WO2024065923A1 - 引导轮制备方法以及引导轮 - Google Patents

引导轮制备方法以及引导轮 Download PDF

Info

Publication number
WO2024065923A1
WO2024065923A1 PCT/CN2022/127612 CN2022127612W WO2024065923A1 WO 2024065923 A1 WO2024065923 A1 WO 2024065923A1 CN 2022127612 W CN2022127612 W CN 2022127612W WO 2024065923 A1 WO2024065923 A1 WO 2024065923A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
rim
guide wheel
blank
wheel rim
Prior art date
Application number
PCT/CN2022/127612
Other languages
English (en)
French (fr)
Inventor
王贝
徐轲
陈元锋
刘阳
刘彬
常艳红
黄爽
曹优武
Original Assignee
徐州徐工履带底盘有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州徐工履带底盘有限公司 filed Critical 徐州徐工履带底盘有限公司
Publication of WO2024065923A1 publication Critical patent/WO2024065923A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/14Arrangement, location, or adaptation of rollers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure is based on an application with CN application number 202211181804.7 and filing date September 27, 2022, and claims priority.
  • the disclosure of the CN application is hereby introduced as a whole into the present disclosure.
  • the present disclosure relates to the field of engineering machinery, and in particular to a guide wheel preparation method and a guide wheel.
  • the guide wheel is an important part of the crawler-type engineering machinery's traveling mechanism. It is mainly used to guide the crawler to rotate correctly, prevent it from running off the track, and relieve the impact of the crawler when it moves forward.
  • the guide wheel bears heavy loads and slides on the crawler surface. Therefore, the wheel body of the guide wheel is required to have high strength and impact resistance, and its surface should also have high hardness and wear resistance.
  • Induction hardening is achieved with the help of special equipment, and induction hardening hardens one tread of the guide wheel at a time.
  • the guide wheel has two treads and needs to be induction hardened twice.
  • the inventors have discovered that there are at least the following problems in the related art: in the process of preparing the guide wheel, the left and right treads are easily misaligned during the two induction quenching, the inner fillet position is difficult to heat up during induction heating, the depth of the hardened layer is shallow during quenching, there is a 10 to 30 mm long area in the circumferential direction of the rim that cannot be surface quenched, the hardness, strength and wear resistance are insufficient, and the overall induction quenching requires special production equipment, and the heat treatment cost is high.
  • the present disclosure provides a guide wheel preparation method and a guide wheel, so as to obtain a guide wheel with a more uniform hardened layer thickness.
  • Some embodiments of the present disclosure provide a method for preparing a guide wheel, comprising the following steps:
  • the blank with the punching hole is subjected to ring rolling to obtain a wheel rim blank; wherein the temperature of the wheel rim blank after the ring rolling is 850° C. to 900° C.;
  • the wheel rim blank is subjected to overall quenching.
  • the temperature of the wheel rim blank is controlled to be 60° C. to 100° C.
  • the overall quenching is performed by the following steps:
  • a water spraying component is used to spray water on the outer surface of the wheel rim blank.
  • the duration of spraying water on the outer surface of the wheel rim blank is 2 to 2.5 minutes.
  • the water flow rate for spraying water on the outer surface of the wheel rim blank is 30 to 40 cubic meters per hour.
  • the temperature of the sprayed water is 15-40°C.
  • the guide wheel preparation method further includes the following steps: calibrating the wheel rim after overall quenching so that the roundness of the wheel rim meets the set requirements.
  • the guide wheel preparation method further includes the following steps: tempering the calibrated rim: heating the rim to 190° C. to 210° C. and keeping the temperature for 2.5 to 3.5 hours.
  • the guide wheel preparation method further includes the following steps: shot blasting the rim after tempering to remove the oxide layer on the surface of the rim.
  • the guide wheel preparation method further comprises the following steps:
  • the wheel rim is welded and fixed to the wheel hub and the web through the welding groove to obtain a wheel body;
  • the wheel body is finely processed to realize the assembly of the wheel body, the wheel axle and the wheel seat, so as to obtain a semi-finished guide wheel.
  • the welding gun is stationary and the wheel rim rotates at a constant speed according to a set speed.
  • water is sprayed on the welding position to cool and protect the rim, the hub and the web.
  • the wheel hub is obtained by the following method: the wheel hub is obtained by closed forging and mist cooling treatment after forging.
  • the guide wheel preparation method further includes the following steps: coating the guide wheel semi-finished product to obtain the guide wheel.
  • An embodiment of the present disclosure also provides a guide wheel, which is obtained by the guide wheel preparation method provided by any technical solution of the present disclosure, wherein the surface of the rim of the guide wheel has a hardened layer with a thickness of not less than 4 mm, and the surface hardness of the hardened layer is 50 to 60 HRC.
  • the thickness of the hardened layer at various locations of the guide wheel is uniform.
  • the guide wheel preparation method provided by the above technical solution, after the wheel rim blank is obtained by ring rolling, the high temperature of the wheel rim blank is directly used for overall quenching, and the wheel rim is continuously cooled until the temperature drops to 60°C to 100°C.
  • the overall quenching utilizes the waste heat of the ring rolling process, and there is no need to heat the wheel rim again.
  • By spraying the wheel rim as a whole a fully hardened wheel rim is obtained through deformation strengthening and phase transformation strengthening.
  • the heat treatment process is simple and the traditional induction quenching process is omitted. Since this method is to perform overall quenching on the surface of each axial position of the wheel rim blank at the same time, there is no need for multiple quenching in different parts.
  • the outer circle of the wheel rim as a whole obtains a high-hardness, high-wear-resistant martensitic structure.
  • the depth of the hardened layer obtained by this process is deeper than that of the existing induction quenching process. Compared with the related technology, the hardened layer is deeper and the product has better wear resistance.
  • FIG1 is a schematic diagram of overall quenching of a rim in a guide wheel preparation method provided in an embodiment of the present disclosure.
  • FIG2 is a schematic diagram of the guide wheel preparation method provided in an embodiment of the present disclosure for performing welding cut processing on the wheel rim.
  • FIG3 is a schematic diagram of the welding of the rim, the hub and the web of the guide wheel preparation method provided in the embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of the guide wheel structure provided in an embodiment of the present disclosure.
  • FIG5 is a schematic flow chart of a guide wheel preparation method provided in an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of the overall quenching process in the guide wheel preparation method provided in an embodiment of the present disclosure.
  • Figure numerals 1. rim; 2. rotation positioning device; 3. water spray component; 4. hub; 5. web; 6. welding gun; 7. water sprayer; 11. hardened layer; 12. welding groove; 10. guide wheel; 101. punching; 102. blank; 20. wheel body; 30. wheel axle; 40. wheel seat.
  • the guide wheel is an important part of the crawler-type engineering machinery walking mechanism. It is mainly used to guide the crawler to rotate correctly and prevent the crawler from running off the track. The guide wheel also plays a role in alleviating the impact of the crawler when it moves forward.
  • the guide wheel includes a wheel body, a wheel axle and a wheel seat, which are assembled together.
  • the wheel body includes an annular wheel rim 1 and a wheel hub 4 and a web 5 welded and fixed to the wheel rim 1.
  • the wheel rim 1 is annular, and its surface hardness directly determines the surface hardness of the guide wheel. Therefore, improving the surface hardness of the wheel rim 1 has a direct impact on the performance of the guide wheel.
  • some embodiments of the present disclosure provide a method for preparing a guide wheel, comprising the following steps:
  • Step S100 rolling the blank 102 with the punching hole 101 to obtain a ring-shaped wheel rim 1 blank; wherein the temperature of the wheel rim 1 blank after the ring rolling process is 850°C to 900°C.
  • step S100 continuous casting blanks are used for blanking.
  • the continuous casting blanks are products obtained by casting molten steel produced in a steelmaking furnace through a continuous casting machine.
  • the continuous casting blanks are then heated to 1200 ⁇ 20°C, and then roughened and punched. After punching, blanks 102 with punched holes 101 are obtained.
  • the ring rolling machine is an existing equipment, which is used to roll the blank with punching holes to obtain the ring-shaped wheel rim 1 blank.
  • the temperature of the processed parts is high.
  • the temperature of the wheel rim 1 blank is 850°C ⁇ 900°C.
  • the technical solution of the embodiment of the present disclosure utilizes the high temperature of the wheel rim 1 blank to directly perform step S200.
  • the wheel rim 1 blank is kept at 850°C ⁇ 900°C, so that the grain size of the wheel rim 1 blank can better meet the requirements, which is conducive to obtaining a uniform and consistent hardened layer 11 and metallographic structure during the overall quenching of step S200.
  • Step S200 the wheel rim 1 blank is subjected to overall quenching.
  • the temperature of the wheel rim 1 blank is controlled to be 60°C to 100°C.
  • Step S200 utilizes the residual heat of step S100, and there is no need to heat the wheel rim 1 again.
  • the material of the wheel 1 is a low hardenability material such as 35 steel or 35Mn.
  • the quenching medium sprayed during the overall quenching process is, for example, tap water.
  • the water temperature is controlled to be in the range of 15 to 40°C, specifically, 15°C, 20°C, 25°C, 30°C, 35°C, and 40°C.
  • Overall quenching refers to quenching the entire outer surface of the wheel rim 1 blank at the same time, rather than using induction quenching. Induction quenching can only quench one axial end of the wheel rim 1 at a time, and the entire wheel rim 1 must be quenched twice to complete the quenching of the entire wheel rim 1.
  • step S200 of the present disclosure can simultaneously quench the surface of each position of the axial direction of the wheel rim 1 blank, without the need for multiple quenching of each position, and the outer circle of the wheel rim 1 as a whole obtains a high-hardness, high-wear-resistant martensitic structure, and the depth of the hardened layer 11 obtained by this process is deeper than that of the existing induction quenching process. The deeper the hardened layer 11, the better the wear resistance of the product.
  • the above-mentioned technical solution disclosed in the present invention has a compact process flow, does not require the investment of induction heating equipment, has a simple heat treatment process, has high production efficiency and low cost, and can obtain better depth and uniformity of the hardened layer. At the same time, it can overcome the problem of wheel deformation caused by induction heat treatment.
  • the induction hardening process is adopted, the inner fillet position of the wheel rim 1 is affected by the workpiece structure, the heating temperature rise speed is slow, the heating depth is shallow, the hardened layer 11 is difficult to control, and the fluctuation is large. Therefore, if the induction hardening process is adopted, the two outer circles of the wheel rim 1 need to be heat treated, and the induction hardening cannot be completed at one time. The outer circles on both sides need to be induction hardened separately. The induction hardening stress easily causes the hub 4 at the center of the wheel body to be stressed and offset, and cold correction treatment is required.
  • the technical solution disclosed in the present invention quenches each position of the outer surface of the wheel rim 1 at one time, even the two outer circles A and B of the wheel rim 1, as shown in Figure 1, can also be effectively quenched, and the hardened layer 11 finally obtained has a uniform thickness and is evenly covered on the surface of the wheel rim 1.
  • the overall quenching is performed using the following steps.
  • Step S201 install the wheel rim 1 blank to the rotation positioning device 2, and the rotation positioning device 2 is constructed to drive the wheel rim 1 blank to rotate.
  • the wheel rim 1 blank obtained in step S100 is installed in the rotation positioning device 2, and the rotation positioning device 2 drives the wheel rim 1 blank to rotate and lift around the central axis of the wheel rim 1 blank, so that the position of the wheel rim 1 blank corresponds to the water spraying position of the water spraying component 3 in step S202.
  • the rotation positioning device 2 for example, includes a lifting frame and a fixture installed on the lifting frame. The wheel rim 1 blank is fixed by the fixture, and the lifting frame is automatically lifted and lowered.
  • the lifting frame for example, adopts a telescopic mechanism to realize the lifting and lowering of the fixture, or adopts components such as a linear motor to realize the lifting and lowering of the fixture.
  • the lifting frame itself can be lifted or lowered, and as long as the height of the fixture can be changed, the wheel rim 1 blank installed on the fixture can also be lifted and lowered accordingly.
  • Step S202 use the water spraying component 3 to spray water on the outer surface of the wheel rim 1 blank.
  • the water spraying component 3 is constructed in an annular shape, and the wheel rim 1 blank to be quenched is located inside the water spraying component 3.
  • a plurality of water spraying holes are arranged around the circumference of the water spraying component 3, and cooling water is sprayed through the water spraying holes to the wheel rim 1 blank located in the annular circle of the water spraying component 3.
  • FIG. 1 illustrates multiple groups of water flows sprayed from the water spraying holes of the water spraying component 3. As can be seen from FIG. 1, the water sprayed from the water spraying holes acts on the outer surface of the wheel rim 1 blank at various positions on the axial direction, so that the overall quenching of the wheel rim 1 blank is achieved.
  • the water spray holes are divided into three groups, namely, the top hole group, the middle hole group and the bottom hole group.
  • the center axis of the hole in the middle hole group is along the horizontal direction, and the center axes of the holes in the top hole group and the bottom hole group are arranged obliquely.
  • the center axis of the hole in the top hole group and the center axis of the hole in the bottom hole group are arranged symmetrically relative to the center axis of the hole in the middle hole group, and both have an angle ⁇ of 8° to 12° with the center axis of the hole in the middle hole group.
  • the specific angle ⁇ is 8°, 9°, 10°, 11°, and 12°, so that the inner fillet of the wheel rim 1 can be fully cooled.
  • the duration of water spraying on the outer surface of the wheel rim 1 blank is 2 to 2.5 minutes, specifically 2 minutes, 2.1 minutes, 2.2 minutes, 2.4 minutes, and 2.5 minutes.
  • the heat treatment of the wheel rim 1 blank with the above water spraying duration can make the temperature of the wheel rim 1 blank quickly reach the required temperature value.
  • the quenching time is greatly shortened, so that the quenching efficiency of the guide wheel 10 is greatly improved, and the preparation efficiency of the guide wheel 10 is greatly improved.
  • the water flow rate of spraying water on the outer surface of the wheel rim 1 blank is 30-40 cubic meters per hour.
  • the rotating wheel rim 1 blank is subjected to water spray quenching, and the hardened layer 11 finally obtained is shown in FIG. 1 , and the hardened layer 11 evenly covers the outer surface of the wheel rim 1 blank.
  • the wheel rim 1 is quenched by the residual heat after hot forming, and the outer cylindrical surface of the wheel rim 1 is completely spray-hardened by combining the deformation and phase change strengthening process.
  • the angles of the water spray holes on the upper and lower wheel rims 1 are designed to be inclined, so that the inner fillet of the wheel rim 1 can be fully cooled, and the depth of the hardened layer 11 on the surface of the wheel rim 1 and the hardness of the matrix are increased, so that the wheel body has higher overall strength and wear resistance.
  • the guide wheel preparation method further includes step S300: correcting the rim 1 after overall quenching so that the roundness of the rim 1 meets the set requirements. After overall quenching, the rim 1 may be deformed into an elliptical shape, and the rim 1 is corrected so that the roundness of the rim 1 meets the product requirements.
  • the guide wheel adopts the induction quenching process, and the wheel body of the guide wheel is a thin-walled welded part.
  • the stress of induction quenching will cause the hub 4 to be offset in the axial direction, so cold extrusion correction is required.
  • the technical solution of the embodiment of the present disclosure no longer requires the induction quenching process, and naturally will not cause the problem of axial offset of the hub 4, so cold extrusion correction is no longer required.
  • the roundness correction process performed on the wheel rim 1 in some embodiments of the present disclosure is not cold extrusion correction, and the roundness correction process is simple and has high correction efficiency.
  • the guide wheel preparation method provided by the above technical solution has fewer process steps and reliable process quality, which improves the product quality of the guide wheel obtained by processing, realizes improvement of the existing process, omits the process of cold extrusion correction before machining, greatly improves production efficiency and reduces production costs.
  • the guide wheel preparation method further includes the following step S400: tempering the corrected wheel rim 1: heating the wheel rim 1 to 190°C to 210°C and keeping it warm for 2.5 to 3.5 hours. Through the tempering treatment, the internal stress generated during the structural transformation and correction of the wheel rim 1 during the overall spray quenching is released, which plays a role in stabilizing the structure and size, and adjusts the quenching hardness, so that the hardness of the hardened layer 11 is better.
  • the guide wheel preparation method further includes step S500, performing shot blasting on the tempered wheel rim 1 to remove the oxide layer on the surface of the wheel rim 1. Shot blasting is performed to clean the oxide layer on the surface of the workpiece. After the wheel rim 1 is spray quenched as a whole, an oxide layer will be generated on the surface, which will affect the coating adhesion of the wheel rim 1, so shot blasting is required. Shot blasting effectively removes the oxide layer on the surface of the wheel rim 1, so that the wheel rim 1 can be painted more effectively in subsequent steps.
  • the guide wheel preparation method further includes the following steps: Step S600, machining the wheel rim 1 so that the shape of the welding groove 12 meets the welding requirements.
  • the welding groove 12 is the wheel rim 1.
  • the wheel rim 1 is welded and fixed with the two hubs 4 and the two webs 5.
  • the weld of the wheel rim 1 needs to be machined, such as by turning, to remove the oxide layer on the surface of the welding groove.
  • the wheel hub 4 is forged by closed forging and mist-cooled after forging, which effectively improves the hardness of the inner hole of the wheel hub 4.
  • the hardness of the inner hole of the wheel hub 4 is above 200 HBW.
  • the wheel hub 4 can reduce the processing allowance by closed forging molding process, and the wheel hub 4 is rapidly cooled by mist-cooling after forging, which improves the hardness of the wheel hub 4 matrix and prolongs the service life of the wheel body.
  • Step 700 the wheel rim 1 , the wheel hub 4 and the web 5 are welded and fixed through the welding groove 12 to obtain the wheel body 20 .
  • the wheel rim 1 is welded to the wheel hub 4 and the web 5 by ring seal welding and gas shield welding to obtain the wheel body.
  • the welding gun 6 is kept in place, the wheel rim 1 rotates at a constant speed at a set speed, and the water sprayer 7 is used to locally spray water on the outer surface of the welding area of the wheel rim 1 to prevent the wheel rim 1 from being locally annealed due to the heat transfer of welding, so that the hardness is not reduced, so that the heat treatment process of the wheel rim 1 can be adjusted to be performed before the welding process, so that the wheel body has high hardness after welding.
  • Adjusting the heat treatment process of the wheel rim 1 to be performed before the welding process can also reduce the axial deviation of the wheel hub 4 caused by the stress of the two quenchings when the wheel body undergoes two external cylindrical induction quenchings, and the misalignment of the wheel hub 4 and the wheel rim 1, so as to achieve the cold extrusion correction before machining, and reduce or even avoid the influence of the cold extrusion correction on the weld quality.
  • Step S800 Finish machining the wheel body 20 to achieve assembly of the wheel body with the wheel axle and the wheel seat to obtain a semi-finished guide wheel.
  • the welded wheel body will be assembled with the wheel axle and the wheel seat later, so the structure required for assembly needs to be machined.
  • the guide wheel preparation method further includes step S900 , coating the guide wheel semi-finished product to obtain the guide wheel 10 .
  • a water spray gun can be used to spray water on the welding position to reduce or eliminate the heat generated by welding and achieve cooling protection so that the hardness of the surface hardened layer 11 of the rim 1 is not reduced.
  • the guide wheel 10 obtained by the guide wheel preparation method provided by any technical solution of the present disclosure has a hardened layer 11 depth of ⁇ 4mm at the maximum outer circle position of the two treads of the rim 1 and a surface hardness of 50-60HRC.
  • the guide wheel 10 has higher hardness and better wear resistance.
  • Some embodiments of the present disclosure also provide a guide wheel 10, the surface of the rim 1 of the guide wheel 10 has a hardened layer 11 with a thickness of not less than 4 mm.
  • the depth of the hardened layer 11 at the maximum outer circle position of the two treads of the rim 1 is ⁇ 4 mm, and the surface hardness is 50-60 HRC.
  • the guide wheel 10 provided by some embodiments of the present invention has higher hardness and better wear resistance.
  • the thickness of the hardened layer 11 at various locations of the guide wheel 10 is uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种引导轮(10)制备方法,包括以下步骤:将带有冲孔(101)的胚件(102)进行碾环加工得到轮圈(1)毛坯,碾环加工后轮圈毛坯的温度为850℃~900℃;对轮圈毛坯进行整体淬火,在整体淬火结束时,控制轮圈毛坯的温度为60℃~100℃。以及由该方法制备的引导轮。该方法对轮圈进行整体淬火,不需要分部位多次淬火,轮圈外圆整体获得了高硬度、高耐磨的马氏体组织,获得的硬化层深度较已有的感应淬火工艺更深,产品耐磨性更好。

Description

引导轮制备方法以及引导轮
相关申请的交叉引用
本公开是以CN申请号为202211181804.7,申请日为2022年09月27日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及工程机械领域,具体涉及一种引导轮制备方法以及引导轮。
背景技术
引导轮是履带式工程机械行走机构的重要零部件,主要用来引导履带正确绕转,防止其跑偏和越轨,缓和履带前进时受到的冲击。引导轮承受重载,在履带表面滑动,因此要求引导轮的轮体有较高的强度和耐冲击性,其表面还应具有很高的硬度和耐磨性。
传统制备引导轮的方法:下料、碾环、粗加工、焊接、感应淬火、回火、校正、精加工、装配。感应淬火借助专门的设备实现,感应淬火一次对引导轮的一个踏面淬火。引导轮包括两个踏面,要进行两次感应淬火。
发明人发现,相关技术中至少存在下述问题:在引导轮制备的过程中,左右踏面两次感应淬火时,容易产生轮毂与轮圈不对中,内圆角位置感应加热时升温困难,淬火时硬化层深度偏浅,轮圈圆周方向存在10~30mm长的区域无法进行表面淬火,硬度、强度及耐磨性不足,且整体感应淬火需配置专用生产设备,热处理成本高。
发明内容
本公开提出一种引导轮制备方法以及引导轮,用以得到硬化层厚度更加均匀的引导轮。
本公开一些实施例提供了一种引导轮制备方法,包括以下步骤:
将带有冲孔的胚件进行碾环加工得到轮圈毛坯;其中,碾环加工后所述轮圈毛坯的温度为850℃~900℃;
对所述轮圈毛坯进行整体淬火,在整体淬火结束时,控制所述轮圈毛坯的温度为60℃~100℃。
在一些实施例中,采用以下步骤进行整体淬火:
将所述轮圈毛坯安装至旋转定位装置,所述旋转定位装置被构造为带动所述轮圈毛坯回转;
采用喷水部件对所述轮圈毛坯的外表面喷水。
在一些实施例中,对所述轮圈毛坯的外表面喷水的时长为2~2.5分钟。
在一些实施例中,对所述轮圈毛坯的外表面喷水的水流量为:30~40立方米/小时。
在一些实施例中,所喷的水的温度为15~40℃。
在一些实施例中,引导轮制备方法还包括以下步骤:对整体淬火后的所述轮圈进行校正,以使得所述轮圈的圆度达到设定要求。
在一些实施例中,引导轮制备方法还包括以下步骤:对校正后的所述轮圈进行回火:将所述轮圈加热至190℃~210℃,并保温2.5~3.5小时。
在一些实施例中,引导轮制备方法还包括以下步骤:对回火后的所述轮圈进行抛丸处理,以清除所述轮圈表面的氧化层。
在一些实施例中,引导轮制备方法还包括以下步骤:
对所述轮圈的焊接坡口进行机加工;
通过所述焊接坡口将所述轮圈与轮毂、腹板焊接固定得到轮体;
对所述轮体进行精加工,以实现所述轮体与轮轴、轮座的装配,以得到引导轮半成品。
在一些实施例中,在将所述轮圈与轮毂、腹板焊接过程中,焊枪的位置是静止的,所述轮圈按照设定速度匀速转动。
在一些实施例中,在将所述轮圈与轮毂、腹板焊接过程中,对焊接位置喷水以冷却保护所述轮圈、所述轮毂和所述腹板。
在一些实施例中,所述轮毂采用以下方法得到:采用闭式锻造、锻造后雾冷处理得到所述轮毂。
在一些实施例中,引导轮制备方法还包括以下步骤:对所述引导轮半成品进行涂装,以得到引导轮。
本公开实施例还提供一种引导轮,采用本公开任一技术方案所提供的引导轮制备方法得到,所述引导轮的轮圈的表面具有厚度不小于4mm的硬化层,且所述硬化层的表面硬度为50~60HRC。
在一些实施例中,所述引导轮的各个部位的所述硬化层的厚度均匀。
上述技术方案提供的引导轮制备方法,碾环加工得到轮圈毛坯后,直接利用轮圈毛坯的高温进行整体淬火,轮圈连续冷却,直至温度降为60℃~100℃。该方法中,整体淬火利用的是碾环加工的余热,无需再加热轮圈。通过对轮圈整体喷淋处理,通过形变强化和相变强化,获得全部硬化处理的轮圈,热处理工艺简单,省去传统感应淬火工艺。由于该方法是同时对轮圈毛坯的轴向的各个位置的表面进行整体淬火,不需要分部位多次淬火,轮圈外圆整体获得高硬度、高耐磨的马氏体组织,此工艺获得硬化层深度较已有的感应淬火工艺更深。相较于相关技术,硬化层更深,产品耐磨性更好。
附图说明
图1为本公开实施例提供的引导轮制备方法对轮圈进行整体淬火的示意图。
图2为本公开实施例提供的引导轮制备方法对轮圈进行焊接剖口加工的示意图。
图3为本公开实施例提供的引导轮制备方法的轮圈、轮毂、腹板焊接的示意图。
图4为本公开实施例提供的引导轮结构示意图。
图5为本公开实施例提供的引导轮制备方法的流程示意图。
图6为本公开实施例提供的引导轮制备方法中整体淬火的流程示意图。
附图标记:1、轮圈;2、旋转定位装置;3、喷水部件;4、轮毂;5、腹板;6、焊枪;7、喷水器;11、硬化层;12、焊接坡口;10、引导轮;101、冲孔;102、胚件;20、轮体;30、轮轴;40、轮座。
具体实施方式
下面结合图1~图6对本公开提供的技术方案进行更为详细的阐述。
引导轮是履带式工程机械行走机构的重要零部件,主要用来引导履带正确绕转,防止履带跑偏和越轨,引导轮还起到缓和履带前进时受到的冲击的作用。引导轮包括轮体、轮轴和轮座,三者装配在一起。轮体包括环形的轮圈1以及与轮圈1焊接固定的轮毂4、腹板5。轮圈1是环形的,其表面的硬度直接决定了引导轮的表面硬度,所以,提高轮圈1的表面硬度对引导轮的性能有直接的影响。
参见图1至图5,本公开一些实施例提供一种引导轮制备方法,包括以下步骤:
步骤S100、将带有冲孔101的胚件102进行碾环加工得到环形的轮圈1毛坯;其 中,碾环加工后的轮圈1毛坯的温度为850℃~900℃。
在上述的步骤S100中,采用连铸坯下料。连铸坯是炼钢炉炼成的钢水经过连铸机铸造后得到的产品。然后将连铸坯加热至1200±20℃,随后进行墩粗、冲孔。冲孔后得到带有冲孔101的胚件102。
碾环机是一种已有设备,用于对带有冲孔的胚件进行碾环,以得到环形的轮圈1毛坯。在碾环加工过程中,被加工的零件温度高。碾环加工完成后,轮圈1毛坯的温度为850℃~900℃。本公开实施例的技术方案,利用轮圈1毛坯的高温,直接进行步骤S200。将轮圈1毛坯保持在850℃~900℃,使得轮圈1毛坯晶粒度更加满足要求,有利于进行步骤S200的整体淬火时获得均匀一致的硬化层11和金相组织。
步骤S200、对轮圈1毛坯进行整体淬火,在整体淬火结束时,控制轮圈1毛坯的温度为60℃~100℃。
在整体淬火过程中,轮圈1连续冷却,直至温度降为60℃~100℃。步骤S200利用的是步骤S100的余热,无需再加热轮圈1。通过对轮圈1整体喷淋处理,通过锻造形变和相变强化,获得全部硬化处理的轮圈1,热处理工艺简单,省去传统感应淬火工艺。
轮圈1的材质为35钢或35Mn等低淬透性材料。整体淬火过程中所喷的淬火介质比如为自来水。同时为使得热处理工艺稳定性,控制水温范围为15~40℃,具体比如为15℃、20℃、25℃、30℃、35℃、40℃。
整体淬火是指同时对轮圈1毛坯的整个外表面进行淬火,而不是采用感应淬火的方式。感应淬火一次只能对轮圈1的轴向一端进行淬火,整个轮圈1要进行两次淬火才能完成整个轮圈1的淬火。
而本公开步骤S200所采用的方式,可以同时对轮圈1毛坯的轴向的各个位置的表面进行淬火,不需要分部位多次淬火,轮圈1外圆整体获得高硬度、高耐磨的马氏体组织,此工艺获得硬化层11深度较已有的感应淬火工艺更深。硬化层11越深,产品耐磨性越好。
再一方面,相较于传统的感应淬火工艺,本公开的上述技术方案,工艺流程紧凑,无需投入感应加热设备,热处理工艺简单,生产效率高成本低,获得硬化层深度和均匀性更优,同时可以克服感应热处理导致的轮体变形问题。
另一方面,如果采用感应淬火工艺,轮圈1的内圆角位置,受工件结构影响,加热升温速度慢,加热深度浅,硬化层11控制困难,波动较大。所以如果采用感应淬火 工艺,轮圈1的两个外圆均需热处理,一次感应淬火无法完成,需分别进行两侧外圆感应淬火,感应淬火应力容易导致轮体中心处的轮毂4受力,产生偏移,需冷校正处理。而本公开的技术方案则一次性对轮圈1外表面的各个位置进行淬火,即便是轮圈1的两个外圆处A、B,参见图1所示,也能有效淬火,最终得到的硬化层11厚度均匀,且均匀覆盖于轮圈1表面。
参见图1和图6,在一些实施例中,采用以下步骤进行整体淬火。
步骤S201、将轮圈1毛坯安装至旋转定位装置2,旋转定位装置2被构造为带动轮圈1毛坯回转。将步骤S100得到的轮圈1毛坯安装至旋转定位装置2,旋转定位装置2带动轮圈1毛坯绕着轮圈1毛坯的中轴线回转、升降,以使得轮圈1毛坯的位置和步骤S202中喷水部件3的喷水位置对应。旋转定位装置2比如包括升降架以及安装于升降架的夹具。轮圈1毛坯由夹具固定,由升降架实现自动升降。升降架比如采用伸缩机构实现夹具的升降,或者采用直线电机等部件实现夹具的升降。升降架自身可以升降、不可以升降均可,只要夹具的高度可以改变,那么安装于夹具的轮圈1毛坯亦可随之升降。
步骤S202、采用喷水部件3对轮圈1毛坯的外表面喷水。喷水部件3被构造为环形的,待淬火的轮圈1毛坯位于喷水部件3的内部。喷水部件3的周向一圈设置有多个喷水孔,冷却水经由喷水孔喷出至位于喷水部件3的环形圈内的轮圈1毛坯。图1中示意了喷水部件3的喷水孔喷出的多组水流,从图1可以看出,喷水孔喷出的水作用于轮圈1毛坯的外表面轴向的各个位置的外表面,所以实现了对轮圈1毛坯的整体淬火。
以轮圈1的中轴线沿着竖直方向为例,沿着喷水部件3的轴向方向,喷水孔分为三组,顶部孔组、中间孔组以及底部孔组。中间孔组的孔中轴线沿着水平方向,顶部孔组和底部孔组的各个孔的孔中轴线均倾斜布置,具体地,顶部孔组的孔中轴线和底部孔组的孔中轴线相对于中间孔组的孔中轴线对称布置,且均与中间孔组的孔中轴线有8°~12°的夹角α,夹角α具体比如8°、9°、10°、11°、12°,以使得轮圈1的内圆角充分冷却。
在一些实施例中,对轮圈1毛坯的外表面喷水的时长为2~2.5分钟,具体比如为2分钟、2.1分钟、2.2分钟、2.4分钟、2.5分钟。采用上述喷水时长对轮圈1毛坯进行热处理,可以使得轮圈1毛坯的温度快速达到所要求的温度值。并且,大大缩短了淬火时间,使得引导轮10的淬火效率大大提高,大大提高了引导轮10的制备效率。
在一些实施例中,对轮圈1毛坯的外表面喷水的水流量为:30~40立方米/小时。采用上述水流量,对旋转转动的轮圈1毛坯进行喷水淬火,最终得到的硬化层11如图1所示,硬化层11均匀覆盖于轮圈1毛坯的外表面。
上述技术方案,轮圈1采用热成型后余热进行淬火处理,结合形变及相变强化工艺,实现轮圈1外圆表面全部喷淋硬化处理,上下轮圈1面喷水孔角度采用倾斜设计,使得轮圈1的内圆角充分冷却,提升轮圈1表面硬化层11深度和基体硬度,使轮体具有较高的整体强度和耐磨性。
在一些实施例中,引导轮制备方法还包括步骤S300:对整体淬火后的轮圈1进行校正,以使得轮圈1的圆度达到设定要求。整体淬火后,轮圈1可能会变形至椭圆形,对轮圈1进行校正,使得轮圈1的圆度满足产品要求。
由于相关技术中,引导轮采用感应淬火工艺,引导轮的轮体为薄壁焊接件,其轮圈经过两次感应淬火后,感应淬火的应力会导致轮毂轴向方向产生偏移,所以需要进行冷挤压校正。本公开实施例的技术方案,不再需要感应淬火工艺,也自然不会产生轮毂4轴向方向产生偏移的问题,所以不再需要进行冷挤压校正。本公开一些实施例对轮圈1进行的圆度校正工艺不是冷挤压校正,圆度校正工艺简单,校正效率高。
上述技术方案提供的引导轮制备方法,工艺步骤少,且工艺质量可靠,提升了加工得到的引导轮的产品质量,实现对现有工艺的改善,省略了机加工前冷挤压校正的工序,极大地提高了生产效率,降低了生产成本。
在一些实施例中,引导轮制备方法还包括以下步骤S400:对校正后的轮圈1进行回火:将轮圈1加热至190℃~210℃,并保温2.5~3.5小时。通过回火处理,释放掉轮圈1整体喷淋淬火时组织转变和校正时产生的内应力,起到稳定组织和尺寸的作用,且调整了淬火硬度,使得硬化层11的硬度更优。
在一些实施例中,引导轮制备方法还包括步骤S500、对回火后的轮圈1进行抛丸处理,以清除轮圈1表面的氧化层。进行抛丸处理,清理工件表面氧化层。轮圈1整体喷淋淬火后,表面会产生氧化层,影响轮圈1涂装附着力,因此需要抛丸处理。抛丸处理有效清除了轮圈1表面的氧化层,使得后续步骤中可以更加有效地进行轮圈1涂装。
在一些实施例中,引导轮制备方法还包括以下步骤:步骤S600、对轮圈1进行机加工,以使得焊接坡口12形状满足焊接要求。焊接坡口12是轮圈1,在后续的步骤中,轮圈1与两个轮毂4、两个腹板5焊接固定,为了使得轮圈1、两个轮毂4、两个 腹板5在焊接前能够更加精准地定位,需要对轮圈1的焊缝进行机加工,具体比如采用车削加工,以去除焊接剖口表面的氧化层。
轮毂4采用闭式锻造,锻造后雾冷处理,有效提高轮毂4内孔硬度。轮毂4内孔硬度在200HBW以上。轮毂4通过闭式锻造成型工艺,可以减少加工余量,轮毂4锻造后采用雾冷快速降温处理,提高轮毂4基体硬度,且可以延长轮体使用寿命。
步骤700、通过焊接坡口12将轮圈1与轮毂4、腹板5焊接固定得到轮体20。
具体采用环封焊接、气保焊接的方式将轮圈1与轮毂4、腹板5焊接以得到轮体。在焊接过程中,焊枪6的位置不动,轮圈1按设定速度匀速转动,同时采用喷水器7对轮圈1焊接区域外表面进行局部喷水冷却,以防止因焊接热量传递致使轮圈1产生局部退火,使得硬度不降低,从而可以将轮圈1热处理工艺调整至焊接工艺前进行,使得焊接后轮体具有高硬度。将轮圈1热处理工艺调整至焊接工艺前进行,还可减小轮体进行两次外圆感应淬火时,因两次淬火应力导致的轮毂4轴向方向偏移,轮毂4与轮圈1错位,实现机加工前免冷挤压校正,降低甚至避免冷挤压校正对焊缝质量的影响。
步骤S800、对轮体20进行精加工,以实现轮体与轮轴、轮座的装配,以得到引导轮半成品。焊接得到的轮体后续要与轮轴、轮座装配,所以需要加工出装配所需要的结构。
在一些实施例中,引导轮制备方法还包括步骤S900、对引导轮半成品进行涂装,以得到引导轮10。
参见图3,在将轮圈1与腹板5焊接过程中,对焊接位置喷水以冷却保护轮圈1和腹板5。可以采用喷水枪对焊接位置喷水,以降低或者消除焊接产生的热量,实现冷却保护,以使得轮圈1表面硬化层11的硬度不降低。
采用本公开任一技术方案所提供的引导轮制备方法得到的引导轮10,轮圈1的两个踏面轮圈1最大外圆位置硬化层11深度均≥4mm,表面硬度为50~60HRC,该引导轮10硬度更高、耐磨性更优。
本公开一些实施例还提供一种引导轮10,引导轮10的轮圈1的表面具有厚度不小于4mm的硬化层11。轮圈1的两个踏面轮圈1最大外圆位置硬化层11深度均≥4mm,表面硬度为50~60HRC。相较于传统感应淬火工艺所得到的硬化层要求仅大于1mm、轮圈踏面硬化层厚度仅大于3mm的方案,本发明一些实施例提供的引导轮10的硬度更高、耐磨性更优。
在一些实施例中,引导轮10的各个部位的硬化层11的厚度均匀。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (15)

  1. 一种引导轮制备方法,包括以下步骤:
    将带有冲孔(101)的胚件(102)进行碾环加工得到轮圈(1)毛坯;其中,碾环加工后所述轮圈(1)毛坯的温度为850℃~900℃;
    对所述轮圈(1)毛坯进行整体淬火,在整体淬火结束时,控制所述轮圈(1)毛坯的温度为60℃~100℃。
  2. 根据权利要求1所述的引导轮制备方法,其中采用以下步骤进行整体淬火:
    将所述轮圈(1)毛坯安装至旋转定位装置(2),所述旋转定位装置(2)被构造为带动所述轮圈(1)毛坯回转;
    采用喷水部件(3)对所述轮圈(1)毛坯的外表面喷水。
  3. 根据权利要求2所述的引导轮制备方法,其中对所述轮圈(1)毛坯的外表面喷水的时长为2~2.5分钟。
  4. 根据权利要求2或者3所述的引导轮制备方法,其中对所述轮圈(1)毛坯的外表面喷水的水流量为:30~40立方米/小时。
  5. 根据权利要求2~4任一所述的引导轮制备方法,其中所喷的水的温度为15~40℃。
  6. 根据权利要求1~4任一所述的引导轮制备方法,还包括以下步骤:
    对整体淬火后的所述轮圈(1)进行校正,以使得所述轮圈(1)的圆度达到设定要求。
  7. 根据权利要求6所述的引导轮制备方法,还包括以下步骤:
    对校正后的所述轮圈(1)进行回火:将所述轮圈(1)加热至190℃~210℃,并保温2.5~3.5小时。
  8. 根据权利要求7所述的引导轮制备方法,还包括以下步骤:
    对回火后的所述轮圈(1)进行抛丸处理,以清除所述轮圈(1)表面的氧化层。
  9. 根据权利要求1~8任一所述的引导轮制备方法,还包括以下步骤:
    对所述轮圈(1)的焊接坡口(12)进行机加工;
    通过所述焊接坡口(12)将所述轮圈(1)与轮毂(4)、腹板(5)焊接固定得到轮体(20);
    对所述轮体(20)进行精加工,以实现所述轮体(20)与轮轴(30)、轮座(40) 的装配,以得到引导轮(10)半成品。
  10. 根据权利要求9所述的引导轮制备方法,其中在将所述轮圈(1)与轮毂(4)、腹板(5)焊接过程中,焊枪(6)的位置是静止的,所述轮圈(1)按照设定速度匀速转动。
  11. 根据权利要求10所述的引导轮制备方法,其中在将所述轮圈(1)与轮毂(4)、腹板(5)焊接过程中,对焊接位置喷水以冷却保护所述轮圈(1)、所述轮毂(4)和所述腹板(5)。
  12. 根据权利要求9~11任一所述的引导轮制备方法,其中所述轮毂(4)采用以下方法得到:采用闭式锻造、锻造后雾冷处理得到所述轮毂(4)。
  13. 根据权利要求9~12任一所述的引导轮制备方法,还包括以下步骤:对所述引导轮半成品进行涂装,以得到引导轮。
  14. 一种引导轮,所述引导轮(10)的轮圈(1)的表面具有厚度不小于4mm的硬化层(11),且所述硬化层(11)的表面硬度为50~60HRC。
  15. 根据权利要求14所述的引导轮,其中所述引导轮(10)的各个部位的所述硬化层(11)的厚度均匀。
PCT/CN2022/127612 2022-09-27 2022-10-26 引导轮制备方法以及引导轮 WO2024065923A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211181804.7A CN115533451A (zh) 2022-09-27 2022-09-27 引导轮制备方法以及引导轮
CN202211181804.7 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024065923A1 true WO2024065923A1 (zh) 2024-04-04

Family

ID=84729548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127612 WO2024065923A1 (zh) 2022-09-27 2022-10-26 引导轮制备方法以及引导轮

Country Status (2)

Country Link
CN (1) CN115533451A (zh)
WO (1) WO2024065923A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE752393A (fr) * 1969-07-03 1970-12-01 Krupp Ag Huettenwerke Procede et dispositif pour l'amelioration par trempe suivie de revenu des roues en acier de vehicules ferroviaires ou similaires
DE2617294A1 (de) * 1976-04-21 1977-10-27 Krupp Ag Huettenwerke Verfahren zur herstellung von verschleissfesten raedern und radreifen von schienenfahrzeugen
JPS58161749A (ja) * 1982-03-19 1983-09-26 Sumitomo Metal Ind Ltd 車輪用鋼およびその熱処理法
CN103882206A (zh) * 2014-03-27 2014-06-25 昆山土山建设部件有限公司 工程机械所使用轮体的整体淬火方法
CN104118486A (zh) * 2014-07-22 2014-10-29 福建省夏华重工机械有限公司 一种引导轮轮体的生产工艺
CN104120238A (zh) * 2014-07-24 2014-10-29 乔子恒 一种车轮调质热处理工艺
CN104232871A (zh) * 2013-06-06 2014-12-24 天龙科技炉业(无锡)有限公司 火车轮整体淬火新工艺
CN104354776A (zh) * 2014-11-13 2015-02-18 湖南三特机械制造有限公司 一种焊接式引轮体及其生产方法
CN110735082A (zh) * 2019-11-27 2020-01-31 江苏徐工工程机械研究院有限公司 引导轮、履带式行走机构及引导轮的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE752393A (fr) * 1969-07-03 1970-12-01 Krupp Ag Huettenwerke Procede et dispositif pour l'amelioration par trempe suivie de revenu des roues en acier de vehicules ferroviaires ou similaires
DE2617294A1 (de) * 1976-04-21 1977-10-27 Krupp Ag Huettenwerke Verfahren zur herstellung von verschleissfesten raedern und radreifen von schienenfahrzeugen
JPS58161749A (ja) * 1982-03-19 1983-09-26 Sumitomo Metal Ind Ltd 車輪用鋼およびその熱処理法
CN104232871A (zh) * 2013-06-06 2014-12-24 天龙科技炉业(无锡)有限公司 火车轮整体淬火新工艺
CN103882206A (zh) * 2014-03-27 2014-06-25 昆山土山建设部件有限公司 工程机械所使用轮体的整体淬火方法
CN104118486A (zh) * 2014-07-22 2014-10-29 福建省夏华重工机械有限公司 一种引导轮轮体的生产工艺
CN104120238A (zh) * 2014-07-24 2014-10-29 乔子恒 一种车轮调质热处理工艺
CN104354776A (zh) * 2014-11-13 2015-02-18 湖南三特机械制造有限公司 一种焊接式引轮体及其生产方法
CN110735082A (zh) * 2019-11-27 2020-01-31 江苏徐工工程机械研究院有限公司 引导轮、履带式行走机构及引导轮的制备方法

Also Published As

Publication number Publication date
CN115533451A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2018188580A1 (zh) 一种轮辋、轮辐、钢制车轮的制造方法及该方法成型的钢制车轮
CN101223292B (zh) 车轮用轴承装置的制造方法
WO2007043307A1 (ja) 建設機械下部走行体のローラーシェルの製造方法
EP2654984A1 (en) Method of manufacturing a metal vehicle wheel and vehicle wheel
WO2024065923A1 (zh) 引导轮制备方法以及引导轮
EP0795038B1 (en) Sprocket and manufacturing method thereof
CN110760787A (zh) 一种汽车悬架下摆臂的复合热处理强化方法
CN112899461B (zh) 一种异形凸轮局部仿形复合强化方法及装置
WO2022166155A1 (zh) 一种集装箱起重机车轮钢、车轮及其制备方法
CN108866312A (zh) 一种轴承热处理工艺
US20050039830A1 (en) Induction heat treatment method and coil and article treated thereby
JP2008169941A (ja) 車輪用軸受装置
CN103924043A (zh) 内齿轮及其热处理方法和热处理设备
US6030471A (en) Method for producing a hardened wheel
CN114657364A (zh) 一种改善车轮轮辋残余应力的热处理方法
CN114317932A (zh) 一种获取厚壁高筒环锻件平衡态组织的热处理方法
CN114277228A (zh) 大型调心滚子轴承及其制造方法
US6685596B2 (en) Variator disc and a method of fabricating the same
JP3841566B2 (ja) 履帯ブッシュの焼き入れ方法および焼き入れ装置
WO2009131211A1 (ja) 車輪用転がり軸受装置の熱処理方法と内軸の冷却装置
KR102206381B1 (ko) 표면경도가 향상된 내경 고주파 열처리 기반 트랙 부시 제조방법 및 트랙 부시 제조용 내경 고주파 열처리장치
JPH0819469B2 (ja) 円筒状耐摩耗部品の熱処理方法
CN115181847B (zh) 一种齿轮及其制备方法
CN112522499B (zh) 一种航空用斜幅板圆柱齿轮的热处理方法
JP7180206B2 (ja) 軸受の製造方法及び製造装置、車両の製造方法、並びに機械装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960523

Country of ref document: EP

Kind code of ref document: A1