CN109061497A - 一种电池剩余电量计量系统及方法 - Google Patents

一种电池剩余电量计量系统及方法 Download PDF

Info

Publication number
CN109061497A
CN109061497A CN201810910930.9A CN201810910930A CN109061497A CN 109061497 A CN109061497 A CN 109061497A CN 201810910930 A CN201810910930 A CN 201810910930A CN 109061497 A CN109061497 A CN 109061497A
Authority
CN
China
Prior art keywords
battery
qmax
current
pct
dump energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810910930.9A
Other languages
English (en)
Other versions
CN109061497B (zh
Inventor
罗冬哲
王晓亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN X-POWERS TECHNOLOGY Co Ltd
Original Assignee
SHENZHEN X-POWERS TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN X-POWERS TECHNOLOGY Co Ltd filed Critical SHENZHEN X-POWERS TECHNOLOGY Co Ltd
Priority to CN201810910930.9A priority Critical patent/CN109061497B/zh
Publication of CN109061497A publication Critical patent/CN109061497A/zh
Application granted granted Critical
Publication of CN109061497B publication Critical patent/CN109061497B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm

Abstract

本发明涉及一种电池剩余电量计量系统及方法。所述电池剩余电量计量系统包括:电压采集模块、温度补偿模块、电池状态判断模块和计算模块,其中,所述电压采集模块用于采集电池电压vbat,并将采集结果传输给所述电池状态判断模块;所述温度补偿模块用于根据电池的温度信息对电池的内阻rdc进行补偿;所述电池状态判断模块用于根据电池电压vbat的变化情况判断电池的状态;所述计算模块用于根据电池电压vbat、电池状态和电池内阻rdc计算出电池的相对百分比剩余电量SOC。本发明的系统及方法不需要使用电流采样电阻,而是通过考虑温度对电池等效内阻的影响,实现对电池剩余电量的准确估计,硬件系统成本低。

Description

一种电池剩余电量计量系统及方法
技术领域
本发明涉及电源管理技术领域,具体涉及一种电池剩余电量计量系统及方法。
背景技术
目前,随着智能穿戴、智能终端等电子产品的普及,电池剩余电量的精确显示成为相关产品的一个重要的性能指标。如果电池剩余电量不能精确显示,一方面会影响用户体验,例如会出现使用电量变化不均匀、电量还有很多就关机、以及充电充不满等问题;另一方面还会影响电池电量的利用限度。电池剩余电量的显示是否精确,取决于电池剩余电量的计量是否准确。
现有技术中,计量电池剩余电量通常使用如下三种方式:
1.使用独立电量计芯片,使用阻抗跟踪算法,利用电池电压和电流信息,经过一系列计算,得出电池剩余电量,从而得出电池的相对百分比剩余电量。利用此种方法,需要实时采集电池的电流信息,因而必须要使用高精度的电流采样电阻,这样会增加物料成本、IC本身的成本、校准电流信息的生产成本等等。
2.使用独立电量计芯片,采样电池电压、温度等信息,通过计算得到电池的相对百分比剩余电量。然而,通常由于算法的原因,现有计量方法无法准确判断出电池的状态,如静止、充电、放电等不同状态,这样,用户在使用时会发现电量变化不正常,体验较差。现有的计量方法没有考虑剩余电量与电流、温度等相关的因素,导致在低温和/或大电流情况下,精度较差。另外,现有的计量方法没有针对电池老化造成的影响(如极化内阻和极化电容的变化)进行补偿。这些都导致现有的计量方法不能很好地估计电池剩余电量。
3.使用纯软件方式,读取其它途径获得的电池电压信息,并通过计算近似地估算电池剩余电量。然而,通常由于电池电压信息不能准确代表电池的状态,以及由于缺乏准确的算法,导致这种纯软件方式估算的电池剩余电量的误差很大,只能用于一些低端产品。
发明内容
基于上述现状,本发明的主要目的在于提供一种电池剩余电量计量系统及方法,其无需采用电流采样电阻,便可获得电池的剩余电量,并能保证电池剩余电量在低温时的精度。
为实现上述目的,本发明采用的技术方案如下:
根据本发明的第一方面,一种电池剩余电量计量系统,包括:电压采集模块、温度补偿模块、电池状态判断模块和计算模块,其中,
所述电压采集模块用于采集电池电压vbat,并将采集结果传输给所述电池状态判断模块;
所述温度补偿模块用于根据电池的温度信息对电池的内阻rdc进行补偿;
所述电池状态判断模块用于根据电池电压vbat的变化情况判断电池的状态;
所述计算模块用于根据电池电压vbat、电池状态和电池内阻rdc计算出电池的相对百分比剩余电量SOC。
优选地,所述温度补偿模块利用预先确定的温度补偿系数kt对电池的内阻rdc进行补偿,补偿方式为:rdc=kt*rbase,其中,rbase为电池在预定参考温度下的内阻。
优选地,所述电池状态判断模块包括:
初始状态判断单元,用于判断电池的初始的绝对百分比剩余电量PCT;
状态处理单元,用于判断电池当前的状态。
优选地,所述计算模块包括:
电流估算单元,用于周期性地根据电池电压vbat和电池内阻rdc估算电池电流ibat*,并根据电池状态对估算出的电池电流ibat*的真实性进行判断,在电池电流ibat*是真实电流的情况下,保留估算结果,否则,舍弃估算结果;
电流修正单元,用于根据预先确定的电流更新系数对估算出的电池电流ibat*进行修正;
电量增量计算单元,用于周期性地根据修正后的电池电流ibat*计算电池的电量增量ΔC;
电池剩余电量计算单元,用于周期性地根据所述电量增量计算单元的计算结果计算出电池的相对百分比剩余电量SOC。
优选地,还包括老化补偿模块,用于估算电池容量Qmax的变化,更新电池容量Qmax,并将更新结果传输给所述计算模块,以用于计算电池的相对百分比剩余电量SOC。
优选地,所述老化补偿模块更新电池容量Qmax的方式为:
Qmaxnew←kq×Qmax*+(1-kq)×Qmaxold
其中,Qmaxnew为更新后的电池容量;
kq为预先确定的老化补偿系数;
Qmax*为估算出的当前的电池容量,pct(ta)和pct(tb)分别为电池前后两次处于静止状态时的绝对百分比剩余电量,ΔC为前次静止状态到本次静止状态期间电池的电量增量;
Qmaxold为更新前的电池容量。
优选地,还包括温度采集模块,用于采集电池的温度,并将采集结果传输给所述温度补偿模块。
优选地,还包括上位机,所述计算模块的输出端连接所述上位机,以便将计算结果传输给所述上位机。
优选地,所述上位机包括手机、笔记本电脑、平板电脑、智能穿戴装置的控制器、飞行器控制器、机器人控制器、智能家电、车载多媒体设备、或智能硬件。
根据本发明的第二方面,一种电池剩余电量计量方法,包括步骤:
S100、获取电池电压vbat和电池温度temp;
S200、根据电池电压vbat的变化情况判断电池的状态;
S300、根据电池温度temp对电池的内阻rdc进行补偿;
S400、根据电池电压vbat、电池状态和电池内阻rdc计算出电池的相对百分比剩余电量SOC。
优选地,所述步骤S100中,周期性地采集电池的电压vbat;
所述步骤S200中,根据过去多个周期的采集结果确定电池的电压变化率dv/dt和同一电压变化率dv/dt下产生的电压变化幅值Δvbat_jump,并根据电压变化率dv/dt和电压变化幅值判断电池当前的状态。
优选地,所述步骤S300中,利用预先确定的温度补偿系数kt对电池的内阻rdc进行补偿,补偿方式为:rdc=kt*rbase,其中,rbase为电池在预定参考温度下的内阻。
优选地,所述步骤S400包括子步骤:
S410、周期性地根据电池电压vbat和电池内阻rdc估算电池电流ibat*,并根据电池状态对估算出的电池电流ibat*的真实性进行判断,在电池电流ibat*是真实电流的情况下,保留估算结果,执行子步骤S420,否则,舍弃估算结果;
S420、根据预先确定的电流更新系数对估算出的电池电流ibat*进行修正;
S430、周期性地根据修正后的电池电流ibat*计算电池的电量增量ΔC;
S440、周期性地根据计算出的电池的电量增量ΔC计算出电池的相对百分比剩余电量SOC。
优选地,所述子步骤S410中,根据式子估算电池电流ibat*,式中,OCV为电池的开路电压,kt为温度补偿系数,rbase为电池在预定参考温度下的内阻。
优选地,所述子步骤S420中,根据式子ibat*←C1×ibat*+C2对估算出的电池电流ibat*进行修正,式中,C1和C2为预先确定的电流更新系数。
优选地,所述子步骤S430中,根据式子计算电池的电量增量ΔC,式中,t=0代表一个周期的开始时刻。
优选地,所述子步骤S440中,依次执行如下计算:
(1)计算电池当前时刻的电量百分比变化增量Δpct(t),其中,Qmax为电池容量;
(2)计算电池当前时刻的绝对百分比剩余电量pct(t),pct(t)=pct(t0)+Δpct(t),式中,pct(t0)为一个周期的开始时刻电池的绝对百分比剩余电量;
(3)计算电池的相对百分比剩余电量SOC,其中,pctx为在电池的SOC=0时的绝对百分比剩余电量,记为pctx=f(OCVsoc=0);pcty为在电池的SOC=100时的绝对百分比剩余电量,记为pcty=f(OCVsoc=100)。
优选地,在所述步骤S400之前或之中,还包括步骤:
S500、估算电池容量Qmax的变化,更新电池容量Qmax,以对电池容量Qmax进行老化补偿。
优选地,所述步骤S500包括子步骤:
S510、判断电池当前是否满足静止条件,若是,则确定电池在当前静止条件下的绝对百分比剩余电量PCT;
S520、取电池前后两次处于静止状态时的绝对百分比剩余电量pct(ta)和pct(tb),计算前次静止状态到本次静止状态期间电池的电量增量ΔC;
S530、估算出当前的电池容量Qmax*
S540、更新电池容量Qmax,更新方式为:
Qmaxnew←kq×Qmax*+(1-kq)×Qmaxold
其中,Qmaxnew为更新后的电池容量,Qmaxold为更新前的电池容量,kq为预先确定的老化补偿系数。
优选地,所述子步骤S510中,若电池每秒钟的电压变化率不超过ΔRate,则认为电池处于静止状态,其中,ΔRate≤100μV。
本发明的电池剩余电量计量系统及方法不需要使用电流采样电阻,而是通过测量电池电压和温度、并考虑温度对电池等效内阻的影响,实现对电池剩余电量的准确估计,即使在大电流、低温等场合下也仍能准确地计算剩余电量,硬件系统成本低。
进一步地,本发明的电池剩余电量计量系统及方法还充分考虑到电池在循环充放电后容量会下降的问题,提出了老化补偿的概念和补偿方法,使得电池剩余电量的计量更为准确。
附图说明
以下将参照附图对根据本发明的电池剩余电量计量系统及方法的优选实施方式进行描述。图中:
图1为根据本发明的一种优选实施方式的电池剩余电量计量系统的原理示意图;
图2为图1中的计算模块的优选实施方式的原理示意图;
图3为本发明的电池剩余电量计量系统的优选实施方式的硬件原理图;
图4为根据本发明的一种优选实施方式的电池剩余电量计量方法的流程图;
图5为根据本发明的另一种优选实施方式的电池剩余电量计量方法的流程图;
图6为图5中老化补偿步骤的详细过程。
具体实施方式
针对现有技术中的电池剩余电量计量方法所存在的成本高昂或者精度不足的问题,本发明提供了一种新的电池剩余电量计量系统及方法,能够以较低的成本实现较高精度的计量。容易理解,本发明所涉及的电池主要是指充电电池。
本发明的上下文中涉及多个专用的英文缩写,其含义如下:OCV,即开路电压(opencircuit voltage);PCT,即绝对百分比剩余电量(percentage of battery Qmax);Qmax,即电池容量(Maximum capacity of battery);SOC,即相对百分比剩余电量(state ofcharge),尤指在一定电流、温度和老化状态下的相对百分比剩余电量。因为PCT是指电池在理想状态下且内阻rdc为0时,可以放出的电量;而SOC是一个相对量,只有在电流、温度、老化程度以及放电截止电压vbat_zero等条件确定时才有意义,因此,本发明的电池剩余电量计量系统及方法中,最终得到的电池剩余电量为相对百分比剩余电量SOC。
本发明的第一方面提供了一种电池剩余电量计量系统,如图1所示,其包括:电压采集模块100、温度补偿模块200、电池状态判断模块300和计算模块400,其中,
所述电压采集模块100用于采集电池电压vbat,并将采集结果传输给所述电池状态判断模块300;所述电压采集模块100例如包括第一电阻R1、第二电阻R2以及相应的IC采样电路4(参见图3);
所述温度补偿模块200用于根据电池的温度信息对电池的内阻rdc进行补偿,并将补偿结果传输给所述电池状态判断模块300或者传输给所述计算模块400;
所述电池状态判断模块300用于根据电池电压vbat的变化情况判断电池的状态;
所述计算模块400用于根据电池电压vbat、电池状态和电池内阻rdc计算出电池的相对百分比剩余电量SOC。
在具体实施时,电压采集模块100的输入端与相应的电池电连接,以便采集电池的端电压并转换为数字电压信号后输出;电池状态判断模块300的输入端与电压采集模块100的输出端相连,以便接收电池的端电压,并处理得到电池的状态;计算模块400接收电压信息、电池状态信息和温度补偿后的电池内阻,或者还可以接收温度信息,经过运算后得出电池的相对百分比剩余电量SOC。
本发明的电池剩余电量计量系统不需要使用电流采样电阻,而是通过测量电池电压和温度、并考虑温度对电池等效内阻的影响,实现对电池剩余电量的准确估计,即使在大电流、低温等场合下也仍能准确地计算剩余电量,系统成本低。
优选地,本发明的电池剩余电量计量系统还包括温度采集模块(图1中未示出),其例如包括温度采样电阻R3和对应的IC采样电路4(参见图3),用于采集电池的温度,并将采集结果传输给所述温度补偿模块200。
优选地,所述温度采集模块可以包括电池内部的ntc电阻,或者电池外部的ntc电阻,或者其他温度检测元件,只要能检测电池温度即可。
替代地,本发明的电池剩余电量计量系统也可以不包括温度采集模块,而是从相应的BMS(即电池管理系统)或PMU(电源管理单元)中获取电池的温度信息,同样能够实现本发明的目的。
优选地,所述电池状态判断模块300可以包括:
初始状态判断单元,用于判断电池的初始的绝对百分比剩余电量PCT;
状态处理单元,用于判断电池当前的状态,电池可能的状态包括充电、放电、静止等。
电池状态判断模块300主要根据电压的变化率、变化率的方向、以及电池电压突变的幅度等,综合判断电池当前处于充电、放电还是静止状态,其意义在于从定性的角度,指示剩余电量百分比的增减方向。
优选地,所述电压采集模块100采集静止状态下的电池电压作为电池的开路电压OCV,所述初始状态判断单元可以根据预先确定的OCV与PCT的对应关系(例如预先确定的OCV-PCT曲线或表格)确定电池初始的绝对百分比剩余电量PCT。也即,从静止状态开始,电压采集模块100便通过IC采样电路开始采集电池电压,并传输给所述电池状态判断模块300,在所述电池状态判断模块300中,所述初始状态判断单元可通过查找OCV-PCT的对应关系获得初始的PCT。
优选地,所述电压采集模块100周期性地采集电池的电压vbat,所述状态处理单元则根据过去多个周期的采集结果确定电池的电压变化率dv/dt和同一电压变化率dv/dt下产生的电压变化幅值,并根据电压变化率dv/dt和电压变化幅值判断电池当前的状态。
例如,电压采集模块100可通过IC采样电路获取电池电压vbat,并且每隔固定的周期(例如1秒、2秒等)便再次更新电池电压vbat;在此基础上,电池状态判断模块300(具体是状态处理单元)根据当前的电池电压vbat以及过去几个周期的计数值,确定电压变化率dv/dt,例如:
其中,vbat4为当前的电池电压,vbat3、vbat2和vbat1分别为过去三个周期的电压计数值,Δt3、Δt2和Δt1则分别为对应的时间间隔。
随后,状态处理单元再结合之前存储并定期更新的dv/dt值,例如可标记为(dv/dt)old,计算同一dv/dt下产生的电压变化幅值:
其中,t=0表示该dv/dt值开始的时刻,t=end,表示该dv/dt值结束的时刻。
如此,状态处理单元便能够根据dv/dt、(dv/dt)old和Δvbat_jump判断电池的状态:根据dv/dt可判断出电池的放电速率,根据(dv/dt)old可以判断出电池上一时刻的放电速率,结合电压的突然变化,即电压变化幅值Δvbat_jump,可综合得出电池处于放电还是充电、或者静止状态。例如,dv/dt>(dv/dt)old>0,且Δvbat_jump>Rdc_x*I,则表示电池当前处于充电状态,且电流为I,其中,Rdc_x为电池当前的内阻。
优选地,所述温度补偿模块200利用预先确定的温度补偿系数kt对电池的内阻rdc进行补偿,补偿方式为:
rdc=kt*rbase (3)
其中,rbase为电池在预定参考温度(通常为常温,例如25℃)下的内阻。
温度补偿模块200对电池内阻进行补偿的意义在于,使相应的计量系统和计量方法能够适应低温的场合,确保在低温下仍然可以准确计算相对百分比剩余电量。
具体地,rbase可根据该预定参考温度下的充放电的压差,除以放电电流得到。温度补偿系数kt可事先通过试验获得,例如,针对多个不同的温度进行试验,得到每个温度下温度补偿系数kt,并以列表的形式进行存储,温度补偿模块200进行温度补偿时,可以根据当前的电池温度查表确定适用的温度补偿系数kt。
温度补偿模块200可在温度采集模块测量电池温度temp后(或者在通过其他途径获得电池温度temp后),产生温度补偿系数kt(例如通过查表获得),以此补偿电池等效内阻。
优选地,如图2所示,所述计算模块400包括:
电流估算单元410,用于周期性地根据电池电压vbat和电池内阻rdc估算电池电流ibat*,并根据电池状态对估算出的电池电流ibat*的真实性进行判断,在电池电流ibat*是真实电流的情况下,保留估算结果,例如将电池电流ibat*传输给下述的电流修正单元420,否则,舍弃估算结果;
电流修正单元420,用于根据预先确定的电流更新系数对估算出的电池电流ibat*进行修正;
电量增量计算单元430,用于周期性地根据修正后的电池电流ibat*计算电池的电量增量ΔC;
电池剩余电量计算单元(即SOC计算单元)440,用于周期性地根据所述电量增量计算单元430的计算结果计算出电池的相对百分比剩余电量SOC。
优选地,所述电流估算单元410估算电池电流的方式为:
其中,OCV为电池的开路电压,kt为温度补偿系数,rbase为电池在预定参考温度下的内阻。
假设电池处于充电状态,则电池电压vbat会增加,因此上式得出的充电电流应该为正。假设电池处于放电状态,则vbat会减小,因此上式得出的充电电流应该为负。因此,结合电池状态判断模块300判断出的电池状态,可以判断出估算的电池电流是真实电流,还是假的电流。也即,如果电池的充放电状态和电池电流的符号不相符,则说明估算的电池电流是假的,因此可舍弃此次估算的结果,无需传输给电流修正单元420,该电流也就不会用来执行后续的电流修正过程和ΔC累计过程。
然而,由于电池等效内阻随着温度和放电电量会发生变化,单纯地测量各种放电电流和温度下的rdc,并不能保证对电池电流ibat*估算的准确性。因此,优选地,本发明通过电流修正单元420采用如下动态追踪的方式修正电池电流ibat*,使得ibat*逐渐收敛到真实的ibat:
ibat*←C1×ibat*+C2 (5)
其中,C1和C2为预先确定的电流更新系数,其确定方式例如为:事先对电池测量多组充放电数据,如使用未经C1和C2校准的电量计对电池进行充放电,同时用精准的库仑计进行检测,取不同的放电电流、充电电流下的如下值(假设取6组):(ΔC1,ΔC1*)、(ΔC2,ΔC2*)、(ΔC3,ΔC3*)、(ΔC4,ΔC4*)、(ΔC5,ΔC5*)和(ΔC6,ΔC6*),其中,ΔCi(i=1~6)为电量计测量值,ΔCi*(i=1~6)为库仑计测量的真实值,将测量值与真实值进行比较,再通过线性插值,即可取得拟合的C1和C2。
通过设置合适的迭代次数(例如2-10次,优选2-5次),即可保证估算出的电池电流收敛到真实的电流值。
优选地,所述电量增量计算单元430计算电量增量的方式为:
其中,t=0代表一个周期的开始时刻。
以下说明电池剩余电量计算单元440计算电池的相对百分比剩余电量SOC的过程:
由于电池电量发生变化,因而电池的相对百分比剩余电量PCT也随之发生变化,其中,变化的量记为Δpct(t),表示电池当前时刻的电量百分比变化增量:
式中,Qmax为电池容量。
于是,可计算出电池当前时刻的绝对百分比剩余电量pct(t),计算式为:
pct(t)=pct(t0)+Δpct(t) (8)
式中,pct(t0)为一个周期的开始时刻电池的绝对百分比剩余电量。
本发明提出剩余电量概念是指,在给定截止电压vbat_zero时,一定电流和温度下,剩余电量的相对百分比。因为,SOC为0的点是与电池电压相关的量。
vbat_zero+iload*rdc(temp)=OCVsoc=0 (9)
此处的rdc(temp)由式(3)获取,为一定温度下的内阻;iload为负载电流。
当SOC为0时,对应的电池电压为截止电压,其值与温度temp,负载电流iload相关。此时,OCVsoc=0对应的pct就不可能是0,而是一个动态变化的值pctx,其中x是pct的脚标,代表不同状态下的pct。其与pct(t)的区别是,pctx代表SOC=0时的pct,为特定条件下的pct。根据锂电池的基本知识,其开路电压OCV与pct存在一一对应的特定关系,此处可用pct=f(OCV)表示:
pctx=f(OCVsoc=0) (10)
因此,SOC是一个动态的相对量,其计算式为:
式中,pcty是与电池充满电时OCV对应的pct值(y也为pct的脚标),代表SOC=100时的pct,为特定条件下的pct,记为pcty=f(OCVsoc=100)。
于是,电池剩余电量计算单元440根据式(11)即可求出最终的输出量SOC。
由于电池在循环充放电后,电池的容量会下降,因此,本发明提出了老化补偿的概念,并且同时提供了老化补偿的实现方法。
如图1所述,本发明的电池剩余电量计量系统优选还包括老化补偿模块500,用于估算电池容量Qmax的变化,更新电池容量Qmax,并将更新结果传输给所述计算模块400,以便更为准确地计算电池的相对百分比剩余电量SOC。
优选地,所述老化补偿模块500更新电池容量Qmax的方式为:
Qmaxnew←kq×Qmax*+(1-kq)×Qmaxold (13)
其中,Qmaxnew为更新后的电池容量;
Qmax*为估算出的当前的电池容量;
Qmaxold为更新前的电池容量;
kq为预先确定的老化补偿系数,表示Qmax*占Qmaxnew的比重,具体可通过试验确定;
pct(ta)和pct(tb)分别为电池前后两次处于静止状态时的绝对百分比剩余电量;
ΔC为前次静止状态到本次静止状态期间电池的电量增量。
也即,当电池在满足静止条件时,也即电压变化率不超过ΔRate时,可认为电池处于静止状态,此时老化补偿模块500可进行老化补偿。上述静止条件中,ΔRate表示电池每秒钟的电压变化率,单位为μV/s,其数值例如为小于等于100的某个值。在进行老化补偿时,老化补偿模块500可通过预先确定的OCV-PCT曲线获得电池当前静止状态下的pct(tb),随后,可根据上次静止状态下的pct(ta)以及两次静止状态之间的期间累计的电量增量,就可以估算出电池容量的值和老化程度。
老化补偿模块500计算出更新后的电池容量Qmaxnew后,将其传输给计算模块400,计算模块400将Qmaxnew代入式(7)中进行计算,便可在后续的计算中充分考虑电池的老化程度,使电池剩余电量的计算更为准确。
优选地,如图3所示,所述电压采集模块100例如包括IC采样电路4、第一电阻R1和第二电阻R2,所述第一电阻R1和所述第二电阻R2串联后连接于电池1的两端,所述第一电阻R1和所述第二电阻R2的公共端连接所述IC采样电路4的电压输入端。
优选地,所述温度补偿模块200、所述电池状态判断模块300、所述计算模块400、以及所述老化补偿模块500均为微处理器,并且更优选地,这些模块可以集成于一个微处理器(例如图3中的微处理器5)中。
优选地,如图3所示,本发明的电池剩余电量计量系统还可以包括与所述微处理器5相连的存储模块,如通用的存储模块RAM 8和ROM 7,用于存储计算结果、计算过程中的中间量和初始量、以及预设信息(例如OCV-PCT曲线、温度补偿系数列表)等。
替代地,所述温度补偿模块200、所述电池状态判断模块200、所述计算模块400和所述老化补偿模块500中的任一个也可以是数字电路。
优选地,如图3所示,本发明的电池剩余电量计量系统还包括上位机6,所述计算模块400的输出端(图中显示为微处理器5的输出端)连接所述上位机6,以便将计算结果传输给所述上位机6。
优选地,所述上位机6包括但不限于手机、笔记本电脑、平板电脑、智能穿戴装置的控制器、飞行器控制器、机器人控制器、智能家电、车载多媒体设备、或智能硬件,等等。
本发明的电池剩余电量计量系统的工作原理可以如图3所示,电池1与负载2电连接,充电器3的正极与电池1的正极相连,第一电阻R1和第二电阻R2串联后连接电池1的两端,第一电阻R1和第二电阻R2的公共端连接IC采样电路4的电压输入端,温度采样电阻R3连接IC采样电路4的温度输入端,IC采样电路4的电压输出端和温度输出端均连接微处理器5,存储模块RAM 8和ROM 7均与微处理器5相连,微处理器5的输出端连接上位机6。
在电池1工作过程中,包括电池1充电过程、负载2用电过程以及电池1的静止状态,IC采样电路4通过第一电阻R1和第二电阻R2采集电池1的端电压、通过温度采样电阻R3采集电池1的温度,并将采集结果传输给微处理器5,由微处理器5内部的电池状态判断模块300、温度补偿模块200、计算模块400和老化补偿模块500等进行一系列运算,得出电池的相对百分比剩余电量SOC和更新后的电池容量Qmaxnew,并将得到的结果传输给上位机6,上位机6将电池的剩余电量显示出来或以其他方式通知用户。
本发明的第二方面提供了一种电池剩余电量计量方法,其例如由本发明前面提供的电池剩余电量计量系统完成,如图4所示,该方法包括步骤:
S100、获取电池电压vbat和温度temp;
S200、根据电池电压vbat的变化情况判断电池的状态;
S300、根据电池温度temp对电池的内阻rdc进行补偿;
S400、根据电池电压vbat、电池状态和电池内阻rdc计算出电池的相对百分比剩余电量SOC。
其中,步骤S200和步骤S300的顺序可以互相调换或同时进行。
本发明的电池剩余电量计量方法能够在不使用电流采样电阻的情况下,通过测量电池电压和温度、并考虑温度对电池等效内阻的影响,实现对剩余电量的准确估计,即使在大电流、低温等场合下也仍能准确地计算剩余电量,并能有效降低硬件成本。
优选地,所述步骤S100中,采集静止状态下的电池电压作为电池的开路电压OCV;
所述步骤S200中,根据预先确定的OCV与PCT的对应关系(如OCV-PCT曲线)确定电池初始的绝对百分比剩余电量PCT。
也即,在步骤S100中,从电池的静止状态开始采集电池电压,例如由电压采集模块100通过IC采样电路4进行采集,并传输给所述电池状态判断模块300;而在步骤S200中,所述电池状态判断模块300则可通过查找例如OCV-PCT曲线获得初始的PCT。
优选地,所述步骤S100中,周期性地采集电池的电压vbat;
所述步骤S200中,根据过去多个周期的采集结果确定电池的电压变化率dv/dt和同一电压变化率dv/dt下产生的电压变化幅值Δvbat_jump,并根据电压变化率dv/dt和电压变化幅值判断电池当前的状态。
也即,在步骤S100中,电压采集模块100还可以通过IC采样电路继续获取电池电压vbat,并且每隔固定的周期便再次更新电池电压vbat;在此基础上,在步骤S200中,电池状态判断模块300则可以根据当前的电池电压vbat以及过去几个周期的计数值,确定电压变化率dv/dt,计算过程例如为前文中提到的式(1)。
优选地,所述步骤S200中,电压变化幅值Δvbat_jump的计算方法为式(2):
其中,t=0表示该dv/dt开始的时刻,t=end表示该dv/dt结束的时刻。
也即,在计算出电压变化率dv/dt后,电池状态判断模块300还可以再结合之前存储并定期更新的dv/dt值,例如可标记为(dv/dt)old,通过式(2)计算同一dv/dt下产生的电压变化幅值。
如此,步骤S200中,电池状态判断模块300便能够根据dv/dt、(dv/dt)old和Δvbat_jump判断电池的状态:根据dv/dt可判断出电池的放电速率,根据(dv/dt)old可以判断出电池上一时刻的放电速率,结合电压的突然变化,即电压变化幅值Δvbat_jump,可综合得出电池处于放电还是充电、或者静止状态。例如,dv/dt>(dv/dt)old>0,且Δvbat_jump>Rdc_x*I,则表示电池当前处于充电状态,且电流为I,其中,Rdc_x为电池当前的内阻。
优选地,所述步骤S300中,利用预先确定的温度补偿系数kt对电池的内阻rdc进行补偿,补偿方式为式(3):
rdc=kt*rbase
其中,rbase为电池在预定参考温度(通常为常温,例如25℃)下的内阻。
具体地,如前所述,rbase可根据该预定参考温度下的充放电的压差,除以放电电流得到。温度补偿系数kt可事先通过试验获得,例如,针对多个不同的温度进行试验,得到每个温度下温度补偿系数kt,并以列表的形式进行存储,当步骤S300中进行温度补偿时,可以根据当前的电池温度查表确定适用的温度补偿系数kt。
优选地,所述步骤S300中,先获取电池当前的温度信息,然后根据所述温度信息查表确定与之对应的温度补偿系数kt。具体地,可以通过温度采集模块测量电池温度,也可以通过其他途径(例如直接从相应的BMS或PMU中获取)获得电池温度,进而便可以确定适用的温度补偿系数kt。
优选地,所述步骤S300中,利用电池内部的ntc电阻或者电池外部的ntc电阻采集电池当前的温度信息,或者,从PMU或BMS中获取电池当前的温度信息。
优选地,如图5所示,所述步骤S400包括子步骤:
S410、周期性地根据电池电压vbat和电池内阻rdc估算电池电流ibat*,并根据电池状态对估算出的电池电流ibat*的真实性进行判断,在电池电流ibat*是真实电流的情况下,保留估算结果,执行子步骤S420,否则,舍弃估算结果;本步操作例如由电流估算单元410执行;
S420、根据预先确定的电流更新系数对估算出的电池电流ibat*进行修正;本步操作例如由电流修正单元420执行;
S430、周期性地根据修正后的电池电流ibat*计算电池的电量增量ΔC;本步操作例如由电量增量计算单元430执行;
S440、周期性地根据计算出的电池的电量增量ΔC计算出电池的相对百分比剩余电量SOC;本步操作例如由电池剩余电量计算单元440执行。
优选地,所述子步骤S410中,根据式(4),即估算电池电流ibat*,式中,OCV为电池的开路电压,kt为温度补偿系数,rbase为电池在预定参考温度下的内阻。
随后,可以根据步骤S200中判断出的电池状态,判断估算出的电池电流ibat*是否为真实电流,例如,如果电池处于充电状态,则电池电流ibat*的符号应为正,如果电池处于放电状态,则电池电流ibat*的符号应为负,因此,如果电池的充放电状态和电池电流ibat*的符号不相符,则说明估算的电池电流ibat*是假的,因此可舍弃此次估算的结果,无需执行子步骤S420,该假的电流也就不会用来执行后续的电流修正过程和ΔC累计过程。
优选地,所述子步骤S420中,根据式(5),即ibat*←C1×ibat*+C2,对估算出的电池电流ibat*进行修正,式中,C1和C2为预先确定的电流更新系数。
优选地,所述子步骤S430中,根据式(6),即计算电池的电量增量ΔC,式中,t=0代表一个周期的开始时刻。
优选地,所述子步骤S440中,依次执行如下计算:
(1)计算电池当前时刻的电量百分比变化增量Δpct(t),计算式为式(7),即其中,Qmax为电池容量;
(2)计算电池当前时刻的绝对百分比剩余电量pct(t),计算式为式(8),即pct(t)=pct(t0)+Δpct(t),式中,pct(t0)为一个周期的开始时刻电池的绝对百分比剩余电量;
(3)计算电池的相对百分比剩余电量SOC,计算式为式(11),即其中,pctx为在电池的SOC=0时的绝对百分比剩余电量,记为pctx=f(OCVsoc=0);pcty为在电池的SOC=100时的绝对百分比剩余电量,记为pcty=f(OCVsoc=100)。
优选地,如图5所示,步骤S400中,所述子步骤S420之后还包括子步骤:
S425、判断修正次数是否达到预定次数,若是,则执行子步骤S430,否则返回子步骤S410。这里,预定次数例如为2-10次,优选为2-5次,例如3次或4次等。
也即,在预定的修正次数达到前,可以反复执行子步骤S410和子步骤S420,以便对电池电流进行迭代追踪,逼近其真实值。
优选地,在所述步骤S400之前或之中,还可以包括步骤:
S500、估算电池容量Qmax的变化,更新电池容量Qmax,以对电池容量Qmax进行老化补偿。本步骤例如可由老化补偿模块500执行。
由于老化补偿的目的是更新电池容量Qmax,因此,可以在具体使用电池容量Qmax进行计算的步骤之前的任何时候进行更新,因而步骤S500可以在步骤S400之前进行,也可以在步骤S400中进行,例如在子步骤S440之前进行。
本发明的电池剩余电量计量方法充分考虑电池在循环充放电后电池容量会下降的情况,通过老化补偿的步骤对电池容量进行更新,从而可进一步提高电池剩余电量计量的准确度。
优选地,如图6所示,所述步骤S500包括子步骤:
S510、判断电池当前是否满足静止条件,若是,则确定电池在当前静止条件下的绝对百分比剩余电量PCT,否则,可继续等待,直至满足静止条件为止;
S520、取电池前后两次处于静止状态时的绝对百分比剩余电量pct(ta)和pct(tb),计算前次静止状态到本次静止状态期间电池的电量增量ΔC;
S530、估算出当前的电池容量Qmax*,计算式为式(12),即
S540、更新电池容量Qmax,更新方式为式(13):
Qmaxnew←kq×Qmax*+(1-kq)×Qmaxold
其中,Qmaxnew为更新后的电池容量,Qmaxold为更新前的电池容量,kq为预先确定的老化补偿系数。
优选地,所述子步骤S510中,若电池每秒钟的电压变化率不超过ΔRate,则认为电池处于静止状态,其中,ΔRate≤100μV。也即,上述静止条件中,ΔRate表示电池每秒钟的电压变化率,单位为μV/s,其数值例如为小于等于100的某个值。
当电池在满足静止条件时,也即电压变化率不超过ΔRate时,可认为电池处于静止状态,此时可通过老化补偿模块500进行老化补偿。在进行老化补偿时,老化补偿模块500可通过预先确定的OCV-PCT曲线获得电池当前静止状态下的pct(tb),随后,可根据上次静止状态下的pct(ta)以及两次静止状态之间的期间累计的电量增量,就可以估算出电池容量的值和老化程度。
在确定了更新后的电池容量Qmaxnew后,将其代入步骤S400中,具体是子步骤S440中的式(7)中,便可在后续的计算中充分考虑电池的老化程度,使电池剩余电量的计算更为准确。
图5示出了本发明的电池剩余电量计量方法的一个优选实施方式的完整流程,包括如下步骤:
A:系统上电复位;
B:初始化状态;
C:检测电压和温度(步骤S100);
D:判断信息是否出错,如电压和/或温度是否明显异常等,如出错则通知上位机复位,否则继续执行后续步骤(如步骤S200);
E:判断电池状态(步骤S200);
F:进行温度补偿rdc(步骤S300);
G:估算电流(步骤S410);
H:判断是否达到静止条件,如达到,则执行老化补偿(步骤S500),否则继续执行后续步骤(如步骤S420);
I:修正电流(步骤S420);
J:判断修正次数是否达到(步骤S425),如未达到,则返回继续执行步骤S410,如已达到,则继续执行后续步骤(如步骤S430);
K:计算电量增量(步骤S430);
L:计算SOC(步骤S440);
M:将计算结果汇报上位机。
本发明的电池剩余电量计量系统及方法经过实验验证,对电池剩余电量计量的精度明显高于现有技术中不采用电流采样电阻的方案。
本发明的电池剩余电量计量系统及方法可应用于多种场合下,包括但不限于各种数模混合IC、PMU、BMS等系统中。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各优选方案可以自由地组合、叠加。
应当理解,上述的实施方式仅是示例性的,而非限制性的,在不偏离本发明的基本原理的情况下,本领域的技术人员可以针对上述细节做出的各种明显的或等同的修改或替换,都将包含于本发明的权利要求范围内。

Claims (10)

1.一种电池剩余电量计量系统,其特征在于,包括:电压采集模块、温度补偿模块、电池状态判断模块和计算模块,其中,
所述电压采集模块用于采集电池电压vbat,并将采集结果传输给所述电池状态判断模块;
所述温度补偿模块用于根据电池的温度信息对电池的内阻rdc进行补偿;
所述电池状态判断模块用于根据电池电压vbat的变化情况判断电池的状态;
所述计算模块用于根据电池电压vbat、电池状态和电池内阻rdc计算出电池的相对百分比剩余电量SOC。
2.根据权利要求1所述的电池剩余电量计量系统,其特征在于,所述温度补偿模块利用预先确定的温度补偿系数kt对电池的内阻rdc进行补偿,补偿方式为:rdc=kt*rbase,其中,rbase为电池在预定参考温度下的内阻。
3.根据权利要求1所述的电池剩余电量计量系统,其特征在于,所述电池状态判断模块包括:
初始状态判断单元,用于判断电池的初始的绝对百分比剩余电量PCT;
状态处理单元,用于判断电池当前的状态。
4.根据权利要求1-3之一所述的电池剩余电量计量系统,其特征在于,所述计算模块包括:
电流估算单元,用于周期性地根据电池电压vbat和电池内阻rdc估算电池电流ibat*,并根据电池状态对估算出的电池电流ibat*的真实性进行判断,在电池电流ibat*是真实电流的情况下,保留估算结果,否则,舍弃估算结果;
电流修正单元,用于根据预先确定的电流更新系数对估算出的电池电流ibat*进行修正;
电量增量计算单元,用于周期性地根据修正后的电池电流ibat*计算电池的电量增量ΔC;
电池剩余电量计算单元,用于周期性地根据所述电量增量计算单元的计算结果计算出电池的相对百分比剩余电量SOC。
5.根据权利要求1-4之一所述的电池剩余电量计量系统,其特征在于,还包括老化补偿模块,用于估算电池容量Qmax的变化,更新电池容量Qmax,并将更新结果传输给所述计算模块,以用于计算电池的相对百分比剩余电量SOC。
6.根据权利要求5所述的电池剩余电量计量系统,其特征在于,所述老化补偿模块更新电池容量Qmax的方式为:
Qmaxnew←kq×Qmax*+(1-kq)×Qmaxold
其中,Qmaxnew为更新后的电池容量;
kq为预先确定的老化补偿系数;
Qmax*为估算出的当前的电池容量,pct(ta)和pct(tb)分别为电池前后两次处于静止状态时的绝对百分比剩余电量,ΔC为前次静止状态到本次静止状态期间电池的电量增量;
Qmaxold为更新前的电池容量。
7.一种电池剩余电量计量方法,其特征在于,包括步骤:
S100、获取电池电压vbat和电池温度temp;
S200、根据电池电压vbat的变化情况判断电池的状态;
S300、根据电池温度temp对电池的内阻rdc进行补偿;
S400、根据电池电压vbat、电池状态和电池内阻rdc计算出电池的相对百分比剩余电量SOC。
8.根据权利要求7所述的电池剩余电量计量方法,其特征在于,所述步骤S400包括子步骤:
S410、周期性地根据电池电压vbat和电池内阻rdc估算电池电流ibat*,并根据电池状态对估算出的电池电流ibat*的真实性进行判断,在电池电流ibat*是真实电流的情况下,保留估算结果,执行子步骤S420,否则,舍弃估算结果;
S420、根据预先确定的电流更新系数对估算出的电池电流ibat*进行修正;
S430、周期性地根据修正后的电池电流ibat*计算电池的电量增量ΔC;
S440、周期性地根据计算出的电池的电量增量ΔC计算出电池的相对百分比剩余电量SOC。
9.根据权利要求8所述的电池剩余电量计量方法,其特征在于,所述子步骤S440中,依次执行如下计算:
(1)计算电池当前时刻的电量百分比变化增量Δpct(t),其中,Qmax为电池容量;
(2)计算电池当前时刻的绝对百分比剩余电量pct(t),pct(t)=pct(t0)+Δpct(t),式中,pct(t0)为一个周期的开始时刻电池的绝对百分比剩余电量;
(3)计算电池的相对百分比剩余电量SOC,其中,pctx为在电池的SOC=0时的绝对百分比剩余电量,记为pctx=f(OCVsoc=0);pcty为在电池的SOC=100时的绝对百分比剩余电量,记为pcty=f(OCVsoc=100)。
10.根据权利要求7-9之一所述的电池剩余电量计量方法,其特征在于,在所述步骤S400之前或之中,还包括步骤:
S500、估算电池容量Qmax的变化,更新电池容量Qmax,以对电池容量Qmax进行老化补偿;
所述步骤S500包括子步骤:
S510、判断电池当前是否满足静止条件,若是,则确定电池在当前静止条件下的绝对百分比剩余电量PCT;
S520、取电池前后两次处于静止状态时的绝对百分比剩余电量pct(ta)和pct(tb),计算前次静止状态到本次静止状态期间电池的电量增量ΔC;
S530、估算出当前的电池容量Qmax*
S540、更新电池容量Qmax,更新方式为:
Qmaxnew←kq×Qmax*+(1-kq)×Qmaxold
其中,Qmaxnew为更新后的电池容量,Qmaxold为更新前的电池容量,kq为预先确定的老化补偿系数。
CN201810910930.9A 2018-08-10 2018-08-10 一种电池剩余电量计量系统及方法 Active CN109061497B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810910930.9A CN109061497B (zh) 2018-08-10 2018-08-10 一种电池剩余电量计量系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810910930.9A CN109061497B (zh) 2018-08-10 2018-08-10 一种电池剩余电量计量系统及方法

Publications (2)

Publication Number Publication Date
CN109061497A true CN109061497A (zh) 2018-12-21
CN109061497B CN109061497B (zh) 2020-11-20

Family

ID=64683474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810910930.9A Active CN109061497B (zh) 2018-08-10 2018-08-10 一种电池剩余电量计量系统及方法

Country Status (1)

Country Link
CN (1) CN109061497B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111983463A (zh) * 2020-07-20 2020-11-24 武汉数值仿真技术研究院有限公司 一种电动汽车用锂离子电池剩余电量预警诊断测试方法
CN115436809A (zh) * 2022-09-28 2022-12-06 欣旺达电动汽车电池有限公司 电池容量估算的方法、电子设备及存储介质
CN115656845A (zh) * 2022-10-27 2023-01-31 拓尔微电子股份有限公司 电池电量的计算方法、装置、终端及存储介质
TWI821056B (zh) * 2022-11-30 2023-11-01 神基科技股份有限公司 電子裝置及電池容量回報方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321627A (en) * 1992-03-11 1994-06-14 Globe-Union, Inc. Battery monitor and method for providing operating parameters
US6163133A (en) * 1998-10-15 2000-12-19 V B Autobatterie Gmbh Process for determining the state of charge and the peak current loadability of batteries
CN101303397A (zh) * 2008-06-25 2008-11-12 河北工业大学 锂离子电池组剩余电能计算方法及装置
CN102104259A (zh) * 2009-12-16 2011-06-22 比亚迪股份有限公司 一种可充电电池的电量检控方法和装置
JP2011161079A (ja) * 2010-02-12 2011-08-25 Nippon Telegr & Teleph Corp <Ntt> 運動指標測定方法および装置
CN102998623A (zh) * 2011-09-14 2013-03-27 北汽福田汽车股份有限公司 蓄电池荷电状态的在线估算方法及系统
CN103048629A (zh) * 2013-01-24 2013-04-17 圣邦微电子(北京)股份有限公司 锂电池电量的计量方法和计量装置
CN103364736A (zh) * 2013-07-17 2013-10-23 王凯敏 一种锂离子电池组剩余可用容量rac的计算方法
CN104662766A (zh) * 2012-09-21 2015-05-27 日产自动车株式会社 充电状态运算装置以及充电状态运算方法
CN105548905A (zh) * 2016-01-12 2016-05-04 浙江德景电子科技有限公司 一种电池电量的测试方法和系统
CN206147073U (zh) * 2016-11-11 2017-05-03 北京图森未来科技有限公司 一种汽车电池电量检测装置及汽车控制系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321627A (en) * 1992-03-11 1994-06-14 Globe-Union, Inc. Battery monitor and method for providing operating parameters
US6163133A (en) * 1998-10-15 2000-12-19 V B Autobatterie Gmbh Process for determining the state of charge and the peak current loadability of batteries
CN101303397A (zh) * 2008-06-25 2008-11-12 河北工业大学 锂离子电池组剩余电能计算方法及装置
CN102104259A (zh) * 2009-12-16 2011-06-22 比亚迪股份有限公司 一种可充电电池的电量检控方法和装置
JP2011161079A (ja) * 2010-02-12 2011-08-25 Nippon Telegr & Teleph Corp <Ntt> 運動指標測定方法および装置
CN102998623A (zh) * 2011-09-14 2013-03-27 北汽福田汽车股份有限公司 蓄电池荷电状态的在线估算方法及系统
CN104662766A (zh) * 2012-09-21 2015-05-27 日产自动车株式会社 充电状态运算装置以及充电状态运算方法
CN103048629A (zh) * 2013-01-24 2013-04-17 圣邦微电子(北京)股份有限公司 锂电池电量的计量方法和计量装置
CN103364736A (zh) * 2013-07-17 2013-10-23 王凯敏 一种锂离子电池组剩余可用容量rac的计算方法
CN105548905A (zh) * 2016-01-12 2016-05-04 浙江德景电子科技有限公司 一种电池电量的测试方法和系统
CN206147073U (zh) * 2016-11-11 2017-05-03 北京图森未来科技有限公司 一种汽车电池电量检测装置及汽车控制系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111983463A (zh) * 2020-07-20 2020-11-24 武汉数值仿真技术研究院有限公司 一种电动汽车用锂离子电池剩余电量预警诊断测试方法
CN111983463B (zh) * 2020-07-20 2023-02-10 武汉数值仿真技术研究院有限公司 一种电动汽车用锂离子电池剩余电量预警诊断测试方法
CN115436809A (zh) * 2022-09-28 2022-12-06 欣旺达电动汽车电池有限公司 电池容量估算的方法、电子设备及存储介质
WO2024066883A1 (zh) * 2022-09-28 2024-04-04 欣旺达动力科技股份有限公司 电池容量估算的方法、电子设备及存储介质
CN115436809B (zh) * 2022-09-28 2024-04-30 欣旺达动力科技股份有限公司 电池容量估算的方法、电子设备及存储介质
CN115656845A (zh) * 2022-10-27 2023-01-31 拓尔微电子股份有限公司 电池电量的计算方法、装置、终端及存储介质
CN115656845B (zh) * 2022-10-27 2023-11-14 拓尔微电子股份有限公司 电池电量的计算方法、装置、终端及存储介质
TWI821056B (zh) * 2022-11-30 2023-11-01 神基科技股份有限公司 電子裝置及電池容量回報方法

Also Published As

Publication number Publication date
CN109061497B (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
Wei et al. System state estimation and optimal energy control framework for multicell lithium-ion battery system
US8332169B2 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
US7197487B2 (en) Apparatus and method for estimating battery state of charge
CN103616647B (zh) 一种用于电动汽车电池管理系统的电池剩余电量估计方法
CN101116003B (zh) 二次电池充/放电电量、极化电压及soc的估计方法和装置
CN109991548A (zh) 一种ocv-soc标定实验方法、电池等效模型参数辨识方法及soc估算方法
CN109061497A (zh) 一种电池剩余电量计量系统及方法
CN109725266A (zh) 一种电池健康状态soh的计算方法及装置
CN103168247A (zh) 用于确定电池装置的电池剩余电量的系统及方法
US20150369875A1 (en) Battery state estimating device
CN105988086A (zh) 电池余量预测装置及电池组
CN110386029A (zh) 一种根据动态电压修正锂电池soc方法
CN109856548A (zh) 动力电池容量估算方法
JP2014025738A (ja) 残容量推定装置
KR102572652B1 (ko) 배터리의 충전상태를 추정하는 방법
CN102449495A (zh) 电池充电率计算装置
CN103760494B (zh) 电池容量在线估计方法及系统
JP2022524827A (ja) バッテリ健全状態の推定方法
CN113359044A (zh) 测量电池剩余容量的方法、装置及设备
CN109061498A (zh) 一种电池剩余电量计量芯片及计量方法
CN108983109A (zh) 用于电池的电流估算芯片、估算方法及剩余电量计量系统
CN110673037A (zh) 基于改进模拟退火算法的电池soc估算方法及系统
Lavety et al. A dynamic battery model and parameter extraction for discharge behavior of a valve regulated lead-acid battery
JP2006226789A (ja) 車両用蓄電装置の満充電容量演算装置
CN105738828A (zh) 一种电池容量精准测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant