程中,或从较低的温度升至标准温度过程中),参照图1(b)所示,同一电池的额定总容量被划分为电池放电消耗容量Q_Expended、电池冻结容量Q_Frozen以及当前温度下的可用放电量Q_Available,其中,电池放电消耗容量Q_Expended和可用放电量Q_Available为电池的可用总放电量;而温度与电池冻结容量Q_Frozen强相关,因此,直接采用温感采集的温度进行电池的可用总放电量的估算会导致估算的精度较低。基于此,本申请实施例提供了一种电池容量估算的方法、电子设备及存储介质,旨在提升电池的可用总放电量的估算精度。
本申请实施例提供的电池容量估算的方法、电子设备及存储介质,具体通过如下实施例进行说明,首先描述本申请实施例中的电池容量估算的方法。
本申请实施例提供的电池容量估算的方法,涉及电池技术领域。本申请实施例提供的电池容量估算的方法可应用于终端中,也可应用于服务器端中,还可以是运行于终端或服务器端中的软件。在一些实施例中,终端可以是智能手机、平板电脑、笔记本电脑、台式计算机等;服务器端可以配置成独立的物理服务器,也可以配置成多个物理服务器构成的服务器集群或者分布式系统,还可以配置成提供云服务、云数据库、云计算、云函数、云存储、网络 服务、云通信、中间件服务、域名服务、安全服务、CDN以及大数据和人工智能平台等基础云计算服务的云服务器;软件可以是实现电池容量估算的方法的应用等,但并不局限于以上形式。
本申请可用于众多通用或专用的计算机系统环境或配置中。例如:个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、置顶盒、可编程的消费电子设备、网络PC、小型计算机、大型计算机、包括以上任何系统或设备的分布式计算环境等等。本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
图2是本申请实施例提供的电池容量估算的方法的一个可选的流程图,图2中的方法可以包括但不限于包括步骤S101至步骤S106。
步骤S101、计算当前估算周期对应的滞后系数并根据滞后系数计算当前估算周期对应的第一温升变化系数;其中,滞后系数表征单位时间内的实际电池热功率相对于平均电池热功率的滞后关系。
需说明的是,滞后系数为实时计算得到的;假设电池热功率为I2*R1*t,平均电池热功率为I_avg2*R2*t,在一些实施例中,滞后系数a=I2*R1*t/I_avg2*R2*t。而在相同温度下,单位时间内认为电池内阻近似相同,即R1=R2。因此,在单位时间内,滞后系数为a=1/(I_avg/0.33C)2,即滞后系数为平均电流与充放倍数的比值的平方的倒数。
需说明的是,第一温升变化系数表征采集的温度随时间变化的关系,将第一温升变化系数和滞后系数相乘即可得到滞后的温度与时间的变化关系。假设初始的第一温升变化系数为k1,滞后系数为a,随着时间变化,第一温升变化系数k=k1×a。
步骤S102、获取第一预估温度。
需说明的是,第一预估温度为前一估算周期预估得到的温度值;其以电池的起始温度为初值,在每一个估算周期内进行更新处理,起始温度可以为根据当前实际采集的温度换算得到,或者是根据掉电前的预估温度计算得到。示例性的,当当前估算周期为第二个估算周期,则在第二个估算周期时,第一预估温度的值为第一个估算周期处理结束时第一预估温度的值。
步骤S103、根据第一温升变化系数、第一预估温度以及传感温度,更新第一预估温度。
需说明的是,传感温度为电池上设置的采集点采集得到的温度;当电池上设置有多个采集点,则传感温度为多个采集点中采集得到的最低的温度。需说明的是,通过根据第一温升变化系数、第一预估温度以及传感温度,判断是否更新第一预估温度以用于电池的预估容量的计算,以使得电池的预估容量计算仅在温度变化在一定阈值时,才进行更新,提升用户体验,且在第一预估温度更新时,综合考虑第一温升变化系数与传感温度,可以进一步使得第一预估温度与实际电池的温度更为接近。
步骤S104、根据更新后的第一预估温度以及预设的基准参数,得到当前估算周期对应的预估冻结容量。
需说明的是,基准参数记录了表示根据实验数据测量得到的不同温度下可用放电容量的参考值。此时,基于可用放电容量的参考值,可以得到预估冻结容量。
步骤S105、根据预估冻结容量,确定电池的预估容量。
需说明的是,预估容量表示电池的可用总放电量,参照图1(a)和图1(b)所示,可用总放电量为额定容量和预估冻结容量计算得到。
因此,根据滞后系数,计算当前估算周期对应的第一温升变化系数,并根据第一温升变化系数、第一预估温度以及当前估算周期采集的传感温度,更新第一预估温度,以将更新后的第一预估温度作为相对于传感器检测到的实际温度的滞后温度,并根据该滞后温度和预设的基准参数得到当前估算周期对应的预估冻结容量得到预估容量,因此,相对于相关技术中直接采用传感器采用的实际温度进行预估容量的计算,本申请中采用滞后温度进行预估容量的计算,计算得到的预估容量更为准确;因此,本申请的实施例能提升电池的可用总放电量的估算精度。
需说明的是,在一些实施例中,上电后确定起始温度后,可以参照步骤S104~步骤S105进行依次电池的预估容量计算。在另一些实施例中,上电后确定起始温度后,参照步骤S101至S105进行预估容量计算。需说明的是,步骤S101至步骤S103在一个估算周期内判断处理的。步骤S104和步骤S105是否在同一估算周期内本申请实施例不做约束,本领域技术人员可以根据实际情况进行适应性变更。
可理解的是,步骤S101中根据滞后系数计算当前估算周期对应的第一温升变化系数,包括:
获取上电后对应预设的第二温升变化系数;
将所述滞后系数与所述第二温升变化系数相乘,得到所述第一温升变化系数。
需说明的是,平均电流表示连续一段时间内电流的平均值,示例性的,参照图3所示,平均电流表示30s内的电流的平均值,此时,可以设置30S的电流窗采集30S内采集得到该电流窗的电流总和并进行平均计算,得到当前时刻对应的平均电流。如当前时刻位于第30S,则电流窗移动至第1S,并采集第1S至第30S的电流总和并求平均,得到平均电流。
可理解的是,当当前估算周期为第一个估算周期,步骤S102、获取当前估算周期对应的第一预估温度,包括:
在电池上电时,从预设位置读取历史预估温度并获取电池的休眠时长以及上电温度;
根据历史预估温度和上电温度,计算得到第二温差;
根据第二温差、休眠时长以及预设的第三温升变化系数,计算得到第二预估温度;
将第二预估温度作为当前估算周期内待更新处理的第一预估温度。
需说明的是,历史预估温度为掉电前计算得到的最新的预估温度。休眠时长表示掉电到上电的时间间隔,上电温度为电池上设置的多个传感器采集的温度中最低的温度。第三温升变化系数为电池处于休眠状态时温度变化趋势。
在一些实施例中,根据第三温升变化系数和休眠时长可以计算得到估算的休眠温差,将休眠温差和第二温差进行比较,并根据比较结果可以确定第一预估温度。示例性的,假设第三温升变化系数为k0,休眠时长为t0,则休眠温差为t0*k0;第二温差ΔT=Tc0-T1,其中Tc0为上电温度;T1为历史预估温度。当ΔT<0且|ΔT|>t0*k0,则第二预估温度T0=T1-t0*k0;当ΔT>0且|ΔT|>t0*k0,则第二预估温度T0=T1+t0*k0;当不满足上述情况,则第二预估温度T0=Tc0。上电温度表示上电时采集得到的传感温度。
可理解的是,步骤S103、根据第一温升变化系数、第一预估温度以及传感温度,更新第一预估温度,包括:
计算单位时间内所述第一温升变化系数对应的第一温差;
在第一温差大于或等于预设的阈值温差时,将传感温度与第一预估温度进行比较;
将比较结果和预设的更新规则进行匹配并根据匹配结果更新第一预估温度。
需说明的是,阈值温差是用于判断是否对第一预估温度进行温度调整以更新第一预估温度。无需调整时,第一预估温度不变,则可以无需重新计算电池的预估容量,在另一些实施例中,即便第一预估温度不变,也会做一次补充处理,以降低预估容量漏处理的概率。
需说明的是,更新规则为根据传感温度与第一预估温度的值的大小选择在第一预估温度上增加阈值温差、减少阈值温差或者是将第一预估温度设置为传感器在当前时刻检测到的最小温度T。
需说明的是,第一温差为ΔT=∫kt;t为单位时间,单位为S。通过这种方式,使得用于判断第一预估温度的第一温差能与实际的温度差相近,进而对第一预估温度的计量步进更为准确。
可理解的是,将比较结果和预设的更新规则进行匹配并根据匹配结果更新第一预估温度,包括:
在传感温度大于第一预估温度时,计算第一预估温度与预设的温度滞后步进的和值并根据和值更新第一预估温度;
在传感温度小于第一预估温度时,计算第一预估温度与温度滞后步进的差值并根据差值更新第一预估温度;
在传感温度等于第一预估温度时,将第一预估温度更新为传感温度。
需说明的是,温度滞后步进表示每个估算周期内对第一预估温度增加或减少的温差值。在一些实施例中,温度滞后步进可以与阈值温差设置为相同的值,在另一些实施例中,也可以根据实际情况进行设置。
示例性的,参照图4所示,将阈值温差和温度滞后步进均设置为1℃,按照预设的估算周期更新第一温升变化系数k并计算在该估算周期内对应的第一温差ΔT=∫kt;当第一温差ΔT大于等于1℃,则判断当前时刻检测到的最小温度T是否大于第一预估温度;当T大于第一预估温度,则将第一预估温度更新为第一预估温度加1;当T小于第一预估温度,则第一预估温度更新为第一预估温度减1;当T等于第一预估温度,将第一预估温度设置为T。具体的,假设当前估算周期为第一个估算周期时,参照图4所示,当T大于第二预估温度,则将第一预估温度更新为第二预估温度加1。假设当前估算周期为第二个估算周期,参照图4所示,当T大于第一个估算周期更新的第一预估温度的值,则将当前的第一预估温度的值更新为第一个估算周期更新的第一预估温度的值加1。
可理解的是,步骤S105、根据更新后的第一预估温度以及预设的基准参数,得到当前估算周期对应的预估冻结容量,包括:
在当前估算周期内,将更新后的第一预估温度与容量数据表进行匹配,确定与第一预估温度对应的目标可用总容量;容量数据表为基准参数之一;
根据额定基准容量与目标可用总容量,确定预估冻结容量,额定基准容量为基准参数之一。
需说明的是,容量数据表记录了温度与可用总放电量之间的关系。额定基准容量为标准温度下,电池的总容量。示例性的,参照下述表1:
表1
其中,以Q7为例,其表示电池在-30℃时,电池的可用总放电量为Q7。
将额定基准容量与目标可用总容量相减,可以得到一个理论的基准冻结容量,然而实际情况中,理论的基准冻结容量与实际的冻结容量存在一定偏差,因此会对理论的基准冻结容量进行调整,得到预估冻结容量。在一些实施例中,额定基准容量选取温度在25℃的电池总容量作为额定基准容量。
可理解的是,根据额定基准容量与目标可用总容量,确定预估冻结容量,包括:
将额定基准容量与目标可用总容量相减,得到基准冻结容量;
将更新后的第一预估温度和额定基准容量对应的基准冻结参数,与预设的容量冻结系数表进行匹配,得到容量冻结系数;
将容量冻结系数和基准冻结容量相乘,得到预估冻结容量。
需说明的是,参照图1(a)所示,基准冻结参数表示在标准温度下,电池的可用放电容量与额定总容量(即对应本申请中的额定基准容量)的比值。容量冻结系数表记录了不同温度下的不同基准冻结参数对应的容量冻结系数。示例性的,容量冻结系数表参照下述表2所示:

表2
示例性的,假设基准冻结参数为70%,则在更新后的第一预估温度为-10℃时,容量冻结系数为0.9。则预估冻结容量为基准冻结容量*0.9。
可理解的是,在步骤S106、根据预估冻结容量,确定电池的预估容量,之前,方法还包括:
判断当前统计的调整时间间隔是否达到预设时长;
当调整时间间隔达到预设时长,将当前时刻的预估冻结容量与上一被调整的预估冻结容量进行比较;
根据比较结果,按照预设的调整规则对当前时刻的预估冻结容量进行调整处理并重新统计调整时间间隔;
对应的,步骤S106、根据预估冻结容量,确定电池的预估容量,包括:
将额定基准容量与调整处理后的预估冻结容量相减,得到电池的预估容量,额定基准容量为基准参数之一。
需说明的是,调整时间间隔表示两次对预估冻结容量进行调整处理的时间间隔。调整时间间隔的统计采用计时器进行处理,如预设时长设置为1s,采用200ms的计时器连续统计5次,或者直接采用1S定时器,优选的,本申请采用定时器多次定时统计的方式进行统计,以及使调整预估冻结容量。预设时长可以根据实际情况进行设置。
需说明的是,调整规则是用于判断是否对预估冻结容量进行预设容量阈值调整或者将预估冻结容量与预设的调整阈值相加或相减。当预估冻结容量存在调整,则采用调整后的预估冻结容量进行预估容量的计算。
示例性的,参照图5所示,将预设时长设置为1S,采用200ms的计时器进行调整时间间隔的统计。假设上一次调整时间间隔对应的预估冻结容量为Q_Frozen_Pre,当前时刻的预估冻结容量为Q_Frozen_Cur;在程序初始阶段,在第一次计算得到预估冻结容量Q_Frozen_Cur时,将初始的预估冻结容量Q_Frozen_Pre赋值为Q_Frozen_Cur;并开启计时器计时以统计调整时间;当统计到的调整时间间隔大于1S,则在Q_Frozen_Cur和Q_Frozen_Pre的差值的 绝对值(即|Q_Frozen_Cur-Q_Frozen_Pre|)小于或等于预设的容量阈值(假设为100mAH)时,将计时器重新计时以重新统计调整时间间隔直至|Q_Frozen_Cur-Q_Frozen_Pre|大于容量阈值。此时,在|Q_Frozen_Cur-Q_Frozen_Pre|大于容量阈值时,当Q_Frozen_Pre小于Q_Frozen_Cur且Q_Frozen_Pre累加容量阈值大于Q_Frozen_Cur时,更新当前时刻的Q_Frozen_Cur为Q_Frozen_Pre+100mAH;当Q_Frozen_Pre大于或等于Q_Frozen_Cur时且Q_Frozen_Pre-100mAH小于Q_Frozen_Cur时,则更新当前时刻的Q_Frozen_Cur为Q_Frozen_Pre-100mAH。否则将计时器重新计时以进行上述判断。其中,100mAH为调整规则中设定的调整阈值。此时,当前时刻更新的Q_Frozen_Cur为下一时刻的Q_Frozen_Pre。因此,通过这种方式使得对前后两个用于预估容量计算的预估冻结容量进行平滑过渡。
示例性的,以本申请的一个具体实施例为例,在电池上电后,进行如下操作进行可用总放电量的估算:
1.预估温度计算
(1)计算上电时的电池的第二预估温度T0
上电时电池的第二预估温度T0由其下电存储的历史预估温度T1、休眠时长t0以及上电时的温感采样的多个温度中的最低温度Tc0决定,逻辑如下:
设置电池第三温升变化系数k0(具体为电池包静置测试值),单位℃/min;计算休眠唤醒前后温度的休眠温差t0*k0,第二温差为ΔT=Tc0-T1。
若ΔT<0,且|ΔT|>t0*k0,则预估温度初值T0=T1-t0*k0
若ΔT>0,且|ΔT|>t0*k0,则预估温度初值T0=T1+t0*k0
其余情况,预估温度初值T0=Tc0。其中,电池为第一次使用上电,则历史预估温度T1为根据实验数据设置的预设值。
(2)计算运行过程中的第一温升变化系数k
a.设置一个30S电流的滑动均值计算窗口,参照图3所示,获得30S电流窗对应的平均电流I_avg;
b.以电池0.33C放电测试数据的温升作为参考,初始的第二温升变化系数为k1,单位℃/min;
c.根据30S平均电流I_avg与0.33C电流的比值计算温升的滞后系数a,滞后系数的计算公式:a=1/(I_avg/0.33C)2;其中,温升滞后系数a的值越小表示电池实际温度越接近温感采样温度。
d.计算当前电池的第一温升变化系数k,公式如下:
k=k1×a,单位℃/min;
(3)计算运行过程中的第一预估温度T
参照图4所示,示例性的,参照图4所示,将阈值温差设置为1℃,按照预设的估算周期周期更新第一温升变化系数k并计算在该估算周期内单位时间对应的第一温差ΔT=∫kt;当第一温差ΔT大于等于1℃,则判断当前时刻检测到的最小温度T是否大于第一预估温度;此时,当当前时刻检测到的最小温度T大于第一预估温度,则将第一预估温度更新为第一预估温度加1;当当前时刻检测到的最小温度T小于第一预估温度,第一预估温度更新为第一预估温度减1;当当前时刻检测到的最小温度T等于第一预估温度,将第一预估温度更新为T。
2.预估容量计算
(1)容量数据表(参见表1)
根据电池在不同温度下的容量数据,以更新后的第一预估温度来查询该容量数据表,得出对应的容量值作为当前目标可用总容量;
(2)预估容量计算
a.由额定基准容量Qmax(即25℃下的电池的额定总容量)与目标可用总容量Q_Tpre作差得出基准冻结容量;即Q_Frozen=Qmax-Q_Tpre;
并参照表2所示,将更新后的第一预估温度和额定基准容量对应的基准冻结参数,与预设的容量冻结系数表(即表2)进行匹配,得到容量冻结系数;
将容量冻结系数和基准冻结容量Q_Frozen相乘,得到预估冻结容量Q_Frozen_Cur。
b.增加一个平滑滤波模块对前后两个调整运算周期内的预估冻结容量进行平滑过渡,以调整当前的预估冻结容量Q_Frozen_Cur;具体的,参照图5所示,对当前的预估冻结容量 Q_Frozen_Cur进行调整。
c.当存在预估冻结容量调整,则预估容量Q=Qmax-Q_Frozen_cur。
此时,参照图6所示,经过实际的电池包放电测试,根据测试设备记录的放出容量结果,实际的放出容量与该温度下电池测试数据的可用总容量存在较大偏差,其结果会更接近于采用本申请实施例的电池容量估算方法中滞后温度估算的容量。
本申请实施例还提供了一种电子设备,电子设备包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现上述电池容量估算的方法。该电子设备可以为包括平板电脑、车载电脑等任意智能终端。
请参阅图7,图7示意了另一实施例的电子设备的硬件结构,电子设备包括:
处理器201,可以采用通用的CPU(Central Processing Unit,中央处理器)、微处理器、应用专用集成电路(Application Specific Integrated Circuit,ASIC)、或者一个或多个集成电路等方式实现,用于执行相关程序,以实现本申请实施例所提供的技术方案;
存储器202,可以采用只读存储器(Read Only Memory,ROM)、静态存储设备、动态存储设备或者随机存取存储器(Random Access Memory,RAM)等形式实现。存储器202可以存储操作系统和其他应用程序,在通过软件或者固件来实现本说明书实施例所提供的技术方案时,相关的程序代码保存在存储器202中,并由处理器201来调用执行本申请实施例的电池容量估算的方法;
输入/输出接口203,用于实现信息输入及输出;
通信接口204,用于实现本设备与其他设备的通信交互,可以通过有线方式(例如USB、网线等)实现通信,也可以通过无线方式(例如移动网络、WIFI、蓝牙等)实现通信;
总线205,在设备的各个组件(例如处理器201、存储器202、输入/输出接口203和通信接口204)之间传输信息;
其中处理器201、存储器202、输入/输出接口203和通信接口204通过总线205实现彼此之间在设备内部的通信连接。
本申请实施例还提供了一种存储介质,存储介质为计算机可读存储介质,该存储介质存储有计算机程序,该计算机程序被处理器执行时实现上述电池容量估算的方法。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中, 存储器可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例描述的实施例是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域技术人员可知,随着技术的演变和新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图中示出的技术方案并不构成对本申请实施例的限定,可以包括比图示更多或更少的步骤,或者组合某些步骤,或者不同的步骤。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
本申请的说明书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括多指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例的方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序的介质。
以上参照附图说明了本申请实施例的优选实施例,并非因此局限本申请实施例的权利范 围。本领域技术人员不脱离本申请实施例的范围和实质内所作的任何修改、等同替换和改进,均应在本申请实施例的权利范围之内。

Claims (10)

  1. 一种电池容量估算的方法,其中,包括:
    计算当前估算周期对应的滞后系数并根据所述滞后系数计算当前估算周期对应的第一温升变化系数;其中,所述滞后系数表征单位时间内的实际电池热功率相对于平均电池热功率的滞后关系;
    获取第一预估温度;
    根据所述第一温升变化系数、所述第一预估温度以及传感温度,更新所述第一预估温度;
    根据更新后的所述第一预估温度以及预设的基准参数,得到当前估算周期对应的预估冻结容量;
    根据所述预估冻结容量,确定电池的预估容量。
  2. 根据权利要求1所述的电池容量估算的方法,其中,所述根据所述滞后系数计算当前估算周期对应的第一温升变化系数,包括:
    获取上电后对应预设的第二温升变化系数;
    将所述滞后系数与所述第二温升变化系数相乘,得到所述第一温升变化系数。
  3. 根据权利要求1所述的电池容量估算的方法,其中,当当前估算周期为第一个估算周期,所述获取第一预估温度,包括:
    在所述电池上电时,从预设位置读取历史预估温度并获取所述电池的休眠时长以及上电温度;
    根据所述历史预估温度和所述上电温度,计算得到第二温差;
    根据所述第二温差、所述休眠时长以及预设的第三温升变化系数,计算得到第二预估温度;
    将所述第二预估温度作为当前估算周期内待更新处理的第一预估温度。
  4. 根据权利要求1所述的电池容量估算的方法,其中,所述根据所述第一温升变化系数、所述第一预估温度以及传感温度,更新所述第一预估温度,包括:
    计算单位时间内所述第一温升变化系数对应的第一温差;
    在所述第一温差大于或等于预设的阈值温差时,将所述传感温度与第一预估温度进行比较;
    将比较结果和预设的更新规则进行匹配并根据匹配结果更新所述第一预估温度。
  5. 根据权利要求4所述的电池容量估算的方法,其中,所述将比较结果和预设的更新规 则进行匹配并根据匹配结果更新所述第一预估温度,包括:
    在所述传感温度大于所述第一预估温度时,计算所述第一预估温度与预设的温度滞后步进的和值并根据所述和值更新所述第一预估温度;
    在所述传感温度小于所述第一预估温度时,计算所述第一预估温度与所述温度滞后步进的差值并根据所述差值更新所述第一预估温度;
    在所述传感温度等于所述第一预估温度时,将所述第一预估温度更新为所述传感温度。
  6. 根据权利要求1所述的电池容量估算的方法,其中,所述根据更新后的所述第一预估温度以及预设的基准参数,得到当前估算周期对应的预估冻结容量,包括:
    在当前估算周期内,将更新后的所述第一预估温度与容量数据表进行匹配,确定与所述第一预估温度对应的目标可用总容量;所述容量数据表为所述基准参数之一;
    根据额定基准容量与所述目标可用总容量,确定预估冻结容量,所述额定基准容量为所述基准参数之一。
  7. 根据权利要求6所述的电池容量估算的方法,其中,所述根据额定基准容量与所述目标可用总容量,确定预估冻结容量,包括:
    将所述额定基准容量与所述目标可用总容量相减,得到基准冻结容量;
    将更新后的所述第一预估温度和所述额定基准容量对应的基准冻结参数,与预设的容量冻结系数表进行匹配,得到容量冻结系数;
    将所述容量冻结系数和所述基准冻结容量相乘,得到所述预估冻结容量。
  8. 根据权利要求1所述的电池容量估算的方法,其中,在确定电池的预估容量之前,所述方法还包括:
    判断当前统计的调整时间间隔是否达到预设时长;
    当所述调整时间间隔达到预设时长,将当前时刻的所述预估冻结容量与上一被调整的预估冻结容量进行比较;
    根据比较结果,按照预设的调整规则对当前时刻的所述预估冻结容量进行调整处理并重新统计所述调整时间间隔;
    对应的,所述根据所述预估冻结容量,确定电池的预估容量,包括:
    将额定基准容量与调整处理后的所述预估冻结容量相减,得到所述电池的预估容量,所述额定基准容量为所述基准参数之一。
  9. 一种电子设备,其中,所述电子设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现权利要求1至8任一项所述电池容量估算的方 法。
  10. 一种计算机可读存储介质,所述存储介质存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至8任一项所述的电池容量估算的方法。
PCT/CN2023/115799 2022-09-28 2023-08-30 电池容量估算的方法、电子设备及存储介质 WO2024066883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211189620.5 2022-09-28
CN202211189620.5A CN115436809B (zh) 2022-09-28 2022-09-28 电池容量估算的方法、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024066883A1 true WO2024066883A1 (zh) 2024-04-04

Family

ID=84249222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115799 WO2024066883A1 (zh) 2022-09-28 2023-08-30 电池容量估算的方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115436809B (zh)
WO (1) WO2024066883A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115436809B (zh) * 2022-09-28 2024-04-30 欣旺达动力科技股份有限公司 电池容量估算的方法、电子设备及存储介质

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616647A (zh) * 2013-12-09 2014-03-05 天津大学 一种用于电动汽车电池管理系统的电池剩余电量估计方法
CN107748342A (zh) * 2017-09-14 2018-03-02 深圳天珑无线科技有限公司 库仑计校准方法、移动终端及计算机存储介质
CN109061497A (zh) * 2018-08-10 2018-12-21 深圳芯智汇科技有限公司 一种电池剩余电量计量系统及方法
CN109521370A (zh) * 2018-11-20 2019-03-26 厦门科灿信息技术有限公司 一种电池soc获取方法、系统、装置及可读存储介质
CN109946623A (zh) * 2019-03-27 2019-06-28 吉林大学 一种锂电池的soc在线估测方法
CN111308357A (zh) * 2020-04-01 2020-06-19 一汽解放汽车有限公司 电池容量估算方法、电池管理系统、车辆及存储介质
WO2020188284A1 (en) * 2019-03-20 2020-09-24 Dyson Technology Limited Device and method of estimating an amount of charge of a battery
CN112415410A (zh) * 2019-08-23 2021-02-26 比亚迪股份有限公司 估算电池soc的方法和装置、存储介质和车辆
CN113030742A (zh) * 2019-12-24 2021-06-25 比亚迪股份有限公司 电池容量的估算方法、装置及设备
CN114545241A (zh) * 2022-01-27 2022-05-27 惠州市蓝微电子有限公司 基于冻结容量的soc估算方法及电子设备
CN115113076A (zh) * 2022-01-07 2022-09-27 长城汽车股份有限公司 电池相对soc的估算方法及相关装置
CN115436809A (zh) * 2022-09-28 2022-12-06 欣旺达电动汽车电池有限公司 电池容量估算的方法、电子设备及存储介质

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616647A (zh) * 2013-12-09 2014-03-05 天津大学 一种用于电动汽车电池管理系统的电池剩余电量估计方法
CN107748342A (zh) * 2017-09-14 2018-03-02 深圳天珑无线科技有限公司 库仑计校准方法、移动终端及计算机存储介质
CN109061497A (zh) * 2018-08-10 2018-12-21 深圳芯智汇科技有限公司 一种电池剩余电量计量系统及方法
CN109521370A (zh) * 2018-11-20 2019-03-26 厦门科灿信息技术有限公司 一种电池soc获取方法、系统、装置及可读存储介质
WO2020188284A1 (en) * 2019-03-20 2020-09-24 Dyson Technology Limited Device and method of estimating an amount of charge of a battery
CN109946623A (zh) * 2019-03-27 2019-06-28 吉林大学 一种锂电池的soc在线估测方法
CN112415410A (zh) * 2019-08-23 2021-02-26 比亚迪股份有限公司 估算电池soc的方法和装置、存储介质和车辆
CN113030742A (zh) * 2019-12-24 2021-06-25 比亚迪股份有限公司 电池容量的估算方法、装置及设备
CN111308357A (zh) * 2020-04-01 2020-06-19 一汽解放汽车有限公司 电池容量估算方法、电池管理系统、车辆及存储介质
CN115113076A (zh) * 2022-01-07 2022-09-27 长城汽车股份有限公司 电池相对soc的估算方法及相关装置
CN114545241A (zh) * 2022-01-27 2022-05-27 惠州市蓝微电子有限公司 基于冻结容量的soc估算方法及电子设备
CN115436809A (zh) * 2022-09-28 2022-12-06 欣旺达电动汽车电池有限公司 电池容量估算的方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN115436809A (zh) 2022-12-06
CN115436809B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
KR102511271B1 (ko) 시계열 데이터 저장 및 쿼리 방법 및 장치, 및 그 서버 및 저장 매체
WO2024066883A1 (zh) 电池容量估算的方法、电子设备及存储介质
WO2018196121A1 (zh) 一种确定电池内短路的方法及装置
JP5940581B2 (ja) 消費電力予測装置、方法、およびその非一時的コンピュータ可読記憶媒体
US10376245B2 (en) Information processing device, information processing method, and information processing program
CN103823716A (zh) 具多重中央处理单元的电子装置及其效能管理方法
CN112818535B (zh) 建立电热仿真模型及获得电热仿真值的方法和装置
JP2019095948A (ja) 携帯電子機器、プロセッサ制御方法およびプロセッサ制御プログラム
CN111460639B (zh) 动态推算电缆导体温度的方法、装置、电子设备及存储介质
JP2022170227A (ja) 電池状態推定装置、電力システム
WO2017063446A1 (zh) 一种充电方法及移动终端、存储介质
WO2024099011A1 (zh) 电池直流阻抗估算方法及装置
TWI585429B (zh) 估計電池容量的方法
WO2016126268A1 (en) Battery calibration
WO2023184870A1 (zh) 动力电池的热管理方法、装置、电子设备和存储介质
CN116774056A (zh) 评估电池的充电时间的方法、系统及计算机可读存储介质
CN114565325B (zh) 一种电力物联网的大数据分析方法及系统
CN116047296A (zh) 电池截止容量的预测方法、终端设备及存储介质
CN116818123A (zh) 一种芯片节点温度的检测方法、装置及电子设备
CN116613427A (zh) 家庭储能系统加热方法、装置、设备和存储介质
WO2021238272A1 (zh) 数据retention时间的计算方法、装置及设备
TW202022396A (zh) 判斷電量狀態的方法及其電子裝置
CN115795256A (zh) 电池包加热时长确定方法、装置、设备及存储介质
CN113218523A (zh) 实际体温的确定方法及装置、存储介质和电子装置
TW201910801A (zh) 估測電池Qmax的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 22956790.4

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870124

Country of ref document: EP

Kind code of ref document: A1