WO2024066550A1 - 一种车辆高压线路的绝缘检测电路及绝缘检测方法 - Google Patents

一种车辆高压线路的绝缘检测电路及绝缘检测方法 Download PDF

Info

Publication number
WO2024066550A1
WO2024066550A1 PCT/CN2023/103040 CN2023103040W WO2024066550A1 WO 2024066550 A1 WO2024066550 A1 WO 2024066550A1 CN 2023103040 W CN2023103040 W CN 2023103040W WO 2024066550 A1 WO2024066550 A1 WO 2024066550A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
resistor
battery
insulation detection
insulation
Prior art date
Application number
PCT/CN2023/103040
Other languages
English (en)
French (fr)
Inventor
李强
邓昊
Original Assignee
联合汽车电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联合汽车电子有限公司 filed Critical 联合汽车电子有限公司
Publication of WO2024066550A1 publication Critical patent/WO2024066550A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/14Measuring resistance by measuring current or voltage obtained from a reference source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to the field of vehicle high-voltage lines, and in particular to an insulation detection circuit and an insulation detection method for a vehicle high-voltage line.
  • the voltage of the battery pack or charging pile of a general electric vehicle can be as high as 400V or more. If the high voltage of the battery pack or charging pile is connected to the vehicle body, the insulation will fail, and then there will be a high voltage electric shock hazard, threatening the safety of personnel. It can be seen that insulation testing plays a vital role in ensuring the safety performance of electric vehicles.
  • the insulation detection function of the vehicle's high-voltage circuit is generally implemented by the battery management controller in the battery pack.
  • the insulation detection module in the battery management controller detects the equivalent resistance of the high-voltage positive bus to the vehicle body ground and the high-voltage negative bus to the vehicle body ground, thereby obtaining the insulation resistance of the two high-voltage busbars.
  • the insulation resistance is then used to determine whether there is an insulation failure in the vehicle's high-voltage circuit. More specifically, if a certain insulation resistance is detected to be too low, it means that the corresponding high-voltage circuit has a greater risk of leakage.
  • the battery management controller needs to execute a fault response, such as warning of insulation failure, disconnecting the high-voltage relay, etc.
  • the insulation detection and insulation fault alarm mechanism can better monitor the real-time situation of the vehicle's insulation failure, thereby protecting the driver or passengers from the safety threat of electric shock.
  • the insulation detection of the high-voltage circuit of electric vehicles is generally to connect an insulation detection module in parallel at both ends of the vehicle battery.
  • the insulation detection module usually uses the bridge method of an unbalanced bridge for insulation detection.
  • this solution has a defect.
  • the insulation detection module cannot detect the insulation condition of the external high-voltage bus connected to the vehicle. For example, in the scenario of vehicle charging, if the temperature of the battery pack is too low, it is necessary to connect the high-voltage electricity of the external charging pile to heat the battery pack before charging.
  • the original insulation detection module is completely unable to detect the safety hazard of insulation failure, which brings great safety risks to users.
  • the art urgently needs an insulation detection circuit and an insulation detection method for a vehicle high-voltage line, which are used to detect the insulation conditions of internal and external high-voltage lines connected to the vehicle, thereby effectively eliminating the safety hazard of insulation failure of all vehicle-related high-voltage lines.
  • the operation is flexible and convenient, thereby maximizing the safety of electric vehicles.
  • the present invention provides an insulation detection circuit for a vehicle high-voltage circuit, in which the positive and negative electrodes of the battery in the vehicle battery pack are connected to the vehicle electrical equipment through a main positive relay and a main negative relay respectively, and the insulation detection circuit is connected in parallel to the two ends of the battery, and its interior is connected to the vehicle body ground, and is used to measure the equivalent resistance of the reference point in the vehicle high-voltage circuit to the vehicle body ground to perform insulation detection of the vehicle high-voltage circuit, wherein a first wire is connected between the connection between the insulation detection circuit and the positive electrode of the battery and the side of the main positive relay away from the battery, which is used to detect the insulation condition of the high-voltage circuit outside the vehicle battery pack.
  • a first switch is provided on the connecting wire between the insulation detection circuit and the positive electrode of the battery, and a second switch is provided on the first wire, and when detecting the insulation condition of the high-voltage circuit inside the battery pack, the first switch, the main positive relay and the main negative relay are all closed, and the second switch is opened; and when detecting the insulation condition of the high-voltage circuit outside the battery pack, the first switch, the main positive relay and the main negative relay are all opened, and the second switch is closed.
  • a second wire is also connected to the connection between the insulation detection circuit and the negative electrode of the battery and the side of the main negative relay away from the battery to detect the insulation condition of the high-voltage circuit outside the vehicle battery pack.
  • a first switch is provided on the connecting wire between the insulation detection circuit and the positive electrode of the battery
  • a second switch is provided on the first wire
  • a third switch is provided on the connecting wire between the insulation detection circuit and the negative electrode of the battery
  • a fourth switch is provided on the second wire
  • the insulation detection circuit is provided with a first resistor and a second resistor connected in series, a third resistor is connected in parallel at both ends of the first resistor, a fourth resistor is connected in parallel at both ends of the second resistor, the first resistor and the second resistor are connected to the vehicle body ground through a wire, a fifth switch is provided on the circuit branch where the first resistor is located, and a sixth switch is provided on the circuit branch where the second resistor is located.
  • a seventh switch is further provided on the grounding wire between the first resistor and the second resistor in the insulation detection circuit.
  • the resistance values of the first resistor and the second resistor in the insulation detection circuit are in the order of 10 5 ohms, and the resistance values of the third resistor and the fourth resistor are in the order of megaohms.
  • the main positive relay and the main negative relay are further connected to a charging circuit at one end away from the battery to an external charging device, and a charging positive relay and a charging negative relay are respectively provided on the two charging circuits.
  • the charging circuits are connected to the external charging device to constitute an external high-voltage circuit of the vehicle battery pack.
  • Another aspect of the present invention also provides an insulation detection method for a vehicle high-voltage circuit, in which the vehicle high-voltage circuit includes a positive electrode and a negative electrode of a battery in a vehicle battery pack, which are respectively connected to the vehicle electrical equipment through a main positive relay and a main negative relay, and the main positive relay and the main negative relay are also connected to a charging circuit at one end away from the battery to an external charging device, and a charging positive relay and a charging negative relay are respectively provided on the two charging circuits.
  • An insulation detection circuit is connected in parallel to the two ends of the battery, and its interior is connected to the vehicle body ground.
  • the insulation detection method includes: detecting the temperature of the vehicle battery pack, and in response to the vehicle battery pack temperature being lower than a chargeable temperature threshold, closing the charging positive relay and the charging negative relay to heat the vehicle battery pack through external high voltage; and connecting a first wire between the connection between the insulation detection circuit and the positive electrode of the battery and the side of the main positive relay away from the battery to detect the insulation condition of the external high-voltage circuit of the battery pack.
  • a first switch is provided on the connecting wire between the insulation detection circuit and the positive electrode of the battery, and a second switch is provided on the first wire.
  • the insulation detection method also includes: in response to the vehicle battery pack temperature being lower than the chargeable temperature threshold, controlling the first switch, the main positive relay and the main negative relay to be disconnected, and the second switch to be closed to perform the detection of the insulation condition of the high-voltage circuit outside the battery pack.
  • the insulation detection method also includes: in response to the vehicle battery pack temperature being lower than a charging temperature threshold, connecting a second wire between the connection between the insulation detection circuit and the negative electrode of the battery and a side of the main negative relay away from the battery to detect the insulation condition of the high-voltage circuit outside the battery pack.
  • a first switch is provided on the connecting wire between the insulation detection circuit and the positive electrode of the battery
  • a second switch is provided on the first wire
  • a third switch is provided on the connecting wire between the insulation detection circuit and the negative electrode of the battery
  • a fourth switch is provided on the second wire.
  • the insulation detection method also includes: in response to the vehicle battery pack temperature being lower than the chargeable temperature threshold, controlling the first switch, the third switch, the main positive relay and the main negative relay to be disconnected, and the second switch and the fourth switch to be closed to perform the detection of the insulation condition of the high-voltage circuit outside the battery pack.
  • the chargeable temperature threshold is 5°C.
  • the insulation detection circuit is provided with a first resistor and a second resistor connected in series, a third resistor is connected in parallel at both ends of the first resistor, a fourth resistor is connected in parallel at both ends of the second resistor, and the first resistor and the The second resistor is connected to the vehicle body ground through a wire, a fifth switch is provided on the circuit branch where the first resistor is located, and a sixth switch is provided on the circuit branch where the second resistor is located, the first reference point in the circuit is set to the connection between the insulation detection circuit and the positive electrode of the battery and the first wire, and the second reference point is set to the connection between the insulation detection circuit and the negative electrode of the battery, the equivalent resistance of the first reference point to the vehicle body ground is set to R5, the equivalent resistance of the second reference point to the vehicle body ground is set to R6, and the position between the first resistor and the second resistor is set to the third reference point.
  • the insulation detection method also includes: disconnecting the fifth switch, closing the sixth switch, and measuring and reading the voltage value U A1 of the first reference point relative to the negative electrode of the battery and the voltage value U F1 of the third reference point relative to the negative electrode of the battery after the voltage is stable; closing the fifth switch, disconnecting the sixth switch, and measuring and reading the voltage value U A2 of the first reference point relative to the negative electrode of the battery and the voltage value U F2 of the third reference point relative to the negative electrode of the battery after the voltage is stable; calculating R5 and R6 according to the following formula:
  • R1, R2, R3, and R4 are the resistance values of the first resistor, the second resistor, the third resistor, and the fourth resistor, respectively; and the above steps are executed in a loop to detect and determine the insulation condition of the current corresponding circuit according to the resistance value of the equivalent resistor.
  • FIG1 is a schematic diagram of a circuit principle of an insulation detection circuit for a vehicle high-voltage line according to an embodiment of the present invention
  • FIG2 is a schematic diagram of a circuit principle of an insulation detection circuit for a vehicle high-voltage line according to another embodiment of the present invention.
  • FIG3 is a schematic diagram of a circuit structure for detecting the insulation condition of a high-voltage line outside a vehicle battery pack according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a method flow of an insulation detection method for a vehicle high-voltage line according to an embodiment of another aspect of the present invention.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • first”, “second”, “third”, etc. may be used herein to describe various components, regions, layers and/or parts, these components, regions, layers and/or parts should not be limited by these terms, and these terms are only used to distinguish different components, regions, layers and/or parts. Therefore, the first component, region, layer and/or part discussed below may be referred to as a second component, region, layer and/or part without departing from some embodiments of the present invention.
  • the present invention provides an insulation detection circuit and an insulation detection method for a vehicle high-voltage line, which are used to detect the insulation conditions of internal and external high-voltage lines connected to the vehicle, thereby effectively eliminating the safety hazard of insulation failure of all high-voltage lines related to the vehicle.
  • the operation is flexible and convenient, and the safety of electric vehicles is ensured to the greatest extent.
  • FIG. 1 is a schematic diagram showing a circuit principle of an insulation detection circuit for a vehicle high-voltage line according to an embodiment of the present invention.
  • the vehicle high-voltage circuit can be divided into the inside and outside of the battery pack according to its location.
  • the positive and negative electrodes of the battery are connected to the vehicle electrical equipment 103 outside the battery pack through the main positive relay 101 and the main negative relay 102 respectively.
  • the upper and lower high-voltage busbars are provided with interface sockets near the vehicle electrical equipment 103, and the vehicle electrical equipment 103 can be connected to the high-voltage circuit in the battery pack through the interface socket.
  • the block on the side away from the vehicle electrical equipment 103 is the insulation detection circuit 105 provided by the present invention.
  • the insulation detection circuit 105 is connected in parallel to both ends of the battery, and its interior is connected to the vehicle body ground 104.
  • the insulation detection circuit 105 is used to measure the equivalent resistance of the reference point in the vehicle high-voltage circuit to the vehicle body ground 104 to perform insulation detection on the vehicle high-voltage circuit.
  • the main positive relay 101 and the main negative relay 102 are further connected to a charging circuit at one end away from the battery to an external charging device, and a charging positive relay 106 and a charging negative relay 107 are respectively provided on the two charging circuits.
  • the charging circuits are connected to the external charging device to form an external high-voltage circuit of the vehicle battery pack.
  • a first wire 108 is connected between the connection point between the insulation detection circuit 105 of the vehicle high-voltage circuit provided by the present invention and the positive electrode of the battery and the side of the main positive relay 101 away from the battery.
  • one end of the first wire 108 is directly connected to the insulation detection circuit 105, and the other end is connected to the side of the main positive relay 101 away from the battery, which is directly connected to the charging positive bus where the charging positive relay 106 is located, that is, connected to the high-voltage circuit outside the battery pack, so the first wire 108 can be used to detect the insulation condition of the high-voltage circuit outside the vehicle battery pack.
  • connection between the insulation detection circuit 105 and the positive electrode of the battery A first switch S1 is provided on the conductor, and a second switch S2 is provided on the first conductor 108 .
  • the first switch S1, the main positive relay 101 and the main negative relay 102 are all closed, and the second switch S2 is open.
  • the first switch S1, the main positive relay 101 and the main negative relay 102 are all open, and the second switch S2 is closed.
  • the insulation detection circuit provided by the present invention detects the insulation condition of the high-voltage circuit inside or outside the battery pack by controlling the on-off of the corresponding switches, reuses the original insulation detection circuit and high-voltage sampling harness, and realizes comprehensive detection of the insulation condition of the vehicle's high-voltage circuit through a simple circuit structure, which is convenient for timely detection of leakage risks and cutting off the high-voltage power supply, while controlling costs and effectively improving the safety performance of electric vehicles.
  • FIG. 2 is a schematic diagram showing a circuit principle of an insulation detection circuit for a vehicle high-voltage line according to another embodiment of the present invention.
  • connection between the insulation detection circuit 105 of the vehicle high-voltage circuit provided by the present invention and the negative electrode of the battery and the side of the main negative relay 102 away from the battery is also connected to a second wire 109.
  • the second wire 109 Similar to the first wire, since one end of the second wire 109 is directly connected to the insulation detection circuit 105, the other end can be connected to the charging negative bus where the charging negative relay 107 is located, that is, it can be connected to the external high-voltage circuit connected to the charging negative bus. Therefore, the second wire 109 can directly connect the insulation detection circuit 105 and the external high-voltage circuit. Therefore, the second wire 109 can be used together with the first wire 108 to detect the insulation condition of the external high-voltage circuit of the vehicle battery pack.
  • a first switch S1 is provided on the connecting wire between the insulation detection circuit 105 and the positive electrode of the battery
  • a second switch S2 is provided on the first wire 108
  • a third switch S3 is provided on the connecting wire between the insulation detection circuit 105 and the negative electrode of the battery
  • a fourth switch S4 is provided on the second wire 109.
  • the first switch S1, the third switch S3, the main positive relay 101 and the main negative relay 102 are all closed, and the second switch S2 and the fourth switch S4 are all disconnected; and when detecting the insulation condition of the high-voltage circuit outside the battery pack, the first switch S1, the third switch S3, the main positive relay 101 and the main negative relay 102 are all disconnected, and the second switch S2 and the fourth switch S4 are all closed.
  • the solution of only setting the first wire 108 saves a wire and the switch on the wire, saving the cost of parts
  • the solution of adding the second wire 109 and using the first wire 108 and the second wire 109 to jointly detect the high-voltage busbar outside the battery pack has a more flexible and accurate control effect due to the additional setting of the line and the switch.
  • the selection and conversion of the internal or external high-voltage line of the battery pack can be realized by controlling the switch on the corresponding line, which can completely control all the high-voltage lines in the vehicle. A comprehensive inspection is carried out on the edge to facilitate timely detection of leakage risks and cut off the high-voltage power supply, thereby ensuring vehicle safety to the greatest extent possible.
  • a first resistor R1 and a second resistor R2 are provided in series, a third resistor R3 is connected in parallel at both ends of the first resistor R1, and a fourth resistor R4 is connected in parallel at both ends of the second resistor R2.
  • the first resistor R1 and the second resistor R2 are connected to the vehicle body ground 104 through a wire, and a fifth switch S5 is provided on the circuit branch where the first resistor R1 is located, and a sixth switch S6 is provided on the circuit branch where the second resistor R2 is located.
  • R1, R2, R3, and R4 together constitute a bridge circuit.
  • the equivalent resistance R5 and R6 of the junction between the insulation detection circuit 105 and the positive and negative electrodes of the battery relative to the vehicle body ground can be calculated respectively.
  • the insulation condition of the corresponding high-voltage line can be judged by the resistance values of R5 and R6, which will be described in detail in the following section on the insulation detection method.
  • the resistance of the first resistor R1 and the second resistor R2 in the insulation detection circuit 105 is in the order of 10 5 ohms, for example, R1 and R2 may be 500 k ⁇ , and the resistance of the third resistor R3 and the fourth resistor R4 is in the order of megaohms, for example, R3 and R4 may be 3 M ⁇ .
  • the specific values of these resistors are only for exemplary description and are not intended to limit the scope of protection of the present invention.
  • a seventh switch S7 is further provided on the grounding wire between the first resistor R1 and the second resistor R2 in the insulation detection circuit 105.
  • the seventh switch S7 controls the connection with the vehicle body ground 104, and the seventh switch S7 needs to be closed when performing the vehicle high voltage line insulation detection.
  • Another aspect of the present invention provides an insulation detection method for a vehicle high-voltage circuit, which is suitable for scenarios where the insulation condition of the high-voltage circuit outside the vehicle battery pack needs to be detected. For example, when the vehicle battery pack needs to be charged, if the battery temperature is too low, the battery needs to be heated by the high-voltage electricity of the external charging pile first. At this time, the insulation condition of the external high-voltage electricity greatly affects the user's safety. Since the main positive relay and the main negative relay in the battery pack are disconnected during charging, the traditional insulation detection circuit cannot realize the insulation detection of the external high-voltage circuit.
  • the detection scheme provided by the present invention is described below.
  • the circuit used in the insulation detection method provided by the present invention comprises a high-voltage circuit in a vehicle battery pack, wherein the positive and negative electrodes of the battery are respectively connected to the vehicle electrical equipment through a main positive relay and a main negative relay, and the main positive relay and the main negative relay are further connected to a charging circuit at one end away from the battery, and an external charging device is connected to the two charging circuits, respectively, and a charging positive relay and a charging negative relay are provided.
  • the insulation detection circuit is connected in parallel to the two ends of the battery, and the interior thereof is connected to the vehicle body ground.
  • the insulation detection method may include:
  • a first conductive wire is connected to detect the insulation condition of the high voltage circuit outside the battery pack.
  • the insulation detection method can adopt a circuit as shown in FIG. 1 , and can be combined with reference to FIG. 1 , a first switch S1 is provided on the connecting wire between the insulation detection circuit 105 and the positive electrode of the battery, and a second switch S2 is provided on the first wire 108 , and the insulation detection method can also include:
  • the first switch S1, the main positive relay 101 and the main negative relay 102 are all controlled to be disconnected, and the second switch S2 is closed to perform the detection of the insulation condition of the high-voltage circuit outside the battery pack.
  • the insulation detection method may also include: in response to the temperature of the vehicle battery pack being lower than the charging temperature threshold, connecting a second wire between the connection between the insulation detection circuit and the negative electrode of the battery and the side of the main negative relay away from the battery to detect the insulation condition of the high-voltage circuit outside the battery pack, and detecting the insulation condition of the high-voltage circuit outside the vehicle battery pack through a combination of the first wire and the second wire.
  • the insulation detection method provided by the present invention may also adopt the circuit structure shown in FIG2, that is, a first switch S1 is provided on the connecting wire between the insulation detection circuit 105 and the positive electrode of the battery, a second switch S2 is provided on the first wire 108, a third switch S3 is provided on the connecting wire between the insulation detection circuit 105 and the negative electrode of the battery, and a fourth switch S4 is provided on the second wire 109.
  • the insulation detection method may also include:
  • the first switch S1, the third switch S3, the main positive relay 101 and the main negative relay 102 are all controlled to be disconnected, and the second switch S2 and the fourth switch S4 are all closed to perform the detection of the insulation condition of the high-voltage circuit outside the battery pack.
  • the selection and control of the insulation condition of the internal or external high-voltage circuit of the battery pack is realized, and the comprehensive detection of the insulation condition of the vehicle high-voltage circuit is realized without adding extra costs, so as to facilitate timely detection of leakage risks and cut off the high-voltage power supply to ensure personnel safety.
  • the chargeable temperature threshold of the vehicle battery described above may be 5° C. It is easy to understand that the temperature threshold may be adjusted and set according to actual conditions.
  • the insulation detection method for the vehicle high-voltage circuit provided by the present invention is described using a specific scenario in which the high voltage outside the vehicle battery pack is used to heat the vehicle battery pack as an example.
  • the insulation detection method provided by the present invention is not limited to this scenario.
  • the insulation detection method provided by the present invention can be used in other scenarios that require the use of high-voltage circuits outside the vehicle battery pack, for example, in combination with reference to Figure 3.
  • FIG. 3 is a diagram showing the insulation condition of the high voltage line outside the vehicle battery pack according to another embodiment of the present invention. Schematic diagram of the circuit structure.
  • the switch control method described above can be used so that the insulation detection circuit 301 is not directly connected to the battery pack, but is connected to the Boost circuit 302 outside the battery pack to detect the insulation condition of the Boost circuit 302 .
  • the insulation detection of all the vehicle's high-voltage circuits can be achieved through similar wiring methods and switch controls in the insulation detection circuit and method provided by the present invention. Without adding additional costs, a comprehensive detection of the insulation condition of the vehicle's high-voltage circuit is achieved, which facilitates timely detection of leakage risks and cutting off the high-voltage power supply, thereby ensuring personnel safety.
  • the specific detection method of the internal circuit structure of the insulation detection circuit can be combined with reference to FIG4 .
  • FIG. 4 is a schematic diagram of a method flow of an insulation detection method for a vehicle high-voltage line according to an embodiment of another aspect of the present invention.
  • the insulation detection circuit 105 provided by the present invention is provided with a first resistor R1 and a second resistor R2 connected in series with each other, a third resistor R3 is connected in parallel at both ends of the first resistor R1, a fourth resistor R4 is connected in parallel at both ends of the second resistor R2, the first resistor R1 and the second resistor R2 are connected to the vehicle body ground 104 via a wire, a fifth switch S5 is provided on the circuit branch where the first resistor R1 is located, and a sixth switch S6 is provided on the circuit branch where the second resistor R2 is located.
  • the first reference point in the circuit is set as the connection point between the insulation detection circuit and the positive electrode of the battery and the first wire.
  • the first reference point is the intersection of the circuit branches where S1 and S2 are located near the insulation detection circuit 105, and is also the end of R1 and R3 away from the vehicle body ground 104.
  • the second reference point is set as the connection point between the insulation detection circuit and the negative electrode of the battery, and is also the end of R2 and R4 away from the vehicle body ground 104.
  • the equivalent resistance of the first reference point to the vehicle body ground 104 is set to R5, and the equivalent resistance of the second reference point to the vehicle body ground 104 is set to R6.
  • the position between the first resistor R1 and the second resistor R2 is set as the third reference point, and the third reference point is also the position between R3 and R4.
  • the vehicle high voltage line insulation detection method 400 provided by the present invention may further include:
  • Step 401 Open the fifth switch S5, close the sixth switch S6, wait for the voltage to stabilize, and then measure and read the voltage value U A1 of the first reference point relative to the negative electrode of the battery and the voltage value U F1 of the third reference point relative to the negative electrode of the battery.
  • formula 1 can be obtained:
  • Step 402 Close the fifth switch, open the sixth switch, wait for the voltage to stabilize, and then measure and read the voltage of the first switch.
  • formula 2 can be obtained:
  • Step 403 Calculate R5 and R6 according to the following formula:
  • R1, R2, R3, and R4 are the resistance values of the first resistor, the second resistor, the third resistor, and the fourth resistor, respectively.
  • step 404 loop through the above steps to determine the insulation status of the current corresponding circuit according to the resistance value of the equivalent resistor.
  • the equivalent resistance of the insulation resistance can be the insulation resistance inside the battery pack or the insulation resistance of the high-voltage circuit outside the battery pack, which can be selected and controlled according to actual use needs.
  • the insulation detection circuit and method of the vehicle high-voltage circuit provided by the present invention completely completes the insulation detection of the internal and external high-voltage circuits of the vehicle battery pack, and realizes the comprehensive detection of the insulation condition of the vehicle high-voltage circuit without adding additional costs, which is convenient for timely detection of leakage risks of high-voltage circuits in various parts of the vehicle and cutting off the high-voltage power supply, ensuring the safety of personnel using the vehicle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

一种车辆高压线路的绝缘检测电路及绝缘检测方法,在车辆电池包中电池的正极和负极分别通过主正继电器(101)和主负继电器(102)与车辆用电设备(103)相连接,绝缘检测电路(105)并联于电池的两端,其内部与车身地(104)相连接,用于测量车辆高压线路中参考点对车身地(104)的等效电阻阻值以执行车辆高压线路的绝缘检测,其中,绝缘检测电路(105)与电池正极的连接处与主正继电器(101)远离电池的一侧之间连接有第一导线(108),用于检测车辆电池包外部高压线路的绝缘情况。

Description

一种车辆高压线路的绝缘检测电路及绝缘检测方法 技术领域
本发明涉及车辆高压线路领域,尤其涉及一种车辆高压线路的绝缘检测电路及绝缘检测方法。
背景技术
随着新能源车辆的普及,针对新能源车辆安全性能等方面的考量也更加全面细致。例如,一般电动车辆电池包或充电桩的电压可以高达400V以上,如果电池包或充电桩的高压与车身相连接导致绝缘失效,继而发生高压触电危险,威胁人员安全,可见,绝缘检测在确保电动汽车的安全性能方面起到至关重要的作用。
车辆高压线路的绝缘检测功能一般是由电池包内的电池管理控制器实现的,通过电池管理控制器内的绝缘检测模块检测高压正母线对车身地以及高压负母线对车身地的等效阻值进而得到两条高压母线的绝缘阻值。再通过该绝缘阻值判断车辆的高压线路是否存在绝缘失效的故障,更具体地,如果检测到某绝缘阻值过低,说明对应的高压线路存在较大的漏电风险,此时电池管理控制器需要执行故障响应,例如警告绝缘故障、断开高压继电器等。通过绝缘检测和绝缘故障报警机制能够较好地监测整车绝缘失效故障的实时情况,进而保护驾驶员或乘客免遭触电的安全威胁。
现有技术中电动车辆高压线路的绝缘检测一般是在车辆电池两端并联一个绝缘检测模块,该绝缘检测模块通常采用非平衡桥的电桥法进行绝缘检测,但是该方案有一个缺陷,高压线路中的主正继电器和主负继电器处于断开状态时,该绝缘检测模块无法检测出与车辆相连的外部高压母线上的绝缘情况。例如,在车辆充电的场景中,如果电池包的温度过低,需要接通外部充电桩的高压电为电池包进行加热后再执行充电,此时如果外部充电桩与车辆相连接的高压母线发生绝缘失效,而主正继电器和主负继电器又都处于断开状态,此时原有的绝缘检测模块完全无法检测出绝缘失效的安全隐患,给用户带来了极大的安全风险。
为了克服现有技术存在的上述缺陷,本领域亟需一种车辆高压线路的绝缘检测电路及绝缘检测方法,用于检测与车辆相连接的内部和外部的高压线路的绝缘情况,进而有效地排除车辆相关的所有高压线路发生绝缘失效的安全隐患,同时操作灵活、便捷,最大限度地确保电动车辆的用车安全。
发明内容
以下给出一个或多个方面的简要概述以提供对这些方面的基本理解。此概述不是所有构想到的方面的详尽综览,并且既非旨在指认出所有方面的关键性或决定性要素亦非试图界定任何或所有方面的范围。其唯一的目的是要以简化形式给出一个或多个方面的一些概念以为稍后给出的更加详细的描述之序。
为了克服现有技术存在的上述缺陷,本发明提供了一种车辆高压线路的绝缘检测电路,在车辆电池包中电池的正极和负极分别通过主正继电器和主负继电器与车辆用电设备相连接,该绝缘检测电路并联于该电池的两端,其内部与车身地相连接,用于测量该车辆高压线路中参考点对该车身地的等效电阻阻值以执行该车辆高压线路的绝缘检测,其中,该绝缘检测电路与电池正极的连接处与该主正继电器远离该电池的一侧之间连接有第一导线,用于检测车辆电池包外部高压线路的绝缘情况。
在一实施例中,优选地,该绝缘检测电路与该电池正极的连接导线上设有第一开关,该第一导线上设有第二开关,当检测电池包内部高压线路的绝缘情况时,该第一开关、该主正继电器和该主负继电器均闭合,该第二开关断开;以及当检测电池包外部高压线路的绝缘情况时,该第一开关、该主正继电器和该主负继电器均断开,该第二开关闭合。
在一实施例中,优选地,该绝缘检测电路与该电池的负极的连接处与该主负继电器远离该电池的一侧还连接有第二导线,用于检测车辆电池包外部高压线路的绝缘情况。
在一实施例中,优选地,该绝缘检测电路与该电池的正极的连接导线上设有第一开关,该第一导线上设有第二开关,该绝缘检测电路与该电池的负极的连接导线上设有第三开关,该第二导线上设有第四开关,当检测电池包内部高压线路的绝缘情况时,该第一开关、该第三开关、该主正继电器和该主负继电器均闭合,该第二开关和该第四开关均断开;以及当检测电池包外部高压线路的绝缘情况时,该第一开关、该第三开关、该主正继电器和该主负继电器均断开,该第二开关和该第四开关均闭合。
在一实施例中,优选地,该绝缘检测电路中设有相串联的第一电阻和第二电阻,该第一电阻两端并联有第三电阻,该第二电阻两端并联有第四电阻,该第一电阻和该第二电阻之间通过导线与该车身地相连接,该第一电阻所在的电路支路上设有第五开关,该第二电阻所在的电路支路上设有第六开关。
在一实施例中,优选地,该绝缘检测电路中该第一电阻和该第二电阻之间的接地导线上还设有第七开关。
在一实施例中,优选地,该绝缘检测电路中该第一电阻和该第二电阻的阻值为105欧姆数量级,该第三电阻和该第四电阻的阻值为兆欧姆数量级。
在一实施例中,优选地,在该车辆电池包中,该主正继电器和该主负继电器远离该电池的一端还连接有充电线路以外接充电设备,该两条该充电线路上分别设有充电正继电器和充电负继电器,该充电线路与外部充电设备相连接以构成该车辆电池包外部高压线路。
本发明的另一方面还提供了一种车辆高压线路的绝缘检测方法,在车辆电池包中该车辆高压线路包括电池的正极和负极分别通过主正继电器和主负继电器与车辆用电设备相连接,该主正继电器和该主负继电器远离该电池的一端还连接有充电线路以外接充电设备,该两条该充电线路上分别设有充电正继电器和充电负继电器,绝缘检测电路并联于该电池的两端,其内部与车身地相连接,该绝缘检测方法包括:检测车辆电池包温度,响应于该车辆电池包温度低于可充电温度阈值,闭合该充电正继电器和该充电负继电器以通过外部高压为该车辆电池包加热;以及在该绝缘检测电路与电池正极的连接处与该主正继电器远离该电池的一侧之间连接第一导线以检测该电池包外部高压线路的绝缘情况。
在一实施例中,优选地,该绝缘检测电路与该电池的正极的连接导线上设有第一开关,该第一导线上设有第二开关,该绝缘检测方法还包括:响应于该车辆电池包温度低于可充电温度阈值,控制该第一开关、该主正继电器和该主负继电器均断开,该第二开关闭合以执行该检测该电池包外部高压线路的绝缘情况。
在一实施例中,优选地,该绝缘检测方法还包括:响应于该车辆电池包温度低于可充电温度阈值,在该绝缘检测电路与电池负极的连接处与该主负继电器远离该电池的一侧之间连接第二导线以检测该电池包外部高压线路的绝缘情况。
在一实施例中,优选地,该绝缘检测电路与该电池的正极的连接导线上设有第一开关,该第一导线上设有第二开关,该绝缘检测电路与该电池负极的连接导线上设有第三开关,该第二导线上设有第四开关,该绝缘检测方法还包括:响应于该车辆电池包温度低于可充电温度阈值,控制该第一开关、该第三开关、该主正继电器和该主负继电器均断开,该第二开关和该第四开关均闭合以执行该检测该电池包外部高压线路的绝缘情况。
在一实施例中,可选地,该可充电温度阈值为5℃。
在一实施例中,优选地,该绝缘检测电路中设有相互串联的第一电阻和第二电阻,该第一电阻两端并联有第三电阻,该第二电阻两端并联有第四电阻,该第一电阻和该 第二电阻之间通过导线与车身地相连接,该第一电阻所在的电路支路上设有第五开关,该第二电阻所在的电路支路上设有第六开关,将电路中的第一参考点设为该绝缘检测电路与电池正极、该第一导线的连接处,将第二参考点设为该绝缘检测电路与电池负极的连接处,该第一参考点对车身地的等效电阻设为R5,该第二参考点对车身地的等效电阻设为R6,将该第一电阻和该第二电阻之间的位置设为第三参考点,该绝缘检测方法还包括:断开该第五开关,闭合该第六开关,等待电压稳定后,测量读取该第一参考点相对于该电池负极的电压值UA1和该第三参考点相对于该电池负极的电压值UF1;闭合该第五开关,断开该第六开关,等待电压稳定后,测量读取该第一参考点相对于该电池负极的电压值UA2和该第三参考点相对于该电池负极的电压值UF2;根据以下公式计算R5和R6:

其中,R1、R2、R3、R4分别为该第一电阻、该第二电阻、该第三电阻和该第四电阻的阻值;以及循环执行以上步骤以根据该等效电阻的阻值检测判断当前对应电路的绝缘情况。
附图说明
在结合以下附图阅读本公开的实施例的详细描述之后,能够更好地理解本发明的上述特征和优点。在附图中,各组件不一定是按比例绘制,并且具有类似的相关特性或特征的组件可能具有相同或相近的附图标记。
图1是根据本发明的一实施例绘示的车辆高压线路的绝缘检测电路的电路原理示意图;
图2是根据本发明的另一实施例绘示的车辆高压线路的绝缘检测电路的电路原理示意图;
图3是根据本发明的另一实施例绘示的检测车辆电池包外部高压线路绝缘情况的电路结构示意图;以及
图4是根据本发明另一方面的一实施例绘示的车辆高压线路的绝缘检测方法的方法流程示意图。
为清楚起见,以下给出附图标记的简要说明:
101    主正继电器
102    主负继电器
103    车辆用电设备
104    车身地
105    绝缘检测电路
106    充电正继电器
107    充电负继电器
108    第一导线
109    第二导线
301    绝缘检测电路
302    Boost电路
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。虽然本发明的描述将结合优选实施例一起介绍,但这并不代表此发明的特征仅限于该实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本发明的权利要求而有可能延伸出的其它选择或改造。为了提供对本发明的深度了解,以下描述中将包含许多具体的细节。本发明也可以不使用这些细节实施。此外,为了避免混乱或模糊本发明的重点,有些具体细节将在描述中被省略。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
另外,在以下的说明中所使用的“上”、“下”、“左”、“右”、“顶”、“底”、“水平”、“垂直”应被理解为该段以及相关附图中所绘示的方位。此相对性的用语仅是为了方便说明之用,其并不代表其所叙述的装置需以特定方位来制造或运作,因此不应理解为对本发明的限制。
能理解的是,虽然在此可使用用语“第一”、“第二”、“第三”等来叙述各种组件、区域、层和/或部分,这些组件、区域、层和/或部分不应被这些用语限定,且这些用语仅是用来区别不同的组件、区域、层和/或部分。因此,以下讨论的第一组件、区域、层和/或部分可在不偏离本发明一些实施例的情况下被称为第二组件、区域、层和/或部分。
为了克服现有技术中的上述缺陷,本发明提供了一种车辆高压线路的绝缘检测电路及绝缘检测方法,用于检测与车辆相连接的内部和外部的高压线路的绝缘情况,进而有效地排除车辆相关的所有高压线路发生绝缘失效的安全隐患,同时操作灵活、便捷,最大限度地确保电动车辆的用车安全。
图1是根据本发明的一实施例绘示的车辆高压线路的绝缘检测电路的电路原理示意图。
请参照图1,车辆高压线路按其所处位置可以分为电池包内和电池包外。在电池包内,电池的正极和负极分别通过主正继电器101和主负继电器102与电池包外部的车辆用电设备103相连接,如图1所示,上下两条高压母线靠近车辆用电设备103的位置设有接口插座,车辆用电设备103可以通过该接口插座与电池包内的高压线路相连接。
图1电路结构中远离车辆用电设备103一侧的方框中为本发明提供的绝缘检测电路105。绝缘检测电路105并联于电池的两端,其内部与车身地104相连接。绝缘检测电路105用于测量该车辆高压线路中参考点对该车身地104的等效电阻阻值以执行该车辆高压线路的绝缘检测。
在一实施例中,如图1所示,在该车辆电池包中,该主正继电器101和该主负继电器102远离该电池的一端还连接有充电线路以外接充电设备,该两条该充电线路上分别设有充电正继电器106和充电负继电器107,该充电线路与外部充电设备相连接以构成该车辆电池包外部高压线路。
请继续参考图1,在本发明提供的车辆高压线路的绝缘检测电路105与电池正极的连接处与该主正继电器101远离该电池的一侧之间连接有第一导线108。显而易见地,第一导线108的一端直接连接绝缘检测电路105,另一端接在主正继电器101远离该电池的一侧,也就与充电正继电器106所在的充电正母线直接连接,即连接了电池包外部的高压线路,因此第一导线108可以用于检测车辆电池包外部高压线路的绝缘情况。
在一实施例中,优选地,请结合图1,该绝缘检测电路105与该电池正极的连接 导线上设有第一开关S1,与此同时该第一导线108上设有第二开关S2。
当检测电池包内部高压线路的绝缘情况时,该第一开关S1、该主正继电器101和该主负继电器102均闭合,该第二开关S2断开。而当检测电池包外部高压线路的绝缘情况时,该第一开关S1、该主正继电器101和该主负继电器102均断开,该第二开关S2闭合。本发明提供的绝缘检测电路,通过控制相应的开关通断选择检测电池包内部或外部高压线路的绝缘情况,复用原有的绝缘检测电路及高压采样线束,通过简单的电路结构实现了车辆高压线路绝缘情况的全面检测,便于及时发现漏电风险并切断高压电源,控制成本的同时有效提升了电动车辆的安全性能。
图2是根据本发明的另一实施例绘示的车辆高压线路的绝缘检测电路的电路原理示意图。
请参照图2,在另一实施例中,本发明提供的车辆高压线路的绝缘检测电路105与电池负极的连接处与该主负继电器102远离该电池的一侧还连接有第二导线109,与第一导线类似的,由于第二导线109的一端直接连接绝缘检测电路105,另一端可以与充电负继电器107所在的充电负母线相连接,即可以连接充电负母线所外接的外部高压线路,因此,第二导线109可以直接连接绝缘检测电路105和外部高压线路,因此第二导线109可以用于与第一导线108共同检测车辆电池包外部高压线路的绝缘情况。
进一步,更加优选地,请继续参考图2,在图2所示的实施例中,绝缘检测电路105与该电池正极的连接导线上设有第一开关S1,该第一导线108上设有第二开关S2,该绝缘检测电路105与该电池负极的连接导线上设有第三开关S3,该第二导线109上设有第四开关S4.
相应地,在该实施例中,当检测电池包内部高压线路的绝缘情况时,该第一开关S1、该第三开关S3、该主正继电器101和该主负继电器102均闭合,该第二开关S2和该第四开关S4均断开;而当检测电池包外部高压线路的绝缘情况时,该第一开关S1、该第三开关S3、该主正继电器101和该主负继电器102均断开,该第二开关S2和该第四开关S4均闭合。
与上文第一个实施例相比较,仅设置第一导线108的方案节省了一条导线与导线上的开关,节约了零部件成本,而增设第二导线109,由第一导线108和第二导线109共同检测电池包外部高压母线的方案由于线路和开关的额外设置,获得了更加灵活准确的控制效果。而无论是该两种方案中的哪一种,都可以通过控制相应线路上的开关实现检测电池包内部或外部高压线路的选择与转换,能够对车辆中全部的高压线路绝 缘进行全面的检测,便于及时发现漏电风险并切断高压电源,最大限度地确保用车安全。
请继续参考图1或图2,在本发明提供的绝缘检测电路105中设有相串联的第一电阻R1和第二电阻R2,该第一电阻R1两端并联有第三电阻R3,该第二电阻R2两端并联有第四电阻R4,该第一电阻R1和该第二电阻R2之间通过导线与该车身地104相连接,该第一电阻R1所在的电路支路上设有第五开关S5,该第二电阻R2所在的电路支路上设有第六开关S6。这里,R1、R2、R3、R4共同构成了桥接电路,通过控制S5和S6可以分别计算出该绝缘检测电路105与电池正极、负极的相接处相对于车身地的等效阻值R5和R6,通过R5和R6的阻值即可判断相应的高压线路的绝缘情况,具体将在下文有关绝缘检测方法的部分详细阐述。
在一实施例中,可选地,该绝缘检测电路105中该第一电阻R1和该第二电阻R2的阻值为105欧姆数量级,例如,R1和R2可以为500kΩ,该第三电阻R3和该第四电阻R4的阻值为兆欧姆数量级,例如R3、R4可以取值为3MΩ。该些电阻的具体取值仅做示例性的说明,而非用于限制本发明的保护范围。
在一实施例中,优选地,绝缘检测电路105中该第一电阻R1和该第二电阻R2之间的接地导线上还设有第七开关S7。第七开关S7控制与车身地104的连接通断,在执行车辆高压线路绝缘检测时,需闭合该第七开关S7。
本发明的另一方面还提供了一种车辆高压线路的绝缘检测方法,适用于需要检测车辆电池包外部高压线路绝缘情况的场景,例如,在需要给车辆电池包充电时,若电池的温度过低,需要先通过外部充电桩的高压电为电池加热,此时外部高压电的绝缘情况就极大地影响到了用户的使用安全。由于充电时电池包中的主正继电器和主负继电器是断开的,传统的绝缘检测电路就无法实现外部高压线路的绝缘检测,下面阐述本发明提供的检测方案。
本发明提供的绝缘检测方法所采用的电路在车辆电池包中的高压线路包括电池的正极和负极分别通过主正继电器和主负继电器与车辆用电设备相连接,该主正继电器和该主负继电器远离该电池的一端还连接有充电线路以外接充电设备,该两条该充电线路上分别设有充电正继电器和充电负继电器,绝缘检测电路并联于该电池的两端,其内部与车身地相连接,该绝缘检测方法可以包括:
检测车辆电池包温度,响应于该车辆电池包温度低于可充电温度阈值,闭合该充电正继电器和该充电负继电器以通过外部高压为该车辆电池包加热;
在该绝缘检测电路与电池正极的连接处与该主正继电器远离该电池的一侧之间 连接第一导线以检测该电池包外部高压线路的绝缘情况。
在一实施例中,优选地,绝缘检测方法可以采用如图1所示的电路,可以结合参考图1,绝缘检测电路105与电池正极的连接导线上设有第一开关S1,该第一导线108上设有第二开关S2,该绝缘检测方法还可以包括:
响应于该车辆电池包温度低于可充电温度阈值,控制该第一开关S1、该主正继电器101和该主负继电器102均断开,该第二开关S2闭合以执行该检测该电池包外部高压线路的绝缘情况。通过控制开关S1和S2的通断即可实现选择检测电池包内部或外部高压线路的绝缘情况,实现车辆高压线路绝缘与否的全面检测,便于及时发现漏电风险并切断高压电源,在不额外多增加成本的同时提升车辆的用电安全与用户体验。
与电路结构相对应地,在一实施例中,该绝缘检测方法还可以包括:响应于该车辆电池包温度低于可充电温度阈值,在该绝缘检测电路与电池负极的连接处与该主负继电器远离该电池的一侧之间连接第二导线以检测该电池包外部高压线路的绝缘情况,通过第一导线和第二导线的组合来检测车辆电池包外部高压线路的绝缘情况。
类似地,本发明提供的绝缘检测方法也可以采用如图2所示的电路结构,即绝缘检测电路105与电池正极的连接导线上设有第一开关S1,该第一导线108上设有第二开关S2,该绝缘检测电路105与该电池负极的连接导线上设有第三开关S3,该第二导线109上设有第四开关S4,该绝缘检测方法还可以包括:
响应于该车辆电池包温度低于可充电温度阈值,控制该第一开关S1、该第三开关S3、该主正继电器101和该主负继电器102均断开,该第二开关S2和该第四开关S4均闭合以执行该检测该电池包外部高压线路的绝缘情况。通过控制开关S1、S2、S3、S4即实现了检测电池包内部或外部高压线路绝缘情况的选择与控制,在不额外多增加成本的同时实现了车辆高压线路绝缘情况的全面检测,便于及时发现漏电风险并切断高压电源,确保人员安全。
在一实施例中,以上所描述的车辆电池的可充电温度阈值可以为5℃。容易理解地,该温度阈值可以根据实际情况予以调整设定。
需要说明的是,本发明提供的车辆高压线路的绝缘检测方法以车辆电池包外部高压为车辆电池包加热的具体场景作为实施例展开说明,但是本发明提供的绝缘检测方法不仅仅限于适用该一种场景,其他的需要使用到车辆电池包外部高压线路的场景均可以使用本发明提供的绝缘检测方法,例如可以结合参考图3。
图3是根据本发明的另一实施例绘示的检测车辆电池包外部高压线路绝缘情况 的电路结构示意图。
如图3所示,在该实施例中,可以通过上文所描述的开关控制方式,使得绝缘检测电路301不与电池包直接连接,而是连接到电池包外部的Boost电路302上,用于检测该Boost电路302的绝缘情况。
可见,无论车辆高压线路位于电池包的内部还是外部,不管是在何种具体场景下,均可以通过本发明提供的绝缘检测电路及方法中类似的接线方式与开关控制实现车辆所有高压线路的绝缘检测,在不额外多增加成本的同时实现了车辆高压线路绝缘情况的全面检测,便于及时发现漏电风险并切断高压电源,进而确保人员安全。
关于绝缘检测电路内部电路结构的具体检测方法可以结合参考图4。
图4是根据本发明另一方面的一实施例绘示的车辆高压线路的绝缘检测方法的方法流程示意图。
可以结合参考图4和图1或图2,本发明提供的该绝缘检测电路105中设有相互串联的第一电阻R1和第二电阻R2,该第一电阻R1两端并联有第三电阻R3,该第二电阻R2两端并联有第四电阻R4,该第一电阻R1和该第二电阻R2之间通过导线与车身地104相连接,该第一电阻R1所在的电路支路上设有第五开关S5,该第二电阻R2所在的电路支路上设有第六开关S6。
将电路中的第一参考点设为该绝缘检测电路与电池正极、该第一导线的连接处,该第一参考点也就是S1、S2所在电路支路靠近绝缘检测电路105侧的交汇处,同时也是R1和R3远离车身地104的一端;将第二参考点设为该绝缘检测电路与电池负极的连接处,同时也是R2和R4远离车身地104的一端。该第一参考点对车身地104的等效电阻设为R5,该第二参考点对车身地104的等效电阻设为R6,将该第一电阻R1和该第二电阻R2之间的位置设为第三参考点,该第三参考点同时也是R3和R4之间的位置。
可以参考图4,本发明提供的车辆高压线路的绝缘检测方法400还可以包括:
步骤401:断开该第五开关S5,闭合该第六开关S6,等待电压稳定后,测量读取该第一参考点相对于该电池负极的电压值UA1和该第三参考点相对于该电池负极的电压值UF1。此时根据电压电阻的数值关系可以得到公式1:
步骤402:闭合该第五开关,断开该第六开关,等待电压稳定后,测量读取该第 一参考点相对于该电池负极的电压值UA2和该第三参考点相对于该电池负极的电压值UF2。类似的,此时根据电压电阻的数值关系可以得到公式2:
步骤403:根据以下公式计算R5和R6:

其中,R1、R2、R3、R4分别为该第一电阻、该第二电阻、该第三电阻和该第四电阻的阻值。
结合上述的公式1和公式2便可以推导得到R5、R6的计算公式。
最后,步骤404:循环执行以上步骤以根据该等效电阻的阻值检测判断当前对应电路的绝缘情况。
容易理解的,随着时间的推移与车辆状态的改变,绝缘电阻的等效阻值也会发生变化。因此,周期性地循环执行可以确保所得到的等效电阻阻值为当前的准确数值。根据接线方式与相应的开关控制,该绝缘电阻等效阻值可以是电池包内部的绝缘电阻,也可以是电池包外部高压线路的绝缘电阻,可以根据实际使用需要进行选择控制。至此,本发明提供的车辆高压线路的绝缘检测电路及方法就完整地完成了车辆电池包内部及外部高压线路的绝缘检测,在不额外多增加成本的同时实现了车辆高压线路绝缘情况的全面检测,便于及时发现车辆各处高压线路的漏电风险并切断高压电源,确保了人员的用车安全。
尽管为使解释简单化将上述方法图示并描述为一系列动作,但是应理解并领会,这些方法不受动作的次序所限,因为根据一个或多个实施例,一些动作可按不同次序发生和/或与来自本文中图示和描述或本文中未图示和描述但本领域技术人员可以理解的其他动作并发地发生。
提供对本公开的先前描述是为使得本领域任何技术人员皆能够制作或使用本公开。对本公开的各种修改对本领域技术人员来说都将是显而易见的,且本文中所定义的普适原理可被应用到其他变体而不会脱离本公开的精神或范围。由此,本公开并非旨在被限定于本文中所描述的示例和设计,而是应被授予与本文中所公开的原理和新 颖性特征相一致的最广范围。

Claims (14)

  1. 一种车辆高压线路的绝缘检测电路,在车辆电池包中电池的正极和负极分别通过主正继电器和主负继电器与车辆用电设备相连接,所述绝缘检测电路并联于所述电池的两端,其内部与车身地相连接,用于测量所述车辆高压线路中参考点对所述车身地的等效电阻阻值以执行所述车辆高压线路的绝缘检测,其中,
    所述绝缘检测电路与电池正极的连接处与所述主正继电器远离所述电池的一侧之间连接有第一导线,用于检测车辆电池包外部高压线路的绝缘情况。
  2. 如权利要求1所述的绝缘检测电路,其特征在于,所述绝缘检测电路与所述电池正极的连接导线上设有第一开关,所述第一导线上设有第二开关,
    当检测电池包内部高压线路的绝缘情况时,所述第一开关、所述主正继电器和所述主负继电器均闭合,所述第二开关断开;以及
    当检测电池包外部高压线路的绝缘情况时,所述第一开关、所述主正继电器和所述主负继电器均断开,所述第二开关闭合。
  3. 如权利要求1所述的绝缘检测电路,其特征在于,所述绝缘检测电路与所述电池的负极的连接处与所述主负继电器远离所述电池的一侧还连接有第二导线,用于检测车辆电池包外部高压线路的绝缘情况。
  4. 如权利要求3所述的绝缘检测电路,其特征在于,所述绝缘检测电路与所述电池的正极的连接导线上设有第一开关,所述第一导线上设有第二开关,所述绝缘检测电路与所述电池的负极的连接导线上设有第三开关,所述第二导线上设有第四开关,
    当检测电池包内部高压线路的绝缘情况时,所述第一开关、所述第三开关、所述主正继电器和所述主负继电器均闭合,所述第二开关和所述第四开关均断开;以及
    当检测电池包外部高压线路的绝缘情况时,所述第一开关、所述第三开关、所述主正继电器和所述主负继电器均断开,所述第二开关和所述第四开关均闭合。
  5. 如权利要求1或3中任一项所述的绝缘检测电路,其特征在于,所述绝缘检测电路中设有相串联的第一电阻和第二电阻,所述第一电阻两端并联有第三电阻,所述第二电阻两端并联有第四电阻,所述第一电阻和所述第二电阻之间通过导线与所述 车身地相连接,所述第一电阻所在的电路支路上设有第五开关,所述第二电阻所在的电路支路上设有第六开关。
  6. 如权利要求5所述的绝缘检测电路,其特征在于,所述绝缘检测电路中所述第一电阻和所述第二电阻之间的接地导线上还设有第七开关。
  7. 如权利要求5所述的绝缘检测电路,其特征在于,所述绝缘检测电路中所述第一电阻和所述第二电阻的阻值为105欧姆数量级,所述第三电阻和所述第四电阻的阻值为兆欧姆数量级。
  8. 如权利要求1所述的绝缘检测电路,其特征在于,在所述车辆电池包中,所述主正继电器和所述主负继电器远离所述电池的一端还连接有充电线路以外接充电设备,该两条所述充电线路上分别设有充电正继电器和充电负继电器,所述充电线路与外部充电设备相连接以构成所述车辆电池包外部高压线路。
  9. 一种车辆高压线路的绝缘检测方法,在车辆电池包中所述车辆高压线路包括电池的正极和负极分别通过主正继电器和主负继电器与车辆用电设备相连接,所述主正继电器和所述主负继电器远离所述电池的一端还连接有充电线路以外接充电设备,该两条所述充电线路上分别设有充电正继电器和充电负继电器,绝缘检测电路并联于所述电池的两端,其内部与车身地相连接,所述绝缘检测方法包括:
    检测车辆电池包温度,响应于所述车辆电池包温度低于可充电温度阈值,闭合所述充电正继电器和所述充电负继电器以通过外部高压为所述车辆电池包加热;以及
    在所述绝缘检测电路与电池正极的连接处与所述主正继电器远离所述电池的一侧之间连接第一导线以检测所述电池包外部高压线路的绝缘情况。
  10. 如权利要求9所述的绝缘检测方法,其特征在于,所述绝缘检测电路与所述电池的正极的连接导线上设有第一开关,所述第一导线上设有第二开关,所述绝缘检测方法还包括:
    响应于所述车辆电池包温度低于可充电温度阈值,控制所述第一开关、所述主正继电器和所述主负继电器均断开,所述第二开关闭合以执行所述检测所述电池包外部高压线路的绝缘情况。
  11. 如权利要求9所述的绝缘检测方法,其特征在于,所述绝缘检测方法还包括:
    响应于所述车辆电池包温度低于可充电温度阈值,在所述绝缘检测电路与电池负极的连接处与所述主负继电器远离所述电池的一侧之间连接第二导线以检测所述电池包外部高压线路的绝缘情况。
  12. 如权利要求11所述的绝缘检测方法,其特征在于,所述绝缘检测电路与所述电池的正极的连接导线上设有第一开关,所述第一导线上设有第二开关,所述绝缘检测电路与所述电池负极的连接导线上设有第三开关,所述第二导线上设有第四开关,所述绝缘检测方法还包括:
    响应于所述车辆电池包温度低于可充电温度阈值,控制所述第一开关、所述第三开关、所述主正继电器和所述主负继电器均断开,所述第二开关和所述第四开关均闭合以执行所述检测所述电池包外部高压线路的绝缘情况。
  13. 如权利要求9~12所述的绝缘检测方法,其特征在于,所述可充电温度阈值为5℃。
  14. 如权利要求9~12所述的绝缘检测方法,其特征在于,所述绝缘检测电路中设有相互串联的第一电阻和第二电阻,所述第一电阻两端并联有第三电阻,所述第二电阻两端并联有第四电阻,所述第一电阻和所述第二电阻之间通过导线与车身地相连接,所述第一电阻所在的电路支路上设有第五开关,所述第二电阻所在的电路支路上设有第六开关,
    将电路中的第一参考点设为所述绝缘检测电路与电池正极、所述第一导线的连接处,将第二参考点设为所述绝缘检测电路与电池负极的连接处,所述第一参考点对车身地的等效电阻设为R5,所述第二参考点对车身地的等效电阻设为R6,将所述第一电阻和所述第二电阻之间的位置设为第三参考点,所述绝缘检测方法还包括:
    断开所述第五开关,闭合所述第六开关,等待电压稳定后,测量读取所述第一参考点相对于所述电池负极的电压值UA1和所述第三参考点相对于所述电池负极的电压值UF1
    闭合所述第五开关,断开所述第六开关,等待电压稳定后,测量读取所述第一参考点相对于所述电池负极的电压值UA2和所述第三参考点相对于所述电池负极的电 压值UF2
    根据以下公式计算R5和R6:

    其中,R1、R2、R3、R4分别为所述第一电阻、所述第二电阻、所述第三电阻和所述第四电阻的阻值;以及
    循环执行以上步骤以根据所述等效电阻的阻值检测判断当前对应电路的绝缘情况。
PCT/CN2023/103040 2022-09-30 2023-06-28 一种车辆高压线路的绝缘检测电路及绝缘检测方法 WO2024066550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211210937.2A CN115639447A (zh) 2022-09-30 2022-09-30 一种车辆高压线路的绝缘检测电路及绝缘检测方法
CN202211210937.2 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024066550A1 true WO2024066550A1 (zh) 2024-04-04

Family

ID=84941443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103040 WO2024066550A1 (zh) 2022-09-30 2023-06-28 一种车辆高压线路的绝缘检测电路及绝缘检测方法

Country Status (2)

Country Link
CN (1) CN115639447A (zh)
WO (1) WO2024066550A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115639447A (zh) * 2022-09-30 2023-01-24 联合汽车电子有限公司 一种车辆高压线路的绝缘检测电路及绝缘检测方法
CN115951127B (zh) * 2023-02-10 2023-09-12 小米汽车科技有限公司 车载充电电路的绝缘电阻检测方法、车载充电电路及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541420A (zh) * 2018-12-25 2019-03-29 北京新能源汽车股份有限公司 一种高压系统绝缘检测方法、装置及电动汽车
CN111398745A (zh) * 2018-12-29 2020-07-10 长城汽车股份有限公司 新能源汽车的整车高压回路绝缘检测方法及装置
KR102221308B1 (ko) * 2019-11-19 2021-03-02 주식회사 현대케피코 전기차 배터리 또는 연료전지차 스택의 절연저항 측정방법 및 회로
CN112505419A (zh) * 2020-12-29 2021-03-16 华人运通(江苏)技术有限公司 车辆的绝缘电阻检测方法、装置、终端设备以及存储介质
CN113495202A (zh) * 2020-04-03 2021-10-12 北京新能源汽车股份有限公司 一种绝缘检测电路、方法及电动汽车
CN115639447A (zh) * 2022-09-30 2023-01-24 联合汽车电子有限公司 一种车辆高压线路的绝缘检测电路及绝缘检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541420A (zh) * 2018-12-25 2019-03-29 北京新能源汽车股份有限公司 一种高压系统绝缘检测方法、装置及电动汽车
CN111398745A (zh) * 2018-12-29 2020-07-10 长城汽车股份有限公司 新能源汽车的整车高压回路绝缘检测方法及装置
KR102221308B1 (ko) * 2019-11-19 2021-03-02 주식회사 현대케피코 전기차 배터리 또는 연료전지차 스택의 절연저항 측정방법 및 회로
CN113495202A (zh) * 2020-04-03 2021-10-12 北京新能源汽车股份有限公司 一种绝缘检测电路、方法及电动汽车
CN112505419A (zh) * 2020-12-29 2021-03-16 华人运通(江苏)技术有限公司 车辆的绝缘电阻检测方法、装置、终端设备以及存储介质
CN115639447A (zh) * 2022-09-30 2023-01-24 联合汽车电子有限公司 一种车辆高压线路的绝缘检测电路及绝缘检测方法

Also Published As

Publication number Publication date
CN115639447A (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2024066550A1 (zh) 一种车辆高压线路的绝缘检测电路及绝缘检测方法
CN105137336B (zh) 检测电动汽车高压继电器故障的诊断方法
CN103066636B (zh) 电子控制装置
US9718420B1 (en) Integrated power electronic device for electric vehicles
CN103858297B (zh) 电动车辆用充放电装置
JP5369833B2 (ja) 電動車両用充電器および地絡検出方法
JP2014519307A (ja) 直流電力供給装置
CN103419643A (zh) 一种高压配电控制方法及其装置
CN205097957U (zh) 电动汽车高压互锁实现装置
CN110967557B (zh) 检测电路及方法
CN108398598B (zh) 用于测量电池供电系统的隔离电阻的装置和方法
CN106908719A (zh) 车辆直流充电继电器的诊断系统
WO2023231734A1 (zh) 一种高压上下电接触器触点状态诊断装置、方法及车辆
JP2015139349A (ja) 接続システム
US9656569B2 (en) Vehicle power source apparatus
JP5104520B2 (ja) 電動車両の充電装置
WO2024066551A1 (zh) 车辆电池包的高压采样电路、继电器诊断及预充方法
WO2024119951A1 (zh) 一种车辆电池包中高压继电器的诊断电路及方法
WO2014034153A1 (ja) 漏電検出回路、電池用回路基板、及び電池電源装置
JP2014505452A (ja) 接触電流を推定し該接触電流から電気機器を保護する装置および方法
CN110967560A (zh) 绝缘检测电路及检测方法、电池管理系统
CN104578243A (zh) 用于监控直流电压充电的方法及蓄电池管理系统
CN203543694U (zh) 一种高压配电控制装置
CN111929503B (zh) 一种用于燃料电池测试时的绝缘阻抗测试装置与方法
CN205417197U (zh) 一种纯电动轿车用智能化高压配电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869798

Country of ref document: EP

Kind code of ref document: A1