WO2024066392A1 - 动力电池总成及其热管理控制方法、电动车辆 - Google Patents

动力电池总成及其热管理控制方法、电动车辆 Download PDF

Info

Publication number
WO2024066392A1
WO2024066392A1 PCT/CN2023/094621 CN2023094621W WO2024066392A1 WO 2024066392 A1 WO2024066392 A1 WO 2024066392A1 CN 2023094621 W CN2023094621 W CN 2023094621W WO 2024066392 A1 WO2024066392 A1 WO 2024066392A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
electrical connection
ptc
battery assembly
side beam
Prior art date
Application number
PCT/CN2023/094621
Other languages
English (en)
French (fr)
Inventor
杨明
阎超
张新宾
于聪
张占江
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2024066392A1 publication Critical patent/WO2024066392A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of electric vehicle technology, and more specifically, to a power battery assembly and a thermal management control method thereof, and an electric vehicle.
  • This application claims priority to a patent application filed with the State Intellectual Property Office of China on September 30, 2022, with application number 202211204712.6 and invention name “Power battery assembly and thermal management control method thereof, and electric vehicle”.
  • the vehicle distribution unit and DCDC are generally arranged in the front cabin of the vehicle.
  • the vehicle has problems such as heavy weight, low space utilization, and high and low voltage wiring harness factories.
  • existing power batteries generally have the problem of low charging efficiency in low temperature environments.
  • the main purpose of the present application is to provide a power battery assembly and a thermal management control method thereof, and an electric vehicle, so as to solve the problem of low charging efficiency of power batteries in low temperature environments in the prior art.
  • a power battery assembly including: an energy storage unit, the energy storage unit includes a lower box body, the lower box body includes a longitudinal side beam and a transverse side beam, the transverse side beam is connected to a plurality of reinforcing beams, the plurality of reinforcing beams are arranged at intervals along the width direction of the lower box body, a first accommodating space is formed between the reinforcing beams adjacent to the longitudinal side beams among the plurality of reinforcing beams, a second accommodating space is formed between two adjacent reinforcing beams among the plurality of reinforcing beams, and the first accommodating space and the second accommodating space are used to accommodate battery cells.
  • PTC heating sheets are arranged between the longitudinal side beams and the battery cells, and between the reinforcing beams and the battery cells.
  • a liquid cooling plate is also arranged at the bottom of the lower box body, and a liquid cooling channel is arranged inside the liquid cooling plate.
  • gaps are arranged between the battery cells and the longitudinal side beams and the reinforcing beams, the gaps are filled with potting glue, and the PTC heating sheet is in contact with the battery cells through the potting glue.
  • the longitudinal side beam is a profile structure
  • a first PTC cavity structure is arranged on the side of the longitudinal side beam facing the battery cell
  • a PTC heating sheet is arranged in the first PTC cavity structure
  • the first PTC cavity structure is in contact with the battery cell through a potting glue.
  • the reinforcing beam is a profile structure
  • a second PTC cavity structure is arranged on the side of the reinforcing beam facing the battery cell
  • a PTC heating sheet is arranged in the second PTC cavity structure
  • the second PTC cavity structure is in contact with the battery cell through a potting glue.
  • the power battery assembly also includes: an energy distribution unit, which is connected to the energy storage unit through an electrical connection unit, and the energy distribution unit is connected to the PTC heating sheet through a high-voltage wiring harness; a control unit, which is connected to the energy storage unit through a low-voltage connection unit, and the control unit is connected to the energy distribution unit through a low-voltage port.
  • the electrical connection unit is located between the energy storage unit and the energy distribution unit, and the electrical connection unit includes: a fuse, which is located between the energy storage unit and the energy distribution unit; a first electrical connection row, which is connected to the fuse and is located on one side of the fuse; a second electrical connection row, which is connected to the fuse and is located on the other side of the fuse; a positive electrical connection row, which is connected to the positive input electrical connection row of the energy distribution unit and is located on one side of the first electrical connection row; a negative electrical connection row, which is connected to the negative input electrical connection row of the energy distribution unit and is located on one side of the second electrical connection row, and the structure of the negative electrical connection row is a cubic structure, and a first stud structure is arranged above the cubic structure; wherein the first electrical connection row, the fuse, the second electrical connection row and the negative electrical connection row are located on the same horizontal line.
  • a thermal management control method for a power battery assembly is provided, the method is used to control the above-mentioned power battery assembly, the method comprising: obtaining parameters of the power battery, wherein the parameters at least include the SOC of the power battery, the temperature of the power battery, the voltage and current of the power battery; determining the operating condition of the power battery based on the SOC of the power battery, the voltage and current of the power battery, wherein the operating condition of the power battery includes a charging condition and a discharging condition; when it is determined that the operating condition of the power battery is a charging condition, judging whether the temperature of the power battery is less than a first preset value; if so, determining that the thermal management mode to be executed is a heating mode, the heating mode is used to start a vehicle PTC heating command, and the vehicle PTC heating command is used to control a liquid cooling system to heat the power battery; when it is determined that the operating condition of the power battery is a discharging condition, determining that the thermal
  • the method also includes: when it is determined that the thermal management mode to be executed is the heating mode, judging whether the temperature of the power battery is less than or equal to a second preset value; if so, determining that the lower box PTC heating mode needs to be started, the lower box PTC heating mode is used to control the PTC heating sheet of the lower box to heat the power battery; when the temperature of the power battery is greater than the second preset value, exiting the lower box PTC heating mode.
  • an electric vehicle comprising a power battery assembly, wherein the power battery assembly is the power battery assembly described above.
  • the energy storage unit includes a lower box body, the lower box body includes a longitudinal side beam and a transverse side beam, the transverse side beam is connected to a plurality of reinforcing beams, the plurality of reinforcing beams are arranged at intervals along the width direction of the lower box body, a first accommodating space is formed between the reinforcing beams adjacent to the longitudinal side beams among the plurality of reinforcing beams, a second accommodating space is formed between the adjacent reinforcing beams among the plurality of reinforcing beams, both the first accommodating space and the second accommodating space are used to accommodate battery cells, the longitudinal side beams and the reinforcing beams can both heat the battery cells, effectively improving the heating efficiency of the battery, improving the charging efficiency of the battery in a low temperature environment, and improving the user experience.
  • FIG1 shows a schematic structural diagram of a first embodiment of a power battery assembly according to the present application
  • FIG2 shows a schematic structural diagram of a second embodiment of a power battery assembly according to the present application
  • FIG3 shows a schematic structural diagram of a first embodiment of a lower box according to the present application
  • FIG4 shows a schematic structural diagram of a second embodiment of a lower box according to the present application.
  • FIG5 shows a schematic structural diagram of a third embodiment of a lower box according to the present application.
  • FIG6 shows a flow chart of a first embodiment of a thermal management control method for a power battery assembly according to the present application
  • FIG. 7 shows a flow chart of a second embodiment of a thermal management control method for a power battery assembly according to the present application.
  • a powertrain is provided.
  • the power battery assembly includes an energy storage unit 1, which includes a lower box body 11.
  • the lower box body 11 includes a longitudinal side beam 111 and a transverse side beam 114.
  • the transverse side beam 114 is connected to a plurality of reinforcing beams 112.
  • the plurality of reinforcing beams 112 are arranged at intervals along the width direction of the lower box body 11.
  • a first accommodating space is formed between a reinforcing beam 112 adjacent to the longitudinal side beam 111 among the plurality of reinforcing beams 112 and the longitudinal side beam 111.
  • a second accommodating space is formed between two adjacent reinforcing beams 112 among the plurality of reinforcing beams 112. The first accommodating space and the second accommodating space are used to accommodate battery cells 13.
  • the energy storage unit 1 includes a lower box body 11, and the lower box body 11 includes a longitudinal side beam 111 and a transverse side beam 114.
  • the transverse side beam 114 is connected to a plurality of reinforcing beams 112.
  • the plurality of reinforcing beams 112 are arranged at intervals along the width direction of the lower box body 11.
  • a first accommodating space is formed between the reinforcing beam 112 adjacent to the longitudinal side beam 111 among the plurality of reinforcing beams 112 and the longitudinal side beam 111
  • a second accommodating space is formed between adjacent reinforcing beams 112 among the plurality of reinforcing beams 112. Both the first accommodating space and the second accommodating space are used to accommodate the battery cell 13.
  • Both the longitudinal side beam 111 and the reinforcing beam 112 can heat the battery cell 13, thereby effectively improving the heating efficiency of the battery, improving the charging efficiency of the battery in a low temperature environment, and improving the user experience.
  • PTC heating sheets 15 are arranged between the longitudinal side beams 111 and the battery cells 13, and between the reinforcing beams 112 and the battery cells 13.
  • a liquid cooling plate 113 is also arranged at the bottom of the lower box body 11, and a liquid cooling channel is arranged inside the liquid cooling plate 113.
  • the liquid cooling plate 113 is a flat plate structure.
  • the battery cells are heated by the PTC heating sheet 15 and the liquid cooling plate 113, which further effectively improves the heating efficiency of the battery and improves the charging efficiency of the battery in a low temperature environment.
  • the energy storage unit also includes an upper box body 12, and the upper box body 12 is connected to the lower box body 11.
  • the potting glue 14 has the functions of heat conduction, insulation, and structural reinforcement.
  • the battery cell 13 can be a square battery cell or a cylindrical battery cell.
  • the potting glue 14 realizes a close connection between the battery cell 13 and the lower box body 11, which can effectively improve the structural strength of the power battery assembly and improve the insulation effect of the power battery assembly.
  • the longitudinal side beam 111 is a profile structure, and a first PTC cavity structure 1111 is provided on the side of the longitudinal side beam 111 facing the battery cell 13 .
  • a PTC heating sheet 15 is provided in the first PTC cavity structure 1111 , and the first PTC cavity structure 1111 is in contact with the battery cell 13 through the potting glue 14 .
  • the reinforcing beam 112 is a profile structure, and a second PTC cavity structure 1121 is provided on the side of the reinforcing beam 112 facing the battery cell 13 .
  • a PTC heating sheet 15 is provided in the second PTC cavity structure 1121 , and the second PTC cavity structure 1121 contacts the battery cell 13 through the potting glue 14 .
  • the power battery assembly also includes an energy distribution unit 2 and a control unit 3.
  • the energy distribution unit 2 is connected to the energy storage unit 1 through the electrical connection unit 4, and the energy distribution unit 2 is connected to the PTC heating sheet 15 through the high-voltage wiring harness 115.
  • the control unit 3 is connected to the energy storage unit 1 through the low-voltage connection unit 5, and the control unit 3 is connected to the energy distribution unit 2 through the low-voltage port 51.
  • the energy distribution unit 2 and the control unit 3 are both assembled above the energy storage unit 1, and the connection between the energy distribution unit 2 and the energy storage unit 1, and the connection between the control unit 3 and the energy storage unit 1 are all bolted connections.
  • the electrical connection unit 4 is located between the energy storage unit 1 and the energy distribution unit 2, and the electrical connection unit 4 includes: a fuse 45, a first electrical connection row 43, a second electrical connection row 44, a positive electrical connection row 41, and a negative electrical connection row 42.
  • the fuse 45 is located between the energy storage unit 1 and the energy distribution unit 2, the first electrical connection row 43 is connected to the fuse 45, and the first electrical connection row 43 is arranged on one side of the fuse 45, the second electrical connection row 44 is connected to the fuse 45, and the second electrical connection row 44 is arranged on the other side of the fuse 45, the positive electrical connection row 41 is connected to the positive input electrical connection row of the energy distribution unit 2, and the positive electrical connection row 41 is arranged on one side of the first electrical connection row 43, the negative electrical connection row 42 is connected to the negative input electrical connection row of the energy distribution unit 2, and the negative electrical connection row 42 is arranged on one side of the second electrical connection row 44, and the structure of the negative electrical connection row 42 is a cubic structure, and a first stud structure is arranged above the cubic structure.
  • the first electrical connection bar 43, the fuse 45, the second electrical connection bar 44 and the negative electrical connection bar 42 are located on the same horizontal line.
  • This arrangement makes the main body of the electrical connection unit 4 run in a straight line, and can reduce the length of the electrical connection bar while achieving the connection between the energy distribution unit 2 and the energy storage unit 1, thereby reducing the production cost of the power battery.
  • the surfaces of the positive electrical connection bar 41, the negative electrical connection bar 42, the first electrical connection bar 43 and the second electrical connection bar 44 are all coated with high temperature resistant insulating materials.
  • a second stud structure is provided above the fuse 45, and the first electrical connection row 43 and the second electrical connection row 44 are connected to the fuse 45 through the second stud structure.
  • the driving form of the fuse 45 is driven by the control unit 3.
  • the fuse 45 can receive the instruction of the battery control unit 3 to realize active millisecond-level cutoff. This effectively reduces the risk of high-voltage short circuit and arc generation when the battery assembly has thermal runaway, and improves the safety of the power battery.
  • the energy distribution unit 2 includes a vehicle power distribution module, an AC charger module, and a DCDC direct current conversion module.
  • the main structure of the energy distribution unit 2 is an aluminum alloy casting structure, and a maintenance opening is opened on the top.
  • the maintenance opening is arranged in conjunction with bolts, and the maintenance opening is sealed with a sealing gasket.
  • the energy distribution unit 2 can start and stop the PTC heating sheet 15 to heat the battery through the control of the battery control unit 3.
  • the PTC heating sheet 15, liquid cooling plate 113, energy distribution unit 2 and control unit 3 of the present application together form a surround intelligent temperature control system for the power battery.
  • a thermal management control method for a power battery assembly is provided, and the method is used to control the power battery assembly in the above embodiment. As shown in FIG6 , the method includes the following steps:
  • Step S101 obtaining parameters of a power battery, wherein the parameters at least include the SOC of the power battery, the temperature of the power battery, and the voltage and current of the power battery;
  • Step S102 determining the operating condition of the power battery based on the SOC of the power battery, the voltage and the current of the power battery, wherein the operating condition of the power battery includes a charging condition and a discharging condition;
  • Step S103 when it is determined that the operating condition of the power battery is the charging condition, determining whether the temperature of the power battery is less than a first preset value
  • Step S104 if yes, determine that the thermal management mode to be executed is the heating mode, the heating mode is used to start the vehicle PTC heating command, and the vehicle PTC heating command is used to control the liquid cooling system to heat the power battery;
  • Step S105 when it is determined that the operating condition of the power battery is the discharge condition, it is determined that the thermal management mode to be executed is the cooling mode, the cooling mode is used to start the vehicle battery cooling command, and the vehicle battery cooling command is used to control the liquid cooling system to cool the power battery.
  • the cooling mode is also executed.
  • the thermal management control method of the power battery assembly is adopted to execute the corresponding thermal management mode according to the SOC of the power battery, the temperature, voltage and current of the power battery, thereby ensuring that the power battery works in the optimal temperature environment and improving the reliability of the power battery.
  • the method further includes: when it is determined that the thermal management mode to be executed is the heating mode, judging whether the temperature of the power battery is less than or equal to the second preset value; if so, determining that the lower box PTC heating mode needs to be started, the lower box PTC heating mode is used to control the PTC heating sheet of the lower box to heat the power battery; when the temperature of the power battery is greater than the second preset value, exiting the lower box PTC heating mode.
  • the second preset value is the threshold for starting the lower box PTC heating in FIG7 . This can further improve the heating efficiency of the battery, improve the charging efficiency of the battery in a low temperature environment, and improve the user experience.
  • an electric vehicle including a power battery assembly, wherein the power battery assembly is the power battery assembly in the above embodiment.
  • the electric vehicle using the power battery assembly in the above embodiment improves the charging efficiency of the power battery in a low temperature environment, thereby improving the reliability of the electric vehicle, and making the space utilization rate of the whole vehicle higher, thereby reducing the cost of the whole vehicle.
  • spatially relative terms such as “above”, “above”, “on the upper surface of”, “above”, etc. may be used here to describe the spatial positional relationship between a device or feature and other devices or features as shown in the figure. It should be understood that spatially relative terms are intended to include different orientations of the device in use or operation in addition to the orientation described in the figure. For example, if the device in the figure is inverted, the device described as “above other devices or structures” or “above other devices or structures” will be positioned as “below other devices or structures” or “below other devices or structures”. Thus, the exemplary term “above” can include both “above” and “below”.
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种动力电池总成及其热管理控制方法、电动车辆,动力电池总成包括:能量存储单元,能量存储单元包括下箱体,下箱体包括纵向边梁和横向边梁,横向边梁与多个加强梁相连接,多个加强梁沿下箱体的宽度方向间隔地设置,多个加强梁中与纵向边梁相邻的加强梁与纵向边梁之间形成第一容纳空间,多个加强梁中相邻的两个加强梁之间形成第二容纳空间,第一容纳空间和第二容纳空间用于容纳电芯。纵向边梁与加强梁均能够对电芯进行加热,有效地提高了电池的加热效率,提升了电池在低温环境下的充电效率,改善了用户体验。

Description

动力电池总成及其热管理控制方法、电动车辆 技术领域
本申请涉及电动车辆技术领域,具体而言,涉及一种动力电池总成及其热管理控制方法、电动车辆。本申请要求于2022年9月30日提交至中国国家知识产权局、申请号为202211204712.6、发明名称为“动力电池总成及其热管理控制方法、电动车辆”的专利申请的优先权。
背景技术
随着电动汽车的发展,用户对整车续航里程的要求越来越高,对电池的充电速度也提出了越来越高的要求。为满足用户在各种环境温度下都可以快速补能的需求,对电池热管理的要求也更加苛刻。现有电动汽车一般整车配电单元、DCDC布置于整车前机舱位置,整车存在重量大、空间利用率低、高低压线束厂的问题。同时现有动力电池普遍存在低温环境下,充电效率低的问题。
发明内容
本申请的主要目的在于提供一种动力电池总成及其热管理控制方法、电动车辆,以解决现有技术中低温环境下,动力电池充电效率低的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种动力电池总成,包括:能量存储单元,能量存储单元包括下箱体,下箱体包括纵向边梁和横向边梁,横向边梁与多个加强梁相连接,多个加强梁沿下箱体的宽度方向间隔地设置,多个加强梁中与纵向边梁相邻的加强梁与纵向边梁之间形成第一容纳空间,多个加强梁中相邻的两个加强梁之间形成第二容纳空间,第一容纳空间和第二容纳空间用于容纳电芯。
进一步地,纵向边梁与电芯之间、加强梁与电芯之间设置有PTC发热片,下箱体的底部还设置有液冷板,液冷板的内部设置有液冷流道。
进一步地,电芯与纵向边梁、加强梁之间均具有间隙地设置,间隙内均填充有灌封胶,PTC发热片通过灌封胶与电芯接触。
进一步地,纵向边梁为型材结构,纵向边梁朝向电芯的一侧设置有第一PTC型腔结构,第一PTC型腔结构内设置有PTC发热片,第一PTC型腔结构通过灌封胶与电芯接触。
进一步地,加强梁为型材结构,加强梁朝向电芯的一侧设置有第二PTC型腔结构,第二PTC型腔结构内设置有PTC发热片,第二PTC型腔结构通过灌封胶与电芯接触。
进一步地,动力电池总成还包括:能量分配单元,能量分配单元通过电连接单元与能量存储单元连接,且能量分配单元通过高压线束与PTC发热片连接;控制单元,控制单元通过低压连接单元与能量存储单元连接,控制单元通过低压端口与能量分配单元连接。
进一步地,电连接单元位于能量存储单元与能量分配单元之间,电连接单元包括:熔断器,熔断器位于能量存储单元与能量分配单元之间;第一电连接排,第一电连接排与熔断器连接,并且第一电连接排位于熔断器的一侧设置;第二电连接排,第二电连接排与熔断器连接,并且第二电连接排位于熔断器的另一侧设置;正极电连接排,正极电连接排与能量分配单元的正极输入电连接排连接,并且正极电连接排位于第一电连接排的一侧设置;负极电连接排,负极电连接排与能量分配单元的负极输入电连接排连接,并且负极电连接排位于第二电连接排的一侧设置,负极电连接排的结构为立方体结构,立方体结构的上方设置有第一螺柱结构;其中,第一电连接排、熔断器、第二电连接排和负极电连接排位于同一水平线上。
根据本申请的另一方面,提供了一种动力电池总成的热管理控制方法,方法用于控制上述的动力电池总成,方法包括:获取动力电池的参数,其中,参数至少包括动力电池的SOC、动力电池的温度、动力电池的电压及电流;基于动力电池的SOC、动力电池的电压及电流,确定动力电池的工况,其中,动力电池的工况包括充电工况和放电工况;在确定动力电池的工况为充电工况的情况下,判断动力电池的温度是否小于第一预设值;如果是,确定所需执行的热管理模式为加热模式,加热模式用于启动整车PTC加热命令,整车PTC加热命令用于控制液冷系统对动力电池进行加热;在确定动力电池的工况为放电工况的情况下,确定所需执行的热管理模式为冷却模式,冷却模式用于启动整车电池冷却命令,整车电池冷却命令用于控制液冷系统对动力电池进行冷却。
可选地,方法还包括:在确定所需执行的热管理模式为加热模式的情况下,判断动力电池的温度是否小于或等于第二预设值;如果是,确定需要启动下箱体PTC加热模式,下箱体PTC加热模式用于控制下箱体的PTC发热片对动力电池进行加热;在动力电池的温度大于第二预设值的情况下,退出下箱体PTC加热模式。
根据本申请的另一方面,提供了一种电动车辆,包括动力电池总成,动力电池总成为上述的动力电池总成。
应用本申请的技术方案,能量存储单元包括下箱体,下箱体包括纵向边梁和横向边梁,横向边梁与多个加强梁相连接,多个加强梁沿下箱体的宽度方向间隔地设置,多个加强梁中与纵向边梁相邻的加强梁与纵向边梁之间形成第一容纳空间,多个加强梁中相邻的加强梁之间形成第二容纳空间,第一容纳空间和第二容纳空间都用于容纳电芯,纵向边梁与加强梁均能够对电芯进行加热,有效地提高了电池的加热效率,提升了电池在低温环境下的充电效率,改善了用户体验。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的动力电池总成的第一实施例的结构示意图;
图2示出了根据本申请的动力电池总成的第二实施例的结构示意图;
图3示出了根据本申请的下箱体的第一实施例的结构示意图;
图4示出了根据本申请的下箱体的第二实施例的结构示意图;
图5示出了根据本申请的下箱体的第三实施例的结构示意图;
图6示出了根据本申请的动力电池总成的热管理控制方法的第一实施例的流程图;
图7示出了根据本申请的动力电池总成的热管理控制方法的第二实施例的流程图。
其中,上述附图包括以下附图标记:
1、能量存储单元;11、下箱体;111、纵向边梁;1111、第一PTC型腔结构;112、加强梁;1121、第二PTC型腔结构;113、液冷板;114、横向边梁;115、高压线束;12、上箱体;13、电芯;14、灌封胶;15、PTC发热片;
2、能量分配单元;
3、控制单元;
4、电连接单元;41、正极电连接排;42、负极电连接排;43、第一电连接排;44、第二电连接排;45、熔断器;
5、低压连接单元;51、低压端口。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在 于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
结合图1至图5所示,根据本申请的具体实施例,提供了一种动力总成。
具体地,动力电池总成包括能量存储单元1,能量存储单元1包括下箱体11,下箱体11包括纵向边梁111和横向边梁114,横向边梁114与多个加强梁112相连接,多个加强梁112沿下箱体11的宽度方向间隔地设置,多个加强梁112中与纵向边梁111相邻的加强梁112与纵向边梁111之间形成第一容纳空间,多个加强梁112中相邻的两个加强梁112之间形成第二容纳空间,第一容纳空间和第二容纳空间用于容纳电芯13。
应用本实施例的技术方案,能量存储单元1包括下箱体11,下箱体11包括纵向边梁111和横向边梁114,横向边梁114与多个加强梁112相连接,多个加强梁112沿下箱体11的宽度方向间隔地设置,多个加强梁112中与纵向边梁111相邻的加强梁112与纵向边梁111之间形成第一容纳空间,多个加强梁112中相邻的加强梁112之间形成第二容纳空间,第一容纳空间和第二容纳空间都用于容纳电芯13,纵向边梁111与加强梁112均能够对电芯13进行加热,有效地提高了电池的加热效率,提升了电池在低温环境下的充电效率,改善了用户体验。
如图4、图5所示,纵向边梁111与电芯13之间、加强梁112与电芯13之间设置有PTC发热片15,下箱体11的底部还设置有液冷板113,液冷板113的内部设置有液冷流道。液冷板113为平板结构。通过PTC发热片15及液冷板113共同对电芯进行加热,进一步有效地提高了电池的加热效率,提升了电池在低温环境下的充电效率。其中,能量存储单元还包括上箱体12,上箱体12与下箱体11连接。
进一步地,电芯13与纵向边梁111、加强梁112之间均具有间隙地设置,间隙内均填充有灌封胶14,PTC发热片15通过灌封胶14与电芯13接触。其中,灌封胶14具有导热、绝缘、结构加强的功能。电芯13可以为方形电芯,也可以为圆柱电芯。通过灌封胶14实现了电芯13与下箱体11的紧密连接,可以有效提高动力电池总成的结构强度、提高动力电池总成的绝缘效果。
进一步地,纵向边梁111为型材结构,纵向边梁111朝向电芯13的一侧设置有第一PTC型腔结构1111,第一PTC型腔结构1111内设置有PTC发热片15,第一PTC型腔结构1111通过灌封胶14与电芯13接触。
进一步地,加强梁112为型材结构,加强梁112朝向电芯13的一侧设置有第二PTC型腔结构1121,第二PTC型腔结构1121内设置有PTC发热片15,第二PTC型腔结构1121通过灌封胶14与电芯13接触。
其中,动力电池总成还包括能量分配单元2和控制单元3,能量分配单元2通过电连接单元4与能量存储单元1连接,且能量分配单元2通过高压线束115与PTC发热片15连接。控制单元3通过低压连接单元5与能量存储单元1连接,控制单元3通过低压端口51与能量分配单元2连接。具体地,能量分配单元2及控制单元3均装配在能量存储单元1的上方,且能量分配单元2与能量存储单元1、控制单元3与能量存储单元1之间的连接形式均为螺栓连接。通过能量存储单元1与能量分配单元2的集成,可以有效减少整车高低压线束的长度,降低整车成本,节省整车空间。
进一步地,电连接单元4位于能量存储单元1与能量分配单元2之间,电连接单元4包括:熔断器45、第一电连接排43、第二电连接排44、正极电连接排41和负极电连接排42。熔断器45位于能量存储单元1与能量分配单元2之间,第一电连接排43与熔断器45连接,并且第一电连接排43位于熔断器45的一侧设置,第二电连接排44与熔断器45连接,并且第二电连接排44位于熔断器45的另一侧设置,正极电连接排41与能量分配单元2的正极输入电连接排连接,并且正极电连接排41位于第一电连接排43的一侧设置,负极电连接排42与能量分配单元2的负极输入电连接排连接,并且负极电连接排42位于第二电连接排44的一侧设置,负极电连接排42的结构为立方体结构,立方体结构的上方设置有第一螺柱结构。其中,第一电连接排43、熔断器45、第二电连接排44和负极电连接排42位于同一水平线上。这样设置使得电连接单元4的主体走向为直线走向,并且能够在实现连接能量分配单元2与能量存储单元1的前提下,减少电连接排长度,从而降低了动力电池的生产成本。在本实施例中,正极电连接排41、负极电连接排42、第一电连接排43及第二电连接排44的表面均包覆有耐高温绝缘材料。
在本申请的另一个具体实施例中,熔断器45的上方设置有第二螺柱结构,第一电连接排43和第二电连接排44通过第二螺柱结构与熔断器45连接,熔断器45的驱动形式为由控制单元3进行驱动,熔断器45可在电池发生热失控时,接收电池控制单元3的指令,实现主动毫秒级切断。这样有效减少电池总成发生热失控时的发生高压短路、产生电弧的风险,提高动力电池的安全性。
在本申请的再一个具体实施例中,能量分配单元2包含了整车配电模块、交流充电机模块、DCDC直流转换模块,能量分配单元2的主体结构为铝合金铸造结构,并在上方开设有维修开口,维修开口与螺栓配合设置,并且维修开口采用密封垫密封。
在本申请的又一个具体实施例中,能量分配单元2通过电池控制单元3的控制,可以实现启动和关闭PTC发热片15对电池进行加热的控制。本申请的PTC发热片15、液冷板113、能量分配单元2及控制单元3共同形成动力电池的环绕式智能温控系统。
根据本申请的另一个具体实施例,提供了一种动力电池总成的热管理控制方法,方法用于控制上述实施例中的动力电池总成。如图6所示,方法包括以下步骤:
步骤S101,获取动力电池的参数,其中,参数至少包括动力电池的SOC、动力电池的温度、动力电池的电压及电流;
步骤S102,基于动力电池的SOC、动力电池的电压及电流,确定动力电池的工况,其中,动力电池的工况包括充电工况和放电工况;
步骤S103,在确定动力电池的工况为充电工况的情况下,判断动力电池的温度是否小于第一预设值;
步骤S104,如果是,确定所需执行的热管理模式为加热模式,加热模式用于启动整车PTC加热命令,整车PTC加热命令用于控制液冷系统对动力电池进行加热;
步骤S105,在确定动力电池的工况为放电工况的情况下,确定所需执行的热管理模式为冷却模式,冷却模式用于启动整车电池冷却命令,整车电池冷却命令用于控制液冷系统对动力电池进行冷却。
在本实施例中,在确定动力电池的工况为充电工况的情况下,若动力电池的温度高于一定值,同样执行冷却模式。采用该动力电池总成的热管理控制方法,根据动力电池的SOC、动力电池的温度、电压及电流,来执行相应的热管理模式,保证了动力电池工作在最佳的温度环境下,提高了动力电池的可靠性。
可选地,如图7所示,方法还包括:在确定所需执行的热管理模式为加热模式的情况下,判断动力电池的温度是否小于或等于第二预设值;如果是,确定需要启动下箱体PTC加热模式,下箱体PTC加热模式用于控制下箱体的PTC发热片对动力电池进行加热;在动力电池的温度大于第二预设值的情况下,退出下箱体PTC加热模式。其中,第二预设值即图7中的启动下箱体PTC加热阈值。这样能够进一步提高电池的加热效率,提升电池在低温环境下的充电效率,改善用户体验。
根据本申请的另一个具体实施例,提供了一种电动车辆,包括动力电池总成,动力电池总成为上述实施例中的动力电池总成。采用了上述实施例中的动力电池总成的电动车辆,由于动力电池在低温环境下的充电效率提高,进而提高了电动车辆的可靠性,而且使得整车空间利用率更高,降低了整车成本。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。 该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
除上述以外,还需要说明的是在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本申请的范围内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种动力电池总成,其特征在于,包括:
    能量存储单元(1),所述能量存储单元(1)包括下箱体(11),所述下箱体(11)包括纵向边梁(111)和横向边梁(114),所述横向边梁(114)与多个加强梁(112)相连接,多个所述加强梁(112)沿下箱体(11)的宽度方向间隔地设置,多个所述加强梁(112)中与所述纵向边梁(111)相邻的所述加强梁(112)与所述纵向边梁(111)之间形成第一容纳空间,多个所述加强梁(112)中相邻的两个所述加强梁(112)之间形成第二容纳空间,所述第一容纳空间和所述第二容纳空间用于容纳电芯(13)。
  2. 根据权利要求1所述的动力电池总成,其特征在于,
    所述纵向边梁(111)与所述电芯(13)之间、所述加强梁(112)与所述电芯(13)之间设置有PTC发热片(15),所述下箱体(11)的底部还设置有液冷板(113),所述液冷板(113)的内部设置有液冷流道。
  3. 根据权利要求2所述的动力电池总成,其特征在于,
    所述电芯(13)与所述纵向边梁(111)、所述加强梁(112)之间均具有间隙地设置,所述间隙内均填充有灌封胶(14),所述PTC发热片(15)通过所述灌封胶(14)与所述电芯(13)接触。
  4. 根据权利要求3所述的动力电池总成,其特征在于,
    所述纵向边梁(111)为型材结构,所述纵向边梁(111)朝向所述电芯(13)的一侧设置有第一PTC型腔结构(1111),所述第一PTC型腔结构(1111)内设置有所述PTC发热片(15),所述第一PTC型腔结构(1111)通过所述灌封胶(14)与所述电芯(13)接触。
  5. 根据权利要求3所述的动力电池总成,其特征在于,
    所述加强梁(112)为型材结构,所述加强梁(112)朝向所述电芯(13)的一侧设置有第二PTC型腔结构(1121),所述第二PTC型腔结构(1121)内设置有所述PTC发热片(15),所述第二PTC型腔结构(1121)通过所述灌封胶(14)与所述电芯(13)接触。
  6. 根据权利要求1所述的动力电池总成,其特征在于,所述动力电池总成还包括:
    能量分配单元(2),所述能量分配单元(2)通过电连接单元(4)与所述能量存储单元(1)连接,且所述能量分配单元(2)通过高压线束(115)与PTC发热片(15)连接;
    控制单元(3),所述控制单元(3)通过低压连接单元(5)与所述能量存储单元(1)连接,所述控制单元(3)通过低压端口(51)与所述能量分配单元(2)连接。
  7. 根据权利要求6所述的动力电池总成,其特征在于,所述电连接单元(4)位于所述能量存储单元(1)与所述能量分配单元(2)之间,所述电连接单元(4)包括:
    熔断器(45),所述熔断器(45)位于所述能量存储单元(1)与所述能量分配单元(2)之间;
    第一电连接排(43),所述第一电连接排(43)与所述熔断器(45)连接,并且所述第一电连接排(43)位于所述熔断器(45)的一侧设置;
    第二电连接排(44),所述第二电连接排(44)与所述熔断器(45)连接,并且所述第二电连接排(44)位于所述熔断器(45)的另一侧设置;
    正极电连接排(41),所述正极电连接排(41)与所述能量分配单元(2)的正极输入电连接排连接,并且所述正极电连接排(41)位于所述第一电连接排(43)的一侧设置;
    负极电连接排(42),所述负极电连接排(42)与所述能量分配单元(2)的负极输入电连接排连接,并且所述负极电连接排(42)位于所述第二电连接排(44)的一侧设置,所述负极电连接排(42)的结构为立方体结构,所述立方体结构的上方设置有第一螺柱结构;
    其中,所述第一电连接排(43)、所述熔断器(45)、所述第二电连接排(44)和所述负极电连接排(42)位于同一水平线上。
  8. 一种动力电池总成的热管理控制方法,其特征在于,所述方法用于控制权利要求1-7中任一项所述的动力电池总成,所述方法包括:
    获取动力电池的参数,其中,所述参数至少包括动力电池的SOC、动力电池的温度、动力电池的电压及电流;
    基于所述动力电池的SOC、所述动力电池的电压及电流,确定所述动力电池的工况,其中,所述动力电池的工况包括充电工况和放电工况;
    在确定所述动力电池的工况为所述充电工况的情况下,判断所述动力电池的温度是否小于第一预设值;
    如果是,确定所需执行的热管理模式为加热模式,所述加热模式用于启动整车PTC加热命令,所述整车PTC加热命令用于控制液冷系统对所述动力电池进行加热;
    在确定所述动力电池的工况为所述放电工况的情况下,确定所需执行的所述热管理模式为冷却模式,所述冷却模式用于启动整车电池冷却命令,所述整车电池冷却命令用于控制所述液冷系统对所述动力电池进行冷却。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    在确定所需执行的所述热管理模式为所述加热模式的情况下,判断所述动力电池的 温度是否小于或等于第二预设值;
    如果是,确定需要启动下箱体PTC加热模式,所述下箱体PTC加热模式用于控制下箱体的PTC发热片对所述动力电池进行加热;
    在所述动力电池的温度大于所述第二预设值的情况下,退出所述下箱体PTC加热模式。
  10. 一种电动车辆,其特征在于,包括动力电池总成,所述动力电池总成为权利要求1-7中任一项所述的动力电池总成。
PCT/CN2023/094621 2022-09-30 2023-05-16 动力电池总成及其热管理控制方法、电动车辆 WO2024066392A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211204712.6A CN115312953B (zh) 2022-09-30 2022-09-30 动力电池总成及其热管理控制方法、电动车辆
CN202211204712.6 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024066392A1 true WO2024066392A1 (zh) 2024-04-04

Family

ID=83866711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094621 WO2024066392A1 (zh) 2022-09-30 2023-05-16 动力电池总成及其热管理控制方法、电动车辆

Country Status (2)

Country Link
CN (1) CN115312953B (zh)
WO (1) WO2024066392A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312953B (zh) * 2022-09-30 2023-02-03 中国第一汽车股份有限公司 动力电池总成及其热管理控制方法、电动车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151910A (zh) * 2020-09-27 2020-12-29 中国第一汽车股份有限公司 一种液冷电池系统及液冷电池系统的控制方法
CN112498178A (zh) * 2020-10-22 2021-03-16 东风汽车集团有限公司 电动车高低温环境下充电前后电池包温度控制系统及方法
CN113964458A (zh) * 2020-07-01 2022-01-21 孚能科技(赣州)股份有限公司 串并联模块、电池包、电池系统及制作方法
CN217468650U (zh) * 2021-11-24 2022-09-20 奇瑞商用车(安徽)有限公司 一种集成液冷与加热功能的动力电池箱结构
CN115312953A (zh) * 2022-09-30 2022-11-08 中国第一汽车股份有限公司 动力电池总成及其热管理控制方法、电动车辆

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204315687U (zh) * 2015-01-05 2015-05-06 北京长城华冠汽车科技有限公司 锂离子动力电池包恒温热管理系统
CN105789516B (zh) * 2016-05-13 2018-11-06 合肥工业大学 动力电池热控箱体
CN109390525A (zh) * 2018-10-18 2019-02-26 浙江仁丰科技有限公司 一种绝缘减震型新能源汽车发热片
CN110588277B (zh) * 2019-08-16 2021-03-30 中国第一汽车股份有限公司 电动汽车热管理方法、系统和车辆
CN111688544B (zh) * 2020-05-29 2022-04-12 爱驰汽车有限公司 一种动力电池热管理控制方法
CN212934720U (zh) * 2020-07-29 2021-04-09 中国第一汽车股份有限公司 一种动力锂电池模组
EP4273996A1 (en) * 2020-12-31 2023-11-08 Fuzhou Fusshia Cell Co., Ltd. Battery cell and battery module comprising same
CN113224435A (zh) * 2021-04-28 2021-08-06 力神动力电池系统有限公司 一种高比能电池包

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113964458A (zh) * 2020-07-01 2022-01-21 孚能科技(赣州)股份有限公司 串并联模块、电池包、电池系统及制作方法
CN112151910A (zh) * 2020-09-27 2020-12-29 中国第一汽车股份有限公司 一种液冷电池系统及液冷电池系统的控制方法
WO2022062528A1 (zh) * 2020-09-27 2022-03-31 中国第一汽车股份有限公司 液冷电池系统及液冷电池系统的控制方法
CN112498178A (zh) * 2020-10-22 2021-03-16 东风汽车集团有限公司 电动车高低温环境下充电前后电池包温度控制系统及方法
CN217468650U (zh) * 2021-11-24 2022-09-20 奇瑞商用车(安徽)有限公司 一种集成液冷与加热功能的动力电池箱结构
CN115312953A (zh) * 2022-09-30 2022-11-08 中国第一汽车股份有限公司 动力电池总成及其热管理控制方法、电动车辆

Also Published As

Publication number Publication date
CN115312953B (zh) 2023-02-03
CN115312953A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
US10090494B2 (en) Support structure for battery cells within a traction battery assembly
US10141550B2 (en) Pouch battery cell assembly for traction battery
CN216872114U (zh) 电池和用电设备
US9478779B2 (en) Cell to cell terminal connections for a high voltage battery
CN114256497B (zh) 电池包及车辆
JP2010272430A (ja) 車両用のバッテリシステム
CN217182265U (zh) 电池和用电设备
WO2024066392A1 (zh) 动力电池总成及其热管理控制方法、电动车辆
US9318751B2 (en) Traction battery assembly with spring component
JPWO2019150704A1 (ja) バッテリシステムの流れ込み電流遮断方法及びバッテリシステム、バッテリシステムを備える電源装置及び蓄電装置
US20160315298A1 (en) Traction Battery Assembly
KR102210218B1 (ko) 전지시스템 및 전지시스템과 전기자동차를 위한 베이스플레이트
US20160099449A1 (en) Assembly to Manage Contact Between Battery Cell Array and Thermal Interface Component of Thermal Plate
JP6954213B2 (ja) 充填部材、組電池及び熱伝達の制御方法
US20230327264A1 (en) Battery module, battery, power consumption device, and method and device for producing battery
WO2023207619A1 (zh) 电池、用电设备以及电池的线束的二次利用方法
US20230246289A1 (en) Battery system with active cooling of venting channel
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2022194253A1 (zh) 动力电池包及其控制方法
KR20230126174A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
KR20230129053A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
JP2012190543A (ja) 溶融塩電池装置及び溶融塩電池の制御方法
JP7491939B2 (ja) 電池、電気機器、電池の製造方法及び装置
CN220984644U (zh) 电池和用电装置
CN219017752U (zh) 电池模组、电池包及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869647

Country of ref document: EP

Kind code of ref document: A1