WO2024065261A1 - 电芯组件、电池单体、电池及用电装置 - Google Patents

电芯组件、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024065261A1
WO2024065261A1 PCT/CN2022/122072 CN2022122072W WO2024065261A1 WO 2024065261 A1 WO2024065261 A1 WO 2024065261A1 CN 2022122072 W CN2022122072 W CN 2022122072W WO 2024065261 A1 WO2024065261 A1 WO 2024065261A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
sensor
assembly
deformation
battery cell
Prior art date
Application number
PCT/CN2022/122072
Other languages
English (en)
French (fr)
Inventor
朱翠翠
张继君
王少飞
李杨
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280011991.6A priority Critical patent/CN116888806A/zh
Priority to PCT/CN2022/122072 priority patent/WO2024065261A1/zh
Publication of WO2024065261A1 publication Critical patent/WO2024065261A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery cell assembly, a battery cell, a battery and an electrical device.
  • the battery may cause gas production or expansion of the battery cell, which may cause the battery cell to deform. If the battery cell deformation exceeds a certain degree, it will lead to serious battery cell safety accidents and cause safety hazards.
  • a strain gauge is usually arranged outside the battery to detect the deformation degree of the battery cell.
  • the strain gauge arranged outside the battery will not detect it until the deformation of the battery cell accumulates to a certain extent.
  • the deformation detection has a lag, resulting in low reliability of the deformation detection.
  • the present application provides a battery cell assembly, a battery cell, a battery and an electrical device, which can improve the reliability of battery deformation detection.
  • an embodiment of the present application provides a battery cell assembly, including:
  • a sensor assembly is arranged on the pole piece assembly, and the sensor assembly includes a strain sensor.
  • the battery assembly of the embodiment of the present application is provided with a sensor assembly integrated with a strain sensor on the pole piece assembly, that is, the sensor assembly is provided inside the battery cell assembly. If the pole piece assembly is deformed, the strain sensor in the sensor assembly can detect it immediately, thereby improving the reliability of the battery cell deformation detection.
  • the sensor assembly further includes a temperature sensor.
  • the battery cell assembly of this embodiment can detect the temperature of the battery cell assembly by integrating a temperature sensor in the sensor assembly. Furthermore, the deformation variable detected by the strain sensor in the sensor assembly can be temperature compensated by using the basic deformation variable corresponding to the temperature value detected by the temperature sensor in the sensor assembly, thereby eliminating or reducing the influence of temperature on deformation detection, so that the compensated deformation variable more accurately reflects the deformation condition of the setting position of the sensor assembly, thereby improving the accuracy and reliability of deformation detection of the battery cell assembly.
  • the multiple sensor components are evenly arranged on the pole piece assembly.
  • the battery cell assembly of this embodiment can achieve uniform detection of deformation inside the pole piece assembly, and can improve the accuracy of deformation detection.
  • the pole piece assembly is a winding structure, including N turns, where N is an integer greater than 2;
  • the multiple sensor components are respectively arranged on the innermost circle, the middle circle and the outermost circle of the pole piece assembly.
  • the battery cell assembly of this embodiment can detect the deformation of each winding layer of the pole piece assembly from the inside to the outside. Furthermore, by comparing the deformation amounts detected by the sensor assemblies arranged in each circle, the cause of the deformation can be analyzed to improve the reliability of the deformation detection.
  • the strain sensor is a piezoresistive strain sensor, an electromagnetic strain sensor, a capacitive strain sensor, a piezoelectric strain sensor, an electrostatic capacitance strain sensor, or a vibrating wire capacitive strain sensor.
  • the sensor component is a thin film type sensor component.
  • the battery cell assembly of this embodiment can, on the one hand, reduce the influence of the sensor assembly on the pole piece assembly; on the other hand, can make the sensor assembly have good flexibility.
  • the contact area between the sensor assembly and the pole piece assembly is 1 cm ⁇ 1 cm; and the thickness of the sensor assembly is less than 10 microns.
  • the battery cell assembly of this embodiment can reduce the influence of the sensor assembly on the pole piece assembly.
  • the sensor assembly is fixed by packaging glue.
  • an embodiment of the present application provides a battery cell, including:
  • the battery cell assembly described in the first aspect is arranged in the battery cell shell.
  • the battery cell of the embodiment of the present application can realize real-time detection of deformation and temperature inside the battery cell by disposing a sensor component inside the battery cell assembly, thereby improving the reliability of battery cell status detection.
  • the sensor assembly is also disposed outside the battery cell housing.
  • the battery cell of this embodiment can detect the deformation of the battery cell caused by external forces such as external squeezing, collision or scraping, and realize deformation detection from the inside to the outside and from the outside to the inside.
  • an embodiment of the present application provides a battery, comprising:
  • the battery cell described in the second aspect is arranged in the battery casing.
  • the battery of the embodiment of the present application can realize instant detection of deformation inside the battery cell because the sensor assembly is disposed inside the battery cell, thereby improving the reliability of deformation detection of the battery cell.
  • the sensor assembly is further disposed outside the battery housing.
  • the battery when the sensor assembly further includes a temperature sensor, the battery further includes:
  • a battery management system the battery management system is disposed in the battery housing, the battery management system is electrically connected to the sensor in the sensor assembly, and the battery management system is used to:
  • the target position is the setting position of the sensor component; the first deformation amount is the deformation amount of the target position detected by the strain sensor; and the target temperature value is the temperature value of the target position detected by the temperature sensor.
  • the battery of this embodiment can use the battery management system to perform temperature compensation on the first deformation variable detected by the strain sensor in the sensor assembly using the basic deformation variable corresponding to the temperature value detected by the temperature sensor in the sensor assembly, thereby eliminating or reducing the influence of temperature on deformation detection, thereby improving the reliability of deformation detection.
  • the battery further comprises:
  • a battery management system the battery management system is arranged in the battery housing, the battery management system is electrically connected to the sensor in the sensor assembly, and the battery management system is used to compare the target deformation amount with the deformation amount threshold, and output deformation abnormality warning information when the target deformation amount is greater than the deformation amount threshold;
  • the target deformation amount is the first deformation amount or the second deformation amount
  • the first deformation amount is the deformation amount of the target position detected by the strain sensor, and the target position is the setting position of the sensor component;
  • the second deformation amount is determined based on the first deformation amount.
  • the battery of this embodiment outputs deformation abnormality warning information when the target deformation amount is greater than the deformation amount threshold, which is used to warn that the deformation of the battery cell has exceeded the maximum deformation amount. If the battery cell continues to work, it may cause a serious battery cell safety accident, so that the user can operate the battery cell to stop working, thereby improving the safety of battery use.
  • the abnormal deformation warning information is used to indicate the cause of the deformation of the battery.
  • the battery management system is further configured to:
  • an electrical device including:
  • the electrical device of the embodiment of the present application can realize real-time detection of the internal state of the battery cell because the sensor component is integrated inside the battery cell, thereby improving the accuracy of the detection of the internal state of the battery cell.
  • FIG1 is a schematic top view of a battery cell assembly provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of an expanded battery cell assembly provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a process of deformation detection and early warning provided in some embodiments of the present application.
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • the battery cell may include a lithium-ion secondary battery cell, a lithium-ion primary battery cell, a lithium-sulfur battery cell, a sodium-lithium-ion battery cell, a sodium-ion battery cell or a magnesium-ion battery cell, etc., and the embodiments of the present application do not limit this.
  • the battery cell may be cylindrical, flat, rectangular or other shapes, etc., and the embodiments of the present application do not limit this.
  • the battery cell assembly includes a pole piece assembly 10 and a sensor assembly 20 , and the sensor assembly 20 is disposed on the pole piece assembly.
  • the sensor assembly 20 at least includes a strain sensor (also referred to as a deformation sensor).
  • the strain sensor in the sensor assembly 20 can be used to detect the deformation amount of the setting position of the sensor assembly 20.
  • the sensing signal output by the strain sensor in the sensor assembly 20 is the deformation amount of the setting position of the sensor assembly 20 (hereinafter referred to as the first deformation amount).
  • the electrode assembly 10 may include a positive electrode sheet, a negative electrode sheet, and a separator separating the positive electrode sheet from the negative electrode sheet.
  • the pole piece assembly 10 can be wound by winding a positive pole piece, a negative pole piece and a separator
  • FIG. 1 is a schematic top view of a battery cell assembly
  • FIG. 2 is a schematic unfolded schematic view of a battery cell assembly.
  • the pole piece assembly 10 is a winding structure, including N turns (also referred to as N layers, one turn is regarded as one layer), N is an integer greater than 1, and the sensor assembly 20 can be arranged on the surface of the turn of the pole piece assembly 10, specifically, it can be arranged on the inner surface or outer surface of the turn of the pole piece assembly 10.
  • the pole piece assembly 10 can be obtained by stacking a positive pole piece, a negative pole piece and a diaphragm.
  • the pole piece assembly 10 is a laminated structure, including N layers, N is an integer greater than 1, and the sensor assembly 20 can be arranged on the surface of the layer of the pole piece assembly 10, specifically, it can be arranged on the inner surface or outer surface of the layer of the pole piece assembly 10.
  • the strain sensor in the sensor assembly 20 can detect it immediately, thereby improving the reliability of battery cell deformation detection.
  • the sensor assembly 20 may further include a temperature sensor.
  • the temperature sensor in the sensor assembly 20 may be used to detect the temperature value of the location where the sensor assembly 20 is set.
  • the sensing signal output by the temperature sensor in the sensor assembly 20 is the temperature value of the location where the sensor assembly 20 is set (hereinafter referred to as the target temperature value). In this way, the temperature inside the battery cell can be detected immediately, which can improve the reliability of the battery cell status detection.
  • the number of sensor components 20 may be one.
  • the sensor component 20 may be disposed in the innermost circle of the pole piece component 10; for a laminated pole piece component 10, the sensor component 20 may be disposed in the middle layer of the pole piece component 10. In this way, for deformation from the inside to the outside, instant deformation detection may be achieved.
  • multiple sensor components 20 may be evenly arranged on the pole piece component 10, so that uniform detection of deformation inside the pole piece component 10 can be achieved, and the accuracy of deformation detection can be improved.
  • a plurality of sensor assemblies 20 can be respectively arranged in the innermost circle 11, the middle circle 12 and the outermost circle 13 of the pole piece assembly 10. That is, the sensor assemblies 20 are respectively arranged in the innermost circle 11, the middle circle 12 and the outermost circle 13 of the pole piece assembly 10.
  • the coil-level deformation detection of the pole piece assembly 10 from the inside to the outside can be realized.
  • the cause of the deformation can be analyzed by comparing the deformation detected by the sensor assembly 20 set in each ring, such as: if the deformation detected by the sensor assembly 20 set in the outer ring is greater than the deformation detected by the sensor assembly 20 set in the inner ring, it means that the deformation is generated from the outside to the inside, and the cause of the deformation may be external, such as deformation caused by external force compression; if the deformation detected by the sensor assembly 20 set in the inner ring is greater than the deformation detected by the sensor assembly 20 set in the inner ring, it means that the deformation is generated from the inside to the outside, and the cause of the deformation may be internal, such as deformation caused by gas generation or expansion of the battery cell. In this way, the reliability of deformation detection can be further improved.
  • the number of sensor components 20 provided in each circle may be one or more.
  • the circle of the pole piece assembly 10 is composed of a plane and a curved surface, specifically, two planes and two curved surfaces.
  • the plane can also be called a large surface
  • the curved surface can also be called a corner.
  • the edge of the corner is the connecting line between the plane and the curved surface.
  • the sensor assembly 20 can be set on the large surface and the corner.
  • a sensor assembly 20 may be disposed at the center of a plane and a sensor assembly 20 may be disposed at the center of a curved surface. In this way, reliable monitoring of coil-level deformation may be achieved, thereby improving the reliability of deformation detection of the pole piece assembly 10 .
  • sensor components 20 may be disposed on the large surface 111 and corners 112 of the innermost circle 11 , on the large surface 112 of the middle circle 12 , and on the large surface 131 and corners 132 of the outermost circle 13 .
  • a plurality of sensor assemblies 20 can be respectively arranged at the bottom layer, the middle layer and the top layer of the pole piece assembly 10. In this way, the layered deformation detection of the pole piece assembly 10 from the inside to the outside can be realized.
  • the strain sensor may be a piezoresistive strain sensor, an electromagnetic strain sensor, a capacitive strain sensor, a piezoelectric strain sensor, an electrostatic capacitance strain sensor, or a vibrating wire capacitance strain sensor. It is understandable that for different sensor assemblies 20, the types of strain sensors integrated therein may be the same or different, which may be specifically set according to actual needs, and the embodiments of the present application do not limit this.
  • the strain sensor may be a strain gauge.
  • the sensor assembly 20 is a thin film type sensor assembly 20. That is, the sensor assembly 20 is made into a thin film type, so that, on the one hand, the influence of the sensor assembly 20 on the pole piece assembly 10 can be reduced; on the other hand, the sensor assembly 20 can have good flexibility.
  • the contact area between the sensor assembly 20 and the pole piece assembly 10 is 1 cm x 1 cm; the thickness of the sensor assembly 20 is less than 10 micrometers. Further, the thickness of the sensor assembly 20 may be less than 5 micrometers. In this way, the influence of the sensor assembly 20 on the pole piece assembly 10 may be reduced.
  • the embodiment of the present application does not limit the fixing method of the sensor component 20.
  • the sensor component 20 is fixed by packaging glue.
  • the embodiment of the present application also provides a battery cell, including a battery cell shell and a battery cell assembly provided by the embodiment of the present application, wherein the battery cell assembly is disposed in the battery cell shell.
  • the battery cell of the embodiment of the present application can realize real-time detection of deformation and temperature inside the battery cell by disposing a sensor component inside the battery cell assembly, thereby improving the reliability of battery cell status detection.
  • a sensor assembly 20 may be further disposed on the outside of the cell housing. In this way, the cell deformation caused by external forces such as external squeezing, collision or scraping can be detected, and deformation detection from the inside out and from the outside in can be achieved.
  • the number of sensor components 20 disposed on the outside of the cell shell can be one or more, and the selection of the location of the arrangement is representative and can fully reflect the deformation and temperature conditions of the outside of the cell.
  • the sensor components 20 can be disposed on the large surface, side surface, bottom surface and four corners of the cell shell.
  • the embodiment of the present application also provides a battery, including a battery housing and a battery cell provided in the embodiment of the present application, wherein the battery cell is disposed in the battery housing.
  • a battery may include one or more battery cells.
  • the battery may be a battery module or a battery pack.
  • the battery module may include at least one battery cell.
  • the battery pack may include at least one battery module.
  • the sensor assembly 20 is disposed inside the battery cell, the deformation inside the battery cell can be detected immediately, thereby improving the reliability of the deformation detection of the battery cell.
  • the sensor assembly may be disposed outside the battery housing, so that external deformation detection of the battery cell can be realized, thereby enriching the deformation detection method.
  • the battery may further include:
  • the battery management system (BMS) is disposed in the battery housing and is electrically connected to the sensors in the sensor assembly 20.
  • Each sensor in the sensor assembly 20 is electrically connected to the battery management system independently through a wire, and outputs a respective sensing signal to the battery management system through the wire.
  • the battery management system can be used to:
  • the target position is the setting position of the sensor component 20; the first deformation amount is the deformation amount of the target position detected by the strain sensor; and the target temperature value is the temperature value of the target position detected by the temperature sensor.
  • the battery management system can use the basic deformation amount corresponding to the temperature value detected by the temperature sensor in the sensor assembly 20 to perform temperature compensation on the deformation amount detected by the strain sensor in the sensor assembly 20.
  • the first deformation amount is the deformation amount before temperature compensation
  • the second deformation amount is the deformation amount after temperature compensation.
  • the basic deformation amount corresponding to the temperature value can reflect the influence of temperature on deformation detection.
  • the basic deformation amount corresponding to the temperature value can be tested.
  • the temperature of the battery cell assembly can be changed by changing the environment in which the battery cell assembly is located, thereby making the temperature value detected by the temperature sensor in the sensor assembly 20 in the battery cell assembly different.
  • the deformation amount detected by the strain sensor in the sensor assembly 20 in each environment is used as the basic deformation amount corresponding to the temperature value detected by the temperature sensor in the sensor assembly 20, and the basic deformation amount corresponding to different temperature values is obtained.
  • the degree of influence of temperature on the deformation of the pole piece assembly may be different at different positions in the pole piece assembly. Therefore, for the sensor assembly 20 at different positions, the basic deformation amount corresponding to the same temperature value may be different, which is specifically determined based on the actual test results.
  • the battery management system may also be used to:
  • the target shape variable is the first shape variable or the second shape variable
  • the first deformation amount is the deformation amount of the target position detected by the strain sensor, and the target position is the setting position of the sensor component;
  • the second deformation amount is determined based on the first deformation amount.
  • the deformation threshold may be: the maximum deformation allowed for the battery cell under normal operation.
  • the deformation abnormality warning information is output to warn that the deformation of the battery cell has exceeded the maximum deformation variable. If the battery cell continues to work, it may cause a serious battery cell safety accident, so that the user can operate the battery cell to stop working, thereby improving the safety of battery use.
  • the abnormal deformation warning information can also be used to indicate the cause of the battery deformation.
  • the battery management system may also be used to:
  • the target position When the target position is located outside the battery casing, it is determined that the deformation of the battery is caused by external force on the battery cell, such as the battery casing being squeezed, collided or scraped.
  • the sensor assembly 20 can be set both inside and outside the battery cell assembly.
  • the sensor assembly 20 set inside the battery cell assembly is used to detect the internal deformation of the battery cell assembly, and the sensor assembly 20 set outside the battery cell assembly is used to detect the external deformation of the battery cell assembly.
  • the battery management system and the battery management system can distinguish the sensor components 20 corresponding to each of the decomposed deformation amounts.
  • the target deformation amounts greater than the deformation amount threshold value are all sensor components 20 arranged inside the battery cell assembly, it can be determined that the deformation occurs inside the battery cell assembly and the cause of the deformation is the internal deformation of the battery cell assembly.
  • the target deformation amounts greater than the deformation amount threshold value are all sensor components 20 arranged outside the battery cell assembly, it can be determined that the deformation occurs outside the battery cell assembly and the deformation cause is the external deformation of the battery cell assembly.
  • the battery management system can determine the cause of the deformation by first detecting the setting position of the sensor component 20 corresponding to the target deformation amount greater than the deformation amount threshold value.
  • the setting position of the sensor component 20 corresponding to the target deformation amount that is detected previously and is greater than the deformation amount threshold is the sensor component 20 set outside the battery cell component, which means that the deformation inside the battery cell component is caused by the external deformation and the deformation cause is the external deformation.
  • the setting position of the sensor component 20 corresponding to the target deformation amount greater than the deformation amount threshold detected earlier is the sensor component 20 set inside the battery cell component, which means that the deformation outside the battery cell component is caused by the internal deformation and the deformation cause is the internal deformation.
  • the embodiment of the present application also provides an electrical device, including the battery provided in the embodiment of the present application.
  • Arrange sensor components also called sensor arrays
  • the sensor components distributed on the cell pole pieces collect temperature and deformation signals at the pole piece level, which can directly measure the deformation degree of the pole piece level inside the cell, more accurately determine the stress and strain conditions inside the cell, and perform faster detection and early warning judgment for abnormal deformation inside the cell, thus realizing non-destructive testing without disassembling the cell.
  • This can avoid problems existing in external detection, such as: external strain measurement has hysteresis and measurement errors for cell status judgment and deformation early warning.
  • the temperature value detected by the temperature sensor in the sensor assembly can not only reflect the temperature conditions inside the battery cell, but also perform temperature compensation on the deformation signal measured by the integrated deformation sensor, thereby eliminating or reducing the interference of temperature on deformation detection.
  • Temperature is the most important factor affecting deformation testing. Temperature fluctuations cannot be completely eliminated in the battery system, that is, the battery cannot maintain a constant temperature both inside and outside. This is mainly due to the influence of factors such as resistance/reaction exothermicity during the charging and discharging process.
  • the surrounding temperature can be measured while measuring deformation, and the deformation signal can be temperature compensated to eliminate the influence of temperature on the deformation test, so that the deformation test can more accurately reflect the deformation of the battery cell and the electrode itself.
  • the sensor components inside the battery cell can be distributed in the inner circle, middle and outermost circle of the battery cell, specifically the large surface and corners of each circle. In this way, the temperature and deformation information of multiple areas inside the battery cell can be collected, making the detection representative and more comprehensive in characterizing the deformation and temperature conditions inside the battery cell.
  • sensors can be arranged on the outside of the battery cell shell, battery module and battery pack, such as large surfaces, four corners and sides, to further detect the deformation state of the outside of the battery cell. This can reflect the degree of deformation of the battery cell, module and battery pack caused by external forces such as external squeezing, collision and scraping of the battery pack or battery module, and realize deformation detection from the inside out and from the outside to the inside.
  • the deformation of the cell, module, or battery pack is further transmitted to the inside of the cell.
  • the signal response is from the outside to the inside.
  • Sensors are arranged on the outside of the cell shell, battery module, and battery pack, such as the large surface, four corners, and sides, to further determine the deformation state of the cell. Combined with internal sensing technology, two deformation direction detections are achieved, from the inside to the outside and from the outside to the inside.
  • Step 301 for a battery with sensor arrays implanted inside and outside, measure the basic deformation X 0 at different positions and temperatures of the battery.
  • Step 302 actually measure the deformation X1 and temperature T of each position of the battery.
  • Step 304 determining whether the deformation amount X is greater than the deformation amount threshold value X'.
  • step 305 If yes, execute step 305; if no, return to step 302.
  • Step 305 Execute deformation warning.
  • Step 306 Determine whether the inside of the battery is deformed and whether the outside of the battery is deformed.
  • step 307 is executed.
  • step 308 is executed.
  • step 309 is performed.
  • Step 307 executing internal change deformation warning.
  • Step 308 Execute external change deformation warning.
  • Step 309 Determine whether the internal deformation of the battery occurs before the external deformation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电芯组件、电池单体、电池及用电装置。电芯组件包括极片组件;传感器组件,所述传感器组件设置于所述极片组件上,所述传感器组件包括应变传感器。

Description

电芯组件、电池单体、电池及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电芯组件、电池单体、电池及用电装置。
背景技术
电池经过长时间的循环使用,可能会导致电芯产气或膨胀进而导致电芯发生形变,而电芯形变如果超过一定程度,会导致严重的电芯安全事故,造成安全隐患。
现有技术中,通常是在电池外部设置应变片检测电芯的形变程度,然而,若电芯形变是因电芯产气或膨胀导致的,只有在电芯形变积累到一定程度才会被设置在电池外部的应变片检测到,形变检测具有滞后性,导致形变检测的可靠性较低。
发明内容
本申请提供了一种电芯组件、电池单体、电池及用电装置,其能提高电池形变检测的可靠性。
第一方面,本申请实施例提供了一种电芯组件,包括:
极片组件;
传感器组件,所述传感器组件设置于所述极片组件上,所述传感器组件包括应变传感器。
本申请实施例的电池组件,通过在极片组件上设置集成有应变传感器的传感器组件,即在电芯组件的内部设置传感器组件,若极片组件发生形变,传感器组件中的应变传感器可以即时检测到,从而可以提高电芯形变检测的可靠性。
在一些实施例中,所述传感器组件还包括温度传感器。
本实施例的电芯组件,通过在传感器组件中集成温度传感器,可以检测电芯组件的温度情况。进一步地,还可以利用传感器组件中的温度传感器检测到的温度值对应的基础形变量,对传感器组件中的应变传感器检测到的形变量进行温度补偿,消除或减少温度对形变检测的影响,使得补偿后的形变量更加准确反映传感器组件的设置位置的形变情况,进而提高电芯组件的形变检测的准确性和可靠性。
在一些实施例中,所述传感器组件的设置数量为多个;所述多个传感器组件均匀设置于所述极片组件上。
本实施例的电芯组件,可以实现极片组件内部形变的均匀检测,可以提高形变检测的准确性。
在一些实施例中,所述极片组件为卷绕结构,包括N圈,N为大于2的整数;
所述多个传感器组件分别设置于所述极片组件的最内圈、中间圈和最外圈。
本实施例的电芯组件,可以实现极片组件由内到外的每层卷绕形变检测。进一步地,可以通过比较各圈设置的传感器组件检测到的形变量,分析形变产生原因,提高形变检测的可靠性。
在一些实施例中,所述应变传感器为压阻式应变传感器、电磁式应变传感器、电容式应变传感器、压电式应变传感器、静电容量式应变传感器或振弦式电容型应变传感器。
在一些实施例中,所述传感器组件为薄膜型传感器组件。
本实施例的电芯组件,一方面,可以减少传感器组件对极片组件的影响;另一方面,可以使得传感器组件具有良好柔韧性。
在一些实施例中,所述传感器组件与所述极片组件的接触面积为1厘米×1厘米;所述传感器组件的厚度小于10微米。
本实施例的电芯组件,可以减少传感器组件对极片组件的影响。
在一些实施例中,所述传感器组件通过封装胶进行固定。
第二方面,本申请实施例提供一种电池单体,包括:
电芯壳体;
第一方面所述的电芯组件,所述电芯组件设置于所述电芯壳体内。
本申请实施例的电池单体,通过在电芯组件的内部设置传感器组件,可实现电芯内部形变和温度的即时检测,可以提高电芯状态检测的可靠性。
在一些实施例中,所述电芯壳体的外部还设置有所述传感器组件。
本实施例的电池单体,可以检测受外部挤压、碰撞或刮地等外力造成的电芯形变,实现由内而外,由外到内的形变检测。
第三方面,本申请实施例提供一种电池,包括:
电池壳体;
第二方面所述的电池单体,所述电池单体设置在所述电池壳体内。
本申请实施例的电池,由于电池单体内部设置有传感器组件,可以实现电池单体内部形变的即使检测,从而可提高电池单体形变检测的可靠性。
在一些实施例中,所述电池壳体的外部还设置有所述传感器组件。
如此,可以实现电池单体的外部形变检测,丰富形变检测的方式。
在一些实施例中,在所述传感器组件还包括温度传感器的情况下,所述电池还包括:
电池管理系统,所述电池管理系统设置于所述电池壳体内,所述电池管理系统与所述传感器组件中的传感器电连接,所述电池管理系统用于:
将第一形变量减去目标温度值对应的基础形变量,得到目标位置的第二形变量;
其中,所述目标位置为所述传感器组件的设置位置;所述第一形变量为所述应变传感器检测到的所述目标位置的形变量;所述目标温度值为所述温度传感器检测到的所述目标位置的温度值。
本实施例的电池,可以通过电池管理系统利用传感器组件中温度传感器检测到的温度值对应的基础形变量,对传感器组件中应变传感器检测到的第一形变量进行温度补偿,可以消除或减小温度对形变检测的影响,从而可以提高形变检测的可靠性。
在一些实施例中,所述电池还包括:
电池管理系统,所述电池管理系统设置于所述电池壳体内,所述电池管理系统与所述传感器组件中的传感器电连接,所述电池管理系统用于将 目标形变量与形变量阈值进行比较,并在所述目标形变量大于所述形变量阈值的情况下,输出形变异常预警信息;
其中,所述目标形变量为第一形变量或第二形变量;
所述第一形变量为所述应变传感器检测到的目标位置的形变量,所述目标位置为所述传感器组件的设置位置;
所述第二形变量基于所述第一形变量确定。
本实施例的电池,在目标形变量大于形变量阈值的情况下,输出形变异常预警信息,用于预警电芯形变已超出最大形变量,若电芯继续工作,可能会导致严重的电芯安全事故,以使用户可以操作电芯停止工作,从而可以提高电池使用安全性。
在一些实施例中,在所述电池壳体的外部还设置有所述传感器组件的情况下,所述形变异常预警信息用于指示所述电池的形变原因。
如此,可以让用户知晓电池形变原因。
在一些实施例中,所述电池管理系统还用于:
在所述目标位置位于所述极片组件上的情况下,确定所述电池的形变原因为所述电芯组件内部形变导致;
在所述目标位置位于所述电池壳体的外部的情况下,确定所述电池的形变原因为所述电池受到外力导致。
第四方面,本申请实施例提供一种用电装置,包括:
第三方面所述的电池。
本申请实施例的用电装置,由于电芯内部集成有传感器组件,可以实现电芯内部状态的即时检测,可以提高电芯内部状态检测的准确性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请实施例提供的电芯组件的俯视示意图;
图2为本申请实施例提供的电芯组件的展开示意图;
图3为本申请些实施例提供的形变检测与预警的流程示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存 在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
在本申请实施例中,如图1和图2所示,电芯组件包括极片组件10和传感器组件20,传感器组件20设置于极片组件上。
传感器组件20至少包括应变传感器(也可称为形变传感器)。传感器组件20中的应变传感器可以用于检测传感器组件20的设置位置的形变量,在本申请实施例中,传感器组件20中应变传感器输出的传感信号即传感器组件20的设置位置的形变量(以下称为第一形变量)。
极片组件10可以包括正极极片、负极极片以及将正极极片和负极极片隔开的隔膜。
在一些实施例中,如图1和图2所示,极片组件10可以由正极极片、负极极片和隔膜卷绕得到,图1为电芯组件的俯视示意图,图2为电芯组件的展开示意图。在此实施例中,极片组件10为卷绕结构,包括N圈(也可以称为N层,一圈视为一层),N为大于1的整数,传感器组件20可以设置于极片组件10的圈的表面,具体可以设置在极片组件10的圈的内表面或外表面。
在另一些实施例中,极片组件10可以由正极极片、负极极片和隔膜层叠得到。在此实施例中,极片组件10为叠片结构,包括N层,N为大于1的整数,传感器组件20可以设置于极片组件10的层的表面,具体可以设置在极片组件10的层的内表面或外表面。
在本申请实施例中,由于传感器组件20设置在极片组件上,即设置于电芯组件的内部,若极片组件发生形变,传感器组件20中的应变传感器可以即时检测到,从而可以提高电芯形变检测的可靠性。
在一些实施例中,传感器组件20还可以包括温度传感器。传感器组件20中的温度传感器可以用于检测传感器组件20的设置位置的温度值,在本申请实施例中,传感器组件20中温度传感器输出的传感信号即传感器组件20的设置位置的温度值(以下称为目标温度值)。如此,可以实现电芯内部的温度即使检测,可以提高电芯状态检测的可靠性。
在一些实施例中,传感器组件20的设置数量可以为1个。在此实施例中,对于卷绕结构的极片组件10,可以将传感器组件20设置在极片组件10的最内圈;对于叠片结构的极片组件10,可以将传感器组件20设置在极片组件10的中间层。这样,对于由内到外的形变,可以实现形变的即时检测。
在另一些实施例中,传感器组件20的设置数量可以为多个。在此实施例中,多个传感器组件20可以均匀设置于极片组件10上,如此,可以实现极片组件10内部形变的均匀检测,可以提高形变检测的准确性。
一些可选地实现方式中,对于卷绕结构的极片组件10,如图1和图2所示,多个传感器组件20可以分别设置于极片组件10的最内圈11、中间圈12和最外圈13。即在极片组件10的最内圈11、中间圈12和最外圈13分别设置传感器组件20。
如此,可以实现极片组件10由内到外的圈级形变检测。进一步地,可以通过比较各圈设置的传感器组件20检测到的形变量,分析形变产生原因,如:若外圈设置的传感器组件20检测到的形变量大于内圈设置的传感器组件20检测到的形变量,说明形变是由外到内产生的,形变原因可能是外部导致的,如因外部受力挤压导致的形变;若内部设置的传感器组件20检测到的形变量大于内圈设置的传感器组件20检测到的形变量,说明形变是由内到外产生的,形变原因可能是内部导致的,如因电芯产生气体或膨胀导致的形变。这样,可进一步提高形变检测的可靠性。
进一步地,各圈设置的传感器组件20数量可以为一个或多个。
极片组件10的圈由平面和曲面组成,具体地,包括两个平面和两个曲面,在一些实施例中,平面也可以称为大面,曲面也可以称为拐角,拐角的边缘为平面与曲面的连接线。一种可选地实现方式中,可以在大面和拐角设置传感器组件20。
作为一个示例,可以在平面的中心设置一个传感器组件20,在曲面的中心设置一个传感器组件20,如此,可以实现圈级形变的可靠监测,从而提高极片组件10的形变检测的可靠性。
如图1所示,可以在最内圈11的大面111和拐角112设置传感器组件20,在中间圈12的大面112设置传感器组件20,在最外圈13的大面131和拐角132传感器组件20。
对于叠片结构的极片组件10,类似地,多个传感器组件20可以分别设置于极片组件10的最下层、中间层和最上层。如此,可以实现极片组件10由内到外的层级形变检测。
在一些实施例中,应变传感器可以为压阻式应变传感器、电磁式应变传感器、电容式应变传感器、压电式应变传感器、静电容量式应变传感器或振弦式电容型应变传感器。可以理解地是,对于不同的传感器组件20,其集成的应变传感器的类型可以相同或不同,具体可根据实际需求设定,本申请实施例对此不作限定。
在一些实施例中,应变传感器可以为应变片。
在一些实施例中,传感器组件20为薄膜型传感器组件20。即将传感器组件20制作成薄膜型,如此,一方面,可以减少传感器组件20对极片组件10的影响;另一方面,可以使得传感器组件20具有良好柔韧性。
一些可选地实现方式中,传感器组件20与极片组件10的接触面积为1厘米(cm)×1厘米;传感器组件20的厚度小于10微米(um)。进一步地,传感器组件20的厚度可以小于5微米。如此,可以减少传感器组件20对极片组件10的影响。
本申请实施例并不限定传感器组件20的固定方式,在一些实施例中,传感器组件20通过封装胶进行固定。
本申请实施例还提供一种电池单体,包括电芯壳体和本申请实施例提 供的电芯组件,电芯组件设置于电芯壳体内。
本申请实施例的电池单体,通过在电芯组件的内部设置传感器组件,可实现电芯内部形变和温度的即时检测,可以提高电芯状态检测的可靠性。
在一些实施例中,电芯壳体的外部还可以设置有传感器组件20。如此,可以检测受外部挤压、碰撞或刮地等外力造成的电芯形变,实现由内而外,由外到内的形变检测。
电芯壳体外部的传感器组件20的设置数量可以为一个或多个,设置位置的选取具有代表性,可以全面反映电芯外部的形变与温度情况。在一些可选地实现方式中,传感器组件20可以设置于电芯壳体的大面、侧面、底面和四角。
本申请实施例还提供一种电池,包括电池壳体和本申请实施例提供的电池单体,电池单体设置在电池壳体内。
在实际应用中,电池可以包括一个或多个电池单体。
电池可以为电池模组或电池包。在电池为电池模组的情况下,电池模组可以包括至少一个电池单体。在电池为电池包的情况下,电池包可以包括至少一个电池模组。
由于电池单体内部设置有传感器组件20,可以实现电池单体内部形变的即使检测,从而可以提高电池单体形变检测的可靠性。
进一步地,所述电池壳体的外部还可以设置有所述传感器组件,如此,可以实现电池单体的外部形变检测,丰富形变检测的方式。
在一些实施例中,电池还可以包括:
电池管理系统(BMS),电池管理系统设置于电池壳体内,电池管理系统与传感器组件20中的传感器电连接。传感器组件20中的每个传感器分别通过导线独立与电池管理系统电连接,通过导线向电池管理系统输出各自的传感信号。
在传感器组件20还包括温度传感器的情况下,电池管理系统,可用于:
将第一形变量减去目标温度值对应的基础形变量,得到目标位置的第二形变量;
其中,目标位置为传感器组件20的设置位置;第一形变量为应变传感 器检测到的目标位置的形变量;目标温度值为温度传感器检测到的目标位置的温度值。
在本实施例中,电池管理系统可以利用传感器组件20中的温度传感器检测到的温度值对应的基础形变量,对传感器组件20中的应变传感器检测到的形变量进行温度补偿,第一形变量为进行温度补偿前的形变量,第二形变量为进行温度补偿后的形变量。如此,可以消除或减少温度对形变检测的影响,使得补偿后的形变量更加准确反映传感器组件20的设置位置的形变情况,进而提高电芯组件的形变检测的准确性和可靠性。
温度值对应的基础形变量可以反映温度对形变检测的影响。温度值对应的基础形变量可以测试得到。在测试阶段,可以通过改变电芯组件所处环境,使得电芯组件的温度不同,进而使得电芯组件中的传感器组件20中的温度传感器检测到的温度值不同。将传感器组件20中的应变传感器在每个环境下检测到的形变量,作为传感器组件20中的温度传感器检测到的温度值对应的基础形变量,得到不同温度值对应的基础形变量。
可以理解地是,极片组件中的不同位置,温度对其形变的影响程度可能不同,因此,对于不同位置的传感器组件20,同一温度值对应的基础形变量可能不同,具体基于实际测试结果决定。
在一些实施例中,电池管理系统,还可以用于:
将电池管理系统的目标形变量与形变量阈值进行比较,并在目标形变量大于形变量阈值的情况下,输出形变异常预警信息;
其中,目标形变量为第一形变量或第二形变量;
第一形变量为应变传感器检测到的目标位置的形变量,目标位置为传感器组件的设置位置;
第二形变量基于第一形变量确定。
形变量阈值可以为:电芯正常工作下允许承受的最大形变量。
在目标形变量大于形变量阈值的情况下,输出形变异常预警信息,用于预警电芯形变已超出最大形变量,若电芯继续工作,可能会导致严重的电芯安全事故,以使用户可以操作电芯停止工作,从而可以提高电池使用安全性。
进一步地,在电池壳体的外部还设置有传感器组件20的情况下,形变异常预警信息还可以用于指示电池的形变原因。
在一些实施例中,所述电池管理系统还可以用于:
在目标位置位于极片组件10上的情况下,确定电池的形变原因为电芯组件内部形变导致;
在目标位置位于电池壳体的外部的情况下,确定电池的形变原因为电池单体受到外力导致,如电池壳体受到挤压、碰撞或刮底等。
由前述内容可知,电芯组件的内部和外部均可以设置传感器组件20,设置在电芯组件内部的传感器组件20用于检测电芯组件的内部形变,设置在电芯组件外部的传感器组件20用于检测电芯组件的外部形变。
电池管理系统和电池管理系统可以区分解调后的各个形变量对应的传感器组件20。
若大于形变量阈值的目标形变量均为设置在电芯组件内部的传感器组件20,可以确定形变发生在电芯组件内部,形变原因为电芯组件内部形变。
若大于形变量阈值的目标形变量均为设置在电芯组件外部的传感器组件20,可以确定形变发生在电芯组件外部,形变原因为电芯组件外部形变。
若大于形变量阈值的目标形变量对应有设置在电芯组件外部的传感器组件20,以及设置在电芯组件内部的传感器组件20,电池管理系统可以通过先检测到的大于形变量阈值的目标形变量所对应的传感器组件20的设置位置,确定形变原因。
在先检测到的大于形变量阈值的目标形变量所对应的传感器组件20的设置位置为设置在电芯组件外部的传感器组件20,说明电芯组件内部的形变是由外部形变引起的,形变原因为外部形变。
在先检测到的大于形变量阈值的目标形变量所对应的传感器组件20的设置位置为设置在电芯组件内部的传感器组件20,说明电芯组件外部的形变是由内部形变引起的,形变原因为内部形变。
如此,可以准确识别形变原因。
本申请实施例还提供一种用电装置,包括本申请实施例提供的电池。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的 特征可以相互组合。
在本申请实施例中:
1)在电芯极片内部布置传感器组件(也可以称为传感器阵列),分布于电芯极片上的传感器组件采集极片层级的温度和形变信号,可以直接测量电芯内部极片层级的形变程度,更加准确测定电芯内部的受力应变状况,对于电芯内部形变异常的可进行更为快速的检测和预警判断,实现不用拆解电芯的无损检测。可以避免外部检测时存在的问题,如:外部测量应变对于电芯状态判断与形变预警具有滞后性与测量误差。
2)传感器组件中的温度传感器检测到的温度值不仅可以反映电芯内部的温度情况,也可以对集成在一起的形变传感器测到的形变信号进行温度补偿,消除或减少温度对形变检测的干扰。
温度是形变的测试的最重要影响因素,温度波动在电池体系中是无法彻底消除,即电池内外部均无法保持恒温状态,这主要是由于充放电过程中存在电阻/反应放热等因素影响。通过集成温度传感器与形变传感器形成传感器阵列,测量形变的同时也可测量到周边的温度情况,可对形变信号进行温度补偿,排除温度对形变测试的影响,使得形变测试更加准确反应电芯和极片本身的形变情况。
3)电芯内部的传感器组件可以分布于电芯内圈,中间与最外圈,具体可以为各圈的大面与拐角处,如此,可以采集电芯内部多个区域的温度和形变信息,使得检测具有代表性,更加全面表征电芯内部的形变与温度情况。
4)除在电芯内部布置传感器组件外,可以在电芯壳体,电池模组与电池包的外部如大面,四角,侧面做传感器布置,进一步检测电芯外部的形变状态,可以反映电池包或电池模组,电芯受外部挤压,碰撞,刮底而造成的由外力造成的电芯,模组,电池包的形变程度,实现由内而外,由外到内的形变检测。
当电芯,电池模组,电池包受外部挤压,碰撞,刮底而造成的由外力造成的电芯,模组,电池包的形变,进一步传导到电芯内部,这时候信号响应是由外到内,在电芯壳体,电池模组与电池包的外部如大面,四角, 侧面做传感器布置,进一步确定电芯的形变状态。加上内部的传感技术,实现由内而外,由外到内的两种形变方向检测。
以下结合图3对电池形变检测与预警进行说明:
步骤301,对于内部和外部植入有传感器阵列的电池,测量电池不同位置不同温度下的基础形变量X 0
步骤302,实际测定电池各位置的形变量X 1与温度值T。
步骤303,利用温度值T对应的基础形变量X 0对形变量X 1进行补偿,得到真实形变量X=X 1-X 0
步骤304,判断形变量X是否大于形变量阈值X’。
在是的情况下执行步骤305;在否的情况下返回步骤302。
步骤305、执行形变预警。
步骤306、判断电池内部是否变形,电池外部是否变形。
在电池内部变形,电池外部未变形的情况下,执行步骤307。
在电池外部变形,电池内部未变形的情况下,执行步骤308。
在电池内部变形且电池外部变形的情况下,执行步骤309。
步骤307,执行内部变化形变预警。
步骤308、执行外部变化形变预警。
步骤309、判断电池内部变形是否先于外部变形。
在是的情况下,执行步骤308;在否的情况下,执行步骤308。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种电芯组件,包括:
    极片组件;
    传感器组件,所述传感器组件设置于所述极片组件上,所述传感器组件包括应变传感器。
  2. 根据权利要求1所述的电芯组件,其中,所述传感器组件还包括温度传感器。
  3. 根据权利要求1所述的电芯组件,其中,所述传感器组件的设置数量为多个;所述多个传感器组件均匀设置于所述极片组件上。
  4. 根据权利要求3所述的电芯组件,其中,所述极片组件为卷绕结构,包括N圈,N为大于2的整数;
    所述多个传感器组件分别设置于所述极片组件的最内圈、中间圈和最外圈。
  5. 根据权利要求1所述的电芯组件,其中,所述应变传感器为压阻式应变传感器、电磁式应变传感器、电容式应变传感器、压电式应变传感器、静电容量式应变传感器或振弦式电容型应变传感器。
  6. 根据权利要求1所述的电芯组件,其中,所述传感器组件为薄膜型传感器组件。
  7. 根据权利要求1所述的电芯组件,其中,所述传感器组件与所述极片组件的接触面积为1厘米×1厘米;所述传感器组件的厚度小于10微米。
  8. 根据权利要求1所述的电芯组件,其中,所述传感器组件通过封装胶进行固定。
  9. 一种电池单体,包括:
    电芯壳体;
    如权利要求1至8中任一项所述的电芯组件,所述电芯组件设置于所述电芯壳体内。
  10. 根据权利要求9所述的电池单体,其中,所述电芯壳体的外部还设置有所述传感器组件。
  11. 一种电池,包括:
    电池壳体;
    如权利要求9或10所述的电池单体,所述电池单体设置在所述电池壳体内。
  12. 根据权利要求11所述的电池,其中,所述电池壳体的外部还设置有所述传感器组件。
  13. 根据权利要求11所述的电池,其中,在所述传感器组件还包括温度传感器的情况下,所述电池还包括:
    电池管理系统,所述电池管理系统设置于所述电池壳体内,所述电池管理系统与所述传感器组件中的传感器电连接,所述电池管理系统用于:
    将第一形变量减去目标温度值对应的基础形变量,得到目标位置的第二形变量;
    其中,所述目标位置为所述传感器组件的设置位置;所述第一形变量为所述应变传感器检测到的所述目标位置的形变量;所述目标温度值为所述温度传感器检测到的所述目标位置的温度值。
  14. 根据权利要求11所述的电池,其中,所述电池还包括:
    电池管理系统,所述电池管理系统设置于所述电池壳体内,所述电池管理系统与所述传感器组件中的传感器电连接,所述电池管理系统用于将目标形变量与形变量阈值进行比较,并在所述目标形变量大于所述形变量阈值的情况下,输出形变异常预警信息;
    其中,所述目标形变量为第一形变量或第二形变量;
    所述第一形变量为所述应变传感器检测到的目标位置的形变量,所述目标位置为所述传感器组件的设置位置;
    所述第二形变量基于所述第一形变量确定。
  15. 根据权利要求14所述的电池,其中,在所述电池壳体的外部还设置有所述传感器组件的情况下,所述形变异常预警信息用于指示所述电池的形变原因。
  16. 根据权利要求15所述的电池,其中,所述电池管理系统还用于:
    在所述目标位置位于所述极片组件上的情况下,确定所述电池的形变原因为所述电芯组件内部形变导致;
    在所述目标位置位于所述电池壳体的外部的情况下,确定所述电池的形变原因为所述电池受到外力导致。
  17. 一种用电装置,包括:
    如权利要求11至16中任一项所述的电池。
PCT/CN2022/122072 2022-09-28 2022-09-28 电芯组件、电池单体、电池及用电装置 WO2024065261A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280011991.6A CN116888806A (zh) 2022-09-28 2022-09-28 电芯组件、电池单体、电池及用电装置
PCT/CN2022/122072 WO2024065261A1 (zh) 2022-09-28 2022-09-28 电芯组件、电池单体、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122072 WO2024065261A1 (zh) 2022-09-28 2022-09-28 电芯组件、电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024065261A1 true WO2024065261A1 (zh) 2024-04-04

Family

ID=88266711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122072 WO2024065261A1 (zh) 2022-09-28 2022-09-28 电芯组件、电池单体、电池及用电装置

Country Status (2)

Country Link
CN (1) CN116888806A (zh)
WO (1) WO2024065261A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485490A (zh) * 2014-12-12 2015-04-01 中国科学院电工研究所 一种软包装聚合物锂电池组在线监测系统及其监测方法
US20150280290A1 (en) * 2014-04-01 2015-10-01 Palo Alto Research Center Incorporated Method For Monitoring/Managing Electrochemical Energy Device By Detecting Intercalation Stage Changes
CN111082166A (zh) * 2019-11-20 2020-04-28 国网江苏省电力有限公司电力科学研究院 一种电化学储能安全预警系统及方法
CN113466701A (zh) * 2021-06-29 2021-10-01 武汉理工大学 基于fbg的储能电池内部多参量一体化在线监测系统及方法
CN113532539A (zh) * 2021-07-27 2021-10-22 安徽理工大学 同时测量温度、应变和压力的光纤传感系统、方法及装置
CN114199434A (zh) * 2021-11-24 2022-03-18 华中科技大学 方形锂电池卷绕参数的测量系统、测量方法及优化方法
CN217182205U (zh) * 2022-03-30 2022-08-12 宁德时代新能源科技股份有限公司 电池的电极组件、电池单体、电池和用电设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280290A1 (en) * 2014-04-01 2015-10-01 Palo Alto Research Center Incorporated Method For Monitoring/Managing Electrochemical Energy Device By Detecting Intercalation Stage Changes
CN104485490A (zh) * 2014-12-12 2015-04-01 中国科学院电工研究所 一种软包装聚合物锂电池组在线监测系统及其监测方法
CN111082166A (zh) * 2019-11-20 2020-04-28 国网江苏省电力有限公司电力科学研究院 一种电化学储能安全预警系统及方法
CN113466701A (zh) * 2021-06-29 2021-10-01 武汉理工大学 基于fbg的储能电池内部多参量一体化在线监测系统及方法
CN113532539A (zh) * 2021-07-27 2021-10-22 安徽理工大学 同时测量温度、应变和压力的光纤传感系统、方法及装置
CN114199434A (zh) * 2021-11-24 2022-03-18 华中科技大学 方形锂电池卷绕参数的测量系统、测量方法及优化方法
CN217182205U (zh) * 2022-03-30 2022-08-12 宁德时代新能源科技股份有限公司 电池的电极组件、电池单体、电池和用电设备

Also Published As

Publication number Publication date
CN116888806A (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
CN107305973B (zh) 用于确定电池组电池或电池组模块的老化的长度伸展监控
US9608297B2 (en) In-cell battery management device
CN113285131B (zh) 一种内置光纤传感器的智能电池及其健康状态估计方法
JP6151577B2 (ja) 感圧フィルムセンサを備えたバッテリセル
CN207398300U (zh) 电池模组和电子产品
CN108511829A (zh) 一种锂电池
CN114696048A (zh) 一种锂离子电池组件及电池管理系统
CN112946509A (zh) 一种基于电极应变的锂离子电池老化状态估计方法
CN115020851A (zh) 一种具有膨胀力检测功能的扣式电池及其制备方法
CN103983179B (zh) 电池厚度变化检测装置、电池安全检测及判断方法
WO2024065261A1 (zh) 电芯组件、电池单体、电池及用电装置
CN115097338A (zh) Soc校准方法、soh估计方法、装置及存储介质
KR20210136253A (ko) 스트레인 게이지를 이용한 리튬 이차전지의 가스 발생 거동 평가방법
US11482733B2 (en) Device and method for mechanically detecting anomalous battery operation
CN108050925A (zh) 一种聚合物软包电池电芯厚度监测系统和方法
CN112762813A (zh) 电池形变检测装置及电池管理系统
CN111829648A (zh) 一种压电式噪声传感器探头
JP3913385B2 (ja) 二次電池
JP6788640B2 (ja) 二次電池の劣化判定システム及び劣化判定方法
CN216958412U (zh) 电池模组、电池箱以及车辆
WO2024065259A1 (zh) 电芯组件、电池单体、电池及用电装置
CN114597337A (zh) 一种电池极片以及动力电池
CN114894359A (zh) 一种燃料电池电堆紧固力检测方法及装置
CN220627904U (zh) 电池卷芯和电池
CN112433166A (zh) 一种锂离子动力电池内部失效反应多维度检测方法与结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959909

Country of ref document: EP

Kind code of ref document: A1