WO2024065965A1 - 一种游泳池机器人及控制方法 - Google Patents

一种游泳池机器人及控制方法 Download PDF

Info

Publication number
WO2024065965A1
WO2024065965A1 PCT/CN2022/130767 CN2022130767W WO2024065965A1 WO 2024065965 A1 WO2024065965 A1 WO 2024065965A1 CN 2022130767 W CN2022130767 W CN 2022130767W WO 2024065965 A1 WO2024065965 A1 WO 2024065965A1
Authority
WO
WIPO (PCT)
Prior art keywords
swimming pool
robot
detection module
drain
water
Prior art date
Application number
PCT/CN2022/130767
Other languages
English (en)
French (fr)
Inventor
邓卓明
Original Assignee
深圳市思傲拓科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市思傲拓科技有限公司 filed Critical 深圳市思傲拓科技有限公司
Priority to US18/010,787 priority Critical patent/US20240272646A1/en
Publication of WO2024065965A1 publication Critical patent/WO2024065965A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/14Parts, details or accessories not otherwise provided for
    • E04H4/16Parts, details or accessories not otherwise provided for specially adapted for cleaning
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/14Parts, details or accessories not otherwise provided for
    • E04H4/16Parts, details or accessories not otherwise provided for specially adapted for cleaning
    • E04H4/1654Self-propelled cleaners
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/22Command input arrangements
    • G05D1/228Command input arrangements located on-board unmanned vehicles
    • G05D1/2287Command input arrangements located on-board unmanned vehicles using an external force applied to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/648Performing a task within a working area or space, e.g. cleaning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/30Water vehicles
    • G05D2109/38Water vehicles operating under the water surface, e.g. submarines

Definitions

  • the present invention relates to the technical field of robots, and in particular to a swimming pool robot and a control method thereof.
  • swimming pool cleaning is generally divided into two categories, one is to filter the water quality of the swimming pool through a water filtration machine, and the other is to use a robot to clean the dirt on the bottom and side walls of the swimming pool.
  • the main purpose of the present invention is to provide a swimming pool robot and a control method, aiming to reduce the time it takes for the swimming pool robot to sink to the bottom of the pool and improve the cleaning efficiency.
  • the present invention provides a swimming pool robot, comprising: a body, a power switch and a water entry detection module are arranged at the bottom of the body, a first drain outlet and a second drain outlet are arranged relatively at the top of the body, a battery, an MCU, a body state detection module for detecting the body state, a power detection module for detecting the power of the battery, a first driving mechanism for driving the first drain outlet to drain water, and a second driving mechanism for driving the second drain outlet to drain water are arranged in the body, and the battery, the power switch, the water entry detection module, the body state detection module, the power detection module, the first driving mechanism, and the second driving mechanism are respectively connected to the MCU.
  • the water entry detection module includes a metal electrode disposed at the bottom of the vehicle body.
  • the vehicle body state detection module includes an IMU disposed inside the vehicle body.
  • a further technical solution of the present invention is that a water inlet is provided at the bottom of the vehicle body, the water inlet is connected with the first drain outlet to form a first water channel, and is connected with the second drain outlet to form a second water channel, the first driving mechanism includes a first driving motor arranged in the vehicle body, and a first propeller arranged in the first water channel and connected to the first driving motor, the second driving mechanism includes a second driving motor arranged in the vehicle body, and a second propeller arranged in the second water channel and connected to the second driving motor, and the MCU is respectively connected to the first driving motor and the second driving motor.
  • a further technical solution of the present invention is that the water inlet, the first drain outlet and the second drain outlet are all provided with one-way valves.
  • a further technical solution of the present invention is that four wheels are arranged at the four corners of the bottom of the vehicle body, and at least two of the four wheels cannot be turned to ensure that the swimming pool robot moves forward or backward in a straight line.
  • a further technical solution of the present invention is that the vehicle body is an arc-shaped structure.
  • the present invention through the above technical scheme, comprises: a body, a power switch and a water entry detection module are arranged at the bottom of the body, a first drain port and a second drain port are arranged relatively at the top of the body, a battery, an MCU, a body state detection module for detecting the body state, a power detection module for detecting the power of the battery, a first driving mechanism for driving the first drain port to drain water, and a second driving mechanism for driving the second drain port to drain water are arranged in the body, the battery, the power switch, the water entry detection module, the body state detection module, the power detection module, the first driving mechanism, and the second driving mechanism are connected to the MCU respectively, after the swimming pool robot is turned on, only when the swimming pool robot is located in the water, sinks to the bottom of the pool under the action of its own gravity and is in a stationary state, the first driving mechanism or the second driving mechanism is turned on to drive the first drain port or the second drain
  • the present invention further proposes a swimming pool robot control method, which is applied to the swimming pool robot described in the above embodiment, and comprises the following steps:
  • the first driving mechanism or the second driving mechanism is turned on to drive the first drain port or the second drain port to drain water, so that the robot moves forward in the swimming pool.
  • a further technical solution of the present invention is that if the state of the vehicle body meets the sewage suction starting condition, the first drain port or the second drain port is opened to drain water, and the step of driving the robot to move forward in the swimming pool further includes:
  • the first driving mechanism or the second driving mechanism is switched to switch the first drain port or the second drain port for drainage, thereby driving the swimming pool robot to turn.
  • the low-power sideline strategy is executed.
  • the beneficial effect of the swimming pool robot control method of the present invention is: through the above technical scheme, the present invention obtains the body state of the swimming pool robot after the swimming pool robot is turned on; judges whether the starting sewage suction condition is met according to the body state, and the starting sewage suction condition includes that the body is in the water and is located at the bottom of the pool and is in a stationary state; if the body state meets the starting sewage suction condition, the first drive mechanism or the second drive mechanism is turned on to drive the first drain port or the second drain port to drain water, so that the robot moves forward in the swimming pool.
  • the first drive mechanism or the second drive mechanism is turned on to drive the first drain port or the second drain port to drain water, so that the robot moves forward in the swimming pool to realize the sewage suction function, thereby reducing the sinking time of the swimming pool robot and thereby improving the cleaning efficiency.
  • FIG1 is an exploded view of a preferred embodiment of a swimming pool robot of the present invention.
  • FIG2 is a schematic diagram of the overall structure of a preferred embodiment of the swimming pool robot of the present invention.
  • FIG3 is a front view of a preferred embodiment of the swimming pool robot of the present invention.
  • FIG4 is a bottom view of a preferred embodiment of the swimming pool robot of the present invention.
  • FIG5 is a top view of a preferred embodiment of the swimming pool robot of the present invention.
  • Fig. 6 is a cross-sectional view taken along the A-A direction in Fig. 5;
  • FIG. 7 is a system framework diagram of a preferred embodiment of the swimming pool robot of the present invention.
  • FIG. 8 is a flow chart of a preferred embodiment of a swimming pool robot control method of the present invention.
  • Vehicle body 1 power switch 2; metal electrode 3; first drain outlet 4; second drain outlet 5; battery 6; water inlet 7; first drive motor 8; first propeller 9; second drive motor 10; second propeller 11; wheel 12; one-way valve 13.
  • a preferred embodiment of the swimming pool robot of the present invention includes a body 1.
  • a power switch 2 and a water entry detection module are provided at the bottom of the body 1.
  • a first drain port 4 and a second drain port 5 are relatively provided on the top of the body 1.
  • a battery 6, an MCU, a body state detection module for detecting the body state, a power detection module for detecting the power of the battery 6, a first driving mechanism for driving the first drain port 4 to drain water, and a second driving mechanism for driving the second drain port 5 to drain water are provided in the body 1.
  • the battery 6, the power switch 2, the water entry detection module, the body state detection module, the power detection module, the first driving mechanism, and the second driving mechanism are respectively connected to the MCU.
  • the MCU is used to obtain the body state of the swimming pool robot after the swimming pool robot is turned on; determine whether the conditions for starting sewage suction are met according to the body state, and the conditions for starting sewage suction include that the body 1 is in the water and is in a stationary state; if the body state meets the conditions for starting sewage suction, the first drive mechanism or the second drive mechanism is turned on to drive the first drain port 4 or the second drain port 5 to drain water, so that the robot moves forward in the swimming pool.
  • a water entry detection module is provided at the bottom of the body 1, and a body state detection module is provided in the body 1.
  • the water entry detection module is used to detect whether the body 1 of the swimming pool robot is in the water
  • the body state detection module is used to detect whether the swimming pool robot is already at the bottom of the pool and is in a stationary state.
  • the MCU is also used to obtain the current power of the battery 6; compare the current power of the battery 6 with a preset threshold; if the current power of the battery 6 is less than or equal to the preset threshold, execute the low-power sideline strategy.
  • the preset threshold value can be set according to actual needs, for example, 10.5 V.
  • the power detection module detects that the power of the battery 6 is lower than the preset threshold value, the first drive mechanism or the second drive mechanism is not switched, and the first drive mechanism or the second drive mechanism is stopped, so that the swimming pool robot is low on power and pulled to the side.
  • the current power level of the battery 6 can be detected in real time through the power detection module, or the current power level of the battery 6 can be detected when the swimming pool robot is underpowered and the speed slows down, and then the current power level information of the battery 6 is sent to the MCU.
  • the water intrusion detection module includes a metal electrode 3 disposed at the bottom of the vehicle body 1.
  • a metal electrode 3 disposed at the bottom of the vehicle body 1.
  • two metal probes may be disposed at the bottom of the vehicle body 1.
  • the metal electrode 3 has good conductivity. When the body 1 of the swimming pool robot is located in water, the metal electrode 3 is turned on. That is, when the MCU detects that the metal electrode 3 is turned on, it means that the swimming pool robot is located in water.
  • the vehicle body state detection module includes an IMU disposed in the vehicle body 1 .
  • a water inlet 7 is provided at the bottom of the vehicle body 1, the water inlet 7 is connected with the first drain port 4 to form a first water channel, and is connected with the second drain port 5 to form a second water channel.
  • the first driving mechanism includes a first driving motor 8 arranged in the vehicle body 1, and a first propeller 9 arranged in the first water channel and connected to the first driving motor 8.
  • the second driving mechanism includes a second driving motor 10 arranged in the vehicle body 1, and a second propeller 11 arranged in the second water channel and connected to the second driving motor 10.
  • the MCU is connected to the first driving motor 8 and the second driving motor 10, respectively.
  • the corresponding first drain outlet 4 discharges water outwards, providing power for the swimming pool robot to move in a first direction.
  • the second drive motor 10 drives the second propeller 11 to rotate, the corresponding first drain outlet 5 discharges water outwards, providing power for the swimming pool robot to move in a second direction opposite to the first direction.
  • one-way valves 13 are provided at the water inlet 7, the first drain outlet 4 and the second drain outlet 5.
  • the one-way valves 13 at the corresponding positions of the water inlet 7, the first drain outlet 4 or the second drain outlet 5 are opened.
  • four wheels 12 are arranged at the four corners of the bottom of the vehicle body 1, and at least two of the four wheels 12 cannot be turned to ensure that the swimming pool robot moves forward or backward in a straight line.
  • the vehicle body 1 is an arc-shaped structure.
  • the edge of the vehicle body 1 is an irregular arc, and the movement direction of the robot is changed by the collision between the edge of the vehicle body 1 and the wall of the swimming pool.
  • the MCU is also used to determine whether the body 1 of the swimming pool robot collides with the side panel of the swimming pool and turns. If so, the first drive mechanism or the second drive mechanism is switched to switch the first drain port 4 or the second drain port 5 for drainage, thereby driving the swimming pool robot to turn and move in another direction.
  • the present invention through the above technical scheme, comprises: a body, a power switch and a water entry detection module are arranged at the bottom of the body, a first drain port and a second drain port are arranged relatively at the top of the body, a battery, an MCU, a body state detection module for detecting the body state, a power detection module for detecting the power of the battery, a first driving mechanism for driving the first drain port to drain water, and a second driving mechanism for driving the second drain port to drain water are arranged in the body, the battery, the power switch, the water entry detection module, the body state detection module, the power detection module, the first driving mechanism, and the second driving mechanism are connected to the MCU respectively, after the swimming pool robot is turned on, only when the swimming pool robot is located in the water, sinks to the bottom of the pool under the action of its own gravity and is in a stationary state, the first driving mechanism or the second driving mechanism is turned on to drive the first drain port or the second drain
  • a swimming pool robot control method of the present invention includes the following steps:
  • Step S10 after the swimming pool robot is turned on, the body status of the swimming pool robot is obtained.
  • the execution subject in this embodiment may be an MCU. After the swimming pool robot is turned on, the MCU obtains the body status of the swimming pool robot.
  • the body state of the swimming pool robot can be detected by the water entry detection module and the body state detection module.
  • the water entry detection module is a metal electrode disposed at the bottom of the vehicle body
  • the vehicle body state detection module is an IMU disposed inside the vehicle body. Whether the vehicle body is in water is determined by whether the metal electrode is conductive, and whether the vehicle body sinks to the bottom and is stationary is detected by the IMU.
  • Step S20 judging whether a condition for starting sewage suction is met according to the state of the vehicle body, the condition for starting sewage suction includes that the vehicle body is in water and is in a stationary state.
  • the MCU determines whether the conditions for starting sewage suction are met based on the body state.
  • the conditions for starting sewage suction are that the body is in the water and is stationary.
  • This embodiment takes into account that most of the current swimming pool robots are provided with a drain port on the body. After the robot is turned on, the motor is started synchronously, and then the robot is placed in the swimming pool. The reaction force generated by the motor driving the drain port to drain water provides power for the robot.
  • this embodiment since the motor is turned on before the robot sinks to the bottom of the swimming pool, there is air in the robot, which causes it to take a long time to sink to the bottom of the pool, or even fail to sink to the bottom, and the cleaning efficiency is reduced. Therefore, this embodiment is provided with a water entry detection module at the bottom of the body, and a body state detection module is provided in the body.
  • the water entry detection module is used to detect whether the body of the swimming pool robot is in the water
  • the body state detection module is used to detect whether the swimming pool robot is already at the bottom of the pool and is in a stationary state.
  • Step S30 if the vehicle body state meets the sewage suction start condition, the first driving mechanism or the second driving mechanism is turned on to drive the first drainage port or the second drainage port to drain water, so that the robot moves forward in the swimming pool to realize the sewage suction function.
  • the MCU turns on the first drive mechanism or the second drive mechanism only when it determines that the state of the vehicle body meets the sewage suction conditions, that is, the vehicle body is located in the water, sinks to the bottom of the pool under its own gravity and is in a stationary state, so as to drive the first drain outlet or the second drain outlet to drain water, so that the robot moves forward in the swimming pool and realizes the sewage suction function.
  • step S30 if the vehicle body state meets the sewage suction start condition, the first driving mechanism or the second driving mechanism is started to drive the first drainage port or the second drainage port to drain water, so that the robot moves forward in the swimming pool, and the sewage suction function is realized.
  • the step also includes:
  • Step S40 determining whether the vehicle body collides with the side wall of the swimming pool and turns.
  • the IMU disposed inside the vehicle body can detect the movement speed and acceleration direction of the vehicle body, and then send the movement speed and acceleration direction to the MCU, which determines whether the vehicle body collides with the wall of the swimming pool and turns according to the movement speed and acceleration direction.
  • Step S50 If yes, the first driving mechanism or the second driving mechanism switches the first drain port or the second drain port to drain water, thereby driving the swimming pool robot to turn.
  • the first driving mechanism or the second driving mechanism is switched to switch the first drain port or the second drain port to drain water, thereby driving the swimming pool robot to turn.
  • the first drive mechanism or the second drive mechanism can be switched within 1 second, and the direction can be changed to continue moving forward, and the same detection condition will not be triggered within 5 seconds.
  • the swimming pool robot control method further includes the following steps:
  • the swimming pool robot when the swimming pool robot is turned on, it can be performed synchronously with step S10 to detect the current battery power in real time through the power detection module.
  • the current battery power can also be detected when the swimming pool robot is underpowered and the speed slows down, and then the current battery power information is sent to the MCU.
  • the current charge level of the battery is compared to a preset threshold.
  • the low-battery sideline strategy is executed.
  • the preset threshold value can be set according to actual needs, for example, 10.5 V.
  • the power detection module detects that the power of the battery is lower than the preset threshold value, the first drive mechanism or the second drive mechanism is not switched, and the first drive mechanism or the second drive mechanism is stopped, so that the swimming pool robot is low on power and pulled to the side.
  • the beneficial effect of the swimming pool robot control method of the present invention is: through the above technical scheme, the present invention obtains the body state of the swimming pool robot after the swimming pool robot is turned on; judges whether the starting sewage suction condition is met according to the body state, and the starting sewage suction condition includes that the body is in the water and is located at the bottom of the pool and is in a stationary state; if the body state meets the starting sewage suction condition, the first drive mechanism or the second drive mechanism is turned on to drive the first drain port or the second drain port to drain water, so that the robot moves forward in the swimming pool.
  • the first drive mechanism or the second drive mechanism is turned on to drive the first drain port or the second drain port to drain water, so that the robot moves forward in the swimming pool to realize the sewage suction function, thereby reducing the sinking time of the swimming pool robot and thereby improving the cleaning efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Electric Suction Cleaners (AREA)

Abstract

一种游泳池机器人及控制方法,游泳池机器人包括:车身(1),车身(1)的底部设置有电源开关(2)、入水检测模块,车身(1)的顶部相对设置有第一排水口(4)和第二排水口(5),车身(1)内设置有电池(6)、MCU、车身状态检测模块、电量检测模块、第一驱动机构、第二驱动机构,电池(6)、电源开关(2)、入水检测模块、车身状态检测模块、电量检测模块、第一驱动机构、第二驱动机构分别与MCU连接。游泳池机器人开机后,只有当游泳池机器人位于水中,在自身重力作用下沉入池底且处于静止状态时才开启第一驱动机构或第二驱动机构,以驱动第一排水口(4)或第二排水口(5)排水,使机器人在游泳池内前进实现吸污功能,降低了游泳池机器人的沉底时间,进而提升了清洁效率。

Description

一种游泳池机器人及控制方法 技术领域
本发明涉及机器人技术领域,特别涉及一种游泳池机器人及控制方法。
背景技术
游泳池清洁通常分为两类,一种是通过水质过滤机器过滤游泳池的水质,另一种是通过机器人对游泳池的底部和侧壁的污垢进行清洁。
目前的游泳池机器人大多是在车身设置排水口,在机器人开机后即同步启动电机,然后将机器人放入游泳池内,通过电机驱动排水口排水产生的反作用力为机器人提供动力,然而,这种方式由于在机器人下沉到游泳池池底之前就已经开启电机,机器人里面会有气体导致其下沉至池底的时间较长,甚至不能沉底,清洁效率下降。
发明内容
本发明的主要目的在于提出一种游泳池机器人及控制方法,旨在降低游泳池机器人下沉至池底的时间,提升清洁效率。
为实现上述目的,本发明提供了一种游泳池机器人,包括:车身,所述车身的底部设置有电源开关、入水检测模块,所述车身的顶部相对设置有第一排水口和第二排水口,所述车身内设置有电池、MCU、用于检测车身状态的车身状态检测模块、用于检测所述电池的电量的电量检测模块、用于驱动所述第一排水口排水的第一驱动机构、用于驱动所述第二排水口排水的第二驱动机构,所述电池、电源开关、入水检测模块、车身状态检测模块、电量检测模块、第一驱动机构、第二驱动机构分别与所述MCU连接。
本发明进一步的技术方案是,所述入水检测模块包括设置于所述车身底部的金属电极。本发明进一步的技术方案是,所述车身状态检测模块包括设置于所述车身内的IMU。
本发明进一步的技术方案是,所述车身的底部设置有进水口,所述进水 口与所述第一排水口相连通形成第一水道,与所述第二排水口相连通形成第二水道,所述第一驱动机构包括设置于所述车身内的第一驱动电机、设置于所述第一水道内与所述第一驱动电机连接的第一螺旋桨,所述第二驱动机构包括设置于所述车身内的第二驱动电机、设置于所述第二水道内与所述第二驱动电机连接的第二螺旋桨,所述MCU分别与所述第一驱动电机、第二驱动电机连接。
本发明进一步的技术方案是,所述进水口、第一排水口和第二排水口均设置有单向阀门。
本发明进一步的技术方案是,所述车身的底部四角设置有四个车轮,所述四个车轮至少有两个不能转向,以保证所述游泳池机器人直线前进或后退。
本发明进一步的技术方案是,所述车身为弧形结构。
本发明游泳池机器人的有益效果是:本发明通过上述技术方案,包括:车身,车身的底部设置有电源开关、入水检测模块,车身的顶部相对设置有第一排水口和第二排水口,车身内设置有电池、MCU、用于检测车身状态的车身状态检测模块、用于检测电池的电量的电量检测模块、用于驱动第一排水口排水的第一驱动机构、用于驱动第二排水口排水的第二驱动机构,电池、电源开关、入水检测模块、车身状态检测模块、电量检测模块、第一驱动机构、第二驱动机构分别与MCU连接,在游泳池机器人开机后,只有当游泳池机器人位于水中后,在自身重力作用下沉入池底且处于静止状态时才开启第一驱动机构或第二驱动机构,以驱动第一排水口或第二排水口排水,使机器人在游泳池内前进实现吸污功能,降低了游泳池机器人的沉底时间,进而提升了清洁效率。
为实现上述目的,本发明还提出一种游泳池机器人控制方法,所述方法应用于如上实施例所述的游泳池机器人,所述方法包括以下步骤:
在游泳池机器人开机后,获取所述游泳池机器人的车身状态;
根据所述车身状态判断是否满足启动吸污条件,所述启动吸污条件包括所述车身在水中,且位于池底处于静止状态;
若所述车身状态满足启动吸污条件,则开启所述第一驱动机构或第二驱 动机构,以驱动第一排水口或第二排水口排水,使所述机器人在游泳池内前进。
本发明进一步的技术方案是,所述若所述车身状态满足启动吸污条件,则开启所述第一排水口或第二排水口排水,驱动所述机器人在游泳池内前进的步骤之后还包括:
判断所述车身是否与游泳池侧壁碰撞转向;
若是,则切换所述第一驱动机构或第二驱动机构,以切换所述第一排水口或第二排水口排水,进而驱动所述游泳池机器人转向运动。
本发明进一步的技术方案是,所述方法还包括:
获取所述电池的当前电量;
将所述电池的当前电量与预设阈值相比对;
若所述电池的当前电量小于或等于所述预设阈值,则执行低电量靠边策略。
本发明游泳池机器人控制方法的有益效果是:本发明通过上述技术方案,在游泳池机器人开机后,获取所述游泳池机器人的车身状态;根据所述车身状态判断是否满足启动吸污条件,所述启动吸污条件包括所述车身在水中,且位于池底处于静止状态;若所述车身状态满足启动吸污条件,则开启所述第一驱动机构或第二驱动机构,以驱动第一排水口或第二排水口排水,使所述机器人在游泳池内前进,在游泳池机器人开机后,只有当游泳池机器人位于水中后,在自身重力作用下沉入池底且处于静止状态时才开启第一驱动机构或第二驱动机构,以驱动第一排水口或第二排水口排水,使机器人在游泳池内前进实现吸污功能,降低了游泳池机器人的沉底时间,进而提升了清洁效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的 附图。
图1是本发明游泳池机器人较佳实施例的爆炸图;
图2是本发明游泳池机器人较佳实施例的整体结构示意图;
图3是本发明游泳池机器人较佳实施例的主视图;
图4是本发明游泳池机器人较佳实施例的仰视图;
图5是本发明游泳池机器人较佳实施例的俯视图;
图6是图5中A-A方向的剖视图;
图7是本发明游泳池机器人较佳实施例的系统框架图;
图8是本发明游泳池机器人控制方法较佳实施例流程示意图。
附图标号说明:
车身1;电源开关2;金属电极3;第一排水口4;第二排水口5;电池6;进水口7;第一驱动电机8;第一螺旋桨9;第二驱动电机10;第二螺旋桨11;车轮12;单向阀门13。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图1至图7,本发明提出一种游泳池机器人,本发明游泳池机器人较佳实施例包括车身1,车身1的底部设置有电源开关2、入水检测模块,车身1的顶部相对设置有第一排水口4和第二排水口5,车身1内设置有电池6、MCU、用于检测车身状态的车身状态检测模块、用于检测电池6的电量的电量检测模块、用于驱动第一排水口4排水的第一驱动机构、用于驱动第二排水口5排水的第二驱动机构,电池6、电源开关2、入水检测模块、车身状态检测模块、电量检测模块、第一驱动机构、第二驱动机构分别与MCU连接。
本实施例中,MCU用于在游泳池机器人开机后,获取游泳池机器人的车身状态;根据车身状态判断是否满足启动吸污条件,启动吸污条件包括车身1在水中,且处于静止状态;若车身状态满足启动吸污条件,则开启第一驱动机构或第二驱动机构,以驱动第一排水口4或第二排水口5排水,使机器人在游泳池内前进。
考虑到目前的游泳池机器人大多是在车身1设置排水口,在机器人开机后即同步启动电机,然后将机器人放入游泳池内,通过电机驱动排水口排水产生的反作用力为机器人提供动力,然而,这种方式由于在机器人下沉到游泳池池底之前就已经开启电机,导致其下沉至池底的时间较长,甚至不能沉底,清洁效率下降,因此,本实施例在车身1的底部设置有入水检测模块,在车身1内设置有车身状态检测模块,通过入水检测模块检测游泳池机器人的车身1是否在水中,通过车身状态检测模块检测游泳池机器人是否已经位于池底且处于静止状态。在游泳池机器人开机后,只有当游泳池机器人位于水中后,在自身重力作用下沉入池底且处于静止状态时才开启第一驱动机构或第二驱动机构,以驱动第一排水口4或第二排水口5排水,使机器人在游泳池内前进实现吸污功能。
本实施例中,MCU还用于获取电池6的当前电量;将电池6的当前电量与预设阈值相比对;若电池6的当前电量小于或等于该预设阈值,则执行低电量靠边策略。
需要说明的是,本实施例中,该预设阈值可以根据实际需求进行设定,例如10.5V。当电量检测模块检测到电池6的电量低于该预设阈值时,不切换第一驱动机构或第二驱动机构,停止第一驱动机构或第二驱动机构工作,实现该游泳池机器人低电量靠边。
本实施例中,可以通过电量检测模块实时检测电池6的当前电量,也可以在游泳池机器人动力不足、速度减慢时检测电池6的当前电量,然后将电池6的当前电量信息发送至MCU。
进一步地,本实施例中,入水检测模块包括设置于车身1底部的金属电极3。具体实施时,可在车身1的底部设置两根金属探针。
本实施例中,金属电极3具有良好的导电性,当游泳池机器人的车身1位于水中时,金属电极3导通,也就是说,当MCU检测到金属电极3导通时,即 说明游泳池机器人位于水中。
进一步地,本实施例中,车身状态检测模块包括设置于车身1内的IMU。
本实施例中,车身1的底部设置有进水口7,进水口7与第一排水口4相连通形成第一水道,与第二排水口5相连通形成第二水道,第一驱动机构包括设置于车身1内的第一驱动电机8、设置于第一水道内与第一驱动电机8连接的第一螺旋桨9,第二驱动机构包括设置于车身1内的第二驱动电机10、设置于第二水道内与第二驱动电机10连接的第二螺旋桨11,MCU分别与第一驱动电机8、第二驱动电机10连接。
当第一驱动电机8驱动第一螺旋桨9转动时,对应的第一排水口4向外排水,为游泳池机器人朝第一方向运动提供动力,当第二驱动电机10驱动第二螺旋桨11转动时,对应的第一排水口5向外排水,为游泳池机器人朝与第一方向相反的第二方向运动提供动力。
本实施例中,进水口7、第一排水口4和第二排水口5处均设置有单向阀门13。当开启第一排水口4或第二排水口5的排水功能时,进水口7、第一排水口4或第二排水口5对应位置的单向阀门13打开。
本实施例中,车身1的底部四角设置有四个车轮12,四个车轮12至少有两个不能转向,以保证游泳池机器人直线前进或后退。
本实施例中,车身1为弧形结构。
具体地,本实施例中,车身1的边缘为不规则弧形,通过车身1边缘与游泳池壁的碰撞改变机器人的运动方向。
本实施例中,MCU还用于判断游泳池机器人的车身1是否与游泳池侧板发生碰撞转向,若是,则切换第一驱动机构或第二驱动机构,以切换第一排水口4或第二排水口5排水,进而驱动游泳池机器人转向运动,朝向另一个方向运动。
本发明游泳池机器人的有益效果是:本发明通过上述技术方案,包括:车身,车身的底部设置有电源开关、入水检测模块,车身的顶部相对设置有第一排水口和第二排水口,车身内设置有电池、MCU、用于检测车身状态的车身状态检测模块、用于检测电池的电量的电量检测模块、用于驱动第一排水口排水的第一驱动机构、用于驱动第二排水口排水的第二驱动机构,电池、 电源开关、入水检测模块、车身状态检测模块、电量检测模块、第一驱动机构、第二驱动机构分别与MCU连接,在游泳池机器人开机后,只有当游泳池机器人位于水中后,在自身重力作用下沉入池底且处于静止状态时才开启第一驱动机构或第二驱动机构,以驱动第一排水口或第二排水口排水,使机器人在游泳池内前进实现吸污功能,降低了游泳池机器人的沉底时间,进而提升了清洁效率。
为实现上述目的,本发明还提出一种游泳池机器人控制方法,如图7所示,本发明游泳池机器人控制方法较佳实施例包括以下步骤:
步骤S10,在游泳池机器人开机后,获取游泳池机器人的车身状态。
本需要说明的是,本实施例中的执行主体可以为MCU,在游泳池机器人开机后,MCU获取所述游泳池机器人的车身状态。
其中,游泳池机器人的车身状态可以通过入水检测模块和车身状态检测模块检测得到。
作为一种实施方案,该入水检测模块为设置于车身底部的金属电极,车身状态检测模块为设置于车身内的IMU。通过该金属电极是否导通来判断车身是否位于水中,通过该IMU来检测车身是否沉底且处于静止状态。
步骤S20,根据车身状态判断是否满足启动吸污条件,启动吸污条件包括车身在水中,且处于静止状态。
MCU在获取到游泳池机器人的车身状态后,根据车身状态判断判断是否满足启动吸污条件,启动吸污条件为车身在水中,且处于静止状态。
本实施例考虑到目前的游泳池机器人大多是在车身设置排水口,在机器人开机后即同步启动电机,然后将机器人放入游泳池内,通过电机驱动排水口排水产生的反作用力为机器人提供动力,然而,这种方式由于在机器人下沉到游泳池池底之前就已经开启电机,机器人内有空气导致其下沉至池底的时间较长,甚至不能沉底,清洁效率下降,因此,本实施例在车身的底部设置有入水检测模块,在车身内设置有车身状态检测模块,通过入水检测模块检测游泳池机器人的车身是否在水中,通过车身状态检测模块检测游泳池机器人是否已经位于池底且处于静止状态。在游泳池机器人开机后,只有当游泳池机器人位于水中后,在自身重力作用下沉入池底且处于静止状态时才开 启第一驱动机构或第二驱动机构,以驱动第一排水口或第二排水口排水,使机器人在游泳池内前进实现吸污功能。
步骤S30,若车身状态满足启动吸污条件,则开启第一驱动机构或第二驱动机构,以驱动第一排水口或第二排水口排水,使机器人在游泳池内前进,实现吸污功能。
本实施例中,MCU在判断车身状态满足吸污条件,即车身位于水中,在自身重力作用下沉入池底且处于静止状态时才开启第一驱动机构或第二驱动机构,以驱动第一排水口或第二排水口排水,使机器人在游泳池内前进,实现吸污功能。
进一步地,本实施例中,该步骤S30,若车身状态满足启动吸污条件,则开启第一驱动机构或第二驱动机构,以驱动第一排水口或第二排水口排水,使机器人在游泳池内前进,实现吸污功能的步骤之后还包括:
步骤S40,判断车身是否与游泳池侧壁碰撞转向。
具体地,本实施例可以通过设置于车身内的IMU检测车身的运动速度、加速度方向,然后将运动速度、加速度方向发送至MCU,由MCU根据该运动速度和加速度方向判断车身是否与游泳池壁发生碰撞转向。
步骤S50,若是,则第一驱动机构或第二驱动机构,以切换第一排水口或第二排水口排水,进而驱动游泳池机器人转向运动。
若车身与游泳池侧壁发生碰撞转向,则切换第一驱动机构或第二驱动机构,以切换第一排水口或第二排水口排水,进而驱动游泳池机器人转向运动。
需要说明的是,为了提升该游泳池机器人的运动稳定性,在判断为车身与游泳池侧壁碰撞转向后,可在1s内切换第一驱动机构或第二驱动机构,换向继续前进,在5s内不触发同样的检测条件。
进一步地,本实施例中,该游泳池机器人控制方法还包括以下步骤:
获取电池的当前电量。
本实施例中,可以在游泳池机器人开机时,与步骤S10同步进行,通过电量检测模块实时检测电池的当前电量,也可以在游泳池机器人动力不足、速度减慢时检测电池的当前电量,然后将电池的当前电量信息发送至MCU。
将电池的当前电量与预设阈值相比对。
若电池的当前电量小于或等于所述预设阈值,则执行低电量靠边策略。
需要说明的是,本实施例中,该预设阈值可以根据实际需求进行设定,例如10.5V。当电量检测模块检测到电池的电量低于该预设阈值时,不切换第一驱动机构或第二驱动机构,停止第一驱动机构或第二驱动机构工作,实现该游泳池机器人低电量靠边。
本发明游泳池机器人控制方法的有益效果是:本发明通过上述技术方案,在游泳池机器人开机后,获取所述游泳池机器人的车身状态;根据所述车身状态判断是否满足启动吸污条件,所述启动吸污条件包括所述车身在水中,且位于池底处于静止状态;若所述车身状态满足启动吸污条件,则开启所述第一驱动机构或第二驱动机构,以驱动第一排水口或第二排水口排水,使所述机器人在游泳池内前进,在游泳池机器人开机后,只有当游泳池机器人位于水中后,在自身重力作用下沉入池底且处于静止状态时才开启第一驱动机构或第二驱动机构,以驱动第一排水口或第二排水口排水,使机器人在游泳池内前进实现吸污功能,降低了游泳池机器人的沉底时间,进而提升了清洁效率。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种游泳池机器人,其特征在于,包括:车身,所述车身的底部设置有电源开关、入水检测模块,所述车身的顶部相对设置有第一排水口和第二排水口,所述车身内设置有电池、MCU、用于检测车身状态的车身状态检测模块、用于检测所述电池的电量的电量检测模块、用于驱动所述第一排水口排水的第一驱动机构、用于驱动所述第二排水口排水的第二驱动机构,所述电池、电源开关、入水检测模块、车身状态检测模块、电量检测模块、第一驱动机构、第二驱动机构分别与所述MCU连接。
  2. 根据权利要求1所述的游泳池机器人,其特征在于,所述入水检测模块包括设置于所述车身底部的金属电极。
  3. 根据权利要求1所述的游泳池机器人,其特征在于,所述车身状态检测模块包括设置于所述车身内的IMU。
  4. 根据权利要求1所述的游泳池机器人,其特征在于,所述车身的底部设置有进水口,所述进水口与所述第一排水口相连通形成第一水道,与所述第二排水口相连通形成第二水道,所述第一驱动机构包括设置于所述车身内的第一驱动电机、设置于所述第一水道内与所述第一驱动电机连接的第一螺旋桨,所述第二驱动机构包括设置于所述车身内的第二驱动电机、设置于所述第二水道内与所述第二驱动电机连接的第二螺旋桨,所述MCU分别与所述第一驱动电机、第二驱动电机连接。
  5. 根据权利要求4所述的游泳池机器人,其特征在于,所述进水口、第一排水口和第二排水口均设置有单向阀门。
  6. 根据权利要求1所述的游泳池机器人,其特征在于,所述车身的底部四角设置有四个车轮,所述四个车轮至少有两个不能转向,以保证所述游泳池机器人直线前进或后退。
  7. 根据权利要求1至6任意一项所述的游泳池机器人,其特征在于,所述车身为弧形结构。
  8. 一种游泳池机器人控制方法,其特征在于,所述方法应用于如权利要求1至7任意一项所述的游泳池机器人,所述方法包括以下步骤:
    在游泳池机器人开机后,获取所述游泳池机器人的车身状态;
    根据所述车身状态判断是否满足启动吸污条件,所述启动吸污条件包括 所述车身在水中,且位于池底处于静止状态;
    若所述车身状态满足启动吸污条件,则开启所述第一驱动机构或第二驱动机构,以驱动第一排水口或第二排水口排水,使所述机器人在游泳池内前进。
  9. 根据权利要求8所述的游泳池机器人控制方法,其特征在于,所述若所述车身状态满足启动吸污条件,则开启所述第一排水口或第二排水口排水,驱动所述机器人在游泳池内前进的步骤之后还包括:
    判断所述车身是否与游泳池侧壁碰撞转向;
    若是,则切换所述第一驱动机构或第二驱动机构,以切换所述第一排水口或第二排水口排水,进而驱动所述游泳池机器人转向运动。
  10. 根据权利要求8所述的游泳池机器人控制方法,其特征在于,所述方法还包括:
    获取所述电池的当前电量;
    将所述电池的当前电量与预设阈值相比对;
    若所述电池的当前电量小于或等于所述预设阈值,则执行低电量靠边策略。
PCT/CN2022/130767 2022-09-28 2022-11-09 一种游泳池机器人及控制方法 WO2024065965A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/010,787 US20240272646A1 (en) 2022-09-28 2022-11-09 Swimming pool robot and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211188042.3A CN115680335A (zh) 2022-09-28 2022-09-28 一种游泳池机器人及控制方法
CN202211188042.3 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024065965A1 true WO2024065965A1 (zh) 2024-04-04

Family

ID=85064073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130767 WO2024065965A1 (zh) 2022-09-28 2022-11-09 一种游泳池机器人及控制方法

Country Status (4)

Country Link
US (1) US20240272646A1 (zh)
CN (1) CN115680335A (zh)
AU (1) AU2023200064A1 (zh)
WO (1) WO2024065965A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060053572A1 (en) * 2004-09-15 2006-03-16 Joseph Porat Pool cleaner with integral chlorine generator
CN101139007A (zh) * 2007-07-31 2008-03-12 北京理工大学 水下清洁机器人
CN211572763U (zh) * 2019-08-26 2020-09-25 东莞市奇趣机器人科技有限公司 一种游泳池清洗小车
CN212317589U (zh) * 2020-03-02 2021-01-08 南方 泳池潜浮清污机器人
CN113914679A (zh) * 2021-11-17 2022-01-11 辽东学院 游泳池潜浮式自动航行吸污装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060053572A1 (en) * 2004-09-15 2006-03-16 Joseph Porat Pool cleaner with integral chlorine generator
CN101139007A (zh) * 2007-07-31 2008-03-12 北京理工大学 水下清洁机器人
CN211572763U (zh) * 2019-08-26 2020-09-25 东莞市奇趣机器人科技有限公司 一种游泳池清洗小车
CN212317589U (zh) * 2020-03-02 2021-01-08 南方 泳池潜浮清污机器人
CN113914679A (zh) * 2021-11-17 2022-01-11 辽东学院 游泳池潜浮式自动航行吸污装置

Also Published As

Publication number Publication date
AU2023200064A1 (en) 2024-04-11
CN115680335A (zh) 2023-02-03
US20240272646A1 (en) 2024-08-15

Similar Documents

Publication Publication Date Title
US20240254795A1 (en) Pool cleaning robot and control method thereof
EP1547506A3 (en) Robot cleaner and operating method thereof
WO2024065965A1 (zh) 一种游泳池机器人及控制方法
CN118662048A (zh) 作业方法和可移动设备
JP2001260647A5 (zh)
JP2005240687A (ja) エンジン駆動型作業機
CN114557627A (zh) 一种清洁方法
CN219471677U (zh) 一种游泳池机器人
CN115363488A (zh) 一种洗地机控制系统、洗地机及控制方法
JP2007029328A (ja) 自走式掃除機およびそのプログラム
JP2009272087A (ja) 燃料電池車両
JPH06346889A (ja) 汚水・汚物ポンプの停止方法
JP2626383B2 (ja) 床面洗浄車におけるバキュームモータ出力制御装置
JP4426786B2 (ja) 排水分別装置
CN220487222U (zh) 一种可以检测被吸附的泳池清洁机器人
WO2024073906A1 (zh) 一种双排水管游泳池机器人及控制方法
JP2003116758A (ja) 自走式掃除機
CN220319223U (zh) 具有出水检测功能的泳池清洁机器人
US20240122429A1 (en) Electric robot
KR20060063426A (ko) 로봇청소기의 제어방법
JP2008154760A (ja) 自走式掃除機
JP3713735B2 (ja) 自走式掃除機
JP4692183B2 (ja) ディスポーザおよびディスポーザを備えた流し台
JP3046773B2 (ja) 負イオン発生装置の運転制御装置
JPH0516665A (ja) 車両用空気清浄装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18010787

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960563

Country of ref document: EP

Kind code of ref document: A1