WO2024066085A1 - 光模块及与光模块连接的可插拔组件 - Google Patents

光模块及与光模块连接的可插拔组件 Download PDF

Info

Publication number
WO2024066085A1
WO2024066085A1 PCT/CN2022/141156 CN2022141156W WO2024066085A1 WO 2024066085 A1 WO2024066085 A1 WO 2024066085A1 CN 2022141156 W CN2022141156 W CN 2022141156W WO 2024066085 A1 WO2024066085 A1 WO 2024066085A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
interface
fiber connector
functional chip
Prior art date
Application number
PCT/CN2022/141156
Other languages
English (en)
French (fr)
Inventor
濮宏图
朱彦军
戴华清
潘红超
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211210494.7A external-priority patent/CN117849961A/zh
Priority claimed from CN202222623981.8U external-priority patent/CN218350563U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2024066085A1 publication Critical patent/WO2024066085A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the technical field of optical fiber communication, and in particular to an optical module and a pluggable component connected to the optical module.
  • optical communication technology has many advantages, such as high speed, high bandwidth, and low installation cost.
  • optical modules occupy an important position.
  • the optical performance of the optical module affects the working performance of the optical module, so the optical performance of the optical module needs to be improved.
  • the optical module provided by the present invention includes: an upper shell; a lower shell, which forms an enclosure cavity with the upper shell; the enclosure cavity has a first electrical interface at one end, and the other end is respectively provided with a first optical interface, a second optical interface, and a second electrical interface; a pluggable component has a first optical fiber connector, a second optical fiber connector, and a third electrical interface at one end, and the other end is respectively provided with a third optical interface and a fourth optical interface, and also includes a functional chip; a first optical fiber connector, one end of which is connected to the first optical interface, and the other end is connected to the functional chip through an optical fiber to allow an optical signal to pass through the functional chip; a second optical fiber connector, one end of which is connected to the second optical interface, and the other end is connected to the functional chip through an optical fiber to allow an optical signal to pass through the functional chip; a third electrical interface, which is connected to the second electrical interface to supply power to the functional chip; a third optical interface, which is connected to
  • the present disclosure provides a pluggable component connected to an optical module, comprising: a pluggable component, one end of which is respectively provided with a first optical fiber connector, a second optical fiber connector and a third electrical interface, and the other end is respectively provided with a third optical interface and a fourth optical interface, and also includes a functional chip; a first optical fiber connector, one end of which is connected to the optical module, and the other end is connected to the functional chip through an optical fiber to allow the optical signal to pass through the functional chip; a second optical fiber connector, one end of which is connected to the optical module, and the other end is connected to the functional chip through an optical fiber to allow the optical signal to pass through the functional chip; a third electrical interface, which is connected to the optical module to supply power to the functional chip; a third optical interface, which is connected to an external optical fiber connector; and a fourth optical interface, which is connected to an external optical fiber connector.
  • FIG1 is a connection diagram of an optical communication system according to some embodiments.
  • FIG2 is a block diagram of an optical network terminal according to some embodiments.
  • FIG3 is a structural diagram of an optical module according to some embodiments.
  • FIG4 is an exploded view of an optical module according to some embodiments.
  • FIG5 is another exploded view of an optical module according to some embodiments.
  • FIG6 is a structural diagram of a lower housing, a pluggable component, and an external optical fiber connector in an optical module according to some embodiments;
  • FIG7 is a structural diagram of a pluggable component in an optical module according to some embodiments.
  • FIG8 is a cross-sectional view of a pluggable component in an optical module according to some embodiments.
  • FIG9 is a partial structural diagram of a pluggable component in an optical module according to some embodiments.
  • FIG10 is a structural diagram of a lower housing of an optical module according to some embodiments.
  • FIG11 is a partial structural diagram of a lower housing of an optical module according to some embodiments.
  • FIG12 is a cross-sectional view of a lower housing of an optical module according to some embodiments.
  • FIG13 is another structural diagram of a lower housing of an optical module according to some embodiments.
  • FIG14 is another partial structural diagram of a lower housing of an optical module according to some embodiments.
  • FIG15 is another cross-sectional view of a lower housing of an optical module according to some embodiments.
  • FIG16 is an exploded view of a lower housing of an optical module according to some embodiments.
  • FIG17 is a partial exploded view of a lower housing of an optical module according to some embodiments.
  • FIG. 18 is another partial structural diagram of a lower housing of an optical module according to some embodiments.
  • optical communication technology light is used to carry the information to be transmitted, and the optical signal carrying the information is transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since optical signals have passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost and low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. Therefore, in order to establish an information connection between information transmission equipment such as optical fibers or optical waveguides and information processing equipment such as computers, it is necessary to realize the mutual conversion between electrical signals and optical signals.
  • the optical module realizes the above-mentioned mutual conversion function between optical signals and electrical signals in the field of optical fiber communication technology.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes electrical connection with the optical network terminal (for example, optical modem) through the electrical port.
  • the electrical connection is mainly configured to realize power supply, I2C signal transmission, data signal transmission and grounding, etc.
  • the optical network terminal transmits the electrical signal to information processing equipment such as computers through network cables or wireless fidelity technology (Wi-Fi).
  • FIG1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system includes a remote server 1000 , a local information processing device 2000 , an optical network terminal 100 , an optical module 200 , an optical fiber 101 and a network cable 103 .
  • the optical fiber 101 is connected to the remote server 1000, and the other end is connected to the optical network terminal 100 through the optical module 200.
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if a repeater is used, infinite distance transmission can be achieved in theory. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 can be any one or more of the following devices: a router, a switch, a computer, a mobile phone, a tablet computer, a television, etc.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100.
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100.
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101;
  • the electrical port is configured to be connected to the optical network terminal 100, so that the optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100.
  • the optical module 200 realizes the mutual conversion between optical signals and electrical signals, so that an information connection is established between the optical fiber 101 and the optical network terminal 100. For example, the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100, and the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and then input into the optical fiber 101. Since the optical module 200 is a tool for realizing the mutual conversion between optical signals and electrical signals and does not have the function of processing data, the information does not change during the above-mentioned photoelectric conversion process.
  • the optical network terminal 100 includes a housing that is roughly rectangular, and an optical module interface 102 and a network cable interface 104 that are arranged on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 establishes a bidirectional electrical signal connection with the optical module 200;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 establishes a bidirectional electrical signal connection with the network cable 103.
  • the optical module 200 and the network cable 103 are connected through the optical network terminal 100.
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the electrical signal from the network cable 103 to the optical module 200. Therefore, the optical network terminal 100, as the host computer of the optical module 200, can monitor the operation of the optical module 200.
  • the host computer of the optical module 200 can also include an optical line terminal (OLT) and the like.
  • the remote server 1000 establishes a bidirectional signal transmission channel with the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 also includes a circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the circuit board 105, a heat sink 107 disposed on the cage 106, and an electrical connector disposed inside the cage 106.
  • the electrical connector is configured to access the electrical port of the optical module 200; the heat sink 107 has a protrusion such as a fin to increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100, and the cage 106 fixes the optical module 200.
  • the heat generated by the optical module 200 is transferred to the cage 106 and then diffused through the heat sink 107.
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106, so that the optical module 200 and the optical network terminal 100 establish a bidirectional electrical signal connection.
  • the optical port of the optical module 200 is connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 establish a bidirectional optical signal connection.
  • Fig. 3 is a structural diagram of an optical module according to some embodiments
  • Fig. 4 is an exploded diagram of an optical module according to some embodiments.
  • the optical module 200 includes a shell, a circuit board and an optical transceiver assembly disposed in the shell.
  • the shell comprises an upper shell 201 and a lower shell 202 .
  • the upper shell 201 covers the lower shell 202 to form the above shell with two openings.
  • the outer contour of the shell is generally a square body.
  • the lower shell 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and arranged perpendicular to the bottom plate 2021; the upper shell 201 includes a cover plate 2011, and the cover plate 2011 covers the two lower side plates 2022 of the lower shell 202 to form the above-mentioned shell.
  • the lower shell 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and vertically arranged with the bottom plate 2021;
  • the upper shell 201 includes a cover plate 2011 and two upper side plates located on both sides of the cover plate 2011 and vertically arranged with the cover plate 2011, and the two upper side plates are combined with the two lower side plates 2022 to realize that the upper shell 201 covers the lower shell 202.
  • the direction of the connection line of the two openings 204 and 205 may be consistent with the length direction of the optical module 200, or may be inconsistent with the length direction of the optical module 200.
  • the opening 204 is located at the end of the optical module 200 (the right end of FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end of FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200, and the opening 205 is located at the side of the optical module 200.
  • the opening 204 is an electrical port, and the gold finger of the circuit board extends from the opening 204 and is inserted into the upper computer (for example, the optical network terminal 100); the opening 205 is an optical port, which is configured to access the external optical fiber 101 so that the external optical fiber 101 is connected to the optical transceiver assembly inside the optical module 200.
  • the upper housing 201 and the lower housing 202 are combined to facilitate installation of components such as circuit boards and optical transceiver components into the housing, and these components are packaged and protected by the upper housing 201 and the lower housing 202.
  • components such as circuit boards and optical transceiver components
  • it is convenient to deploy positioning components, heat dissipation components, and electromagnetic shielding components of these components, which is conducive to automated production.
  • the upper shell 201 and the lower shell 202 are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking component located outside its housing, and the unlocking component is configured to achieve a fixed connection between the optical module 200 and the host computer, or to release the fixed connection between the optical module 200 and the host computer.
  • the unlocking component is located on the outer wall of the two lower side plates 2022 of the lower housing 202, and has a snap-fit component that matches the cage of the host computer (for example, the cage 106 of the optical network terminal 100).
  • the snap-fit component of the unlocking component fixes the optical module 200 in the cage of the host computer;
  • the snap-fit component of the unlocking component moves accordingly, thereby changing the connection relationship between the snap-fit component and the host computer, so as to release the snap-fit relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out of the cage of the host computer.
  • the circuit board includes circuit traces, electronic components and chips.
  • the electronic components and chips are connected together according to the circuit design through the circuit traces to realize the functions of power supply, electrical signal transmission and grounding.
  • Electronic components include capacitors, resistors, transistors, and metal-oxide-semiconductor field-effect transistors (MOSFET).
  • Chips include microcontroller units (MCU), laser driver chips, limiting amplifiers (limiting amplifiers), clock and data recovery (CDR) chips, power management chips, and digital signal processing (DSP) chips.
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the load-bearing function. For example, the rigid circuit board can stably carry the above-mentioned electronic components and chips; when the optical transceiver component is located on the circuit board, the rigid circuit board can also provide stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage.
  • the circuit board also includes a gold finger formed on the end surface thereof, and the gold finger is composed of a plurality of independent pins.
  • the circuit board is inserted into the cage 106, and the gold finger is connected to the electrical connector in the cage 106.
  • the gold finger can be set only on the surface of one side of the circuit board (such as the upper surface shown in FIG. 4), or on the upper and lower surfaces of the circuit board to adapt to occasions where a large number of pins are required.
  • the gold finger is configured to establish an electrical connection with the host computer to achieve power supply, grounding, I2C signal transmission, data signal transmission, etc.
  • flexible circuit boards are also used in some optical modules.
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards to supplement rigid circuit boards.
  • a flexible circuit board can be used to connect a rigid circuit board to an optical transceiver component.
  • the optical transceiver assembly includes an optical transmitter and an optical receiver, wherein the optical transmitter is configured to transmit an optical signal and the optical receiver is configured to receive an optical signal.
  • the optical transmitter and the optical receiver are combined to form an integrated optical transceiver assembly.
  • the optical performance is relatively average.
  • silicon photonics coherent optical modules short-distance coherent digital switching products have been realized, while longer-distance flexible dense wavelength division multiplexing (DWDM) has always been an important demand; the output optical power of silicon photonics coherent optical modules is insufficient, which limits their application.
  • EDFA Erbium-doped Optical Fiber Amplifier
  • DWDM Dense Wavelength Division Multiplexing
  • the optical wavelength of each channel signal should be controlled to avoid the conduction of adjacent channels.
  • One of the methods is to use optical filters. How to flexibly select these functional devices according to needs and flexibly set them in optical modules is a technical problem that needs to be solved.
  • one end of the enclosure formed by the upper shell 201 and the lower shell 202 in the optical module is provided with a first optical interface 210, a second optical interface 220 and a second electrical interface 230; wherein, the second electrical interface 230 is different from the electrical interface originally possessed by the standard optical module (i.e., the above-mentioned opening 204 is an electrical interface), and for the sake of convenience of distinction, the electrical interface originally possessed by the standard optical module is referred to as the first electrical interface in the embodiment of the present disclosure.
  • one end of the enclosure formed by the upper shell 201 and the lower shell 202 is provided with a first electrical interface, and the other end is provided with a first optical interface 210, a second optical interface 220 and a second electrical interface 230 respectively; in a certain embodiment of the present disclosure, as shown in FIG4 , the second electrical interface 230 is located between the first optical interface 210 and the second optical interface 220, and it can be more clearly seen in FIG11 that the second electrical interface 230 is located between the first optical interface 210 and the second optical interface 220.
  • FIG5 is another exploded view of an optical module according to some embodiments
  • FIG6 is a structural diagram of a lower housing, a pluggable component, and an external optical fiber connector in an optical module according to some embodiments.
  • the pluggable component 300 is pluggably connected to the optical module, and in a certain embodiment of the present disclosure, is connected to the first optical interface 210, the second optical interface 220, and the second electrical interface 230 of the optical module, thereby realizing a pluggable and flexible connection between the pluggable component 300 and the standard optical module (the standard optical module is the overall structure formed by the upper housing 201, the lower housing 202, and the internal devices).
  • the pluggable component 300 includes a functional chip 350, and the functional chip 350 may include an EDFA (erbium-doped optical amplifier), a filter, an optical power detector, etc.
  • EDFA erbium-doped optical amplifier
  • the pluggable component 300 Through the pluggable connection of the pluggable component 300, different types of functional chips can be flexibly carried according to demand.
  • the pluggable component 300 can carry the corresponding functional chip 350 as required.
  • the pluggable component 300 can be mounted on the optical module by carrying the functional chip 350, thereby providing optical performance of the optical module.
  • both ends of the pluggable component 300 are independent and can be flexibly connected between the optical module and the external optical fiber as required.
  • FIG7 is a structural diagram of a pluggable component in an optical module according to some embodiments
  • FIG8 is a cross-sectional diagram of a pluggable component in an optical module according to some embodiments
  • FIG9 is a partial structural diagram of a pluggable component in an optical module according to some embodiments.
  • a pluggable component 300 has a first optical fiber connector 310, a second optical fiber connector 320, and a third electrical interface 330 formed at one end, and a third optical interface 361 and a fourth optical interface 362 formed at the other end; the pluggable component 300 also includes a functional chip 350.
  • the third electrical interface 330 is provided between the first optical fiber connector 310 and the second optical fiber connector 320.
  • the first optical fiber connector 310 of the pluggable component 300 is pluggable connected to the first optical interface 210 of the optical module
  • the second optical fiber connector 320 of the pluggable component 300 is pluggable connected to the second optical interface 220 of the optical module
  • the third electrical interface 330 of the pluggable component 300 is pluggable connected to the second electrical interface 230 of the optical module, thereby realizing the connection between one end of the pluggable component 300 and the optical module, including optical connection and electrical connection.
  • the third optical interface 361 of the pluggable component 300 is pluggably connected to the first external optical fiber connector 410, and the fourth optical interface 362 of the pluggable component 300 is pluggably connected to the second external optical fiber connector 420, thereby realizing the connection between the other end of the pluggable component 300 and the external optical fiber.
  • the third electrical interface 330 is plug-in connected to the second electrical interface 230 to provide power to the functional chip 350 .
  • the pluggable component 300 in the embodiment of the present disclosure can be independently arranged between the optical module and the external optical fiber.
  • the first optical fiber connector 310 matches the structure of the first optical interface 210 to achieve a mating connection; the second optical fiber connector 320 matches the structure of the second optical interface 220 to achieve a mating connection; the third optical interface 361 matches the structure of the first external optical fiber connector 410 to achieve a mating connection; the fourth optical interface 362 matches the structure of the second external optical fiber connector 420 to achieve a mating connection.
  • the structures of the first optical interface 210, the second optical interface 220, the third optical interface 361, and the fourth optical interface 362 can be set to be the same.
  • the first optical fiber connector 310 is connected to the first optical interface 210, and the third optical interface 361 is connected to the first external optical fiber connector 410 to achieve optical connection, thereby inputting or outputting optical signals to the functional chip 350;
  • the second optical fiber connector 320 is connected to the second optical interface 220, and the fourth optical interface 362 is connected to the second external optical fiber connector 420 to achieve optical connection, thereby outputting or inputting optical signals to the functional chip 350;
  • the third electrical interface 330 is connected to the second electrical interface 230 to achieve power supply connection, thereby supplying power to the functional chip 350.
  • the pluggable component 300 in the embodiment of the present disclosure is connected to the first optical interface 210, the second optical interface 220 and the second electrical interface 230 through the first optical fiber connector 310, the second optical fiber connector 320 and the third electrical interface 330 set at one end, respectively, so as to realize the pluggable connection between the end and the optical module, that is, to realize the relative independence of the end; through the third optical interface 361 and the fourth optical interface 362 set at the other end, respectively connected to the first external optical fiber connector 410 and the second external optical fiber connector 420, so as to realize the pluggable connection between the end and the external optical fiber connector, that is, to realize the relative independence of the end.
  • the pluggable connection of the pluggable component 300 is flexible, and you can choose whether to connect according to your needs, and you can also choose the type of functional chip 350 according to your needs to provide the optical performance of the optical module accordingly; if you choose not to connect the pluggable component 300, the first external optical fiber connector 410 can be directly connected to the first optical interface 210, and the second external optical fiber connector 420 can be directly connected to the second optical interface 220. Therefore, the pluggable component 300 in the embodiment of the present disclosure is flexible and applicable.
  • one end of the first optical fiber connector 310 is connected to the first optical interface 210, and the other end is connected to the function chip 350 through the first optical fiber 371, so that the optical signal passes through the function chip 350.
  • the optical signal takes the emission optical signal generated by the optical emitting device as an example, that is, the emission optical signal is transmitted to the function chip 350, and the function chip 350 processes the received emission optical signal to a certain extent, and then connects to the first external optical fiber connector 410 through the third optical interface 361, so that the processed emission optical signal is emitted through the external optical fiber connected to the first external optical fiber connector 410.
  • the emission optical signal passes through the first optical interface 210, the first optical fiber connector 310, the first optical fiber 371, the function chip 350, the third optical interface 361, and the first external optical fiber connector 410 in sequence, and then is emitted through the external optical fiber connected to the first external optical fiber connector 410 to achieve optical connection.
  • the second optical fiber connector 320 is connected to the second optical interface 220, and the other end is connected to the functional chip 350 through the second optical fiber 372, so that the optical signal passes through the functional chip 350.
  • the fourth optical interface 362 is connected to the second external optical fiber connector 420, so that the optical signal is transmitted to the functional chip 350.
  • the optical signal takes the external optical signal as an example, that is, the external optical signal is transmitted to the second external optical fiber connector 420 through the external optical fiber.
  • the second external optical fiber connector 420 is connected to the fourth optical interface 362, so the external optical signal is transmitted to the pluggable component 300, and then transmitted to the functional chip 350 of the pluggable component 300.
  • the functional chip 350 performs certain processing on the received external optical signal, and the processed optical signal is transmitted to the interior of the encapsulated cavity formed by the upper shell 201 and the lower shell 202 in sequence through the second optical fiber 372, the second optical fiber connector 320, and the second optical interface 220.
  • the external optical signal is transmitted in sequence through the external optical fiber, the second external optical fiber connector 420, the fourth optical interface 362, the functional chip 350, the second optical fiber 372, the second optical fiber connector 320, and the second optical interface 220 to the interior of the encapsulated cavity formed by the upper shell 201 and the lower shell 202 to achieve optical connection.
  • the third electrical interface 330 is connected to the second electrical interface 230.
  • the second electrical interface 230 can be directly electrically connected to the power supply gold finger at one end of the circuit board through a wire, or it can be electrically connected to the power supply trace on the circuit board through a wire, and then the power supply trace is electrically connected to the power supply gold finger at one end of the circuit board.
  • the power supply gold finger is electrically connected to the host computer to obtain power supply, and then power is supplied to the functional chip 350 to achieve power supply connection.
  • the first optical fiber connector 310 is connected to the function chip 350 through the first optical fiber 371 to achieve optical connection; the second optical fiber connector 320 is connected to the function chip 350 through the second optical fiber 372 to achieve optical connection; the third electrical interface 330 is connected to the function chip 350 through the second wire group 380 to achieve power supply connection.
  • the second wire group 380 includes wires, which are stacked and arranged in a row in the vertical direction.
  • the pluggable component 300 also includes a connecting component 340, one end of which is respectively connected to the first optical fiber 371, the second optical fiber 372 and the second wire group 380, and the other end is respectively connected to the functional chip 350;
  • the connecting component 340 is set to be a soft material, such as a silicone material, and has a certain flexibility, which can achieve soft contact with the first optical fiber 371, the second optical fiber 372 and the second wire group 380, thereby protecting the first optical fiber 371, the second optical fiber 372 and the second wire group 380.
  • the interior of the connecting component 340 is respectively penetrated by a first through hole 341, a second through hole 342 and a third through hole 343.
  • the first through hole 341 is configured to avoid the first optical fiber 371 so that the first optical fiber 371 is connected to the functional chip 350 to achieve optical connection
  • the second through hole 342 is configured to avoid the second optical fiber 372 so that the second optical fiber 372 is connected to the functional chip 350 to achieve optical connection
  • the third through hole 343 is configured to avoid the second wire group 380 so that the second wire group 380 is connected to the functional chip 350 to achieve power supply connection.
  • FIG10 is a structural diagram of a lower housing of an optical module according to some embodiments.
  • the end of the lower housing 202 is also provided with a first optical fiber adapter 240, a second optical fiber adapter 250 and a first wire group 260.
  • the first wire group 260 includes wires, which are stacked and arranged in a row in the vertical direction.
  • the first optical fiber adapter 240 extends into the first optical interface 210, that is, one end of the first optical interface 210 is connected to the first optical fiber adapter 240, and the other end is connected to the first optical fiber connector 310, so the first optical fiber adapter 240 and the first optical fiber connector 310 are connected at the first optical interface 210;
  • the second optical fiber adapter 250 extends into the second optical interface 220, that is, one end of the second optical interface 220 is connected to the second optical fiber adapter 250, and the other end is connected to the second optical fiber connector 320, so the second optical fiber adapter 250 and the second optical fiber connector 320 are connected at the second optical interface 220;
  • the first wire group 260 extends into the second electrical interface 230, that is, one end of the second electrical interface 230 is connected to the first wire group 260, and the other end is connected to the third electrical interface 330.
  • the first wire group 260 is connected to the second electrical interface 230, and the second wire group 380 is connected to the third electrical interface 330.
  • the connection between the second electrical interface 230 and the third electrical interface 330 is used to realize the connection between the first wire group 260 and the second wire group 380, and the first wire group 260 obtains power, thereby realizing power supply to the functional chip 350.
  • the first wire group 260 obtains power supply in the following manner: the first wire group 260 obtains power supply from the host computer through the power supply gold finger.
  • FIG. 11 is a partial structural diagram of a lower housing of an optical module according to some embodiments
  • FIG. 12 is a cross-sectional diagram of a lower housing of an optical module according to some embodiments
  • FIG. 13 is another structural diagram of a lower housing of an optical module according to some embodiments
  • FIG. 14 is another partial structural diagram of a lower housing of an optical module according to some embodiments
  • FIG. 15 is another cross-sectional diagram of a lower housing of an optical module according to some embodiments. As shown in FIG. 11-FIG.
  • the second electrical interface 230 is provided between the first optical interface 210 and the second optical interface 220, and the first wire group 260 is provided between the first optical fiber adapter 240 and the second optical fiber adapter 250; the first optical fiber adapter 240 extends into one end of the first optical interface 210, the second optical fiber adapter 250 extends into one end of the second optical interface 220, and the first wire group 260 extends into one end of the second electrical interface 230.
  • FIG. 15 also shows that the first wire group 260 extends into one end of the second electrical interface 230.
  • FIG. 16 is an exploded view of the lower shell of an optical module according to some embodiments
  • FIG. 17 is a partial exploded view of the lower shell of an optical module according to some embodiments
  • FIG. 18 is another partial structural view of the lower shell of an optical module according to some embodiments. As shown in FIGS.
  • the first optical fiber adapter 240 includes a first limiting protrusion 241, a first connector 242, and a second connector 243;
  • the second optical fiber adapter 250 includes a second limiting protrusion 251, a third connector 252, and a fourth connector 253; in order to fix the first optical fiber adapter 240 to the surface of the lower shell 202, the surface of the lower shell 202 is provided with a first positioning groove 271 and a first card groove 272, the first limiting protrusion 241 is disposed in the first positioning groove 271, and the first connector 242 is disposed in the first card groove 272.
  • the body 242 is arranged in the first optical interface 210, and the second connecting body 243 is arranged in the first card groove 272, so that the first optical fiber adapter 240 is fixed to the surface of the lower shell 202; in order to fix the second optical fiber adapter 250 to the surface of the lower shell 202, the surface of the lower shell 202 is provided with a second positioning groove 281 and a second card groove 282, the second limiting protrusion 251 is arranged in the second positioning groove 281, the third connecting body 252 is arranged in the second optical interface 220, and the fourth connecting body 253 is arranged in the second card groove 282, so that the second optical fiber adapter 250 is fixed to the surface of the lower shell 202.
  • a base 291 is provided between the first optical interface 210 and the second optical interface 220.
  • the interior of the base 291 is penetrated to form the second electrical interface 230.
  • An embedding groove 294 is provided at one end of the base 291.
  • the embedding groove 294 is configured to embed the first wire group 260.
  • a limiting member 292 is provided across the surface of the embedding groove 294.
  • the limiting member 292 is configured to fix the first wire group 260 so that the first wire group 260 can pass through more stably.
  • An avoidance hole 293 is provided through the middle of the limiting member 292.
  • the avoidance hole 293 is configured to avoid the first wire group 260 so that the first wire group 260 extends from the avoidance hole 293 to the second electrical interface 230.
  • the limiting member 292 and the avoidance hole 293 are combined together to form a structure similar to a door, which can not only limit the first wire group 260, but also allow the first wire group 260 to pass through.
  • the functional chip 350 may be an EDFA, which amplifies the optical signal generated by the optical emitting device to increase the output optical power; it may also amplify the received external optical signal to increase the receiving sensitivity.
  • Erbium-doped optical amplifier is a special optical fiber with the rare earth element erbium (Er) injected into the core, so that under the action of the pump laser, the optical signal of a certain wavelength can be directly amplified.
  • EDFA makes long-distance, large-capacity, and high-speed optical fiber communication possible, and is an important device in the DWDM system.
  • the main components of EDFA include erbium-doped fiber (EDF), pump laser, optical coupler, optical isolator, optical filter, etc.
  • Erbium-doped fiber is an erbium-doped quartz fiber with a length of 10m-100m;
  • the pump laser is a semiconductor laser with an operating wavelength of 0.98 ⁇ m, and the pump laser emits pump light;
  • the optical coupler is a passive optical device that can mix the input optical signal and the light wave output by the pump laser, generally using a wavelength division multiplexer (WDM);
  • the optical isolator can prevent the reflected light from affecting the working stability of the optical amplifier, and ensure that the optical signal can only be transmitted in the forward direction and is not affected by the backscattered light.
  • the optical filter can filter out the noise of the optical amplifier, reduce the impact of noise on the system, and improve the signal-to-noise ratio of the system.
  • the main principle of EDFA amplifying optical signals is that the erbium-doped optical fiber forms a population inversion distribution under the stimulation of pump light, and then generates stimulated radiation under the action of the transmitted optical signal. The energy released by the stimulated radiation is loaded onto the photons of the transmitted optical signal, thereby achieving amplification of the transmitted optical signal.
  • the functional chip 350 may include an EDFA and an optical power detector, and the emission light signal generated by the optical emitting device is amplified and output by the EDFA to increase the output optical power; in order to monitor the output light power, a part of the emission light signal amplified by the EDFA can be separated as a monitoring emission light signal, and the monitoring emission light signal is configured to monitor the output optical power, and then converted into a monitoring photocurrent signal through the optical power detector, and the monitoring photocurrent signal is output from the functional chip 350 to the circuit board.
  • the functional chip 350 may include an EDFA and a filter, and the EDFA amplifies and outputs the emission optical signal generated by the optical emitting device to increase the output optical power; the filter screens the optical signal of a specific wavelength and only allows the optical signal of a specific wavelength to pass, thereby preventing other wavelengths from entering the channel, and further preventing other channels from crosstalking the optical signal of the channel.
  • the functional chip 350 can enclose an EDFA and a variable optical attenuator, and the EDFA can amplify and output the optical signal generated by the optical emitting device to increase the output optical power; the variable optical attenuator can attenuate the optical power of the optical signal.
  • a variable optical attenuator can be set before the EDFA, and the optical power change input to the EDFA can be detected by the variable optical attenuator, and the optical power input to the EDFA can be changed accordingly through the preset adjustment parameters, while the EDFA keeps the output optical power constant.
  • the functional chip 350 may also be provided with other functional devices to improve the optical performance of the optical module.
  • the functional chip 350 may include an EDFA and an optical power detector, and the optical emission signal generated by the optical emission device is amplified and outputted through the EDFA to increase the output optical power; in order to monitor the output optical power, a portion of the optical emission signal amplified by the EDFA may be separated as a monitoring optical emission signal, and the monitoring optical emission signal is configured to monitor the output optical power, and then converted into a monitoring photocurrent signal through the optical power detector, and the monitoring photocurrent signal is outputted from the functional chip 350 to the circuit board.
  • the EDFA includes a pump laser, and under the action of the pump laser, the EDFA can directly amplify an optical signal of a certain wavelength; to ensure the normal operation of the pump laser, a bias current needs to be provided to the pump laser.
  • the first wire group 260 includes a stacked wire 261, a wire 262, and a wire 263.
  • the second wire group 380 also includes stacked wires. The corresponding wires can be electrically connected by connecting the second electrical interface 230 and the third electrical interface 330. The wires formed after the electrical connection are the first wire, the second wire, and the third wire.
  • the first wire is a power transmission line, one end of which is electrically connected to the positive electrode of the pump laser in the EDFA, so as to power the EDFA through the first wire.
  • the third wire is an optical power detection signal transmission line, one end of which is electrically connected to the circuit board, and the other end is electrically connected to the negative electrode of the optical power detector.
  • the monitoring photocurrent signal generated by the optical power detector is transmitted to the circuit board through the third wire.
  • the circuit board outputs the monitoring photocurrent signal to the host computer through the gold finger, and the host computer monitors the output optical power according to the monitoring photocurrent signal.
  • the second wire is a grounding wire, and the second wire is electrically connected to the GND on the circuit board to achieve grounding of the EDFA and the optical power detector.
  • the pump laser and the optical power detector share a ground wire, the cathode of the pump laser is electrically connected to the ground wire, and the anode of the optical power detector is electrically connected to the ground wire.
  • first wire group 260 and the second wire group 380 can define more wires to achieve input and output of certain parameters.
  • the pluggable component 300 provided by the present disclosure is mounted on the optical module by carrying the function chip 350, thereby providing the optical performance of the optical module.
  • the pluggable component 300 is provided with a first optical fiber connector 310, a second optical fiber connector 320 and a third electrical interface 330 at one end, and a third optical interface 361 and a fourth optical interface 362 at the other end.
  • the first optical fiber connector 310 is connected to the first optical interface 210, and the third optical interface 361 is connected to the first external optical fiber connector 410 to achieve optical connection, thereby inputting or outputting optical signals to the function chip 350;
  • the second optical fiber connector 320 is connected to the second optical interface 220, and the fourth optical interface 362 is connected to the second external optical fiber connector 420 to achieve optical connection, thereby outputting or inputting optical signals to the function chip 350;
  • the third electrical interface 330 is connected to the second electrical interface 230 to achieve power supply connection, thereby supplying power to the function chip 350.
  • the present disclosure provides a pluggable component 300 that can carry a corresponding functional chip 350 and be mounted on an optical module as required, thereby providing optical performance for the optical module; at the same time, both ends of the pluggable component 300 are independent and can be flexibly connected between the optical module and the external optical fiber as required.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

光模块(200)包括上壳体(201)和下壳体(202),上下壳体(201,202)形成包裹腔体,包裹腔体一端设有第一电接口,另一端设有第一光接口(210)、第二光接口(220)和第二电接口(230);还包括可插拔组件(300),可插拔组件(300)一端设有第一光纤连接器(310)、第二光纤连接器(320)和第三电接口(330),另一端设有第三光接口(361)和第四光接口(362),可插拔组件(300)还包括功能芯片(350)。第一光纤连接器(310)一端与第一光接口(210)连接,另一端通过光纤与功能芯片(350)连接,以使光信号通过功能芯片(350);第二光纤连接器(320)一端与第二光接口(220)连接,另一端通过光纤与功能芯片(350)连接,以使光信号通过功能芯片(350);第二电接口(230)与第三电接口(330)连接可向功能芯片(350)供电。

Description

光模块及与光模块连接的可插拔组件
相关申请的交叉引用
本公开要求在2022年09月30日提交中国专利局、申请号为202211210494.7,以及在2022年09月30日提交中国专利局、申请号为202222623981.8的专利优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光纤通信技术领域,尤其涉及一种光模块及与光模块连接的可插拔组件。
背景技术
大数据、区块链、云计算、物联网以及人工智能等应用市场快速发展,给数据流量带来了爆炸性增长,光通信技术以其独有的速度快、带宽高、架设成本低等诸多优点,在光通信技术中,光模块占据重要地位。
光模块的光学性能,如输出光功率大小等影响着光模块的工作性能,因此需提高光模块的光学性能。
发明内容
第一方面,本公开提供的光模块,包括:上壳体;下壳体,与上壳体形成包裹腔体;包裹腔体,一端设有第一电接口,另一端分别设有第一光接口、第二光接口和第二电接口;可插拔组件,一端分别设有第一光纤连接器、第二光纤连接器和第三电接口,另一端分别设有第三光接口和第四光接口,其中还包括功能芯片;第一光纤连接器,一端与第一光接口连接,另一端通过光纤与功能芯片连接,以使光信号通过功能芯片;第二光纤连接器,一端与第二光接口连接,另一端通过光纤与功能芯片连接,以使光信号通过功能芯片;第三电接口,与第二电接口连接,以向功能芯片供电;第三光接口,与外部光纤连接器连接;第四光接口,与外部光纤连接器连接。
第二方面,本公开提供的与光模块连接的可插拔组件,包括:可插拔组件,一端分别设有第一光纤连接器、第二光纤连接器和第三电接口,另一端分别设有第三光接口和第四光接口,其中还包括功能芯片;第一光纤连接器,一端与光模块连接,另一端通过光纤与功能芯片连接,以使光信号通过功能芯片;第二光纤连接器,一端与光模块连接,另一端通过光纤与功能芯片连接,以使光信号通过功能芯片;第三电接口,与光模块连接,以向功能芯片供电;第三光接口,与外部光纤连接器连接;第四光接口,与外部光纤连接器连接。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图, 对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开一些实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为根据一些实施例的一种光模块的另一分解图;
图6为根据一些实施例的一种光模块中下壳体、可插拔组件、外部光纤连接器的结构图;
图7为根据一些实施例的一种光模块中可插拔组件的结构图;
图8为根据一些实施例的一种光模块中可插拔组件的剖面图;
图9为根据一些实施例的一种光模块中可插拔组件的局部结构图;
图10为根据一些实施例的一种光模块的下壳体结构图;
图11为根据一些实施例的一种光模块的下壳体局部结构图;
图12为根据一些实施例的一种光模块的下壳体剖面图;
图13为根据一些实施例的一种光模块的下壳体另一结构图;
图14为根据一些实施例的一种光模块的下壳体另一局部结构图;
图15为根据一些实施例的一种光模块的下壳体另一剖面图;
图16为根据一些实施例的一种光模块的下壳体分解图;
图17为根据一些实施例的一种光模块的下壳体局部分解图;
图18为根据一些实施例的一种光模块的下壳体另一局部结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
光通信技术中,使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要被配置为实现供电、I2C信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号 传输给计算机等信息处理设备。
图1为根据一些实施例的一种光通信系统的连接关系图。如图1所示,光通信系统包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现无限距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000之间的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口,光口被配置为接入光纤101,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立信息连接。示例地,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。由于光模块200是实现光信号与电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例地,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的电信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的一种光网络终端的结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100还包括设置于壳体内的电路板105,设置在电路板105表面的笼子106,设置在笼子106上的散热器107,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建议双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的光信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解图。如图3和图4所示,光模块200包括壳体(shell),设置于壳体内的电路板及光收发组件。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口的上述壳体;壳体的外轮廓一般呈现方形体。
在本公开的一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011以及位于盖板2011两侧、与盖板2011垂直设置的两个上侧板,由两个上侧板与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在的方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。例如,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板的金手指从开口204伸出,插入上位机(例如,光网络终端100)中;开口205为光口,被配置为接入外部光纤101,以使外部光纤101连接光模块200内部的光收发组件。
采用上壳体201、下壳体202结合的装配方式,便于将电路板、光收发组件等器件安装到壳体中,由上壳体201、下壳体202对这些器件形成封装保护。此外,在装配电路板和光收发组件等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外部的解锁部件,解锁部件被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件位于下壳体202的两个下侧板2022的外壁上,具有与上位机笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件时,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设 计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如包括微控制单元(Microcontroller Unit,MCU)、激光驱动芯片、限幅放大器(limiting amplifier)、时钟数据恢复(Clock and Data Recovery,CDR)芯片、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述电子元件和芯片;当光收发组件位于电路板上时,硬性电路板也可以提供平稳地承载;硬性电路板还可以插入上位机笼子中的电连接器中。
电路板还包括形成在其端部表面的金手指,金手指由相互独立的多个引脚组成。电路板插入笼子106中,由金手指与笼子106内的电连接器导通连接。金手指可以仅设置在电路板一侧的表面(例如图4所示的上表面),也可以设置在电路板上下两侧的表面,以适应引脚数量需求大的场合。金手指被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。例如,硬性电路板与光收发组件之间可以采用柔性电路板连接。
光收发组件包括光发射器件及光接收器件,光发射器件被配置为实现光信号的发射,光接收器件被配置为实现光信号的接收。示例地,光发射器件及光接收器件结合在一起,形成一体地光收发组件。
对于光模块而言,光学性能较为中套,如对于硅光相干光模块而言,短距离的相干数字交换产品已实现,而更长距离的灵活密集波分复用(DWDM)一直是重要需求;硅光相干光模块输出光功率不足,从而限制了其应用。EDFA(Erbium-doped Optical Fiber Amplifier)优质的光学信噪比和传输网络集中光放大技术,使人们又一次把目光投向mini乃至nano EDFA。在DWDM(Dense Wavelength Division Multiplexing)中应控制各通道信号的光波长,避免造成相邻通道的传导,其方法之一是利用光学滤波器。如何根据需要对这些功能器件进行灵活选择,且灵活地将其设置于光模块是需要解决的技术问题。
如图4所示,光模块中上壳体201和下壳体202所形成包裹腔体的一端设置有第一光接口210、第二光接口220和第二电接口230;其中,第二电接口230与标准光模块原本具有的电口(即上述内容开口204为电口)为不同的电接口,为了方便区分,本公开实施例中将标准光模块原本具有的电口称之为第一电接口。也就是,上壳体201和下壳体202所形成包裹腔体的一端设置有第一电接口,另一端分别设置有第一光接口210、第二光接口220和第二电接口230;在本公开的某一实施例中,如图4所示,第二电接口230位于第一光接口210和第二光接口220之间,图11中可以更清晰地看到,第二电接口230位于第一光接口210和第二光接口220之间。
图5为根据一些实施例的一种光模块的另一分解图,图6为根据一些实施例的一种光模块中下壳体、可插拔组件、外部光纤连接器的结构图。如图3-图6所示,可插拔组件300可插拔式连接至光模块中,在本公开的某一实施例中连接至光模块的第一光接口210、第二光接口220和第二电接口230,进而实现可插拔组件300与标准光模块(标准光模块即 上壳体201、下壳体202及内部器件所形成的整体结构)的插拔式灵活连接。本公开实施例中,可插拔组件300包括功能芯片350,功能芯片350可包括EDFA(掺铒光放大器)、滤波器、光功率探测器等。通过可插拔组件300的插拔式连接,可灵活地根据需求携载不同类型的功能芯片。
本公开实施例中可插拔组件300可以根据需求携载相应功能芯片350可插拔组件300通过携载功能芯片350外挂于光模块上,进而提供光模块的光学性能;同时,可插拔组件300的两端具有独立性,可根据需求灵活地连接于光模块和外部光纤之间。
图7为根据一些实施例的一种光模块中可插拔组件的结构图,图8为根据一些实施例的一种光模块中可插拔组件的剖面图,图9为根据一些实施例的一种光模块中可插拔组件的局部结构图。如图7所示,可插拔组件300一端形成第一光纤连接器310、第二光纤连接器320和第三电接口330,另一端形成第三光接口361和第四光接口362;可插拔组件300还包括功能芯片350。如图9所示,第三电接口330设于第一光纤连接器310和第二光纤连接器320之间。
可插拔组件300的第一光纤连接器310与光模块的第一光接口210插拔式连接,可插拔组件300的第二光纤连接器320与光模块的第二光接口220插拔式连接,可插拔组件300的第三电接口330与光模块第二电接口230插拔式连接,进而实现可插拔组件300一端与光模块连接,包括光连接和电连接。
可插拔组件300的第三光接口361与第一外部光纤连接器410插拔式连接,可插拔组件300的第四光接口362与第二外部光纤连接器420插拔式连接,进而实现可插拔组件300另一端与外部光纤连接。
第三电接口330与第二电接口230插拔式连接,以实现向功能芯片350供电。
因此本公开实施例中的可插拔组件300可独立设于光模块和外部光纤之间。
在本公开的某一实施例中,第一光纤连接器310与第一光接口210结构相匹配,以实现配合连接;第二光纤连接器320与第二光接口220结构相匹配,以实现配合连接;第三光接口361与第一外部光纤连接器410结构相匹配,以实现配合连接;第四光接口362与第二外部光纤连接器420结构相匹配,以实现配合连接。在本公开的某一实施例中,第一光接口210、第二光接口220、第三光接口361、第四光接口362的结构可设置为相同。
本公开实施例的可插拔组件300中,第一光纤连接器310与第一光接口210连接,第三光接口361与第一外部光纤连接器410连接,以实现光连接,进而向功能芯片350输入或输出光信号;第二光纤连接器320与第二光接口220连接,第四光接口362与第二外部光纤连接器420连接,以实现光连接,进而向功能芯片350输出或输入光信号;;第三电接口330与第二电接口230连接,以实现供电连接,进而向功能芯片350供电。
本公开实施例中的可插拔组件300通过一端设置的第一光纤连接器310、第二光纤连接器320和第三电接口330,分别与第一光接口210、第二光接口220和第二电接口230插拔连接,进而实现该端与光模块的插拔连接,也就是实现该端的相对独立性;通过另一端设置的第三光接口361和第四光接口362,分别与第一外部光纤连接器410和第二外部光纤连接器420连接,进而实现该端与外部光纤连接器的插拔连接,也就是实现该端的相 对独立性,进而实现可插拔组件300的整体独立性,可插拔组件300的可插拔式连接具有灵活性,可根据需要选择是否连接,也可根据需要选择功能芯片350的类型,相适应地提供光模块的光学性能;若选择不连接可插拔组件300时,第一外部光纤连接器410可直接与第一光接口210连接,第二外部光纤连接器420可直接与第二光接口220连接,因此本公开实施例中的可插拔组件300具有灵活性和适用性。
在本公开的某一实施例中,可插拔组件300中,第一光纤连接器310一端与第一光接口210连接,另一端通过第一光纤371与功能芯片350连接,以使光信号通过功能芯片350,此时光信号以光发射器件产生的发射光信号为例,即以使发射光信号传输至功能芯片350,功能芯片350对接收到的发射光信号进行一定地处理,然后通过第三光接口361与第一外部光纤连接器410连接,使得处理后的发射光信号经与第一外部光纤连接器410连接的外部光纤发射出去。在这个过程中,发射光信号依次经过第一光接口210、第一光纤连接器310、第一光纤371、功能芯片350、第三光接口361、第一外部光纤连接器410,进而通过与第一外部光纤连接器410连接的外部光纤发射出去,实现光连接。
第二光纤连接器320一端与第二光接口220连接,另一端通过第二光纤372与功能芯片350连接,以使光信号通过功能芯片350,第四光接口362与第二外部光纤连接器420连接,以使光信号传输至功能芯片350,此时光信号以外部光信号为例,即外部光信号通过外部光纤传输至第二外部光纤连接器420,第二外部光纤连接器420与第四光接口362连接,因此外部光信号传输至可插拔组件300中,进而传输至可插拔组件300的功能芯片350上,功能芯片350对接收到的外部光信号进行一定处理,处理后的光信号依次经第二光纤372、第二光纤连接器320、第二光接口220传输至上壳体201和下壳体202所形成包裹腔体的内部。在这个过程中,外部光信号依次经外部光纤、第二外部光纤连接器420、第四光接口362、功能芯片350、第二光纤372、第二光纤连接器320、第二光接口220传输至上壳体201和下壳体202所形成包裹腔体内部,实现光连接。
第三电接口330与第二电接口230连接,第二电接口230可直接通过导线电连接至电路板一端的供电金手指上,也可以通过导线电连接至电路板上的供电走线,然后供电走线电连接至电路板一端的供电金手指上,供电金手指与上位机电连接获得供电,进而向功能芯片350供电,实现供电连接。
如图7和图8所示,本公开实施例中,第一光纤连接器310通过第一光纤371与功能芯片350连接,与实现光连接;第二光纤连接器320通过第二光纤372与功能芯片350连接,以实现光连接;第三电接口330通过第二导线组380与功能芯片350连接,以实现供电连接。其中,如图8所示,第二导线组380包括各导线,各导线之间层叠设置,各导线在竖直方向上排成一列。
可插拔组件300还包括连接部件340,连接部件340一端分别与第一光纤371、第二光纤372和第二导线组380连接,另一端分别与功能芯片350连接;连接部件340设为软质材料,如硅胶材质,具有一定的柔韧性,可实现与第一光纤371、第二光纤372和第二导线组380的软接触,进而保护第一光纤371、第二光纤372和第二导线组380。
如图8所示,连接部件340内部分别贯穿设有第一通孔341、第二通孔342和第三通 孔343,第一通孔341被配置为避让第一光纤371,以使第一光纤371连接至功能芯片350上,实现光连接;第二通孔342被配置为避让第二光纤372,以使第二光纤372连接至功能芯片350上,实现光连接;第三通孔343被配置为避让第二导线组380,以使第二导线组380连接至功能芯片350上,实现供电连接。
图10为根据一些实施例的一种光模块的下壳体结构图。如图10所示,下壳体202的端部除了设有第一光接口210、第二光接口220和第二电接口230外,还设置有第一光纤适配器240、第二光纤适配器250和第一导线组260。如图14所示,第一导线组260包括各导线,各导线之间层叠设置,各导线在竖直方向上排成一列。在本公开的某一实施例中,第一光纤适配器240伸入至第一光接口210处,即第一光接口210一端与第一光纤适配器240连接,另一端与第一光纤连接器310连接,因此第一光纤适配器240和第一光纤连接器310在第一光接口210处实现连接;第二光纤适配器250伸入至第二光接口220处,即第二光接口220一端与第二光纤适配器250连接,另一端与第二光纤连接器320连接,因此第二光纤适配器250和第二光纤连接器320在第二光接口220处实现连接;第一导线组260伸入至第二电接口230处,即第二电接口230一端与第一导线组260连接,另一端与第三电接口330连接。
第一导线组260与第二电接口230连接,第二导线组380与第三电接口330连接,通过第二电接口230与第三电接口330的连接,以实现第一导线组260与第二导线组380的连接,第一导线组260获得供电,进而实现向功能芯片350供电。第一导线组260获得供电的方式可以为:第一导线组260通过供电金手指,从上位机获得供电。
图11为根据一些实施例的一种光模块的下壳体局部结构图;图12为根据一些实施例的一种光模块的下壳体剖面图;图13为根据一些实施例的一种光模块的下壳体另一结构图;图14为根据一些实施例的一种光模块的下壳体另一局部结构图,图15为根据一些实施例的一种光模块的下壳体另一剖面图。如图11-图14所示,第二电接口230设于第一光接口210和第二光接口220之间,第一导线组260设于第一光纤适配器240和第二光纤适配器250之间;第一光纤适配器240伸入至第一光接口210的一端,第二光纤适配器250伸入至第二光接口220的一端,第一导线组260伸入至第二电接口230的一端。图15中同样示出第一导线组260伸入至第二电接口230的一端。
图16为根据一些实施例的一种光模块的下壳体分解图;图17为根据一些实施例的一种光模块的下壳体局部分解图;图18为根据一些实施例的一种光模块的下壳体另一局部结构图。如图16-图18所示,第一光纤适配器240包括第一限位凸起241、第一连接体242和第二连接体243,第二光纤适配器250包括第二限位凸起251、第三连接体252和第四连接体253;为了将第一光纤适配器240固定于下壳体202的表面,下壳体202的表面设有第一定位槽271和第一卡槽272,第一限位凸起241设置于第一定位槽271中,第一连接体242设置于第一光接口210中,第二连接体243设于第一卡槽272中,从而将第一光纤适配器240固定于下壳体202的表面;为了将第二光纤适配器250固定于下壳体202的表面,下壳体202的表面设有第二定位槽281和第二卡槽282,第二限位凸起251设置于第二定位槽281中,第三连接体252设置于第二光接口220中,第四连接体253设于第二 卡槽282中,从而将第二光纤适配器250固定于下壳体202的表面。
如图18所示,在第一光接口210和第二光接口220之间设有底座291,底座291内部贯穿以形成第二电接口230,在底座291的一端设有嵌设槽294,嵌设槽294被配置为嵌设第一导线组260;在嵌设槽294的表面跨设有限位件292,限位件292被配置为固定第一导线组260,使得第一导线组260较稳定地穿过,限位件292中间贯穿设有避让孔293,避让孔293被配置为避让第一导线组260,使得第一导线组260从避让孔293处延伸至第二电接口230内;限位件292和避让孔293组合到一起后形成类似于一扇门的结构,既可以限位第一导线组260,又可以使第一导线组260横穿通过。
在一些实施例中,功能芯片350可以为EDFA,通过EDFA将光发射器件产生的发射光信号进行放大处理,以提高输出光功率;同时还可以将接收到的外部光信号进行放大处理,以提高接收灵敏度。
掺铒光放大器是一种特殊的光纤,在纤芯中注入了饵(Er)这种稀土元素,使得在泵浦激光器作用下,可直接对某一波长的光信号进行放大。EDFA使长距离、大容量、高速率的光纤通信成为可能,是DWDM系统的重要器件。EDFA主要组成包括掺铒光纤(EDF)、泵浦激光器、光耦合器、光隔离器、光滤波器等。掺铒光纤为长度为10m-100m的掺铒石英光纤;泵浦激光器为半导体激光器,工作波长为0.98μm,泵浦激光器发出泵浦光;光耦合器可将输入光信号和泵浦激光器输出的光波混合起来的无源光器件,一般采用波分复用器(WDM);光隔离器可防止反射光影响光放大器的工作稳定性,保证光信号只能正向传输的器件,不要受后向散射光的影响。光滤波器可滤除光放大器的噪声,降低噪声对系统的影响,提高系统的信噪比。EDFA将光信号放大的主要原理为:掺铒光纤在泵浦光的激励下形成粒子数反转分布,然后在发射光信号作用下产生受激辐射,受激辐射所释放的能量加载到发射光信号的光子上,从而实现发射光信号的放大。
在一些实施例中,功能芯片350可以包括EDFA和光功率探测器,通过EDFA将光发射器件产生的发射光信号进行放大输出,以提高输出光功率;为了监测输出光供,可从经EDFA放大后的发射光信号中分出一部分作为监控发射光信号,监控发射光信号被配置为监测输出光功率,然后经光功率探测器经监控发射光信号转换为监控光电流信号,并将监控光电流信号从功能芯片350中输出,至电路板。
在一些实施例中,功能芯片350可以包括EDFA和滤波器,通过EDFA将光发射器件产生的发射光信号进行放大输出,以提高输出光功率;通过滤波器筛选特定波长的光信号,只允许特定波长的光信号通过,从而避免其他波长进入该通道,进而避免其他通道对该通道的光信号串扰。
在一些实施例中,功能芯片350可以包裹EDFA和可变光衰减器,通过EDFA将光发射器件产生的发射光信号进行放大输出,以提高输出光功率;可变光衰减器可对光信号的光功率进行衰减。在通常DWDM中可在EDFA前设置一个可变光衰减器,通过可变光衰减器可以检测输入到EDFA的光功率变化情况,通过预先设置的调整参数相应的改变输入到EDFA的光功率大小,同时EDFA保持输出光功率的恒定。
可以理解的是,功能芯片350,还可以设置其他功能器件,提高光模块的光学性能。
如前述一些实施例中,功能芯片350可以包括EDFA和光功率探测器,通过EDFA将光发射器件产生的发射光信号进行放大输出,以提高输出光功率;为了监测输出光功率,可从经EDFA放大后的发射光信号中分出一部分作为监控发射光信号,监控发射光信号被配置为监测输出光功率,然后经光功率探测器经监控发射光信号转换为监控光电流信号,并将监控光电流信号从功能芯片350中输出,至电路板。EDFA包括泵浦激光器,EDFA在泵浦激光器作用下,可直接对某一波长的光信号进行放大;为保证泵浦激光器正常工作需向泵浦激光器提供偏置电流。则此时如图14所示,第一导线组260包括层叠设置的导线261、导线262和导线263,相应地,第二导线组380同样包括层叠设置的导线,相应导线通过第二电接口230和第三电接口330的连接可实现电连接,电连接后所形成的导线分别为第一导线、第二导线和第三导线;其中第一导线为供电传输线,一端与EDFA内的泵浦激光器的正极电连接,以通过第一导线为EDFA供电;第三导线为光功率检测信号传输线,其一端与电路板电连接,另一端与光功率探测器的负极电连接,通过第三导线将光功率探测器产生的监控光电流信号传输至电路板,电路板通过金手指将监控光电流信号输出至上位机,上位机根据监控光电流信号进行输出光功率的监测;第二导线为接地导线,第二导线通过与电路板上的GND电连接,从而实现EDFA和光功率探测器的接地。在本公开的某一实施例中,泵浦激光器与光功率探测器共用接地导线,泵浦激光器的负极与该接地导线电连接,光功率探测器的正极与该接地导线电连接。
可以理解的是,第一导线组260和第二导线组380可以定义更多的导线,以实现某些参数的输入输出。
综述,本公开提供的可插拔组件300通过携载功能芯片350外挂于光模块上,进而提供光模块的光学性能。在本公开的某一实施例中,可插拔组件300一端设有第一光纤连接器310、第二光纤连接器320和第三电接口330,另一端设有第三光接口361和第四光接口362,第一光纤连接器310与第一光接口210连接,第三光接口361与第一外部光纤连接器410连接,以实现光连接,进而向功能芯片350输入或输出光信号;第二光纤连接器320与第二光接口220连接,第四光接口362与第二外部光纤连接器420连接,以实现光连接,进而向功能芯片350输出或输入光信号;第三电接口330与第二电接口230连接,以实现供电连接,进而向功能芯片350供电。本公开提供可插拔组件300可以根据需求携载相应功能芯片350外挂于光模块上,进而提供光模块的光学性能;同时,可插拔组件300的两端具有独立性,可根据需求灵活地连接于光模块和外部光纤之间。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种光模块,包括:
    上壳体;
    下壳体,与上壳体形成包裹腔体;
    所述包裹腔体,一端设有第一电接口,另一端分别设有第一光接口、第二光接口和第二电接口;
    可插拔组件,一端分别设有第一光纤连接器、第二光纤连接器和第三电接口,另一端分别设有第三光接口和第四光接口,其中还包括功能芯片;
    所述第一光纤连接器,一端与所述第一光接口连接,另一端通过光纤与所述功能芯片连接,以使光信号通过所述功能芯片;
    所述第二光纤连接器,一端与所述第二光接口连接,另一端通过光纤与所述功能芯片连接,以使光信号通过所述功能芯片;
    所述第三电接口,与所述第二电接口连接,以向所述功能芯片供电;
    所述第三光接口,与外部光纤连接器连接;
    所述第四光接口,与外部光纤连接器连接。
  2. 根据权利要求1所述的光模块,其中,所述第二电接口设于所述第一光接口和所述第二光接口之间;
    所述第三电接口设于所述第一光纤连接器和所述第二光纤连接器之间。
  3. 根据权利要求1所述的光模块,其中,所述可插拔组件还包括连接部件,所述连接部件设于所述第一光纤连接器和所述第三光接口之间;
    所述第一光纤连接器与所述第三光接口之间通过第一光纤连接;
    所述第二光纤连接器与所述第四光接口之间通过第二光纤连接;
    所述第三电接口对外连接有第二导线组;
    所述连接部件内部分别贯穿设有第一通孔、第二通孔和第三通孔;
    所述第一通孔,被配置为避让所述第一光纤,以使所述第一光纤延伸至所述第三光接口;
    所述第二通孔,被配置为避让所述第二光纤,以使所述第二光纤延伸至所述第四光接口;
    所述第三通孔,被配置为避让所述第二导线组,以所述第二导线组延伸至所述功能芯片上。
  4. 根据权利要求1所述的光模块,其中,所述包裹腔体对内的一端设有底座,所述底座内部贯穿形成所述第二电接口;
    所述第一光接口和所述第二光接口分别设于所述第二电接口的两侧。
  5. 根据权利要求4所述的光模块,其中,所述第二电接口朝向所述包裹腔体的一侧设有第一导线组;
    所述第三电接口背向所述包裹腔体的一侧设有所述第二导线组;
    所述第二电接口与所述第三电接口连接以使所述第一导线组和所述第二导线组电连接。
  6. 根据权利要求5所述的光模块,其中,所述第一导线组的两侧分别设有第一光纤适配器和第二光纤适配器;
    所述第一光纤适配器伸入至所述第一光接口内,以实现光连接;
    所述第二光纤适配器伸入至所述第二光接口内,以实现光连接。
  7. 根据权利要求4所述的光模块,其中,所述底座的一端设有嵌设槽,被配置为设置所述第一导线组。
  8. 根据权利要求7所述的光模块,其中,所述嵌设槽表面设有限位件,被配置为固定所述第一导线组;
    所述限位件中间设有避让孔,被配置为避让所述第一导线组。
  9. 根据权利要求1所述的光模块,其中,所述第一光纤连接器与所述第一光接口插拔式连接;
    所述第二光纤连接器与所述第二光接口插拔式连接;
    所述第三电接口与所述第二电接口插拔式连接。
  10. 根据权利要求1所述的光模块,其中,所述功能芯片包括掺铒光放大器和光功率探测器。
  11. 一种与光模块连接的可插拔组件,包括:
    一端分别设有第一光纤连接器、第二光纤连接器和第三电接口,另一端分别设有第三光接口和第四光接口,其中还包括功能芯片;
    所述第一光纤连接器,一端与光模块连接,另一端通过光纤与所述功能芯片连接,以使光信号通过所述功能芯片;
    所述第二光纤连接器,一端与光模块连接,另一端通过光纤与所述功能芯片连接,以使光信号通过所述功能芯片;
    所述第三电接口,与光模块连接,以向所述功能芯片供电;
    所述第三光接口,与外部光纤连接器连接;
    所述第四光接口,与外部光纤连接器连接。
  12. 根据权利要求11所述的可插拔组件,其中,所述第三电接口设于所述第一光纤连接器和所述第二光纤连接器之间。
  13. 根据权利要求11所述的可插拔组件,其中,所述第一光纤连接器与所述功能芯片之间通过第一光纤连接;
    所述第二光纤连接器与所述功能芯片之间通过第二光纤连接。
  14. 根据权利要求13所述的可插拔组件,其中,所述可插拔组件还包括连接部件,所述连接部件设于所述第一光纤连接器和所述第三光接口之间;
    所述第三电接口对外连接有第二导线组;
    所述连接部件内部分别贯穿设有第一通孔、第二通孔和第三通孔;
    所述第一通孔,被配置为避让所述第一光纤,以使所述第一光纤延伸至所述第三光接 口;
    所述第二通孔,被配置为避让所述第二光纤,以使所述第二光纤延伸至所述第四光接口;
    所述第三通孔,被配置为避让所述第二导线组,以所述第二导线组延伸至所述功能芯片上。
  15. 根据权利要求11所述的可插拔组件,其中,所述第一光纤连接器,一端与光模块的光接口连接;
    所述第二光纤连接器,一端与光模块的光接口连接;
    所述第三电接口,与光模块的电接口连接。
  16. 根据权利要求11所述的可插拔组件,其中,所述第三光接口通过所述外部光纤连接器与外部光纤连接;
    所述第四光接口通过所述外部光纤连接器与外部光纤连接。
  17. 根据权利要求11所述的可插拔组件,其中,所述第一光纤连接器与光模块插拔式连接;
    所述第二光纤连接器与光模块插拔式连接;
    所述第三电接口与光模块插拔式连接。
  18. 根据权利要求11所述的可插拔组件,其中,所述功能芯片包括掺铒光放大器和光功率探测器。
PCT/CN2022/141156 2022-09-30 2022-12-22 光模块及与光模块连接的可插拔组件 WO2024066085A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202222623981.8 2022-09-30
CN202211210494.7A CN117849961A (zh) 2022-09-30 2022-09-30 一种光模块
CN202222623981.8U CN218350563U (zh) 2022-09-30 2022-09-30 一种与光模块连接的可插拔组件
CN202211210494.7 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024066085A1 true WO2024066085A1 (zh) 2024-04-04

Family

ID=90475787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141156 WO2024066085A1 (zh) 2022-09-30 2022-12-22 光模块及与光模块连接的可插拔组件

Country Status (1)

Country Link
WO (1) WO2024066085A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050055548A (ko) * 2003-12-08 2005-06-13 옵티시스 주식회사 통신용 커넥터 장치 및 그 어댑터
US20070123090A1 (en) * 2005-11-30 2007-05-31 Kim Jong D Pluggable optical transceiver module
JP2010176010A (ja) * 2009-01-30 2010-08-12 Furukawa Electric Co Ltd:The 光通信装置
US20180031775A1 (en) * 2015-01-26 2018-02-01 Commscope Technologies Llc Indoor hybrid connectivity system for providing both electrical power and fiber optic service
CN111106469A (zh) * 2019-12-20 2020-05-05 华为技术有限公司 连接器组件及光电复合连接器
CN114600020A (zh) * 2020-08-18 2022-06-07 华为技术有限公司 光模块
WO2022156222A1 (zh) * 2021-01-19 2022-07-28 武汉电信器件有限公司 一种光电连接器以及光电适配器
WO2022156077A1 (zh) * 2021-01-19 2022-07-28 武汉光迅科技股份有限公司 一种光电混合连接器以及光电混合适配器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050055548A (ko) * 2003-12-08 2005-06-13 옵티시스 주식회사 통신용 커넥터 장치 및 그 어댑터
US20070123090A1 (en) * 2005-11-30 2007-05-31 Kim Jong D Pluggable optical transceiver module
JP2010176010A (ja) * 2009-01-30 2010-08-12 Furukawa Electric Co Ltd:The 光通信装置
US20180031775A1 (en) * 2015-01-26 2018-02-01 Commscope Technologies Llc Indoor hybrid connectivity system for providing both electrical power and fiber optic service
CN111106469A (zh) * 2019-12-20 2020-05-05 华为技术有限公司 连接器组件及光电复合连接器
CN114600020A (zh) * 2020-08-18 2022-06-07 华为技术有限公司 光模块
WO2022156222A1 (zh) * 2021-01-19 2022-07-28 武汉电信器件有限公司 一种光电连接器以及光电适配器
WO2022156077A1 (zh) * 2021-01-19 2022-07-28 武汉光迅科技股份有限公司 一种光电混合连接器以及光电混合适配器

Similar Documents

Publication Publication Date Title
JP6191348B2 (ja) 光受信モジュール
CN103312415A (zh) 用于通信的方法和系统
CN111555811A (zh) 一种光模块
JP2005099769A (ja) モジュール式光学トランシーバ
CN111106526B (zh) 半导体光放大器芯片、光接收子组件和光模块
CN210775929U (zh) 一种光模块
CN216772051U (zh) 一种光模块
CN114488439B (zh) 一种光模块
KR20180098619A (ko) 양방향 광 서브 어셈블리
CN112817098A (zh) 一种光模块
CN114488438A (zh) 一种光模块
CN113985534A (zh) 一种光模块及soa的增益控制方法
CN212627918U (zh) 一种光模块
CN212086203U (zh) 一种光模块
WO2024066085A1 (zh) 光模块及与光模块连接的可插拔组件
EP3975451A1 (en) Optical receiving assembly, optical transceiving assembly, optical module, and optical network device
JP4828103B2 (ja) 光送受信モジュール
WO2023109210A1 (zh) 光模块
CN218350563U (zh) 一种与光模块连接的可插拔组件
CN215895042U (zh) 一种光模块
CN216772052U (zh) 一种光模块
CN113805290B (zh) 一种光模块
CN117849961A (zh) 一种光模块
CN117751311A (zh) 光模块
CN214278494U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960680

Country of ref document: EP

Kind code of ref document: A1