WO2024065893A1 - 脉冲压缩的琥珀金光栅及其制备方法 - Google Patents

脉冲压缩的琥珀金光栅及其制备方法 Download PDF

Info

Publication number
WO2024065893A1
WO2024065893A1 PCT/CN2022/125609 CN2022125609W WO2024065893A1 WO 2024065893 A1 WO2024065893 A1 WO 2024065893A1 CN 2022125609 W CN2022125609 W CN 2022125609W WO 2024065893 A1 WO2024065893 A1 WO 2024065893A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
grating
amber
film
silver
Prior art date
Application number
PCT/CN2022/125609
Other languages
English (en)
French (fr)
Inventor
晋云霞
韩昱行
孔钒宇
曹红超
张益彬
邵建达
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Publication of WO2024065893A1 publication Critical patent/WO2024065893A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams

Definitions

  • the invention belongs to a reflective grating, in particular to a pulse compressed amber gold grating and a preparation method thereof.
  • the grating compressor is the core module, and the key component in the grating compressor is the grating.
  • Metal gratings are favored in small to large laser devices due to their advantages such as large bandwidth, high efficiency, excellent surface shape, and wide angular spectrum.
  • the metal layer is basically made of pure gold. Especially for high-energy laser devices, the purity of gold is required to reach 99.99% or even 99.999%. According to the current and future construction needs of high-peak power lasers, the average diffraction efficiency of gold gratings is stable at 90-94% at different bandwidths in the range of 700-1200 nanometers (nm), and the laser damage threshold is basically close to the limit. It is urgent to develop pulse compression metal gratings with higher laser damage thresholds and better optical and thermodynamic properties while retaining the advantages of traditional gold gratings.
  • Pulse compression amber gold gratings are binary mixtures of gold and silver, or pulse compression gratings with gold top and silver bottom.
  • the high conductivity metal film layer helps to improve the diffraction efficiency, anti-laser damage threshold and expand the high-efficiency bandwidth band of the metal grating.
  • the multi-component mixed structure helps to improve the oxidation resistance of silver and enhance the deformation resistance of pure gold or silver. The research on pulse compression amber gold gratings is of great significance.
  • the technical problem to be solved by the present invention is to provide a pulse compression amber gold grating and a preparation method thereof.
  • the grating while ensuring the optical performance of the traditional pure gold grating, broadens the grating high diffraction efficiency band; improves or solves the easy oxidation problem of the pure silver grating; and further improves the laser damage threshold of the gold grating, which has important scientific research, economic and application value.
  • the present invention provides a pulse compression amber gold grating, which is characterized in that the grating metal layer is a metal film with gold top and silver bottom, or a binary mixture film or a multi-mixture film with gold base containing other metals except gold, or a single or multi-mixture metal film bottom with gold top and other metals except gold.
  • the gold-top and silver-bottom metal film refers to a pure silver film plated on a grating mask, and a pure gold film plated on the pure silver film.
  • the binary mixture film is a gold-based binary alloy film containing silver, a gold-based binary alloy film containing copper, or a gold-based binary alloy film containing platinum group metals (platinum, palladium, iridium, ruthenium, rhodium, osmium).
  • the gold-based silver-containing binary alloy film refers to an alloy film with different gold and silver atomic percentages directly plated on a grating mask.
  • the multi-component mixture membrane is a gold-based ternary mixture membrane containing iridium and platinum or a gold-based multi-component mixture membrane containing silver, iridium and platinum.
  • the present invention also provides a method for preparing a pulse compression amber gold grating, comprising the following steps:
  • the grating feature profile function is
  • the grating feature profile function is
  • h is the longitudinal grating profile depth
  • x is the transverse grating length
  • H is the maximum groove depth
  • d is the grating period
  • f is the grating duty ratio
  • is the shape factor of the grating profile
  • the characteristic function 1 and the characteristic function 2 are both suitable for simulating the real grating profile.
  • the characteristic function 1 is suitable for simulating the S-shaped transition from the top to the bottom of the grating ridge, or the flat top
  • the characteristic function 2 is suitable for simulating the sudden truncation of the bottom of the grating ridge, the convex side wall, or the sharp top.
  • Step 2 Preparation of amber gold grating mask: Preparation of the grating designed in step 1, including substrate cleaning, gluing, baking, exposure, and development;
  • Amber gold film with a gold top and silver bottom is plated by magnetron sputtering, electron beam evaporation and other preparation processes, or binary or multi-element alloy film containing silver or other metals on a gold base is prepared by dual-source and multi-element co-plating technology;
  • amber gold films with different ratios were prepared.
  • the coating background vacuum of Au and Ag is regulated to be 1 ⁇ 10 -3 -8 ⁇ 10 - 4 Pa, the argon flow rate is 40-50sccm, the power is 100-600W, and the working pressure is 0.3-0.5Pa, and a gold-top silver-bottom metal film and a gold-silver binary alloy film with a total thickness of 50-300nm are coated on the grating mask in step 3;
  • the grating of the present invention can broaden the high diffraction efficiency band of the grating without degrading the optical performance of the traditional gold grating, and further improve the laser damage threshold of the gold grating.
  • the grating of the present invention has strong compatibility and can directly replace the gold grating in existing service scenarios and application conditions, thereby improving the safety threshold of the gold grating used in high-power lasers and ensuring higher power output of the laser.
  • the grating process parameters of the present invention are stable and can support the preparation of gratings with meter-level aperture.
  • the grating of the present invention can improve or solve the easy oxidation problem of pure silver grating, and has strong environmental stability and long service life.
  • the grating and related process parameters of the present invention can support the construction of spectrometers, commercial ultrafast lasers and large-scale high peak power lasers. It has important economic and practical value in the fields of spectrometers, high power lasers, etc.
  • FIG1 is a schematic diagram of the structure of a pulse compression amber gold grating embodiment 1 of the present invention.
  • Fig. 2 is a graph showing the reflectivity of the grating metal layer of the comparative example 1 and the pulse compression amber gold grating embodiment 1 of the present invention.
  • the incident light is TM polarized, and the incident angle is 62°.
  • Example 3 is a diagram of the -1 order diffraction efficiency of Comparative Example 1 and Example 1.
  • the incident light is TM polarized, the incident angle is 62°, the grating line density is 1400 g/mm, the duty cycle is 0.7, the groove depth is 220 nm, and the shape factor is 3.
  • Fig. 4 is a damage test probability diagram of comparative example 1 and embodiment 1.
  • the central wavelength of the test laser is 925 nm, the bandwidth is 825-1025 nm, and the pulse width is 3 ns.
  • FIG5 is a schematic diagram of the structure of pulse compression amber gold grating embodiments 2, 3, and 4 of the present invention.
  • Fig. 6 is a graph showing the reflectivity of the grating metal layer of Comparative Example 2 and Pulse Compression Amber Gold Grating Example 2.
  • the incident light is TM polarized, and the incident angle is 62°.
  • Example 7 is a diagram of the -1 order diffraction efficiency of Comparative Example 2 and Example 2.
  • the incident light is TM polarized, the incident angle is 50°, the grating line density is 1443 g/mm, the duty cycle is 0.7, the groove depth is 200 nm, and the shape factor is 1.8.
  • Fig. 8 is a damage test probability diagram of comparative example 2 and embodiment 2.
  • the central wavelength of the test laser is 925 nm, the bandwidth is 825-1025 nm, and the pulse width is 15 fs.
  • Example 9 is a diagram of the -1 order diffraction efficiency of Comparative Example 2 and Example 3.
  • the incident light is TM polarized, the incident angle is 54°, the grating line density is 1480 g/mm, the duty cycle is 0.6, the groove depth is 200 nm, and the shape factor is 2.5.
  • Fig. 10 is a damage test probability diagram of comparative example 2 and embodiment 4.
  • the central wavelength of the test laser is 925 nm, the bandwidth is 825-1025 nm, and the pulse width is 15 fs.
  • FIG. 11 is a diagram of the -1 order diffraction efficiency of comparative example 1 and embodiment 5.
  • the incident light is TM polarized, the incident wavelength is 920 nm, the grating line density is 1400 g/mm, the duty cycle is 0.7, the groove depth is 220 nm, and the shape factor is 3.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Five groups of gold-topped and silver-bottomed metal films with a total thickness of 200nm were prepared by magnetron sputtering coating technology, in which the material combinations were 6nm-Au+194nm-Ag, 8nm-Au+192nm-Ag, 10nm-Au+190nm-Ag, 12nm-Au+188nm-Ag and 15nm-Au+185nm-Ag.
  • the coating background vacuum of Au and Ag was 8 ⁇ 10 - 4 Pa
  • the argon gas flow rate was 40sccm
  • the power supply was 300W
  • the working gas pressure was 0.5Pa
  • the sputtering rates were 0.42s/nm and 0.40s/nm respectively.
  • the design grating parameters of this embodiment are respectively line density 1400g/mm, duty cycle 0.7, groove depth 220nm, and shape factor 3.
  • a 12nm-Au+188nm-Ag thick gold top silver bottom amber gold grating is plated by magnetron sputtering technology.
  • the diffraction efficiency of the sample in the 700-1150nm band is tested at a fixed angle of 62°.
  • the measured -1 order diffraction efficiency of the amber gold grating is higher than 90% in the range of 770 to greater than 1150nm.
  • the diffraction efficiency has increased overall, and the bandwidth has been expanded to short waves by nearly 40nm.
  • the sample was subjected to a 1-on-1 damage threshold test according to ISO-21254. As shown in Figure 4, under the test conditions of a central wavelength of 925nm, a bandwidth of 825-1025nm, and a pulse width of 3ns, the laser damage threshold of the amber gold grating was increased by nearly 40% compared to the pure gold grating.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a gold-based palladium-containing binary mixed amber gold grating was prepared, and the structure is shown in FIG5 .
  • gold-palladium binary alloy gratings with a total thickness of 200nm were prepared by magnetron dual-source co-sputtering technology, in which the gold-palladium content ratios were 90%-Au+10%-Pd, 50%-Au+50%-Pd, 30%-Au+70%-Pd, and 10%-Au+90%-Pd.
  • the Au and Pd plating background vacuum was 1 ⁇ 10 -3 Pa
  • the argon flow rate was 50sccm
  • the power supply was 500W
  • the working gas pressure was 0.3Pa
  • the sputtering rates were 0.38s/nm and 0.36s/nm, respectively.
  • the design grating parameters of this embodiment are respectively line density 1443g/mm, duty cycle 0.7, groove depth 200nm, and shape factor 1.8.
  • the -1 order diffraction efficiency of the sample in the 700-1150nm band was tested at a fixed angle of 62°. As shown in Figure 7, the measured -1 order diffraction efficiency of the amber gold grating is higher than 90% in the range of 773-1150nm. Compared with the traditional gold grating, the bandwidth is extended to the short wave by nearly 65nm.
  • the laser damage threshold of the amber gold grating is improved by nearly 113% compared with the pure gold grating.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a gold-based multi-component mixed amber gold grating containing silver and platinum was prepared, and the structure is shown in FIG5 .
  • the design grating parameters of this embodiment are respectively line density 1480g/mm, duty cycle 0.7, groove depth 200nm, and shape factor 2.5.
  • the -1 order diffraction efficiency of the sample in the 650-1050nm band was tested at a fixed angle of 54°. As shown in Figure 9, the measured -1 order diffraction efficiency of the amber gold grating is higher than 90% in the range of 720-1050nm. Compared with the traditional gold grating, the overall diffraction efficiency of the amber gold grating does not decrease by more than 1%, but the bandwidth is extended to the short wave by nearly 40nm.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a gold-based multi-component mixed amber gold grating containing iridium and platinum was prepared, and the structure is shown in FIG5 .
  • the design grating parameters of this embodiment are respectively line density 1480g/mm, duty cycle 0.7, groove depth 200nm, and shape factor 2.5.
  • the laser damage threshold of the amber gold grating is improved by nearly 25% compared with the pure gold grating.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the designed grating parameters of this embodiment are line density 1400g/mm, and the process preparation flow and parameters are consistent with those of Example 1.
  • a 10nm-Au+190nm-(90%-Ag+10%-Pt) thick amber gold grating is plated by magnetron sputtering technology.
  • the diffraction efficiency of the sample at 50-70° is tested at a fixed wavelength of 920nm.
  • the measured -1st order diffraction efficiency of the amber gold grating is higher than that of the traditional gold grating within the test angle range.
  • a pure gold film with a total thickness of 200 nm was prepared by magnetron sputtering coating technology.
  • the Au coating background vacuum was 8 ⁇ 10 -4 Pa
  • the argon gas flow rate was 40 sccm
  • the power supply was 300 W
  • the working gas pressure was 0.5 Pa
  • the sputtering rate was 0.42 s/nm.
  • the light of the above sample was tested with TM polarized light using a diffraction efficiency measurement system, and the reflectivity of the sample in the 500-1150nm band was tested at a fixed angle of 62°. The results are shown in FIG2 .
  • the grating line density of this comparative example is 1400g/mm, and the process preparation flow and parameters are consistent with those of Example 1.
  • a 200nm-Au thick pure gold grating is plated by magnetron sputtering technology.
  • the diffraction efficiency of the sample in the 700-1150nm band is tested at a fixed angle of 62°. The results are shown in Figure 3.
  • the -1 order diffraction efficiency of the gold grating in the wavelength range of 805-1150nm is higher than 90%.
  • the sample was subjected to 1-on-1 damage threshold test according to ISO-21254 standard. As shown in Figure 4, under the test conditions of the central wavelength of the test laser being 925nm, the bandwidth being 825-1025nm, and the pulse width being 3ns, the laser damage threshold of the gold grating was 0.8J/ cm2 .
  • a thin film with a total thickness of 200nm and an element content of 100%-Au was prepared by magnetron sputtering coating technology.
  • the Au coating background vacuum was 1 ⁇ 10 -3 Pa
  • the argon gas flow rate was 50sccm
  • the power supply was 500W
  • the working gas pressure was 0.3Pa
  • the sputtering rate was 0.38s/nm.
  • the grating line density of this comparative example is 1480 g/mm and 1443 g/mm.
  • the process preparation process and parameters are consistent with those of Examples 2 and 4.
  • a 200 nm-Au thick pure gold grating is plated by magnetron sputtering technology.
  • the first-order diffraction efficiency of the 1443g/mm gold grating is shown in Figure 7.
  • the first-order diffraction efficiency of the gold grating is higher than 90% in the wavelength range of 883-1150nm.
  • the first-order diffraction efficiency of the 1480g/mm gold grating is shown in Figure 9.
  • the first-order diffraction efficiency of the gold grating is higher than 90% in the wavelength range of 760-1050nm.
  • the laser damage threshold of the gold grating is 0.26 J/cm 2 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种脉冲压缩琥珀金光栅及其制备方法,琥珀金光栅金属层选用合适配比的金基含银、铂系元素的二元或多元混合物,或者金顶银底薄膜。制备工艺包括琥珀金光栅特征轮廓参数和琥珀金膜材料配比优选。琥珀金光栅在不退化传统金光栅光学性能的前提下,拓宽光栅高衍射效率波段,改善或解决纯银光栅的易氧化问题,进一步提升金光栅抗激光损伤阈值,工艺参数可以支持米级口径的光栅制备。光栅及相关工艺参数可支撑从光谱仪、商用超快激光器到大型高峰值功率激光器的建设,对脉冲压缩光栅发展有重大意义。

Description

脉冲压缩的琥珀金光栅及其制备方法 技术领域
本发明属于反射式光栅,特别是一种脉冲压缩的琥珀金光栅及其制备方法。
背景技术
超强超短激光领域正处于取得重大突破与开拓应用的关键阶段,国际上正在大力发展超强超短激光光源以及依托其的前沿科技创新平台。全世界各研究院所和科研机构有效利用啁啾脉冲放大技术(Chirped pulse amplification,以下简称为CPA)和光学参量啁啾脉冲放大技术(Optical parameter chirped pulse amplification,以下简称为OPCPA),将激光器的峰值功率推向数十拍瓦(PW)量级。未来十年内,全球范围内100PW超强超短激光装置将陆续交付使用。冲击更高峰值功率已经成为各大国的竞赛场。
在CPA和OPCPA两种激光放大技术中,光栅压缩器是核心模块,而光栅压缩器中的关键元件是光栅。金属光栅由于具有带宽大、效率高、面形优、角谱宽等优势,在小型到大型激光装置中备受青睐。
目前,为了保证脉冲压缩光栅金属光栅长期服役的环境和性能稳定,金属层基本全部使用纯金,尤其对于大能量激光装置,金的纯度要求更是达到99.99%甚至是99.999%。根据当前和未来高峰值功率激光器的建设需求,金光栅在700-1200纳米(nm)范围内的不同带宽下平均衍射效率稳定在90-94%,抗激光损伤阈值基本接近极限,亟待在保留传统金光栅优势的前提下,开发抗激光损伤阈值更高、光学和热力学性能更优异的脉冲压缩金属光栅。
国内外还没有人提出针对脉冲压缩琥珀金光栅进行设计、制备、测试和应用。脉冲压缩琥珀金光栅,即金基含银的二元混合物,或者金顶银底的脉冲压缩光栅。高电导率的金属膜层有助于提升金属光栅的衍射效率、抗激光损伤阈值和拓展高效带宽波段,多元混合结构有助于改善银的抗氧化性、提升纯金或银的抗形变性能。脉冲压缩琥珀金光栅的研究意义重大。
发明内容
本发明要解决的技术问题是提供一种脉冲压缩琥珀金光栅及其制备方法。该光栅在保障传统纯金光栅光学性能的前提下,拓宽光栅高衍射效率波段;改善或解决纯银光栅的易氧化问题;进一步提升金光栅抗激光损伤阈值,具有重要的科研、经济和应用价值。
本发明的技术解决方案如下:
一方面,本发明提供一种脉冲压缩琥珀金光栅,其特点在于,该光栅金属层为金顶银底金属膜,或者为金基含除金外其他金属的二元混合物膜或多元混合物膜,或者为金顶加除金外其他金属的一元或多元混合物金属膜底。
进一步,所述金顶银底金属膜是指将纯银薄膜镀制于光栅掩模,纯金薄膜镀制于纯银薄膜上。
进一步,所述二元混合物膜为金基含银二元合金膜、金基含铜二元合金膜、金基含铂族金属(铂、钯、铱、钌、铑、锇)二元合金膜。
进一步,所述金基含银二元合金膜指将在不同金银原子百分比含量的合金膜直接镀制于光栅掩模。
进一步,所述多元混合物膜为金基含铱、铂的三元混合物膜或金基含银、铱、铂的多元混合物膜。
另一方面,本发明还提供一种脉冲压缩琥珀金光栅的制备方法,包括下列步骤:
1)琥珀金光栅设计:
光栅特征轮廓函数一为
Figure PCTCN2022125609-appb-000001
光栅特征轮廓函数二为
Figure PCTCN2022125609-appb-000002
其中,h为纵向光栅轮廓深度,x为横向光栅长度,H为最大槽深,d为光栅周期,f为光栅占宽比,σ为光栅轮廓的形状因子;
所述的特征函数一和特征函数二均适宜模拟真实光栅轮廓,设计中,选择相 同上述参数的情况下,特征函数一适合模拟光栅脊顶部到底部S形过度、或顶端平坦的情况,特征函数二适合模拟光栅脊底部突然截断、侧壁外凸、或顶端尖锐的情况;
根据需求选定优化的起始波长,选定光栅的特征轮廓函数,通过全局优化或者局部优化算法确定特定光谱带宽内实现高衍射效率的最佳的光栅槽深、周期、占宽比和形状因子;
2)琥珀金光栅掩模制备:制备步骤1设计的光栅,包括基底清洗、涂胶、烘烤、曝光、显影;
3)琥珀金层镀制:
利用磁控溅射、电子束蒸发等制备工艺镀制金顶银底琥珀金膜,或利用双源、多元共镀技术制备金基含银或其他金属的二元或多元合金膜;
通过调节本底真空度、电源功率、气流量、工作气压、镀制速率等参量,制备不同配比的琥珀金膜;
对琥珀金膜的膜层厚度、粗糙度和元素含量进行测试;
利用磁控溅射镀膜技术,调控Au和Ag的镀制本底真空度为1×10 -3-8×10 - 4Pa,氩气流量为40-50sccm,电源功率为100-600W,工作气压0.3-0.5Pa,为步骤3中的光栅掩模镀制总厚度为50-300nm的金顶银底金属膜和金银二元合金膜;
4)琥珀金光栅优选:将制备的不同顶层、底层厚度的金顶银底或者不同元素含量的琥珀金光栅进行光学性能表征,筛选出综合反射率、光谱宽度、角谱宽度等性能最优的琥珀金光栅;
5)琥珀金光栅损伤性能测试:根据ISO21254,对步骤4制备好的琥珀金光栅进行单脉冲或者多脉冲损伤测试。
本发明的技术效果如下:
1)本发明的光栅可以在不退化传统金光栅光学性能的前提下,拓宽光栅高衍射效率波段,进一步提升金光栅抗激光损伤阈值。
2)本发明的光栅兼容性强,可以直接替换现有服役场景和应用条件下的金光栅,提升高功率激光器用金光栅的安全阈值,保障激光器更高功率的输出。
3)本发明的光栅工艺参数稳定,可以支持米级口径的光栅制备。
4)本发明的光栅可改善或解决纯银光栅的易氧化问题,其环境稳定性强,使 用寿命长。
5)本发明的光栅及相关工艺参数可支撑从光谱仪、商用超快激光器到大型高峰值功率激光器的建设。在光谱仪,高功率激光等领域均具有重要的经济和实用价值。
附图说明
图1是本发明脉冲压缩琥珀金光栅实施例1的结构示意图。
图2是本发明对比例1和脉冲压缩琥珀金光栅实施例1的光栅金属层的反射率图。入射光为TM偏振,入射角为62°。
图3是对比例1和实施例1的-1级衍射效率图。入射光为TM偏振,入射角为62°,光栅线密度1400g/mm,占空比0.7,槽深取220nm,形状因子3。
图4是对比例1和实施例1的损伤测试概率图。测试激光的中心波长为925nm,带宽在825-1025nm,脉宽为3ns。
图5是本发明脉冲压缩琥珀金光栅实施例2、3、4的结构示意图。
图6是对比例2和脉冲压缩琥珀金光栅实施例2的光栅金属层的反射率图。入射光为TM偏振,入射角为62°。
图7是对比例2和实施例2的-1级衍射效率图。入射光为TM偏振,入射角为50°,光栅线密度1443g/mm,占空比0.7,槽深取200nm,形状因子1.8。
图8是对比例2和实施例2的损伤测试概率图。测试激光的中心波长为925nm,带宽在825-1025nm,脉宽为15fs。
图9是对比例2和实施例3的-1级衍射效率图。入射光为TM偏振,入射角为54°,光栅线密度1480g/mm,占空比0.6,槽深取200nm,形状因子2.5。
图10是对比例2和实施例4的损伤测试概率图。测试激光的中心波长为925nm,带宽在825-1025nm,脉宽为15fs。
图11是对比例1和实施例5的-1级衍射效率图。入射光为TM偏振,入射波长为920nm,光栅线密度1400g/mm,占空比0.7,槽深取220nm,形状因子3。
图中:1-金顶银底琥珀金光栅,2-金基含银、铜或其他金属的二元或多元混合琥珀金光栅,3-金层,4-银或铂系金属的二元或多元混合层,5-掩膜层,6-琥珀金层。
具体实施方式
下面结合实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
实施例1:
制备金顶银底琥珀金光栅,结构如图1所示。
利用磁控溅射镀膜技术制备5组总厚度为200nm的金顶银底金属膜,其中材料搭配分别6nm-Au+194nm-Ag、8nm-Au+192nm-Ag、10nm-Au+190nm-Ag、12nm-Au+188nm-Ag和15nm-Au+185nm-Ag。Au和Ag的镀制本底真空为8×10 - 4Pa,氩气流量为40sccm,电源功率为300W,工作气压0.5Pa,溅射速率分别为0.42s/nm和0.40s/nm。
利用衍射效率测量系统以TM偏振光测试上述5组样品的光谱,以62°的固定角度测试样品在500-1150nm波段的反射率。如图2所示,所有金顶银底的样品在带宽上均优于纯金样品。12nm-Au+188nm-Ag样品在光谱带宽和绝对效率的表现均优于纯金样品。
本实施例的设计光栅参数分别为线密度1400g/mm,占空比0.7,槽深220nm,形状因子3。制备上述规格的光栅。用酒精或丙酮擦拭基底。用旋涂机以2800r/min的速率旋涂基底30s,将约220nm厚的光刻胶层涂覆到基底上,然后在100℃下烘烤基底2min。接着,使用双光束干涉曝光的方法对涂布好光刻胶层的基底50μW的曝光功率在325nm光下曝光200s。使用质量分数4‰浓度的氢氧化钠溶液对曝光后的样品浸泡50s。最后,通过磁控溅射技术镀制出12nm-Au+188nm-Ag厚的金顶银底琥珀金光栅。以62°的固定角度测试样品在700-1150nm波段的衍射效率。如图3所示,相较于传统金光栅,琥珀金光栅的实测-1级衍射效率在770~大于1150nm范围内高于90%,衍射效率整体上涨,带宽更是向短波拓展了近40nm。
根据ISO-21254标准对样品进行1-on-1损伤阈值测试。如图4所示,在测试激光的中心波长为925nm,带宽在825-1025nm,脉宽为3ns的测试条件下,琥珀金光栅的抗激光损伤阈值相对于纯金光栅有了近40%的提升。
实施例2:
制备金基含钯二元混合琥珀金光栅,结构如图5所示。
利用磁控双源共溅镀膜技术制备4组总厚度为200nm的金钯二元合金光栅,其中金钯含量配比分别为90%-Au+10%-Pd、50%-Au+50%-Pd、30%-Au+70%-Pd、和10%-Au+90%-Pd。Au和Pd的镀制本底真空为1×10 -3Pa,氩气流量为50sccm,电源功率为500W,工作气压0.3Pa,溅射速率分别为0.38s/nm和0.36s/nm。
利用衍射效率测量系统以TM偏振光测试上述4组样品的光谱,以62°的固定角度测试样品在400-1100nm波段的反射率。如图6所示,所有金顶银底的样品在带宽上均优于纯金样品。10%-Au+90%-Pd的样品在光谱带宽和绝对效率的表现均优于纯金样品。
本实施例的设计光栅参数分别为线密度1443g/mm,占空比0.7,槽深200nm,形状因子1.8。制备上述规格的光栅。用酒精或丙酮擦拭基底。用旋涂机以2500r/min的速率旋涂基底30s,将约200nm厚的光刻胶层涂覆到基底上,然后在100℃下烘烤基底2min。接着,使用双光束干涉曝光的方法对涂布好光刻胶层的基底50μW的曝光功率在325nm光下曝光200s。使用质量分数4‰浓度的氢氧化钠溶液对曝光后的样品浸泡65s。最后,通过磁控双源共溅镀膜技术镀制出厚度均为200nm的10%-Au+90%-Pd琥珀金光栅。
以62°的固定角度测试样品在700-1150nm波段的-1级衍射效率。如图7所示,琥珀金光栅的实测-1级衍射效率在773~1150nm范围内高于90%。相较于传统金光栅,带宽向短波拓展了近65nm。
如图8所示,在测试激光的中心波长为925nm,带宽在825-1025nm,脉宽为15fs的测试条件下,琥珀金光栅的抗激光损伤阈值相对于纯金光栅有近113%的提升。
实施例3:
制备金基含银、铂的多元混合琥珀金光栅,结构如图5所示。
本实施例的设计光栅参数分别为线密度1480g/mm,占空比0.7,槽深200nm,形状因子2.5。制备上述规格的光栅。用酒精或丙酮擦拭基底。用旋涂机以2800r/min的速率旋涂基底30s,将约220nm厚的光刻胶层涂覆到基底上,然后在100℃下烘烤基底2min。接着,使用双光束干涉曝光的方法对涂布好光刻胶层 的基底50μW的曝光功率在325nm光下曝光200s。使用质量分数4‰浓度的氢氧化钠溶液对曝光后的样品浸泡90s。最后,通过磁控双源共溅镀膜技术镀制出厚度均为200nm的80%-Au+10%-Ag+10%-Pt琥珀金光栅。
以54°的固定角度测试样品在650-1050nm波段的-1级衍射效率。如图9所示,琥珀金光栅的实测-1级衍射效率在720~1050nm范围内高于90%。相较于传统金光栅,琥珀金光栅的衍射效率整体下降不超过1%,但是带宽向短波拓展了近40nm。
实施例4:
制备金基含铱、铂的多元混合琥珀金光栅,结构如图5所示。
本实施例的设计光栅参数分别为线密度1480g/mm,占空比0.7,槽深200nm,形状因子2.5。制备上述规格的光栅。用酒精或丙酮擦拭基底。用旋涂机以2800r/min的速率旋涂基底30s,将约220nm厚的光刻胶层涂覆到基底上,然后在100℃下烘烤基底2min。接着,使用双光束干涉曝光的方法对涂布好光刻胶层的基底50μW的曝光功率在325nm光下曝光200s。使用质量分数4‰浓度的氢氧化钠溶液对曝光后的样品浸泡90s。最后,通过磁控双源共溅镀膜技术镀制出厚度均为200nm的10%-Au+10%-Ir+80%-Pt琥珀金光栅。
如图10所示,在测试激光的中心波长为925nm,带宽在825-1025nm,脉宽为15fs的测试条件下,琥珀金光栅的抗激光损伤阈值相对于纯金光栅有近25%的提升。
实施例5:
制备金顶、银-铂底琥珀金光栅,结构如图1所示。
本实施例的设计光栅参数分别为线密度1400g/mm,工艺制备流程、参数与实施例1一致。最后,通过磁控溅射技术镀制出10nm-Au+190nm-(90%-Ag+10%-Pt)厚的琥珀金光栅。以920nm的固定波长测试样品在50-70°的衍射效率。如图11所示,琥珀金光栅的实测-1级衍射效率测试角度范围内高于传统金光栅。
对比例1:
利用磁控溅射镀膜技术制备总厚度为200nm的纯金薄膜。Au的镀制本底真空为8×10 -4Pa,氩气流量为40sccm,电源功率为300W,工作气压0.5Pa,溅射速率分别为0.42s/nm。
利用衍射效率测量系统以TM偏振光测试上述样品的光,以62°的固定角度测试样品在500-1150nm波段的反射率,结果如图2所示。
本对比例的光栅线密度为1400g/mm,工艺制备流程、参数与实施例1一致。最后,通过磁控溅射技术镀制200nm-Au厚的纯金光栅。以62°的固定角度测试样品在700-1150nm波段的衍射效率,结果如图3所示,金光栅在805-1150nm的波长范围内-1级衍射效率高于90%。
根据ISO-21254标准对样品进行1-on-1损伤阈值测试。如图4所示,在测试激光的中心波长为925nm,带宽在825-1025nm,脉宽为3ns的测试条件下,金光栅的抗激光损伤阈值为0.8J/cm 2
对比例2:
利用磁控溅射镀膜技术制备总厚度为200nm、元素含量为100%-Au的薄膜。Au的镀制本底真空为1×10 -3Pa,氩气流量为50sccm,电源功率为500W,工作气压0.3Pa,溅射速率分别为0.38s/nm。
利用衍射效率测量系统以TM偏振光测试上述样品的光谱和角谱,以62°的固定角度测试样品在400-1100nm波段的反射,结果如图6所示。
本对比例的光栅线密度为1480g/mm和1443g/mm。工艺制备流程、参数与实施例2和4一致。最后,通过磁控溅射技术镀制200nm-Au厚的纯金光栅。
1443g/mm金光栅-1级衍射效率如图7所示,金光栅在883-1150nm的波长范围内-1级衍射效率高于90%。1480g/mm金光栅-1级衍射效率如图9所示,金光栅在760-1050nm的波长范围内-1级衍射效率高于90%。
如图8和10所示,在测试激光的中心波长为925nm,带宽在825-1025nm,脉宽为15fs的测试条件下,金光栅的抗激光损伤阈值为0.26J/cm 2
以上实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。本领域的普通技术人员可以在不脱离本发明构思的前提下,对本发明的技术方案进行修改或者等同替换,这些都属于本发明的保护范围。

Claims (8)

  1. 一种脉冲压缩琥珀金光栅,其特征在于,该光栅金属层为金顶一元或多元混合物金属膜,或者,为金基含除金外其他金属的二元混合物膜或多元混合物膜。
  2. 根据权利要求1所述的脉冲压缩琥珀金光栅,其特征在于,所述金顶一元或多元混合物金属膜底,包括金顶银底金属膜、以及金顶加除金外其他金属的一元或多元混合物金属膜底。
  3. 根据权利要求2所述的脉冲压缩琥珀金光栅,其特征在于,所述的金顶银底金属膜是指将纯银薄膜镀制于光栅掩模,纯金薄膜镀制于纯银薄膜上。
  4. 根据权利要求2所述的脉冲压缩琥珀金光栅,其特征在于,所述的金顶加除金外其他金属的一元或多元混合物金属膜底是指将银、铂族金属的一元或多元混合薄膜镀制于光栅掩模,纯金薄膜再镀制于银、铂族金属的一元或多元混合薄膜上。
  5. 根据权利要求1所述的脉冲压缩琥珀金光栅,其特征在于,所述二元混合物膜为金基含银二元合金膜、金基含铝二元合金膜、金基含铜二元合金膜、金基含铂族金属(铂、钯、铱、钌、铑、锇)二元合金膜。
  6. 根据权利要求5所述的脉冲压缩琥珀金光栅,其特征在于,所述金基含银二元合金膜指将在不同金银原子百分比含量的合金膜直接镀制于光栅掩模。
  7. 根据权利要求1所述的脉冲压缩琥珀金光栅,其特征在于,所述多元混合物膜为金基含铱、铂的三元混合物膜或金基含银、铱、铂的多元混合物膜。
  8. 权利要求1-7任一所述的脉冲压缩琥珀金光栅的制备方法,其特征在于,该制备方法包括如下步骤:
    1)设计琥珀金光栅:
    第一纵向光栅轮廓深度函数h 1(x),用于模拟光栅脊顶部到底部S形过度、或顶端平坦的情况,公式如下:
    Figure PCTCN2022125609-appb-100001
    第二纵向光栅轮廓深度函数h 2(x),用于模拟光栅脊底部突然截断、侧壁外凸、或顶端尖锐的情况,公式如下:
    Figure PCTCN2022125609-appb-100002
    式中,x为横向光栅轮廓长度,H为最大槽深,d为光栅周期,f为光栅占宽比,σ为光栅轮廓的形状因子;
    选定纵向光栅轮廓深度函数及起始波长,通过全局优化或者局部优化算法确定特定光谱带宽内实现高衍射效率的最佳光栅槽深、周期、占宽比和形状因子;
    2)制备琥珀金光栅掩模镀:
    ①通过基底清洗、涂胶、烘烤、曝光和显影制备步骤1)设计的琥珀金膜光栅,镀制光栅掩模总厚度为50-300nm的金顶银底金属膜和金银二元合金膜;
    3)琥珀金层镀制:
    利用磁控溅射、电子束蒸发制备工艺镀制金顶银底琥珀金膜,或利用双源、多元共镀技术制备金基含银或其他金属的二元或多元合金膜;利用磁控溅射镀膜技术,调控Au和Ag的镀制本底真空度为1×10 -3-8×10 -4Pa,氩气流量为40-50sccm,电源功率为100-600W,工作气压0.3-0.5Pa,制备不同配比的琥珀金膜;对琥珀金膜的膜层厚度、粗糙度和元素含量进行测试;
    4)琥珀金光栅损伤性能测试:对步骤3)制备好的琥珀金光栅在使用条件下进行单脉冲或者多脉冲损伤测试;
    5)琥珀金光栅优选:将制备的不同顶层、底层厚度的金顶银底或者不同元素含量的琥珀金光栅进行光学性能表征,筛选出综合反射率、光谱宽度、角谱宽度性能最优的琥珀金光栅。
PCT/CN2022/125609 2022-09-29 2022-10-17 脉冲压缩的琥珀金光栅及其制备方法 WO2024065893A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211198640.9 2022-09-29
CN202211198640.9A CN115437053B (zh) 2022-09-29 2022-09-29 脉冲压缩的琥珀金光栅及其制备方法

Publications (1)

Publication Number Publication Date
WO2024065893A1 true WO2024065893A1 (zh) 2024-04-04

Family

ID=84250782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125609 WO2024065893A1 (zh) 2022-09-29 2022-10-17 脉冲压缩的琥珀金光栅及其制备方法

Country Status (2)

Country Link
CN (1) CN115437053B (zh)
WO (1) WO2024065893A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120093191A1 (en) * 2009-04-29 2012-04-19 Horiba Jobin Yvon Sas Metal diffraction grating with high reflection resistance to a femtosecond mode flow, system including such an grating, and method for improving the damage threshold of a metal diffraction grating
CN104956554A (zh) * 2013-01-31 2015-09-30 株式会社岛津制作所 激光脉冲压缩用衍射光栅及激光装置
CN107315211A (zh) * 2016-04-26 2017-11-03 中国科学院微电子研究所 反射式单级衍射光栅及其制造方法
CN114041072A (zh) * 2019-04-19 2022-02-11 堀场(法国)有限公司 抗高峰值能量超短脉冲光通量的反射衍射光栅及其制造方法
CN114660805A (zh) * 2022-04-07 2022-06-24 大连理工大学 一种提高脉冲压缩光栅激光损伤阈值的材料改进方法
CN114879293A (zh) * 2022-04-12 2022-08-09 中国科学院上海光学精密机械研究所 大底宽小尖角脉冲压缩金属光栅及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323634B (zh) * 2011-10-19 2016-06-22 苏州大学 一种全息双闪耀光栅的制作方法
CN105403941B (zh) * 2015-12-23 2017-11-24 中国科学技术大学 一种变间距光栅的近场全息‑离子束刻蚀制备方法
CN106918856B (zh) * 2017-03-20 2019-03-19 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种半反半透型偏振分束光栅
CN108008478B (zh) * 2017-12-01 2022-09-09 暨南大学 基于金属多层介质膜的偏振选择反射式光栅
CN111580205B (zh) * 2020-06-02 2021-07-27 中国科学院上海光学精密机械研究所 54度~62度入射使用的宽谱脉宽压缩光栅

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120093191A1 (en) * 2009-04-29 2012-04-19 Horiba Jobin Yvon Sas Metal diffraction grating with high reflection resistance to a femtosecond mode flow, system including such an grating, and method for improving the damage threshold of a metal diffraction grating
CN104956554A (zh) * 2013-01-31 2015-09-30 株式会社岛津制作所 激光脉冲压缩用衍射光栅及激光装置
CN107315211A (zh) * 2016-04-26 2017-11-03 中国科学院微电子研究所 反射式单级衍射光栅及其制造方法
CN114041072A (zh) * 2019-04-19 2022-02-11 堀场(法国)有限公司 抗高峰值能量超短脉冲光通量的反射衍射光栅及其制造方法
CN114660805A (zh) * 2022-04-07 2022-06-24 大连理工大学 一种提高脉冲压缩光栅激光损伤阈值的材料改进方法
CN114879293A (zh) * 2022-04-12 2022-08-09 中国科学院上海光学精密机械研究所 大底宽小尖角脉冲压缩金属光栅及其制备方法与应用

Also Published As

Publication number Publication date
CN115437053B (zh) 2024-04-12
CN115437053A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
AU662360B2 (en) Photovoltaic device
JP3651932B2 (ja) 光起電力素子用裏面反射層及びその形成方法並びに光起電力素子及びその製造方法
JP3029178B2 (ja) 薄膜半導体太陽電池の製造方法
JPWO2006132414A1 (ja) 反射率・透過率維持特性に優れた銀合金
RU2561419C2 (ru) Низкоэмиссионное стекло и способ его получения
CN101103439A (zh) 通过粗糙化而改善光取出的发光二极管
JP5214032B2 (ja) 酸化触媒を調製する方法及びその方法によって調製された触媒
WO2006132415A1 (ja) 反射率・透過率維持特性に優れた銀合金
WO2024065893A1 (zh) 脉冲压缩的琥珀金光栅及其制备方法
KR20130139381A (ko) 광반사재 및 발광다이오드 디바이스
CN101451773B (zh) 太阳能选择性吸收膜及其制造方法
CN101635325B (zh) 发光二极管及其制造方法
CN106057925B (zh) 一种正面电极侧绕背接触p型晶硅太阳电池的制造方法
WO2006132416A1 (ja) 反射率・透過率維持特性に優れた銀合金
CN102851525B (zh) 一种银合金反射膜及具有该反射膜的电致变色器
WO2011077963A1 (ja) 太陽電池およびその製造方法
TWI697575B (zh) 太陽能選擇性吸收膜及其製造方法
US8841541B2 (en) Solar battery and method of manufacturing the same
CN109585625A (zh) 一种透明导电膜、其制备方法及含此透明导电膜的led芯片
CN114635105B (zh) 双织构表面太阳能选择性吸收涂层的制备方法及该涂层
CN115657190A (zh) 一种金属基底紫外宽带高反射滤光镜及制备方法
CN1351383A (zh) 氮化镓基蓝光发光二极管芯片的制造方法
CN111763919B (zh) 反射膜及其制备方法和应用
CN111129257B (zh) 一种紫外高反射率的复合电极及其制备方法
CN109360894A (zh) 纳米结构在阴极光栅凸起处的钙钛矿电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959706

Country of ref document: EP

Kind code of ref document: A1