WO2022194253A1 - 动力电池包及其控制方法 - Google Patents

动力电池包及其控制方法 Download PDF

Info

Publication number
WO2022194253A1
WO2022194253A1 PCT/CN2022/081528 CN2022081528W WO2022194253A1 WO 2022194253 A1 WO2022194253 A1 WO 2022194253A1 CN 2022081528 W CN2022081528 W CN 2022081528W WO 2022194253 A1 WO2022194253 A1 WO 2022194253A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
battery pack
cell module
cell
charging
Prior art date
Application number
PCT/CN2022/081528
Other languages
English (en)
French (fr)
Inventor
李建昌
张海建
杨振宇
许晓丰
马春田
Original Assignee
蜂巢能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技股份有限公司 filed Critical 蜂巢能源科技股份有限公司
Priority to DE112022001561.6T priority Critical patent/DE112022001561T5/de
Publication of WO2022194253A1 publication Critical patent/WO2022194253A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to the technical field of power battery pack structure and control, and in particular, to a power battery pack and a control method thereof.
  • the power battery pack can be divided into two types: the module scheme and the no-module scheme (CTP).
  • the module scheme the power battery pack is provided with cells, end plates, side plates, bus bars, thermal insulation materials, etc.
  • the CTP scheme cancels the process of grouping the cells and directly assembles the cells into the power battery pack shell.
  • the cell system is usually ternary or lithium iron phosphate.
  • ternary cells have high energy density, but poor thermal stability.
  • Thermal insulation materials such as aerogel need to be arranged between cells to slow down the spread of thermal runaway and improve the safety of the whole package. Therefore, thermal insulation materials The larger the amount, the higher the cost.
  • the thermal stability of lithium iron phosphate cells is good, but the energy density is low, and the capacity of the cells is significantly affected by temperature, and the problem of vehicle battery life attenuation in winter is relatively serious.
  • the purpose of the present disclosure is to provide a power battery pack with better stability and higher energy density and a control method thereof.
  • the present disclosure provides a control method for a power battery pack, wherein the same type of cells are electrically connected to form a cell module, the method includes: detecting the state of the whole vehicle; if the whole vehicle is in the driving state, controlling the N After a series of battery modules are connected in series, the whole vehicle is powered; if the whole vehicle is in the state of braking feedback, the control will connect N battery modules in series for feedback; The SOC controls one or more of the N cell modules to be charged.
  • the control to connect N cell modules in series to supply power to the entire vehicle including:
  • the vehicle is powered with the target power of the vehicle.
  • determining the target power for driving includes:
  • the available discharge power of each cell module is determined respectively;
  • the minimum value of the available discharge power of each cell module is taken as the target power of the driving.
  • the available discharge power of each cell module is determined respectively, including:
  • the discharge power corresponding to the current SOC of the power battery pack and the current highest cell temperature in a cell module is determined as the first discharge power, and the predetermined discharge corresponds to The relationship is the corresponding relationship between the SOC of the power battery pack, the cell temperature in the cell module, and the discharge power;
  • the discharge power corresponding to the current SOC of the power battery pack and the current lowest cell temperature in the cell module is determined as the second discharge power
  • the smaller value of the first discharge power and the second discharge power is determined as the available discharge power of the cell module.
  • the control is to connect N battery modules in series to perform feedback, including:
  • determining the target power of the braking feedback includes:
  • the available feedback power of each cell module is determined respectively;
  • the minimum value of the available feedback power of each cell module is taken as the target power of the braking feedback.
  • the available feedback power of each cell module is determined respectively, including:
  • the feedback power corresponding to the current SOC of the power battery pack and the current highest cell temperature in a cell module is determined as the first feedback power, and the predetermined feedback corresponds to The relationship is the corresponding relationship between the SOC of the power battery pack, the cell temperature in the cell module, and the feedback power;
  • the smaller value of the first feedback power and the second feedback power is determined as the available feedback power of the cell module.
  • controlling one or more of the N cell modules to charge according to the SOC of the power battery pack including:
  • the control is to charge the N battery cell modules with the target power for charging the entire vehicle.
  • determining the target power for vehicle charging includes:
  • the available charging power of each cell module is determined respectively;
  • the minimum value of the available charging power of each cell module is taken as the target power for charging the entire vehicle.
  • the available charging power of each cell module is determined respectively, including:
  • the charging power corresponding to the current SOC of the power battery pack and the current highest cell temperature in a cell module is determined as the first charging power, and the predetermined charging corresponds to The relationship is the corresponding relationship between the SOC of the power battery pack, the cell temperature in the cell module, and the charging power;
  • the charging power corresponding to the current SOC of the power battery pack and the current lowest cell temperature in the cell module is determined as the second charging power
  • the smaller value of the first charging power and the second charging power is determined as the available charging power of the cell module.
  • the method further includes:
  • the present disclosure provides a power battery pack, the power battery pack includes N-type cells, the N-type cells are alternately arranged in sequence, and the energy density of the first type of the N-type cells is greater than that of the second type of cells.
  • the energy density of the cell-like cell, the thermal stability of the cell of the second type is higher than the thermal stability of the cell of the first type, wherein N is an integer, and N ⁇ 2.
  • the first type of battery is a ternary battery
  • the second type of battery is a lithium iron phosphate battery
  • the first type of battery is a ternary 811 battery
  • the second type of cell is a ternary 523 cell.
  • the cell units in the N-type cells are alternately arranged in sequence, wherein one cell in the same type of cells forms one cell unit, or, the cells in the same type are arranged together A plurality of cells form a cell unit.
  • similar cells are electrically connected to form a cell module
  • the power battery pack further includes a relay
  • the relay is used to connect the positive and negative electrodes of each cell module and the positive electrode of the battery system power distribution box Conduction and disconnection between any two of the negative electrodes.
  • FIG. 1 is a schematic diagram of a power battery pack provided by an exemplary embodiment
  • FIG. 2 is a schematic diagram of a power battery pack provided by another exemplary embodiment
  • FIG. 3 is a flowchart of a control method for a power battery pack provided by an exemplary embodiment
  • 4a is a schematic diagram of the connection relationship of each terminal in a battery system power distribution box provided by an exemplary embodiment
  • FIG. 4b is a schematic diagram of the connection relationship of each terminal in the BDU provided by another exemplary embodiment
  • FIG. 4c is a schematic diagram of the connection relationship of each terminal in the BDU provided by another exemplary embodiment
  • FIG. 5 is a flowchart of a control method for a power battery pack provided by another exemplary embodiment.
  • the present disclosure provides a power battery pack, which includes N-type cells, and the N-type cells are alternately arranged in sequence.
  • the energy density of the first type of batteries is greater than that of the second type of batteries, and the thermal stability of the second type of batteries is higher than that of the first type of batteries.
  • N is an integer, and N ⁇ 2.
  • Some cells have a complementary relationship in terms of energy density and thermal stability.
  • power battery packs include two types of cells: Type 1 cells and Type 2 cells. If all the cells of the first type are used in the power battery pack, although it has a large energy density, the thermal stability is poor, and it is easy to cause thermal runaway to spread. If all the batteries of the second type are used in the power battery pack, although the thermal stability is good, the energy density is poor, resulting in poor battery life of the vehicle. By arranging these two types of cells alternately, the second type of cells is used to separate the first type of cells, which slows down the spread of thermal runaway.
  • the electrical connection relationship of the N-type cells various possible connection methods can be adopted under the premise of ensuring safety.
  • the power battery pack can be more powerful than the first type of cells used alone.
  • Better thermal stability reduces the use cost of thermal insulation materials, and has a higher energy density than single use of the second type of batteries, which improves the battery life of the entire vehicle to a certain extent.
  • the charging and discharging control provided by the present disclosure is used. The method can safely and efficiently charge and discharge the power battery pack.
  • the first type of cells may be ternary cells
  • the second type of cells may be lithium iron phosphate cells
  • the first type of battery is a ternary 811 battery
  • the second type of battery is a ternary 523 battery.
  • FIG. 1 is a schematic diagram of a power battery pack provided by an exemplary embodiment. As shown in Figure 1, a single ternary cell 1 and a single lithium iron phosphate cell 2 are alternately arranged to form an "ABAB" layout.
  • the cell units in the N-type cells are alternately arranged in sequence, wherein one cell in the same type of cells forms a cell unit, or a plurality of cells in the same type are arranged together
  • the cells form a cell unit.
  • one cell of the same type of cells forms one cell unit.
  • FIG. 2 is a schematic diagram of a power battery pack provided by another exemplary embodiment. As shown in Figure 2, two ternary cells 1 are used as a cell unit, and two lithium iron phosphate cells 2 are used as a cell unit. The cell units of the two types of cells are alternately arranged to form an "AABBAABB" layout.
  • the N-type batteries may include ternary 811 batteries, ternary 523 batteries and lithium iron phosphate batteries.
  • the energy density of lithium iron phosphate cells, ternary 523 cells and ternary 811 cells gradually increased in turn, and the thermal stability of lithium iron phosphate cells, ternary 523 cells and ternary 811 cells gradually decreased.
  • the form of "ABCABC” or "AABBCC” can be used.
  • the same type of cells can be electrically connected through the bus bar to form a cell module.
  • Each cell module can be connected in series to output power supply, or each cell module can be connected in parallel to output power supply, or a hybrid connection method of parallel connection and series connection can be adopted.
  • the connection relationship between each cell module can be a fixed connection relationship, or can be set to be adjustable by setting a relay.
  • the power battery pack may further include a relay, and the relay is used to connect any two of the positive electrode and the negative electrode of each cell module, the positive electrode and the negative electrode of the battery system distribution box (Battery System Distribution Unit, BDU). on and off between. In this way, the whole vehicle can be powered by the positive and negative poles of the BDU.
  • BDU Battery System Distribution Unit
  • FIG. 3 is a flowchart of a control method for a power battery pack provided by an exemplary embodiment. As shown in Figure 3, the method may include the following steps.
  • step S11 the state of the entire vehicle is detected.
  • Step S12 if the whole vehicle is in a driving state, the control is to connect N cell modules in series to supply power to the whole vehicle.
  • Step S13 if the whole vehicle is in the state of braking feedback, the control is to connect N battery modules in series to perform feedback.
  • Step S14 if the whole vehicle is in the charging state of plugging in the gun, one or more of the N cell modules are controlled to be charged according to the SOC of the power battery pack.
  • the driving state refers to other driving states other than the brake feedback.
  • N battery modules are connected in series, the positive pole after the series connection is connected to the positive pole of the BDU, and the negative pole after the series connection is connected to the negative pole of the BDU.
  • the N cell modules are reasonably charged, which not only considers the charging efficiency, but also avoids overcharging of a certain cell module.
  • Fig. 4a is a schematic diagram of the connection relationship of each terminal in a power distribution box of a battery system according to an exemplary embodiment.
  • the positive pole A+ of the cell module corresponding to the first type of cell (hereinafter referred to as the first cell module) is the same as the cell module corresponding to the second type of cell (hereinafter referred to as the second cell module)
  • the negative pole B- of the first cell module is connected to the negative pole (-) of the BDU
  • the positive pole B+ of the second cell module is connected to the positive pole (+) of the BDU.
  • the first cell module and the second cell module can be connected in series to supply power together, or the charging gun can charge the first cell module and the second cell module together.
  • FIG. 4b is a schematic diagram of the connection relationship of each terminal in the BDU provided by another exemplary embodiment.
  • the positive pole A+ of the first cell module is connected to the positive pole (+) of the BDU
  • the negative pole A- of the first cell module is connected to the negative pole (-) of the BDU.
  • the charging gun can charge the first cell module independently.
  • FIG. 4c is a schematic diagram of the connection relationship of each terminal in the BDU provided by another exemplary embodiment.
  • the positive pole B+ of the second cell module is connected to the positive pole (+) of the BDU
  • the negative pole B- of the second cell module is connected to the negative pole (-) of the BDU.
  • the battery management system Battery Management System, BMS
  • BMS Battery Management System
  • the step of controlling the series connection of N cell modules to supply power to the entire vehicle may include: if the entire vehicle is in a driving state , the target power for driving is determined; after controlling N battery modules in series, the target power for driving is used to supply power to the whole vehicle.
  • the BDU can control the opening and closing of the relay to connect the two cell modules according to the connection method shown in Figure 4a, and then supply power to the whole vehicle through the positive and negative poles of the BDU.
  • a variety of methods can be used to determine the target power of driving, and according to the power battery pack, the target power of the driving can be used to supply power to the whole vehicle to ensure safety and efficient output of power.
  • the above step of determining the target power for driving may include: determining the available discharge power of each cell module according to the SOC of the power battery pack and the temperature of each cell module; as the target power for driving.
  • the available discharge power of each cell module is different, the minimum value of the available discharge power of each cell module can be taken as the target power for driving, so as to ensure that there is a smaller available discharge power. If the battery cell module can be safely discharged, then the battery cell module with larger available discharge power can also be safely discharged. This solution can ensure the safety of power battery discharge.
  • the available discharge power of the cell module can be determined according to the temperature of each cell and the SOC of the power battery pack.
  • the above-mentioned step of determining the available discharge power of each cell module according to the SOC of the power battery pack and the temperature of each cell module may include:
  • the discharge power corresponding to the current SOC of the power battery pack and the current highest cell temperature in a cell module is determined as the first discharge power
  • the predetermined discharge correspondence relationship is the power battery The correspondence between the SOC of the package, the cell temperature in the cell module, and the discharge power
  • the discharge power corresponding to the current SOC of the power battery pack and the current lowest cell temperature in the cell module is determined as the second discharge power
  • the smaller value of the first discharge power and the second discharge power is determined as the available discharge power of the cell module.
  • the predetermined discharge correspondence may be a predetermined discharge map.
  • the SOC of the power battery pack is detected in real time.
  • the temperature of multiple cells is detected, and the maximum and minimum temperature of the cells are determined.
  • the maximum value of the real-time SOC and the cell temperature corresponds to the first discharge power
  • the minimum value of the real-time SOC and the cell temperature corresponds to the second discharge power.
  • the step of controlling the N battery cell modules in series to perform feedback may include: if the whole vehicle is under braking In the feedback state, the target power of the braking feedback is determined; after controlling N battery modules in series, the feedback charging is performed with the target power of the braking feedback.
  • the BDU can control the opening and closing of the relay to connect the two cell modules according to the connection method shown in Figure 4a, and then brake through the positive and negative poles of the BDU.
  • a variety of methods can be used to determine the target power of the braking feedback, and control the power battery pack to perform feedback charging with the target power of the braking feedback to ensure safety and efficient feedback of electricity.
  • the above step of determining the target power of the braking feedback may include: determining the available feedback power of each cell module according to the SOC of the power battery pack and the temperature of each cell module; The minimum value is used as the target power of the brake feedback.
  • the available feedback power of each cell module is different, the minimum value of the available feedback power of each cell module can be taken as the target power of the braking feedback, thus ensuring that the available feedback power is smaller. If the battery cell module that feeds back power can feed back safely, then the cell module with larger available feedback power can also feed back safely. This solution can ensure the safety of power battery feedback charging.
  • the available feedback power of the cell module can be determined according to the temperature of each cell and the SOC of the power battery pack.
  • the above-mentioned step of respectively determining the available feedback power of each cell module according to the SOC of the power battery pack and the temperature of each cell module may include:
  • the feedback power corresponding to the current SOC of the power battery pack and the current highest cell temperature in a cell module is determined as the first feedback power, and the predetermined feedback correspondence is the power battery The correspondence between the SOC of the package, the cell temperature in the cell module, and the feedback power;
  • the discharge power corresponding to the current SOC of the power battery pack and the current lowest cell temperature in the cell module is determined as the second feedback power
  • the smaller value of the first feedback power and the second feedback power is determined as the available feedback power of the cell module.
  • the predetermined feedback correspondence may be a predetermined feedback map.
  • the SOC of the power battery pack is detected in real time. For a cell module, the temperature of multiple cells is detected, and the maximum and minimum temperature of the cells are determined.
  • the real-time SOC and the maximum value of the cell temperature correspond to the first feedback power, and the real-time SOC and the minimum value of the cell temperature correspond to the second feedback power. In this way, it is ensured that the battery cell corresponding to the smaller feedback power can be fed back safely, and the battery cell with the larger feedback power can naturally also be fed back safely. This solution can ensure the safety of the power battery power feedback.
  • the step of controlling one or more of the N cell modules to charge according to the SOC of the power battery pack (step S12 ) Can include:
  • the SOC of the power battery pack is determined; if the SOC of the power battery pack is less than the predetermined charging threshold, N cell modules are controlled in series; the target power for charging the whole vehicle is determined; The target power of vehicle charging charges N cell modules.
  • the BDU can control the opening and closing of the relay to make the two cell modules follow the steps shown in Figure 4a.
  • the connection method is connected, and then it is charged through the positive and negative poles of the BDU.
  • Various methods can be used to determine the target power for charging the vehicle, and control the power battery pack to charge at the target power for charging the vehicle to ensure safe and efficient charging.
  • the predetermined charging threshold can be determined experimentally or empirically.
  • the above step of determining the target power for charging the whole vehicle may include: determining the available charging power of each cell module according to the SOC of the power battery pack and the temperature of each cell module; The minimum value is used as the target power for vehicle charging.
  • the available charging power of each cell module is different, the minimum value of the available charging power of each cell module can be taken as the target power for charging the whole vehicle, thus ensuring that there is a smaller available charging power. If the battery cell module with charging power can be safely charged, then the battery cell module with larger available charging power can also be safely charged. This solution can ensure the safety of power battery charging.
  • the available charging power of the cell module can be determined according to the temperature of each cell and the SOC of the power battery pack.
  • the above step of determining the available charging power of each cell module according to the SOC of the power battery pack and the temperature of each cell module may include:
  • the charging power corresponding to the current SOC of the power battery pack and the current highest cell temperature in a cell module is determined as the first charging power, and the predetermined charging correspondence is the power battery The correspondence between the SOC of the package, the cell temperature in the cell module, and the charging power;
  • the smaller value of the first charging power and the second charging power is determined as the available charging power of the cell module.
  • the predetermined charging correspondence may be a predetermined charging map.
  • the SOC of the power battery pack is detected in real time.
  • For a cell module the temperature of multiple cells is detected, and the maximum and minimum temperature of the cells are determined.
  • the maximum value of the real-time SOC and the cell temperature corresponds to the first charging power
  • the minimum value of the real-time SOC and the cell temperature corresponds to the second charging power.
  • the method may further include: if the SOC of the power battery pack is greater than or equal to a predetermined charging threshold, controlling to charge each of the N cell modules one by one.
  • each cell module can be charged one by one.
  • the first cell module may be controlled to be fully charged according to the connection method of FIG. 4b, and then the second cell module may be controlled to be fully charged according to the connection method of FIG. 4c.
  • the specific charging method for a single cell module can be performed with reference to the charging method for a power battery pack in the related art. In this embodiment, the safety of charging is ensured by sacrificing some charging efficiency.
  • FIG. 5 is a flowchart of a control method for a power battery pack provided by another exemplary embodiment.
  • N 2
  • the method may include the following steps.
  • BMS diagnoses the vehicle status
  • the BMS sends an instruction to the BDU to connect the cell A (type 1 cell) circuit (the first cell module) and the cell B (type 2 cell) circuit (the second cell). battery module) in series;
  • the BMS sends an instruction to the BDU to connect the cell A circuit and the cell B circuit in series;
  • the BMS sends an instruction to the BDU to connect the cell A circuit and the battery cell B circuit in series;
  • the BMS sends an instruction to the BDU to connect the battery cell A circuit to the total positive and total negative of the BDU separately for charging;
  • circuit of cell A determines the available charging power PB3 of cell module B according to the collected temperature and SOC of cell module B, and request the charging current from the charging pile according to PB3;
  • the BMS sends an instruction to the BDU to connect the battery cell A circuit and the battery cell B circuit in series, and is ready for the next discharge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

提供了一种动力电池包及其控制方法。其中,动力电池包中将同类电芯电连接形成一个电芯模块,动力电池包控制方法包括:检测整车的状态(S11);若整车处于行车状态,则控制将N个电芯模块串联后为整车供电(S12);若整车处于制动回馈状态,则控制将N个电芯模块串联后进行回馈(S13);若整车处于插枪充电状态,则根据动力电池包的SOC控制N个电芯模块中的一个或多个进行充电(S14)。利用动力电池包控制方法能够安全、高效地对动力电池包进行充放电。

Description

动力电池包及其控制方法
相关申请的交叉引用
本申请要求于2021年03月17日提交的申请号为202110287745.0、名称为“动力电池包及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及动力电池包结构及控制技术领域,具体地,涉及一种动力电池包及其控制方法。
背景技术
从动力电池包结构布置的差异上划分,通常动力电池包可分为模组方案和无模组方案(CTP)两种。模组方案中,动力电池包设置有电芯、端板、侧板、汇流排、隔热材料等,CTP方案取消了电芯成组的过程,直接将电芯装配到动力电池包壳体内。电芯体系通常为三元或者磷酸铁锂。
通常动力电池包内使用同一种电芯,例如,三元电芯或者磷酸铁锂电芯。其中,三元电芯能量密度较高,但热稳定性较差,电芯之间需布置气凝胶等隔热材料来减缓热失控蔓延,来提高整包的安全性,因此,隔热材料用量较大,成本较高。磷酸铁锂电芯热稳定性能较好,但能量密度较低,且电芯容量受温度影响较为明显,车辆冬季续航衰减问题相对严重。
发明内容
本公开的目的是提供一种稳定性较好且能量密度较高的动力电池包及其控制方法。
为了实现上述目的,本公开提供一种动力电池包的控制方法,同类电芯电连接形成一个电芯模块,所述方法包括:检测整车的状态;若整车处于行车状态,则控制将N个电芯模块串联后为整车供电;若整车处于制动回馈状态,则控制将N个电芯模块串联后进行回馈;若整车处于插枪充电状态,则根据所述动力电池包的SOC控制所述N个电芯模块中的一个或多个进行充电。
根据本公开的一个实施例,若整车处于行车状态,则控制将N个电芯模块串联后为整车供电,包括:
若整车处于行车状态,则确定行车的目标功率;
控制所述N个电芯模块串联后以所述行车的目标功率为整车供电。
根据本公开的一个实施例,确定行车的目标功率,包括:
根据所述动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用放电功率;
将各个电芯模块的可用放电功率的最小值作为所述行车的目标功率。
根据本公开的一个实施例,根据所述动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用放电功率,包括:
在预定的放电对应关系中,将与所述动力电池包的当前SOC和一电芯模块中当前最高的电芯温度这二者对应的放电功率确定为第一放电功率,所述预定的放电对应关系为所述动力电池包的SOC、该电芯模块中的电芯温度以及放电功率这三者之间的对应关系;
在所述预定的放电对应关系中,将与所述动力电池包的当前SOC和该电芯模块中当前最低的电芯温度这二者对应的放电功率确定为第二放电功率;
将所述第一放电功率和所述第二放电功率中的较小值确定为该电芯模块的可用放电功率。
根据本公开的一个实施例,若整车处于制动回馈状态,则控制将N个电芯模块串联后进行回馈,包括:
若整车处于制动回馈状态,则确定制动回馈的目标功率;
控制所述N个电芯模块串联后以所述制动回馈的目标功率进行回馈充电。
根据本公开的一个实施例,确定制动回馈的目标功率,包括:
根据所述动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用回馈功率;
将各个电芯模块的可用回馈功率的最小值作为所述制动回馈的目标功率。
根据本公开的一个实施例,根据所述动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用回馈功率,包括:
在预定的回馈对应关系中,将与所述动力电池包的当前SOC和一电芯模块中当前最高的电芯温度这二者对应的回馈功率确定为第一回馈功率,所述预定的回馈对应关系为所述动力电池包的SOC、该电芯模块中的电芯温度以及回馈功率这三者之间的对应关系;
在所述预定的回馈对应关系中,将与所述动力电池包的当前SOC和该电芯模块中当前最低的电芯温度这二者对应的放电功率确定为第二回馈功率;
将所述第一回馈功率和所述第二回馈功率中的较小值确定为该电芯模块的可用回馈功率。
根据本公开的一个实施例,若整车处于插枪充电状态,则根据所述动力电池包的SOC控制所述N个电芯模块中的一个或多个进行充电,包括:
若整车处于插枪充电状态,则确定所述动力电池包的SOC;
若所述动力电池包的SOC小于预定的荷电阈值,则控制所述N个电芯模块串联;
确定整车充电的目标功率;
控制以所述整车充电的目标功率对所述N个电芯模块进行充电。
根据本公开的一个实施例,确定整车充电的目标功率,包括:
根据所述动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用充电功率;
将各个电芯模块的可用充电功率的最小值作为所述整车充电的目标功率。
根据本公开的一个实施例,根据所述动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用充电功率,包括:
在预定的充电对应关系中,将与所述动力电池包的当前SOC和一电芯模块中当前最高的电芯温度这二者对应的充电功率确定为第一充电功率,所述预定的充电对应关系为所述动力电池包的SOC、该电芯模块中的电芯温度以及充电功率这三者之间的对应关系;
在所述预定的充电对应关系中,将与所述动力电池包的当前SOC和该电芯模块中当前最低的电芯温度这二者对应的充电功率确定为第二充电功率;
将所述第一充电功率和所述第二充电功率中的较小值确定为该电芯模块的可用充电功率。
根据本公开的一个实施例,所述方法还包括:
若所述动力电池包的SOC大于或等于所述预定的荷电阈值,则控制对所述N个电芯模块的每个电芯模块逐一进行充电。
本公开提供一种动力电池包,所述动力电池包包括N类电芯,所述N类电芯按次序交替布置,所述N类电芯中的第一类电芯的能量密度大于第二类电芯的能量密度,所述第二类电芯的热稳定性高于所述第一类电芯的热稳定性,其中,N为整数,N≥2。
根据本公开的一个实施例,所述第一类电芯为三元电芯,所述第二类电芯为磷酸铁锂电芯,或者,所述第一类电芯为三元811电芯,所述第二类电芯为三元523电芯。
根据本公开的一个实施例,所述N类电芯中的电芯单元按次序交替布置,其中,同类电芯中的一个电芯形成一个电芯单元,或者,同类电芯中布置在一起的多个电芯形成一个电芯单元。
根据本公开的一个实施例,同类电芯电连接形成一个电芯模块,所述动力电池包还包括继电器,所述继电器用于将各个电芯模块的正极和负极、电池系统配电盒的正极和负极中的任意二者之间导通和断开。通过上述技术方案,动力电池包内将能量密度和热稳定性具有互补型关系的不同类电芯按次序交替布置,利用这种混搭的方法能够使动力电池包具有 比单一使用第一类电芯更优的热稳定性,减少了隔热材料的使用成本,并且具有比单一使用第二类电芯更高的能量密度,对整车的续航表现有一定提升,利用本公开提供的充放电控制方法,能够安全、高效地对上述动力电池包进行充放电。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
图1是一示例性实施例提供的动力电池包的示意图;
图2是另一示例性实施例提供的动力电池包的示意图;
图3是一示例性实施例提供的动力电池包的控制方法的流程图;
图4a是一示例性实施例提供的电池系统配电盒中各个接线头的连接关系的示意图;
图4b是另一示例性实施例提供的BDU中各个接线头的连接关系的示意图;
图4c是又一示例性实施例提供的BDU中各个接线头的连接关系的示意图;
图5是另一示例性实施例提供的动力电池包的控制方法的流程图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
本公开提供一种动力电池包,包括N类电芯,N类电芯按次序交替布置。N类电芯中的第一类电芯的能量密度大于第二类电芯的能量密度,第二类电芯的热稳定性高于第一类电芯的热稳定性。其中,N为整数,N≥2。
有一些电芯在能量密度和热稳定性方面具有互补的关系,举例来说,动力电池包包括两类电芯:第一类电芯和第二类电芯。若动力电池包中全部使用第一类电芯,则虽然具备较大的能量密度,但热稳定性较差,容易造成热失控蔓延。若动力电池包中全部使用第二类电芯,则虽然热稳定性较好,但能量密度较差,导致车辆的续航能力差。将这两种电芯交替地布置,则用第二类电芯将第一类电芯间隔开来,减缓了热失控蔓延。至于N类电芯的电连接关系,可以在保证安全性的前提下,采用各种可能的连接方式。
通过上述技术方案,动力电池包内将能量密度和热稳定性具有互补型关系的不同类电芯按次序交替布置,利用这种混搭的方法能够使动力电池包具有比单一使用第一类电芯更优的热稳定性,减少了隔热材料的使用成本,并且具有比单一使用第二类电芯更高的能量密度,对整车的续航表现有一定提升,利用本公开提供的充放电控制方法,能够安全、高效地对上述动力电池包进行充放电。
例如,N=2,第一类电芯可以为三元电芯,第二类电芯可以为磷酸铁锂电芯。或者,第一类电芯为三元811电芯,第二类电芯为三元523电芯。
图1是一示例性实施例提供的动力电池包的示意图。如图1所示,单个三元电芯1和单个磷酸铁锂电芯2交替布置,形成“ABAB”的布局。
在另一种实施例中,N类电芯中的电芯单元按次序交替布置,其中,同类电芯中的一个电芯形成一个电芯单元,或者,同类电芯中布置在一起的多个电芯形成一个电芯单元。图1中即为同类电芯中的一个电芯形成一个电芯单元的情况。
图2是另一示例性实施例提供的动力电池包的示意图。如图2所示,两个三元电芯1作为一个电芯单元,两个磷酸铁锂电芯2作为一个电芯单元,两类电芯的电芯单元交替布置,形成“AABBAABB”的布局。
若N=3,N类电芯可以包括三元811电芯、三元523电芯和磷酸铁锂电芯。磷酸铁锂电芯、三元523电芯和三元811电芯的能量密度依次逐渐增大,磷酸铁锂电芯、三元523电芯和三元811电芯的热稳定性依次逐渐降低。在三类电芯布局时可以采用“ABCABC”或“AABBCC”的形式。
对于各个电芯之间的电连接关系,同类电芯可以通过汇流排电连接形成一个电芯模块。可以将各个电芯模块串联在一起输出供电,或者将各个电芯模块并联在一起输出供电,或者采用并联和串联混合连接的方法。各个电芯模块之间的连接关系可以是固定的连接关系,也可以通过设置继电器,将其设置为可调整的。在又一实施例中,动力电池包还可以包括继电器,继电器用于将各个电芯模块的正极和负极、电池系统配电盒(Battery System Distribution Unit,BDU)的正极和负极中的任意二者之间导通和断开。这样,可由BDU的正极和负极整车供电。
图3是一示例性实施例提供的动力电池包的控制方法的流程图。如图3所述,该方法可以包括以下步骤。
步骤S11,检测整车的状态。
步骤S12,若整车处于行车状态,则控制将N个电芯模块串联后为整车供电。
步骤S13,若整车处于制动回馈状态,则控制将N个电芯模块串联后进行回馈。
步骤S14,若整车处于插枪充电状态,则根据动力电池包的SOC控制N个电芯模块中的一个或多个进行充电。
其中,行车状态是指制动回馈之外的其他行车状态。该实施例中,在行车状态和制动回馈状态,N个电芯模块串联连接,串联后的正极接BDU的正极,串联后的负极接BDU的负极。而在整车处于插枪充电状态时,需根据动力电池包的SOC来控制各个电芯模块与BDU的正负极之间的连接关系。该实施例中,根据动力电池包的SOC的大小,对N 个电芯模块进行较合理地充电,既考虑充电的效率,又避免某一电芯模块过充。
图4a是一示例性实施例提供的电池系统配电盒中各个接线头的连接关系的示意图。如图4a所示,第一类电芯对应的电芯模块(下文中简称第一电芯模块)的正极A+与第二类电芯对应的电芯模块(下文中简称第二电芯模块)的负极B-连接,第一电芯模块的负极A-与BDU的负极(-)连接,第二电芯模块的正极B+与BDU的正极(+)连接。通过这种连接方式,能够使第一电芯模块和第二电芯模块串联连接起来,共同向外供电,或充电枪为第一电芯模块和第二电芯模块一起充电。
图4b是另一示例性实施例提供的BDU中各个接线头的连接关系的示意图。如图4b所示,第一电芯模块的正极A+与BDU的正极(+)连接,第一电芯模块的负极A-与BDU的负极(-)连接。通过这种连接方式,能够使充电枪单独给第一电芯模块充电。
图4c是又一示例性实施例提供的BDU中各个接线头的连接关系的示意图。如图4c所示,第二电芯模块的正极B+与BDU的正极(+)连接,第二电芯模块的负极B-与BDU的负极(-)连接。通过这种连接方式,能够使充电枪单独给第二电芯模块充电。例如,电池管理系统(Battery Management System,BMS)可以根据整车状态,控制动力电池包中多个继电器的开合,来实现图4a-图4c中的连接关系。
在又一实施例中,在图3的基础上,若整车处于行车状态,则控制将N个电芯模块串联后为整车供电的步骤(步骤S12)可以包括:若整车处于行车状态,则确定行车的目标功率;控制N个电芯模块串联后以行车的目标功率为整车供电。
若整车处于行车状态,且N=2,则BDU中可以通过控制继电器的开合使两个电芯模块按照图4a中的连接方式进行连接,然后通过BDU的正负极给整车供电。可以采用多种方法确定行车的目标功率,根据动力电池包以该行车的目标功率为整车供电,确保安全性和功率的高效输出。
其中,上述确定行车的目标功率的步骤可以包括:根据动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用放电功率;将各个电芯模块的可用放电功率的最小值作为行车的目标功率。
既然是N个电芯模块串联,若各个电芯模块的可用放电功率不同,则可以取各个电芯模块的可用放电功率的最小值作为行车的目标功率,这样,保证了具有较小可用放电功率的电芯模块能够安全放电,那么具有较大可用放电功率的电芯模块自然也能够安全放电,通过该方案能够保障动力电池放电的安全性。
对于电芯模块的可用放电功率,可以根据各个电芯的温度以及动力电池包的SOC来确定。在又一实施例中,上述的根据动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用放电功率的步骤可以包括:
在预定的放电对应关系中,将与动力电池包的当前SOC和一电芯模块中当前最高的电芯温度这二者对应的放电功率确定为第一放电功率,预定的放电对应关系为动力电池包的SOC、该电芯模块中的电芯温度以及放电功率这三者之间的对应关系;
在预定的放电对应关系中,将与动力电池包的当前SOC和该电芯模块中当前最低的电芯温度这二者对应的放电功率确定为第二放电功率;
将第一放电功率和第二放电功率中的较小值确定为该电芯模块的可用放电功率。
预定的放电对应关系可以为预定的放电map图。实时检测动力电池包的SOC,对于一个电芯模块,检测其中多个电芯的温度,确定其中电芯温度的最大值和最小值。实时的SOC和电芯温度的最大值对应第一放电功率,实时的SOC和电芯温度的最小值对应第二放电功率。这样,保证了对应于较小放电功率的电芯能够安全放电,那么具有较大放电功率的电芯自然也能够安全放电,通过该方案能够保障动力电池放电的安全性。
在又一实施例中,在图3的基础上,若整车处于制动回馈状态,则控制将N个电芯模块串联后进行回馈的步骤(步骤S12)可以包括:若整车处于制动回馈状态,则确定制动回馈的目标功率;控制N个电芯模块串联后以制动回馈的目标功率进行回馈充电。
若整车处于制动回馈状态,且N=2,则BDU中可以通过控制继电器的开合使两个电芯模块按照图4a中的连接方式进行连接,然后通过BDU的正负极进行制动回馈。可以采用多种方法确定制动回馈的目标功率,控制动力电池包以该制动回馈的目标功率进行回馈充电,确保安全性和电量的高效回馈。
其中,上述确定制动回馈的目标功率的步骤可以包括:根据动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用回馈功率;将各个电芯模块的可用回馈功率的最小值作为制动回馈的目标功率。
既然是N个电芯模块串联,若各个电芯模块的可用回馈功率不同,则可以取各个电芯模块的可用回馈功率的最小值作为制动回馈的目标功率,这样,保证了具有较小可用回馈功率的电芯模块能够安全回馈,那么具有较大可用回馈功率的电芯模块自然也能够安全回馈,通过该方案能够保障动力电池回馈充电的安全性。
对于电芯模块的可用回馈功率,可以根据各个电芯的温度以及动力电池包的SOC来确定。在又一实施例中,上述的根据动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用回馈功率的步骤可以包括:
在预定的回馈对应关系中,将与动力电池包的当前SOC和一电芯模块中当前最高的电芯温度这二者对应的回馈功率确定为第一回馈功率,预定的回馈对应关系为动力电池包的SOC、该电芯模块中的电芯温度以及回馈功率这三者之间的对应关系;
在预定的回馈对应关系中,将与动力电池包的当前SOC和该电芯模块中当前最低的 电芯温度这二者对应的放电功率确定为第二回馈功率;
将第一回馈功率和第二回馈功率中的较小值确定为该电芯模块的可用回馈功率。
预定的回馈对应关系可以为预定的回馈map图。实时检测动力电池包的SOC,对于一个电芯模块,检测其中多个电芯的温度,确定其中电芯温度的最大值和最小值。实时的SOC和电芯温度的最大值对应第一回馈功率,实时的SOC和电芯温度的最小值对应第二回馈功率。这样,保证了对应于较小回馈功率的电芯能够安全回馈,那么具有较大回馈功率的电芯自然也能够安全回馈,通过该方案能够保障动力电池电量回馈的安全性。
在又一实施例中,在图3的基础上,若整车处于插枪充电状态,则根据动力电池包的SOC控制N个电芯模块中的一个或多个进行充电的步骤(步骤S12)可以包括:
若整车处于插枪充电状态,则确定动力电池包的SOC;若动力电池包的SOC小于预定的荷电阈值,则控制N个电芯模块串联;确定整车充电的目标功率;控制以整车充电的目标功率对N个电芯模块进行充电。
若整车处于插枪充电状态,且N=2,在动力电池包的SOC小于预定的荷电阈值的情况下,则BDU中可以通过控制继电器的开合使两个电芯模块按照图4a中的连接方式进行连接,然后通过BDU的正负极进行充电。可以采用多种方法确定整车充电的目标功率,控制动力电池包以该整车充电的目标功率进行充电,确保安全性和高效充电。
在动力电池包的SOC小于预定的荷电阈值的情况下,可以认为各个电芯模块串联充电具有较好的安全性,此时串联充电能够兼顾安全性和充电效率。预定的荷电阈值可以根据试验或经验确定。
其中,上述确定整车充电的目标功率的步骤可以包括:根据动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用充电功率;将各个电芯模块的可用充电功率的最小值作为整车充电的目标功率。
既然是N个电芯模块串联,若各个电芯模块的可用充电功率不同,则可以取各个电芯模块的可用充电功率的最小值作为整车充电的目标功率,这样,保证了具有较小可用充电功率的电芯模块能够安全充电,那么具有较大可用充电功率的电芯模块自然也能够安全充电,通过该方案能够保障动力电池充电的安全性。
对于电芯模块的可用充电功率,可以根据各个电芯的温度以及动力电池包的SOC来确定。在又一实施例中,上述的根据动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用充电功率的步骤可以包括:
在预定的充电对应关系中,将与动力电池包的当前SOC和一电芯模块中当前最高的电芯温度这二者对应的充电功率确定为第一充电功率,预定的充电对应关系为动力电池包的SOC、该电芯模块中的电芯温度以及充电功率这三者之间的对应关系;
在预定的充电对应关系中,将与动力电池包的当前SOC和该电芯模块中当前最低的电芯温度这二者对应的充电功率确定为第二充电功率;
将第一充电功率和第二充电功率中的较小值确定为该电芯模块的可用充电功率。
预定的充电对应关系可以为预定的充电map图。实时检测动力电池包的SOC,对于一个电芯模块,检测其中多个电芯的温度,确定其中电芯温度的最大值和最小值。实时的SOC和电芯温度的最大值对应第一充电功率,实时的SOC和电芯温度的最小值对应第二充电功率。这样,保证了对应于较小充电功率的电芯能够安全充电,那么具有较大充电功率的电芯自然也能够安全充电,通过该方案能够保障动力电池充电的安全性。
在又一实施例中,该方法还可以包括:若动力电池包的SOC大于或等于预定的荷电阈值,则控制对N个电芯模块的每个电芯模块逐一进行充电。
若动力电池包的SOC大于或等于预定的荷电阈值,则可以认为对N个电芯模块串联后充电不能保证其安全性,有可能出现部分电芯模块过充的情况。此时可以逐个地对每个电芯模块进行充电。例如,可以先按照图4b的连接方式,控制对第一电芯模块充满电后,再按照图4c的连接方式,控制对第二电芯模块充满电。具体对单个电芯模块的充电方法可以参照相关技术中对动力电池包的充电方法执行。该实施例中,通过牺牲一些充电效率,来保证充电的安全性。
图5是另一示例性实施例提供的动力电池包的控制方法的流程图。该实施例中,N=2。如图5所示,该方法可以包括以下步骤。
1、BMS诊断整车状态;
2、若整车为行车状态,则BMS向BDU发出指令,将电芯A(第一类电芯)回路(第一电芯模块)和电芯B(第二类电芯)回路(第二电芯模块)串联;
3、根据采集到的电芯模块A(即第一电芯模块)的温度、动力电池包的SOC确定电芯模块A的可用放电功率PA1;
4、根据采集到的电芯模块B(即第二电芯模块)的温度、动力电池包的SOC确定电芯模块B的可用放电功率PB1;
5、确定行车的目标功率为Min(PA1,PB1);
6、控制动力电池包以行车的目标功率为整车供电;
7、若整车为制动回馈状态,则BMS向BDU发出指令,将电芯A回路和电芯B回路串联;
8、根据采集到的电芯模块A的温度、动力电池包的SOC确定电芯模块A的可用回馈功率PA2;
9、根据采集到的电芯模块B的温度、动力电池包的SOC确定电芯模块B的可用回 馈功率PB2;
10、确定制动回馈的目标功率为Min(PA2,PB2);
11、控制动力电池包以制动回馈的目标功率进行回馈充电;
12、若充电枪插接,且动力电池包的SOC值小于预定的荷电阈值a,则BMS向BDU发出指令,将电芯A回路和电芯B回路串联;
13、根据采集到的电芯模块A的温度、动力电池包的SOC确定电芯模块A的可用充电功率PA3;
14、根据采集到的电芯模块B的温度、动力电池包的SOC确定电芯模块B的可用充电功率PB3;
15、按照Min(PA3,PB3)向充电桩请求充电电流;
16、若充电枪插接,且动力电池包的SOC值大于或等于预定的荷电阈值a,则BMS向BDU发出指令,将电芯A回路与BDU总正、总负进行单独连接充电;
17、根据采集到的电芯模块A的温度、SOC确定电芯模块A的可用充电功率PA3,按照PA3向充电桩请求充电电流;
18、若电芯A回路充满,则根据采集到的电芯模块B的温度、SOC确定电芯模块B的可用充电功率PB3,按照PB3向充电桩请求充电电流;
19、若电芯B回路充满,充电完成,BMS向BDU发出指令,将电芯A回路和电芯B回路串联,已准备下次进行放电。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (15)

  1. 一种动力电池包的控制方法,其中,同类电芯电连接形成一个电芯模块,所述方法包括:
    检测整车的状态;
    若整车处于行车状态,则控制将N个电芯模块串联后为整车供电;
    若整车处于制动回馈状态,则控制将N个电芯模块串联后进行回馈;
    若整车处于插枪充电状态,则根据所述动力电池包的SOC控制所述N个电芯模块中的一个或多个进行充电。
  2. 根据权利要求1所述的方法,其中,若整车处于行车状态,则控制将N个电芯模块串联后为整车供电,包括:
    若整车处于行车状态,则确定行车的目标功率;
    控制所述N个电芯模块串联后以所述行车的目标功率为整车供电。
  3. 根据权利要求2所述的方法,其中,确定行车的目标功率,包括:
    根据所述动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用放电功率;
    将各个电芯模块的可用放电功率的最小值作为所述行车的目标功率。
  4. 根据权利要求3所述的方法,其中,根据所述动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用放电功率,包括:
    在预定的放电对应关系中,将与所述动力电池包的当前SOC和一电芯模块中当前最高的电芯温度这二者对应的放电功率确定为第一放电功率,所述预定的放电对应关系为所述动力电池包的SOC、该电芯模块中的电芯温度以及放电功率这三者之间的对应关系;
    在所述预定的放电对应关系中,将与所述动力电池包的当前SOC和该电芯模块中当前最低的电芯温度这二者对应的放电功率确定为第二放电功率;
    将所述第一放电功率和所述第二放电功率中的较小值确定为该电芯模块的可用放电功率。
  5. 根据权利要求1-4中任意一项所述的方法,其中,若整车处于制动回馈状态,则控制将N个电芯模块串联后进行回馈,包括:
    若整车处于制动回馈状态,则确定制动回馈的目标功率;
    控制所述N个电芯模块串联后以所述制动回馈的目标功率进行回馈充电。
  6. 根据权利要求5所述的方法,其中,确定制动回馈的目标功率,包括:
    根据所述动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用回馈 功率;
    将各个电芯模块的可用回馈功率的最小值作为所述制动回馈的目标功率。
  7. 根据权利要求6所述的方法,其中,根据所述动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用回馈功率,包括:
    在预定的回馈对应关系中,将与所述动力电池包的当前SOC和一电芯模块中当前最高的电芯温度这二者对应的回馈功率确定为第一回馈功率,所述预定的回馈对应关系为所述动力电池包的SOC、该电芯模块中的电芯温度以及回馈功率这三者之间的对应关系;
    在所述预定的回馈对应关系中,将与所述动力电池包的当前SOC和该电芯模块中当前最低的电芯温度这二者对应的放电功率确定为第二回馈功率;
    将所述第一回馈功率和所述第二回馈功率中的较小值确定为该电芯模块的可用回馈功率。
  8. 根据权利要求1-7中任意一项所述的方法,其中,若整车处于插枪充电状态,则根据所述动力电池包的SOC控制所述N个电芯模块中的一个或多个进行充电,包括:
    若整车处于插枪充电状态,则确定所述动力电池包的SOC;
    若所述动力电池包的SOC小于预定的荷电阈值,则控制所述N个电芯模块串联;
    确定整车充电的目标功率;
    控制以所述整车充电的目标功率对所述N个电芯模块进行充电。
  9. 根据权利要求8所述的方法,其中,确定整车充电的目标功率,包括:
    根据所述动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用充电功率;
    将各个电芯模块的可用充电功率的最小值作为所述整车充电的目标功率。
  10. 根据权利要求9所述的方法,其中,根据所述动力电池包的SOC和各个电芯模块的温度,分别确定各个电芯模块的可用充电功率,包括:
    在预定的充电对应关系中,将与所述动力电池包的当前SOC和一电芯模块中当前最高的电芯温度这二者对应的充电功率确定为第一充电功率,所述预定的充电对应关系为所述动力电池包的SOC、该电芯模块中的电芯温度以及充电功率这三者之间的对应关系;
    在所述预定的充电对应关系中,将与所述动力电池包的当前SOC和该电芯模块中当前最低的电芯温度这二者对应的充电功率确定为第二充电功率;
    将所述第一充电功率和所述第二充电功率中的较小值确定为该电芯模块的可用充电功率。
  11. 根据权利要求8-10中任意一项所述的方法,其中,所述方法还包括:
    若所述动力电池包的SOC大于或等于所述预定的荷电阈值,则控制对所述N个电芯模块 的每个电芯模块逐一进行充电。
  12. 一种应用权利要求1-11中任意一项所述方法的动力电池包,其中,所述动力电池包包括N类电芯,所述N类电芯按次序交替布置,所述N类电芯中的第一类电芯的能量密度大于第二类电芯的能量密度,所述第二类电芯的热稳定性高于所述第一类电芯的热稳定性,其中,N为整数,N≥2。
  13. 根据权利要求12所述的动力电池包,其中,所述第一类电芯为三元电芯,所述第二类电芯为磷酸铁锂电芯,或者,所述第一类电芯为三元811电芯,所述第二类电芯为三元523电芯。
  14. 根据权利要求12或13所述的动力电池包,其中,所述N类电芯中的电芯单元按次序交替布置,其中,同类电芯中的一个电芯形成一个电芯单元,或者,同类电芯中布置在一起的多个电芯形成一个电芯单元。
  15. 根据权利要求12-14中任意一项所述的动力电池包,其中,同类电芯电连接形成一个电芯模块,所述动力电池包还包括继电器,所述继电器用于将各个电芯模块的正极和负极、电池系统配电盒的正极和负极中的任意二者之间导通和断开。
PCT/CN2022/081528 2021-03-17 2022-03-17 动力电池包及其控制方法 WO2022194253A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022001561.6T DE112022001561T5 (de) 2021-03-17 2022-03-17 Leistungsbatteriesatz und dessen Steuerungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110287745.0 2021-03-17
CN202110287745.0A CN113060019B (zh) 2021-03-17 2021-03-17 动力电池包及其控制方法

Publications (1)

Publication Number Publication Date
WO2022194253A1 true WO2022194253A1 (zh) 2022-09-22

Family

ID=76561289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081528 WO2022194253A1 (zh) 2021-03-17 2022-03-17 动力电池包及其控制方法

Country Status (3)

Country Link
CN (1) CN113060019B (zh)
DE (1) DE112022001561T5 (zh)
WO (1) WO2022194253A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113060019B (zh) * 2021-03-17 2023-01-31 蜂巢能源科技股份有限公司 动力电池包及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311562A (zh) * 2012-03-12 2013-09-18 联想(北京)有限公司 一种充电电池及其充电控制方法和放电控制方法
CN105703447A (zh) * 2016-04-15 2016-06-22 周衍 充电电池组的直接平衡充电装置及方法
CN208674305U (zh) * 2018-09-04 2019-03-29 东莞塔菲尔新能源科技有限公司 一种电池模组
CN111257770A (zh) * 2020-02-18 2020-06-09 宁波吉利汽车研究开发有限公司 一种电池包功率估算方法
US20200358059A1 (en) * 2019-05-07 2020-11-12 Sk Innovation Co., Ltd. Battery Pack System Including Multi-Battery
CN113060019A (zh) * 2021-03-17 2021-07-02 蜂巢能源科技有限公司 动力电池包及其控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600799B (zh) * 2015-01-09 2017-12-19 深圳市理邦精密仪器股份有限公司 一种串联电池组均衡电路及均衡方法
KR101648893B1 (ko) * 2015-02-03 2016-08-17 삼성에스디아이 주식회사 배터리 팩 및 이의 제어방법
KR20170047203A (ko) * 2017-04-21 2017-05-04 최범진 배터리 안전 교환을 위한 배터리 관리 장치 및 배터리의 안전 교환 방법
CN109659465A (zh) * 2019-01-30 2019-04-19 哈尔滨格瑞赛科新能源有限公司 一种电动汽车动力电池系统用的电池串模块
CN110261789B (zh) * 2019-05-31 2021-06-29 蜂巢能源科技有限公司 动力电池包的脉冲放电功率评估方法及电池管理系统
CN110380144B (zh) * 2019-06-12 2020-06-23 长沙理工大学 一种退役磷酸铁锂和三元锂电池混合协调控制方法及系统
CN110949174B (zh) * 2019-11-05 2023-04-07 北汽重型汽车有限公司 纯电动汽车多工况下电池系统功率状态在线估算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311562A (zh) * 2012-03-12 2013-09-18 联想(北京)有限公司 一种充电电池及其充电控制方法和放电控制方法
CN105703447A (zh) * 2016-04-15 2016-06-22 周衍 充电电池组的直接平衡充电装置及方法
CN208674305U (zh) * 2018-09-04 2019-03-29 东莞塔菲尔新能源科技有限公司 一种电池模组
US20200358059A1 (en) * 2019-05-07 2020-11-12 Sk Innovation Co., Ltd. Battery Pack System Including Multi-Battery
CN111257770A (zh) * 2020-02-18 2020-06-09 宁波吉利汽车研究开发有限公司 一种电池包功率估算方法
CN113060019A (zh) * 2021-03-17 2021-07-02 蜂巢能源科技有限公司 动力电池包及其控制方法

Also Published As

Publication number Publication date
DE112022001561T5 (de) 2024-01-18
CN113060019B (zh) 2023-01-31
CN113060019A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
TWI472446B (zh) 混合動力電源系統
CN104538701A (zh) 一种内置于电机驱动系统的电池加热方法及结构
CN204289653U (zh) 一种内置于电机驱动系统的电池加热结构
JP7418556B2 (ja) 充電方法、駆動用バッテリーのバッテリー管理システム及び充電ポスト
WO2022194253A1 (zh) 动力电池包及其控制方法
CN106340917A (zh) 混合动力系统用锂离子动力蓄电池电源充放电控制系统
US20230261487A1 (en) Charging method, charging apparatus, and charging system for traction battery
WO2020103273A1 (zh) 带有快速充电功能的电池包及快速充电方法
CN102673422A (zh) 一种纯电动汽车能量系统构型及其车辆储能控制系统
US20220239140A1 (en) Charging method and power conversion apparatus
CN214755570U (zh) 一种锂电池并联充放电系统
CN211280660U (zh) 一种新能源汽车前后桥发电机
CN112952968A (zh) 储电装置及包含该储电装置的电动车电源系统
WO2023039908A1 (zh) 一种动力电池的充电方法、充电装置和充电系统
CN214607166U (zh) 一种具有均衡电路结构的共享式储能系统
CN107611527A (zh) 一种燃料电池与锂离子电池复合电源装置
CN203536996U (zh) 一种给串联锂电池组中的单体电池充电装置
CN220562583U (zh) 电动车的多组电池并联控制系统
CN210927193U (zh) 一种充供电一体装置
CN213305024U (zh) 一种电池包储能系统
CN218648599U (zh) 新能源车低电压平台直流快充电路
CN206894271U (zh) 储能电池电流精确控制电路
JP2022087447A (ja) 電池パック
KR20220112883A (ko) 스마트 충전기
CN118100334A (zh) 一种用于锂硫电池的充电均衡控制电路及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770605

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022001561

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770605

Country of ref document: EP

Kind code of ref document: A1