WO2024066495A1 - 一种利用辅助绕组实现Flyblack开关电源ZVS的电路 - Google Patents

一种利用辅助绕组实现Flyblack开关电源ZVS的电路 Download PDF

Info

Publication number
WO2024066495A1
WO2024066495A1 PCT/CN2023/100617 CN2023100617W WO2024066495A1 WO 2024066495 A1 WO2024066495 A1 WO 2024066495A1 CN 2023100617 W CN2023100617 W CN 2023100617W WO 2024066495 A1 WO2024066495 A1 WO 2024066495A1
Authority
WO
WIPO (PCT)
Prior art keywords
zvs
auxiliary winding
power supply
capacitor
switching power
Prior art date
Application number
PCT/CN2023/100617
Other languages
English (en)
French (fr)
Inventor
应征
王峰
陈波
Original Assignee
上海新进芯微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新进芯微电子有限公司 filed Critical 上海新进芯微电子有限公司
Publication of WO2024066495A1 publication Critical patent/WO2024066495A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the field of switching power supplies, and in particular to a circuit for implementing ZVS of a Flyblack switching power supply using an auxiliary winding.
  • ZVS Zero voltage soft switching
  • the working principle of ZVS technology is to reduce the voltage (Vds) between the drain and source of the MOSFET tube to zero before the main power switch tube (MOSFET tube) on the primary side of the transformer is turned on.
  • the Flyback power supply uses ZVS technology
  • the additional auxiliary winding method not only increases the cost, but also increases the winding complexity of the transformer and the control complexity of the primary circuit, thereby reducing the reliability of the product.
  • the purpose of the present application is to provide a circuit for realizing ZVS of a Flyblack switching power supply by utilizing an auxiliary winding, so as to realize ZVS of the Flyblack switching power supply and thereby improve the working efficiency of the Flyblack switching power supply.
  • the present application provides a circuit for realizing ZVS of a Flyblack switching power supply by using an auxiliary winding, comprising:
  • a transformer the transformer having a primary winding, a secondary winding and an auxiliary winding
  • a power switch the power switch is coupled to the same-name end of the primary winding and is controlled by a control circuit of the switching power supply;
  • a ZVS switch module wherein a first end of the ZVS switch module is connected to one end of a ZVS capacitor, the other end of the ZVS capacitor and the opposite-name end of the auxiliary winding are connected to a first node, the same-name end of the auxiliary winding and the second end of the ZVS switch module are grounded respectively, and the control circuit generates a ZVS control signal according to the voltage at the first node and controls the ZVS switch module through the control end of the ZVS switch module to achieve ZVS of the power switch.
  • the ZVS switch module is a field effect tube
  • the first end of the field effect tube is used as a connection end connected to one end of the ZVS capacitor, the second end is grounded, and the control end is connected to the ZVS control end of the control circuit.
  • the circuit for implementing ZVS of the Flyblack switching power supply using an auxiliary winding further includes: a first resistor and a second resistor;
  • the first resistor and the second resistor are connected in series, and a common end is connected to a voltage sampling end of the control circuit, the other end of the first resistor is connected to the anode of the first diode, and the other end of the second resistor is grounded.
  • the circuit for implementing ZVS of the Flyblack switching power supply using the auxiliary winding further includes: a first diode and a first capacitor;
  • the common end generated by connecting the cathode of the first diode and one end of the first capacitor is connected to the power supply end of the control circuit, the other end of the first capacitor is grounded, and the anode of the first diode is connected to the opposite end of the auxiliary winding.
  • the power switch When the power switch is turned on, the auxiliary winding, the first diode and the first capacitor form an energy storage loop to charge the first capacitor, so that the first capacitor can power the control circuit.
  • the present application also provides a Flyblack switching power supply, including the circuit for realizing ZVS of the Flyblack switching power supply by using an auxiliary winding.
  • the present application provides a circuit for realizing ZVS of Flyblack switching power supply by using auxiliary winding.
  • a ZVS capacitor and a ZVS switch module are additionally provided.
  • One end of the ZVS capacitor and the opposite end of the auxiliary winding are connected to the first node.
  • the control circuit Before the primary power switch is turned on, the control circuit generates a ZVS control signal according to the voltage of the first node to turn on the ZVS switch module, so that a resonant current is formed between the auxiliary winding, the ZVS capacitor and the ZVS switch module.
  • the resonant current affects the voltage of the primary power switch downward to produce resonance.
  • the magnetic coupling between the auxiliary winding and the transformer realizes the reverse direction of the excitation current of the primary winding, reverses the junction capacitance charge of the primary power switch, and then reduces the Vds voltage of the primary power switch to zero, realizing ZVS of the primary power switch, avoiding the high cost caused by adding a separate auxiliary winding to the primary side of the transformer, and improving the working efficiency of the Flyback power supply system.
  • the present application also provides a Flyblack switching power supply, which corresponds to the above-mentioned circuit for realizing ZVS of the Flyblack switching power supply using an auxiliary winding, and has the same effect as above.
  • FIG1 is a schematic diagram of a circuit for implementing ZVS of a Flyblack switching power supply using an auxiliary winding provided in an embodiment of the present application;
  • FIG2 is a circuit diagram of a Flyblack switching power supply ZVS using an auxiliary winding provided by another embodiment of the present application;
  • FIG3 is a voltage waveform diagram of a Flyblack switching power supply ZVS circuit implemented using an auxiliary winding according to an embodiment of the present application.
  • the core of this application is to provide a circuit for realizing ZVS of Flyblack switching power supply by using auxiliary winding.
  • ZVS capacitor and ZVS switch module are additionally provided.
  • the resonant current formed by the auxiliary winding, ZVS capacitor and ZVS switch module affects the power switch to produce downward resonance.
  • the excitation coupling between the transformer and the auxiliary winding causes the excitation current of the primary winding to reversely extract the junction capacitance of the primary power switch, thereby realizing ZVS of Flyblack switching power supply to improve the working efficiency of the system.
  • the traditional quasi-resonant flyback (QR) mode or continuous conduction (CCM) mode often has low working efficiency when providing power to many high-power loads.
  • QR quasi-resonant flyback
  • CCM continuous conduction
  • ZVS technology can be used to improve the working efficiency of flyback power supply systems.
  • the working principle of ZVS technology is to reduce the voltage (Vds) between the drain and source of the MOSFET tube to zero before the main power switch tube (MOSFET tube) on the primary side of the transformer is turned on.
  • the Flyback power supply uses ZVS technology
  • the additional auxiliary winding method not only increases the cost, but also increases the winding complexity of the transformer and the control complexity of the primary circuit, thereby reducing the reliability of the product.
  • the present application provides a circuit for realizing the ZVS of the Flyblack switching power supply by using an auxiliary winding.
  • a ZVS switch module and a ZVS capacitor are added to the original auxiliary winding technology of the transformer, and the control end of the ZVS switch module is connected to the ZVS control end of the control circuit.
  • the control circuit controls the conduction of the ZVS switch module.
  • a resonant current is generated between the auxiliary winding, the ZVS switch module and the ZVS capacitor to cause the power switch to resonate downward.
  • the auxiliary winding and the transformer realize excitation back-drawing of the junction capacitance charge of the power switch, thereby realizing ZVS of the power switch.
  • FIG1 is a schematic diagram of a circuit for realizing ZVS of a Flyblack switching power supply using an auxiliary winding provided by an embodiment of the present application.
  • the circuit includes: a transformer T, a power switch Qp, a ZVS switch module Qa and a ZVS capacitor C2.
  • the transformer T has a primary winding, a secondary winding and an auxiliary winding W.
  • the power switch Qp is coupled to the same-name end of the primary winding and is controlled by the control end GATE of the control circuit.
  • the first end of the ZVS switch module Qa is connected to one end of the ZVS capacitor C2 at a node Vsw, and the other end of the ZVS capacitor C2 is connected to the opposite-name end of the auxiliary winding W at a first node Vaux.
  • the same-name end of the auxiliary winding W and the second end of the ZVS switch module Qa are grounded respectively.
  • the control circuit Before the power switch Qp is turned on, the control circuit generates a ZVS control signal according to the voltage of the first node Vaux to turn on the ZVS switch module Qa. At this time, a current to ground is formed between the auxiliary winding W, the ZVS capacitor C2 and the ZVS switch module Qa, and the current affects the voltage of the power switch Qp downward to generate resonance. At the same time, the excitation coupling generated between the auxiliary winding W and the transformer T causes the primary winding excitation current to reverse the junction capacitance charge of the power switch Qp, thereby achieving ZVS of the power switch Qp, that is, achieving ZVS of the Flyblack switching power supply.
  • control circuit samples the voltage difference of the auxiliary winding and uses a successive approximation algorithm in several steps to determine the appropriate turn-on time of the ZVS switch module Qa, thereby achieving the optimal ZVS of the system, that is, maximizing the system operating efficiency.
  • the circuit for realizing ZVS of Flyblack switching power supply by using auxiliary winding is provided with ZVS capacitor and ZVS switch module on the basis of the original auxiliary winding of the transformer, and one end of the ZVS capacitor is connected to the opposite end of the auxiliary winding at the first node.
  • the control circuit Before the primary power switch is turned on, the control circuit generates a ZVS control signal according to the voltage of the first node to turn on the ZVS switch module, so that a resonant current is formed between the auxiliary winding, the ZVS capacitor and the ZVS switch module, and the resonant current affects the voltage of the primary power switch downward to produce resonance.
  • the magnetic coupling between the auxiliary winding and the transformer realizes the reverse of the excitation current of the primary winding, and reverses the junction capacitance charge of the primary power switch, thereby reducing the Vds voltage of the primary power switch to zero, realizing ZVS of the primary power switch, avoiding the high cost caused by adding a separate auxiliary winding to the primary side of the transformer, and improving the working efficiency of the Flyback power supply system.
  • FIG2 is a circuit diagram of a Flyblack switching power supply ZVS using an auxiliary winding provided by another embodiment of the present application.
  • the ZVS switch module can be a field effect tube, or a structure of a diode and a triode in parallel, which is not limited in the present application. Since the field effect tube itself carries a parasitic diode, it is easy to use, so the field effect tube is preferred.
  • the ZVS switch module is a field effect transistor
  • the first end of the field effect transistor Qa is used as a connection end connected to one end of the ZVS capacitor C2, the second end is grounded, and the control end is connected to the control end ZVS_DR of the control circuit.
  • the control circuit generates a ZVS control signal according to the voltage at the first node Vaux and controls Qa through the control end of the field effect transistor Qa to be turned on before the power switch Qp is turned on, thereby forming a resonant current between the auxiliary winding W, the ZVS capacitor C2 and the field effect transistor Qa, so as to realize the ZVS of the power switch Qp.
  • the circuit provided in the embodiment of the present application uses an auxiliary winding to implement ZVS of a Flyblack switching power supply, and sets the ZVS switch module as a field effect transistor, thereby ensuring that ZVS of the Flyblack switching power supply is implemented while having a simple design and being easy to use.
  • the circuit provided in the present application for realizing Flyblack switching power supply ZVS using auxiliary winding also includes a first resistor R1 and a second resistor R2.
  • the first resistor R1 and the second resistor R2 are connected in series, and the common end is connected to the voltage sampling end DEM of the control circuit.
  • the other end of the first resistor R1 is connected to the opposite end of the auxiliary winding W, and the other end of the second resistor R2 is grounded.
  • control circuit uses the first resistor R1 and the second resistor R2 to implement voltage division sampling of the voltage Vaux at the opposite end of the auxiliary winding W, and generates a ZVS control signal to control the on and off of the ZVS switch module Qa, thereby achieving ZVS of the power switch Qp.
  • FIG3 is a voltage waveform diagram of a Flyblack switching power supply ZVS circuit using an auxiliary winding provided in an embodiment of the present application.
  • the negative voltage of the Vaux platform represents the output voltage Vout of the switching power supply
  • the positive voltage of the platform represents the input voltage Vin of the switching power supply
  • the Vaux resonant waveform can represent the valley bottom. Therefore, in this embodiment, only Vaux needs to be sampled to detect information such as the input voltage Vin, the output voltage Vout, and the resonance valley bottom.
  • the voltage sampling terminal DEM of the control circuit can withstand a voltage of 5V.
  • the circuit provided in the embodiment of the present application uses an auxiliary winding to implement ZVS of a Flyblack switching power supply, and additionally sets a first resistor and a second resistor to implement voltage division sampling of the opposite-name ends of the auxiliary winding, thereby generating a ZVS control signal for implementing ZVS of the power switch.
  • the circuit for realizing Flyblack switching power supply ZVS by using auxiliary winding also includes a first diode D1 and a first capacitor C1.
  • the common end generated by connecting the cathode of the first diode D1 to one end of the first capacitor C1 is connected to the power supply end of the control circuit, the other end of the first capacitor C1 is grounded, and the anode of the first diode D1 is connected to the opposite end of the auxiliary winding.
  • the power switch is turned on, the auxiliary winding, the first diode D1 and the first capacitor C1 form an energy storage loop to charge the first capacitor C1, so that the first capacitor C1 can power the control circuit.
  • the auxiliary winding W, the ZVS capacitor C2 and the ZVS switch module Qa form a flyback energy storage loop to charge and store energy for the ZVS capacitor C2.
  • the power switch Qp is turned on, the auxiliary winding W, the first diode D1 and the first capacitor C1 form a forward energy storage loop to charge and store energy for the first capacitor C1. At this time, it is in a forward state for powering the control circuit.
  • the electric energy stored by the flyback of the ZVS capacitor C2 and the electric energy stored by the positive electrode of the first capacitor C1 are combined to power the VCC terminal of the control circuit, thereby reducing the loss of the VCC terminal of the control circuit.
  • the present application uses the same auxiliary winding to jointly implement the ZVS of the Flyblack switching power supply and realize the function of powering the control circuit, that is, using the same transformer auxiliary winding reduces the complexity of the auxiliary winding and circuit design, thereby reducing the overall manufacturing cost of the power supply.
  • the circuit provided in the embodiment of the present application uses an auxiliary winding to realize ZVS of the Flyblack switching power supply, connects the common end generated by the series connection of the first diode and the first capacitor to the power supply end of the control circuit, and connects the positive electrode of the first diode to the auxiliary winding. Therefore, the technical solution provided by the present application can not only realize power supply for the control circuit, but also realize ZVS of the Flyblack switching power supply, thereby improving the working efficiency and reliability of the system.
  • the circuit for implementing ZVS of the Flyblack switching power supply using an auxiliary winding has been described in detail in the above embodiment.
  • the embodiment of the present application also provides a Flyblack switching power supply, which includes the circuit for implementing ZVS of the Flyblack switching power supply using an auxiliary winding in the above embodiment.
  • the beneficial effects produced correspond to the circuit for implementing ZVS of the Flyblack switching power supply using an auxiliary winding, and the effects are the same as above, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种利用辅助绕组实现Flyblack开关电源ZVS的电路,涉及开关电源领域,在变压器原有的辅助绕组的基础上,增加ZVS电容和ZVS开关模块,将ZVS电容的一端与辅助绕组的异名端连接于第一节点,在原边功率开关导通前,控制电路根据第一节点电压产生ZVS控制信号以导通ZVS开关模块,使辅助绕组,ZVS电容和ZVS开关模块间形成谐振电流,以便于影响原边功率开关电压向下产生谐振。同时,辅助绕组与变压器间的磁耦合实现原边绕组的励磁电流反向,反抽原边功率开关的结电容电荷,使原边功率开关的Vds电压降低至零,实现原边功率开关的ZVS,进而提高了Flyback电源系统的工作效率。

Description

一种利用辅助绕组实现Flyblack开关电源ZVS的电路
本申请要求于2022年09月29日提交中国专利局、申请号为202211200958.6、发明名称为“一种利用辅助绕组实现Flyblack开关电源ZVS的电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及开关电源领域,特别是涉及一种利用辅助绕组实现Flyblack开关电源ZVS的电路。
背景技术
在Flyback电源中,传统的准谐振反激(QR)模式或连续导电(CCM)模式在为很多大功率负载提供电源的场合中,往往工作效率不高。目前,可以使用零电压软开关(Zero Voltage Switch,简称ZVS)技术提高Flyback电源系统的工作效率。
其中,ZVS技术的工作原理是在变压器原边的主功率开关管(MOSFET管)开通之前,使MOSFET管漏极和源极间的电压(Vds)降低到零。
Flyback电源使用ZVS技术时,需要在变压器的原边增加设置一个单独的辅助绕组以实现变压器原边励磁电流反向,进而反抽MOSFET管的结电容电荷,使MOSFET管在导通前Vds电压降低到零,进而实现ZVS以提高Flyback电源系统的工作效率。然而,额外增加辅助绕组的方式不仅增加了成本,还提升了变压器的绕制复杂性和原边电路的控制复杂性,进而降低产品的可靠性。
由此可见,如何降低成本的同时,实现Flyback开关电源的ZVS功能,提高系统的工作效率,是本领域技术人员亟待解决的问题。
发明内容
本申请的目的是提供一种利用辅助绕组实现Flyblack开关电源ZVS的电路,用于实现Flyblack开关电源的ZVS,进而提升Flyblack开关电源的工作效率。
为解决上述技术问题,本申请提供一种利用辅助绕组实现Flyblack开关电源ZVS的电路,包括:
变压器,所述变压器具有原边绕组、副边绕组和辅助绕组;
功率开关,所述功率开关耦合于所述原边绕组的同名端,受控于所述开关电源的控制电路;
ZVS开关模块,所述ZVS开关模块的第一端与ZVS电容的一端连接,所述ZVS电容的另一端与所述辅助绕组的异名端连接于第一节点,所述辅助绕组的同名端及所述ZVS开关模块的第二端分别接地,所述控制电路根据所述第一节点处的电压产生ZVS控制信号并通过ZVS开关模块的控制端控制所述ZVS开关模块,以实现所述功率开关的ZVS。
优选的,所述ZVS开关模块为场效应管;
所述场效应管的第一端作为与所述ZVS电容的一端连接的连接端,第二端接地,且控制端与所述控制电路的ZVS控制端连接。
优选的,所述的利用辅助绕组实现Flyblack开关电源ZVS的电路,还包括:第一电阻和第二电阻;
所述第一电阻和所述第二电阻串联,且公共端与所述控制电路的电压采样端连接,所述第一电阻的另一端与所述第一二极管的正极连接,所述第二电阻的另一端接地。
优选的,所述的利用辅助绕组实现Flyblack开关电源ZVS的电路,还包括:第一二极管和第一电容;
所述第一二极管的负极与所述第一电容的一端连接产生的公共端与所述控制电路的电源端连接,所述第一电容的另一端接地,且所述第一二极管的正极与所述辅助绕组的异名端连接,在所述功率开关导通时,所述辅助绕组、所述第一二极管和所述第一电容形成储能回路为第一电容充电,以便于所述第一电容为所述控制电路供电。
为解决上述技术问题,本申请还提供了一种Flyblack开关电源,包括所述的利用辅助绕组实现Flyblack开关电源ZVS的电路。
本申请所提供的一种利用辅助绕组实现Flyblack开关电源ZVS的电路,在变压器原有的辅助绕组的基础上,增加设置ZVS电容和ZVS开关模块,将ZVS电容的一端与辅助绕组的异名端连接于第一节点,在原边功率开关导通前,控制电路根据第一节点电压产生ZVS控制信号以导通ZVS开关模块,使辅助绕组,ZVS电容和ZVS开关模块间形成谐振电流,该谐振电流影响原边功率开关电压向下产生谐振。同时,辅助绕组与变压器间的磁耦合实现原边绕组的励磁电流反向,反抽原边功率开关的结电容电荷,进而使原边功率开关的Vds电压降低至零,实现原边功率开关的ZVS,避免在变压器的原边增加设置一个单独的辅助绕组带来的高成本的同时,提高了Flyback电源系统的工作效率。
此外,本申请还提供了一种Flyblack开关电源,与上述的利用辅助绕组实现Flyblack开关电源ZVS的电路相对应,效果同上。
附图说明
为了更清楚地说明本申请实施例,下面将对实施例中所需要使用的附图做简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例所提供的一种利用辅助绕组实现Flyblack开关电源ZVS的电路示意图;
图2为本申请另一实施例所提供的一种利用辅助绕组实现Flyblack开关电源ZVS的电路示意图;
图3为本申请实施例所提供的一种利用辅助绕组实现Flyblack开关电源ZVS电路的电压波形图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下,所获得的所有其他实施例,都属于本申请保护范围。
本申请的核心是提供一种利用辅助绕组实现Flyblack开关电源ZVS的电路,在原有辅助绕组的基础上,增加设置ZVS电容和ZVS开关模块,由辅助绕组、ZVS电容和ZVS开关模块形成谐振电流影响功率开关产生向下的谐振,同时,变压器与辅助绕组间的励磁耦合使原边绕组的励磁电流反向抽取原边功率开关的结电容,进而实现Flyblack开关电源的ZVS以提升系统的工作效率。
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。
在Flyback电源中,传统的准谐振反激(QR)模式或连续导电(CCM)模式在为很多大功率负载提供电源的场合中,往往工作效率不高。目前,可以使用ZVS技术提高Flyback电源系统的工作效率。
其中,ZVS技术的工作原理是在变压器原边的主功率开关管(MOSFET管)开通之前,使MOSFET管漏极和源极间的电压(Vds)降低到零。
Flyback电源使用ZVS技术时,需要在变压器的原边增加设置一个单独的辅助绕组以实现变压器原边励磁电流反向,进而反抽MOSFET管的结电容电荷,使MOSFET管在导通前Vds电压降低到零,进而实现ZVS以提高Flyback电源系统的工作效率。然而,额外增加辅助绕组的方式不仅增加了成本,还提升了变压器的绕制复杂性和原边电路的控制复杂性,进而降低产品的可靠性。
为了实现降低成本的同时,实现Flyback开关电源的ZVS功能,提高Flyback电源系统的工作效率,本申请提供了一种利用辅助绕组实现Flyblack开关电源ZVS的电路,在变压器原有辅助绕组的技术上,增加ZVS开关模块和ZVS电容,将ZVS开关模块的控制端与控制电路的ZVS控制端连接,在原边功率开关导通前,控制电路通过控制ZVS开关模块的导通, 使辅助绕组、ZVS开关模块和ZVS电容间产生令功率开关产生向下谐振的谐振电流,同时,由辅助绕组和变压器实现励磁反抽功率开关的结电容电荷,进而实现功率开关的ZVS。
图1为本申请实施例所提供的一种利用辅助绕组实现Flyblack开关电源ZVS的电路示意图,如图1所示,该电路包括:变压器T,功率开关Qp,ZVS开关模块Qa和ZVS电容C2。变压器T具有原边绕组、副边绕组和辅助绕组W,功率开关Qp耦合于原边绕组的同名端,受控于控制电路的控制端GATE。ZVS开关模块Qa的第一端与ZVS电容C2的一端连接于节点Vsw,ZVS电容C2的另一端与辅助绕组W的异名端连接于第一节点Vaux,辅助绕组W的同名端及ZVS开关模块Qa的第二端分别接地。
实施中,在功率开关Qp导通前,控制电路根据第一节点Vaux的电压生成ZVS控制信号以导通ZVS开关模块Qa,此时,辅助绕组W、ZVS电容C2和ZVS开关模块Qa间形成对地的电流,该电流影响功率开关Qp电压向下产生谐振。同时,辅助绕组W和变压器T间产生的励磁耦合使原边绕组励磁电流反抽功率开关Qp的结电容电荷,进而实现功率开关Qp的ZVS,即,实现Flyblack开关电源的ZVS。
实施中,控制电路通过采样辅助绕组的电压差,经过若干步的逐次逼近算法以确定ZVS开关模块Qa的合适开通时间,进而实现系统的最优ZVS,即,最大程度提升系统工作效率。
本申请实施例所提供的利用辅助绕组实现Flyblack开关电源ZVS的电路,在变压器原有的辅助绕组的基础上,增加设置ZVS电容和ZVS开关模块,将ZVS电容的一端与辅助绕组的异名端连接于第一节点,在原边功率开关导通前,控制电路根据第一节点电压产生ZVS控制信号以导通ZVS开关模块,使辅助绕组,ZVS电容和ZVS开关模块间形成谐振电流,该谐振电流影响原边功率开关电压向下产生谐振。同时,辅助绕组与变压器间的磁耦合实现原边绕组的励磁电流反向,反抽原边功率开关的结电容电荷,进而使原边功率开关的Vds电压降低至零,实现原边功率开关的ZVS,避免在变压器的原边增加设置一个单独的辅助绕组带来的高成本的同时,提高了Flyback电源系统的工作效率。
图2为本申请另一实施例所提供的一种利用辅助绕组实现Flyblack开关电源ZVS的电路示意图,在具体实施例中,ZVS开关模块可以是场效应管,也可以是二极管和三极管并联的结构,对此本申请不作限定。由于场效应管自身携带寄生的二极管,使用方便,因此优选场效应管。
当ZVS开关模块为场效应管时,如图2所示,场效应管Qa的第一端作为与ZVS电容C2的一端连接的连接端,第二端接地,且控制端与控制电路的控制端ZVS_DR连接。控制电路根据第一节点Vaux处的电压产生ZVS控制信号并通过场效应管Qa的控制端控制Qa在功率开关Qp导通前导通,进而使辅助绕组W、ZVS电容C2和场效应管Qa之间形成谐振电流,以便于实现功率开关Qp的ZVS。
本申请实施例所提供的利用辅助绕组实现Flyblack开关电源ZVS的电路,将ZVS开关模块设置为场效应管,保证实现Flyblack开关电源ZVS的同时,设计简单,使用方便。
作为优选的实施例,如图2所示,本申请所提供的利用辅助绕组实现Flyblack开关电源ZVS的电路还包括第一电阻R1和第二电阻R2,第一电阻R1和第二电阻R2串联,且公共端与控制电路的电压采样端DEM连接,第一电阻R1的另一端与辅助绕组W的异名端连接,第二电阻R2的另一端接地。
实施中,控制电路利用第一电阻R1和第二电阻R2实现对辅助绕组W异名端电压Vaux进行分压采样,并生产ZVS控制信号以控制ZVS开关模块Qa的导通和关断,进而实现功率开关Qp的ZVS。
图3为本申请实施例所提供的一种利用辅助绕组实现Flyblack开关电源ZVS电路的电压波形图,如图3所示,Vaux平台负电压表征开关电源的输电压Vout,平台正电压表征开关电源的输入电压Vin,Vaux谐振波形可以表征谷底。故,本实施例只需要采样Vaux即可检测出输入电压Vin,输出电压Vout,以及谐振谷底等信息。且经过电阻分压,控制电路的电压采样端DEM耐压5V即可。
本申请实施例所提供的利用辅助绕组实现Flyblack开关电源ZVS的电路,增加设置第一电阻和第二电阻,实现辅助绕组异名端的分压采样,进而实现生成实现功率开关ZVS的ZVS控制信号。
在上述实施例的基础上,本申请所提供的利用辅助绕组实现Flyblack开关电源ZVS的电路还包括第一二极管D1和第一电容C1,如图2所示,第一二极管D1的负极与第一电容C1的一端连接产生的公共端与控制电路的电源端连接,第一电容C1的另一端接地,且第一二极管D1的正极与辅助绕组的异名端连接,在功率开关导通时,辅助绕组、第一二极管D1和第一电容C1形成储能回路为第一电容C1充电,以便于第一电容C1为控制电路供电。
实施中,当功率开关Qp关断时,辅助绕组W、ZVS电容C2和ZVS开关模块Qa形成反激储能回路为ZVS电容C2充电储能。当功率开关Qp导通时,辅助绕组W、第一二极管D1和第一电容C1形成正激储能回路为第一电容C1充电储能,此时处于为控制电路供电的正激状态,则由ZVS电容C2反激存储的电能和第一电容C1正极存储的电能向结合为控制电路VCC端供电,由此降低控制电路VCC端的损耗。
也就是说,本申请使用同一个辅助绕组共同实现Flyblack开关电源的ZVS,以及实现为控制电路供电的功能,即,使用同一个变压器辅助绕组,降低了辅助绕组和电路设计的复杂性,从而降低电源整体的制造成本。
本申请实施例所提供的利用辅助绕组实现Flyblack开关电源ZVS的电路,将第一二极管和第一电容串联产生的公共端与控制电路供电端连接,并将第一二极管的正极与辅助绕组连接,由此,本申请提供的技术方案,不仅能实现为控制电路供电,还能实现Flyblack开关电源的ZVS,进而提高系统的工作效率和可靠性。
上述实施例中已对利用辅助绕组实现Flyblack开关电源ZVS的电路作了详细描述,本申请实施例还提供了一种Flyblack开关电源,该开关电源包括上述实施例中的利用辅助绕组实现Flyblack开关电源ZVS的电路,产生的有益效果与利用辅助绕组实现Flyblack开关电源ZVS的电路相对应,效果同上,此处暂不赘述。
以上对本申请所提供的一种利用辅助绕组实现Flyblack开关电源ZVS的电路进行了详细介绍。说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素

Claims (5)

  1. 一种利用辅助绕组实现Flyblack开关电源ZVS的电路,其特征在于,包括:
    变压器,所述变压器具有原边绕组、副边绕组和辅助绕组;
    功率开关,所述功率开关耦合于所述原边绕组的同名端,受控于所述开关电源的控制电路;
    ZVS开关模块,所述ZVS开关模块的第一端与ZVS电容的一端连接,所述ZVS电容的另一端与所述辅助绕组的异名端连接于第一节点,所述辅助绕组的同名端及所述ZVS开关模块的第二端分别接地,所述控制电路根据所述第一节点处的电压产生ZVS控制信号并通过ZVS开关模块的控制端控制所述ZVS开关模块,以实现所述功率开关的ZVS。
  2. 根据权利要求1所述的利用辅助绕组实现Flyblack开关电源ZVS的电路,其特征在于,所述ZVS开关模块为场效应管;
    所述场效应管的第一端作为与所述ZVS电容的一端连接的连接端,第二端接地,且控制端与所述控制电路的ZVS控制端连接。
  3. 根据权利要求2所述的利用辅助绕组实现Flyblack开关电源ZVS的电路,其特征在于,还包括:第一电阻和第二电阻;
    所述第一电阻和所述第二电阻串联,且公共端与所述控制电路的电压采样端连接,所述第一电阻的另一端与所述辅助绕组的异名端连接,所述第二电阻的另一端接地。
  4. 根据权利要求1所述的利用辅助绕组实现Flyblack开关电源ZVS的电路,其特征在于,还包括:第一二极管和第一电容;
    所述第一二极管的负极与所述第一电容的一端连接产生的公共端与所述控制电路的电源端连接,所述第一电容的另一端接地,且所述第一二极管的正极与所述辅助绕组的异名端连接,在所述功率开关导通时,所述辅助绕组、所述第一二极管和所述第一电容形成储能回路为第一电容充电,以便于所述第一电容为所述控制电路供电。
  5. 一种Flyblack开关电源,其特征在于,包括权利要求1至4任意一项所述的利用辅助绕组实现Flyblack开关电源ZVS的电路。
PCT/CN2023/100617 2022-09-29 2023-06-16 一种利用辅助绕组实现Flyblack开关电源ZVS的电路 WO2024066495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211200958.6 2022-09-29
CN202211200958.6A CN115514233A (zh) 2022-09-29 2022-09-29 一种利用辅助绕组实现Flyblack开关电源ZVS的电路

Publications (1)

Publication Number Publication Date
WO2024066495A1 true WO2024066495A1 (zh) 2024-04-04

Family

ID=84507188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100617 WO2024066495A1 (zh) 2022-09-29 2023-06-16 一种利用辅助绕组实现Flyblack开关电源ZVS的电路

Country Status (4)

Country Link
US (1) US20240113631A1 (zh)
JP (1) JP2024050412A (zh)
CN (1) CN115514233A (zh)
WO (1) WO2024066495A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115514233A (zh) * 2022-09-29 2022-12-23 上海新进芯微电子有限公司 一种利用辅助绕组实现Flyblack开关电源ZVS的电路
CN115967258B (zh) * 2023-02-21 2023-05-23 恩赛半导体(成都)有限公司 一种供电电路、电源系统和电子装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386779A (zh) * 2011-12-06 2012-03-21 上海新进半导体制造有限公司 一种开关电源
CN108539986A (zh) * 2017-12-15 2018-09-14 杰华特微电子(杭州)有限公司 一种反激式开关电源
CN209562410U (zh) * 2019-02-19 2019-10-29 广州金升阳科技有限公司 一种反激变换器
CN111917301A (zh) * 2020-06-17 2020-11-10 广州金升阳科技有限公司 一种正反激辅助电路及包含该辅助电路的开关电源电路
US20220038020A1 (en) * 2020-07-28 2022-02-03 Dialog Semiconductor (Uk) Limited Zero-voltage-switching flyback converter with reduced secondary side current and voltage stress
CN115498883A (zh) * 2022-09-29 2022-12-20 上海新进芯微电子有限公司 一种基于辅助绕组为开关电源控制电路供电的电路
CN115514233A (zh) * 2022-09-29 2022-12-23 上海新进芯微电子有限公司 一种利用辅助绕组实现Flyblack开关电源ZVS的电路
CN218633713U (zh) * 2022-09-29 2023-03-14 上海新进芯微电子有限公司 一种利用辅助绕组实现开关电源zvs的电路及开关电源

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386779A (zh) * 2011-12-06 2012-03-21 上海新进半导体制造有限公司 一种开关电源
CN108539986A (zh) * 2017-12-15 2018-09-14 杰华特微电子(杭州)有限公司 一种反激式开关电源
CN209562410U (zh) * 2019-02-19 2019-10-29 广州金升阳科技有限公司 一种反激变换器
CN111917301A (zh) * 2020-06-17 2020-11-10 广州金升阳科技有限公司 一种正反激辅助电路及包含该辅助电路的开关电源电路
US20220038020A1 (en) * 2020-07-28 2022-02-03 Dialog Semiconductor (Uk) Limited Zero-voltage-switching flyback converter with reduced secondary side current and voltage stress
CN115498883A (zh) * 2022-09-29 2022-12-20 上海新进芯微电子有限公司 一种基于辅助绕组为开关电源控制电路供电的电路
CN115514233A (zh) * 2022-09-29 2022-12-23 上海新进芯微电子有限公司 一种利用辅助绕组实现Flyblack开关电源ZVS的电路
CN218633713U (zh) * 2022-09-29 2023-03-14 上海新进芯微电子有限公司 一种利用辅助绕组实现开关电源zvs的电路及开关电源

Also Published As

Publication number Publication date
JP2024050412A (ja) 2024-04-10
CN115514233A (zh) 2022-12-23
US20240113631A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
WO2024066495A1 (zh) 一种利用辅助绕组实现Flyblack开关电源ZVS的电路
CN110661427A (zh) 基于氮化镓器件有源箝位反激式ac-dc变换器的数字控制装置
CN101018015A (zh) Dc-dc转换器
WO2001048902A1 (fr) Circuit d'attaque automatique associe a un convertisseur cc/cc
WO2024066493A1 (zh) 一种基于辅助绕组为开关电源控制电路供电的电路
US6469915B2 (en) Resonant reset dual switch forward DC-to-DC converter
CN113676057B (zh) 一种基于二次电流模拟的llc同步整流电路
CN218633713U (zh) 一种利用辅助绕组实现开关电源zvs的电路及开关电源
CN112491258B (zh) 一种有源钳位反激变换器的钳位电路及其控制方法
CN113131747A (zh) 反激变换器控制方法及其控制装置
CN110719019B (zh) 一种副边有源箝位控制电路
CN106655839B (zh) 一种隔离型软开关交流直流变换电源
CN218482782U (zh) 一种软开关降压变换器
CN217240596U (zh) Buck-Boost软开关电路
CN214900647U (zh) 一种应用于微型逆变器的有源交错反激电路
CN105827110B (zh) 一种三绕组耦合电感倍压式单开关管升压直流变换器
CN115566904A (zh) 功率转换电路
US11387742B2 (en) Full-bridge resonant conversion circuit
CN113949276A (zh) 双钳位零电压开关变换器的控制系统及控制方法
CN113422515A (zh) 一种非隔离型双向软开关dc-dc变换器
TW202414981A (zh) 一種利用輔助繞組實現Flyblack開關電源ZVS的電路
CN106787706B (zh) 耦合电感混合举升压变换器
CN205657592U (zh) 一种三绕组耦合电感倍压式单开关管升压直流变换器
CN215772920U (zh) 一种高增益反激式变换器
WO2022077751A1 (zh) 开关电源与电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869744

Country of ref document: EP

Kind code of ref document: A1