WO2024065259A1 - 电芯组件、电池单体、电池及用电装置 - Google Patents

电芯组件、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024065259A1
WO2024065259A1 PCT/CN2022/122066 CN2022122066W WO2024065259A1 WO 2024065259 A1 WO2024065259 A1 WO 2024065259A1 CN 2022122066 W CN2022122066 W CN 2022122066W WO 2024065259 A1 WO2024065259 A1 WO 2024065259A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
deformation
optical fiber
pressure
Prior art date
Application number
PCT/CN2022/122066
Other languages
English (en)
French (fr)
Inventor
朱翠翠
杨雷
王少飞
李杨
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/122066 priority Critical patent/WO2024065259A1/zh
Publication of WO2024065259A1 publication Critical patent/WO2024065259A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery cell assembly, a battery cell, a battery and an electrical device.
  • the battery may cause gas production or expansion of the battery cell, which may cause the battery cell to deform. If the battery cell deformation exceeds a certain degree, it will lead to serious battery cell safety accidents and cause safety hazards.
  • a strain gauge is usually arranged outside the battery to detect the deformation degree of the battery cell.
  • the strain gauge arranged outside the battery will not detect it until the deformation of the battery cell accumulates to a certain extent.
  • the deformation detection has a lag, resulting in low reliability of the deformation detection.
  • the present application provides a battery cell assembly, a battery cell, a battery and an electrical device, which can improve the reliability of battery cell status detection.
  • an embodiment of the present application provides a battery cell assembly, including:
  • the optical fiber is arranged on the pole piece assembly, the optical fiber is provided with a sensor array, and the sensors in the sensor array are all optical fiber sensors.
  • the battery cell assembly of the embodiment of the present application can detect the internal state information of the battery cell through the sensor array by arranging an optical fiber with an integrated sensor array on the pole piece assembly, thereby realizing real-time detection of the internal state of the battery cell and improving the reliability of the internal state detection of the battery cell.
  • the sensor array includes at least one of the following: a strain sensor, a temperature sensor, and a pressure sensor.
  • the battery cell assembly of this embodiment can realize the instant detection of the temperature, pressure and deformation inside the battery cell. Furthermore, the basic deformation corresponding to the temperature value detected by the temperature sensor in the sensor array can be used to perform temperature compensation on the deformation detected by the strain sensor in the sensor array and the pressure value detected by the pressure sensor in the sensor array, thereby eliminating or reducing the influence of temperature on the deformation and pressure detection, so that the compensated deformation and pressure values more accurately reflect the deformation and pressure conditions of the setting position of the sensor array, thereby improving the accuracy and reliability of the deformation detection and pressure detection of the battery cell assembly.
  • the strain sensor is a strain grating inscribed in the optical fiber;
  • the temperature sensor is a temperature grating inscribed in the optical fiber;
  • the pressure sensor is a pressure grating inscribed in the optical fiber;
  • the wavelength ranges of the strain grating, the temperature grating and the pressure grating are different.
  • a grating can be used as a sensor.
  • corresponding sensors can be obtained.
  • the demodulator can accurately demodulate the sensing signals of each sensor based on changes in the intensity, wavelength, frequency, phase, polarization state, etc. of the received light, thereby improving the reliability of obtaining the internal state of the battery cell.
  • the type of the grating is: Bragg grating, chirp grating, long period grating, blazed grating or phase grating.
  • the temperature sensor is located between the strain sensor and the pressure sensor, so as to improve the reliability of temperature compensation.
  • the optical fibers are disposed in a plurality; the plurality of optical fibers are uniformly disposed inside the pole piece assembly.
  • the battery cell assembly of this embodiment can achieve uniform detection of the internal state of the pole piece assembly, and can improve the accuracy of the detection of the internal state of the battery cell.
  • the pole piece assembly is a winding structure, including N turns, where N is an integer greater than 2;
  • the optical fibers are respectively arranged in the innermost circle, the middle circle and the outermost circle of the pole piece assembly.
  • the battery cell assembly of this embodiment can realize the coil-level status detection of the pole piece assembly from the inside to the outside.
  • the optical fiber is provided with a plurality of sensor arrays, and the plurality of sensor arrays are evenly arranged in the optical fiber.
  • the battery cell assembly of this embodiment can achieve uniform detection of the coil-level status and improve the reliability of the detection of the internal status of the battery cell.
  • the pole piece assembly is a winding structure, including N turns, where N is an integer greater than 2;
  • the optical fiber is arranged on a target circle, the target circle is composed of a plane and a curved surface, and the target circle is any circle among the N circles;
  • the sensor array is disposed in the optical fiber at positions corresponding to the following positions: a center position of the plane, a center position of the curved surface, and a center position of a connecting line between the plane and the curved surface.
  • the battery cell assembly of this embodiment can realize reliable monitoring of coil-level status, thereby improving the reliability of status detection of the pole piece assembly.
  • the optical fiber has a thickness of less than 10 microns.
  • the battery cell assembly of this embodiment can reduce the influence of the optical fiber on the pole piece assembly.
  • the optical fiber is fixed by packaging glue.
  • an embodiment of the present application provides a battery cell, including:
  • the battery cell assembly is arranged in the battery cell shell.
  • the optical fiber is also disposed outside the battery cell housing.
  • the battery cell of this embodiment can realize real-time detection of the internal state of the battery cell by arranging an optical fiber integrated with a sensor array inside the battery cell assembly, thereby improving the reliability of the battery cell state detection.
  • the thickness of the optical fiber disposed outside the battery cell housing is less than 50 microns.
  • the battery cell of this embodiment can reduce the influence of the optical fiber on the battery cell.
  • the battery cell further comprises:
  • a laser the laser being disposed in the battery cell housing and electrically connected to the first end of the optical fiber;
  • a demodulator is arranged in the battery cell shell, the demodulator is electrically connected to the second end of the optical fiber, and the demodulator is used to demodulate the sensor signals of the sensors in the sensor array to obtain the status information of the target position, and the target position is the setting position of the sensor array.
  • the demodulator can realize accurate demodulation of the sensing signals of each sensor based on changes in the intensity, wavelength, frequency, phase, polarization state, etc. of the received light, thereby improving the reliability of obtaining the internal state of the battery cell.
  • the demodulator when the sensor array includes strain sensors, temperature sensors, and pressure sensors, the demodulator is used to:
  • the sensing signal of the pressure sensor is demodulated to obtain a first pressure value of the target position.
  • the battery cell assembly of this embodiment can realize real-time detection of the temperature, pressure and deformation inside the battery cell.
  • an embodiment of the present application further provides a battery, comprising:
  • the battery cell is disposed in the battery casing.
  • the battery provided in the embodiment of the present application can realize instant detection of the internal state of the battery cell because the optical fiber is arranged inside the battery cell, thereby improving the reliability of the battery cell state detection.
  • the optical fiber is further disposed outside the battery housing.
  • the battery of this embodiment can realize external state detection of the battery cell and enrich the state detection methods.
  • the battery cell when the sensor array includes a strain sensor, a temperature sensor, and a pressure sensor, and the battery cell includes a demodulator, the battery further includes:
  • a battery management system the battery management system is arranged in the battery housing, the battery management system is electrically connected to the demodulator, and the battery management system is used to:
  • the first deformation amount is the deformation amount of the target position detected by the strain sensor
  • the first pressure value is the pressure value of the target position detected by the pressure sensor
  • the battery of this embodiment can perform temperature compensation for deformation and pressure, thereby improving the reliability of deformation and pressure detection.
  • the battery cell when the battery cell includes a demodulator, the battery further includes:
  • a battery management system the battery management system is arranged in the battery housing, the battery management system is electrically connected to the demodulator, and the battery management system is used to:
  • the target deformation amount is the first deformation amount or the second deformation amount of the target position; and the target pressure value is the first pressure value or the second pressure value of the target position.
  • the battery cell of this embodiment outputs deformation abnormality warning information when the target deformation amount is greater than the deformation amount threshold, which is used to warn that the cell deformation has exceeded the maximum deformation amount.
  • the deformation abnormality warning information is output to warn that the cell deformation has exceeded the maximum pressure value. If the cell continues to work, it may cause a serious cell safety accident, so that the user can operate the cell to stop working, thereby improving the safety of battery use.
  • the deformation abnormality warning information is used to indicate the cause of the abnormal deformation of the battery; and the pressure abnormality warning information is used to indicate the cause of the abnormal pressure of the battery.
  • the battery management system is further configured to:
  • the target position When the target position is located on the pole piece assembly, it is determined that the abnormal deformation of the battery is caused by the abnormal deformation inside the battery cell assembly; when the target position is located outside the battery casing, it is determined that the abnormal deformation of the battery is caused by the external force on the battery, and the target position is the setting position of the sensor array;
  • the target position When the target position is located on the pole piece assembly, it is determined that the abnormal deformation of the battery is caused by abnormal internal pressure of the battery cell assembly; when the target position is located outside the battery casing, it is determined that the abnormal deformation of the battery is caused by external force applied to the battery.
  • the battery further comprises:
  • a battery management system the battery management system is arranged in the battery housing, the battery management system is electrically connected to the demodulator, and the battery management system is used to:
  • the state prediction model is used to predict state information of a second position, where the second position is located inside the pole piece assembly or outside the battery cell housing.
  • the battery cell of this embodiment can use the state prediction model to predict the state of each position, which can enrich the way of obtaining the battery state.
  • an embodiment of the present application further provides an electrical device, including:
  • a battery as described in the third aspect is described.
  • the electrical device provided in the embodiment of the present application can realize real-time detection of the internal state of the battery cell, and can improve the accuracy of the detection of the internal state of the battery cell, because the sensor array is integrated inside the battery cell.
  • FIG1 is a schematic top view of a battery cell assembly provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of a sensor array provided in an embodiment of the present application.
  • FIG. 3 is an external schematic diagram of a battery cell provided in an embodiment of the present application.
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • the battery cell may include a lithium-ion secondary battery cell, a lithium-ion primary battery cell, a lithium-sulfur battery cell, a sodium-lithium-ion battery cell, a sodium-ion battery cell or a magnesium-ion battery cell, etc., and the embodiments of the present application do not limit this.
  • the battery cell may be cylindrical, flat, rectangular or other shapes, etc., and the embodiments of the present application do not limit this.
  • the battery cell assembly includes a pole piece assembly 10 and an optical fiber 20 , and the optical fiber 20 is disposed on the pole piece assembly 10 .
  • the optical fiber 20 is provided with a sensor array 21, and the sensors in the sensor array are all optical fiber sensors.
  • the sensor array 21 can be used to detect the state information of the setting position of the sensor array 21.
  • the state information may include at least one of the following: temperature value, deformation value, pressure value, etc.
  • the electrode assembly 10 may include a positive electrode sheet, a negative electrode sheet, and a separator separating the positive electrode sheet from the negative electrode sheet.
  • the pole piece assembly 10 can be obtained by winding a positive pole piece, a negative pole piece and a separator
  • FIG1 is a top view schematic diagram of a battery cell assembly.
  • the pole piece assembly 10 is a winding structure, including N turns (also referred to as N layers, one turn is regarded as one layer), N is an integer greater than 1, and the optical fiber can be arranged on the surface of the turn of the pole piece assembly 10, specifically, it can be arranged on the inner surface or outer surface of the turn of the pole piece assembly 10.
  • the pole piece assembly 10 can be obtained by stacking a positive pole piece, a negative pole piece and a separator.
  • the pole piece assembly 10 is a laminated structure, including N layers, N is an integer greater than 1, and the sensor array 21 can be arranged on the surface of the layer of the pole piece assembly 10, specifically, it can be arranged on the inner surface or outer surface of the layer of the pole piece assembly 10.
  • the sensor array can detect the internal state information of the battery cell, thereby achieving real-time detection of the internal state of the battery cell, and improving the reliability of the internal state detection of the battery cell.
  • the sensor array 21 may include at least one of the following: a strain sensor, a temperature sensor, and a pressure sensor.
  • the strain sensors in the sensor array 21 may be used to detect the amount of deformation at the location where the sensor array 21 is set.
  • the temperature sensor in the sensor array 21 can be used to detect the temperature value of the location where the sensor array 21 is set.
  • the pressure sensor in the sensor array 21 can be used to detect the pressure value of the setting position of the sensor array 21.
  • the temperature sensor can also perform temperature compensation on the sensing signals detected by the strain sensor and the pressure sensor.
  • the temperature sensor can be located between the strain sensor and the pressure sensor, so that the reliability of temperature compensation can be improved.
  • the strain sensor is a strain grating 211 inscribed in the optical fiber 20 ;
  • the temperature sensor is a temperature grating 212 inscribed in the optical fiber 20 ;
  • the pressure sensor is a pressure grating 213 inscribed in the optical fiber 20 ;
  • the wavelength ranges of the strain grating 211 , the temperature grating 212 , and the pressure grating 213 are different.
  • a grating can be used as a sensor.
  • the demodulator can accurately demodulate the sensing signals of each sensor based on changes in the intensity, wavelength, frequency, phase, polarization state, etc. of the received light, thereby improving the reliability of obtaining the internal state of the battery cell.
  • the type of the grating may be: Bragg grating, chirp grating, long period grating, blazed grating or phase grating. It is understandable that for different gratings, the type of the grating may be the same or different, which may be determined based on actual needs, and the embodiment of the present application does not limit this.
  • the number of optical fibers provided may be one.
  • the optical fiber may be provided in the innermost circle of the pole piece assembly 10; for a pole piece assembly 10 of a laminated structure, the optical fiber may be provided in the middle layer of the pole piece assembly 10. In this way, for deformation from the inside to the outside, the internal state of the battery cell can be immediately detected.
  • the number of optical fibers may be multiple.
  • multiple optical fibers may be evenly arranged on the pole piece assembly 10, so that the internal state of the pole piece assembly 10 can be evenly detected, and the accuracy of the internal state detection of the battery cell can be improved.
  • the optical fibers may be respectively disposed in the innermost circle 11 , the middle circle 12 , and the outermost circle 13 of the pole piece assembly 10 .
  • the cause of deformation (or pressure) can be analyzed by comparing the deformation amount (or pressure value) detected by the optical fiber set in each coil, such as: if the deformation amount (or pressure value) detected by the optical fiber set in the outer coil is greater than the deformation amount (or pressure value) detected by the optical fiber set in the inner coil, it means that the deformation (or pressure) is generated from the outside to the inside, and the cause of deformation (or pressure) may be external, such as deformation (or pressure) caused by external force compression; if the deformation amount (or pressure value) detected by the optical fiber set in the inner coil is greater than the deformation amount (or pressure value) detected by the optical fiber set in the inner coil, it means that the deformation (or pressure) is generated from the inside to the outside, and the cause of deformation (or pressure) may be internal, such as deformation caused by gas generation or expansion of the battery core. In this way, the reliability
  • the number of sensor arrays 21 provided in the optical fiber 20 is multiple, and the multiple sensor arrays 21 are evenly provided in the optical fiber 20, for example, they can be provided in the optical fiber 20 to cover the middle and inflection points of each layer of the winding structure and other representative positions. In this way, uniform detection of each layer of the winding structure can be achieved, and the reliability of the detection of the internal state of the battery core can be improved.
  • the optical fiber is arranged on a target circle, the target circle is composed of a plane and a curved surface, and the target circle is any circle among N circles;
  • the sensor array 21 is disposed in the optical fiber 20 at positions corresponding to the following positions: the center position of the plane, the center position of the curved surface, and the center position of the connecting line between the plane and the curved surface.
  • the circle of the pole piece assembly 10 is composed of a plane and a curved surface, specifically, two planes and two curved surfaces.
  • the plane can also be called a large surface
  • the curved surface can also be called a corner.
  • the edge of the corner is the connecting line between the plane and the curved surface.
  • a sensor array 21 can be set on the large surface and the corner.
  • a sensor array 21 can be set at the center of the plane, a sensor array 21 can be set at the center of the curved surface, and a sensor array 21 can be set at the center of the connecting line between the curved surface and the plane. In this way, reliable monitoring of the coil-level status can be achieved, thereby improving the reliability of status detection of the pole piece assembly 10.
  • a plurality of sensor arrays 21 can be respectively arranged at the bottom layer, the middle layer and the top layer of the pole piece assembly 10. In this way, the layer state detection of the pole piece assembly 10 from the inside to the outside can be realized.
  • the thickness of the optical fiber is less than 10 microns. Further, the thickness of the optical fiber can be less than 5 microns. In this way, the influence of the optical fiber on the pole piece assembly 10 can be reduced.
  • the embodiments of the present application do not limit the method for fixing the optical fiber.
  • the optical fiber is fixed by packaging glue.
  • the embodiment of the present application further provides a battery cell, including a battery cell shell 30 and a battery cell assembly provided in the embodiment of the present application, wherein the battery cell assembly is disposed in the battery cell shell 30 .
  • the battery cell of the embodiment of the present application can realize real-time detection of the internal state of the battery cell by disposing an optical fiber integrated with a sensor array inside the battery cell assembly, thereby improving the reliability of the battery cell state detection.
  • an optical fiber may be further disposed on the outside of the battery cell housing, so that deformation and pressure of the battery cell caused by external forces such as external squeezing, collision or scraping can be detected, thereby realizing state detection from inside to outside and from outside to inside.
  • the number of optical fibers outside the cell shell can be one or more, and the selection of the setting position is representative and can fully reflect the state of the outside of the cell.
  • the sensor array 21 can be set on the large surface, side surface, bottom surface and four corners of the cell shell. For ease of understanding, please refer to Figure 3.
  • the thickness of the optical fiber disposed outside the battery cell housing may be less than 50 micrometers, so as to reduce the impact of the optical fiber on the battery cell.
  • the battery cell further comprises:
  • a laser which is disposed in the battery cell housing and is electrically connected to the first end of the optical fiber
  • the demodulator is arranged in the battery cell housing and is electrically connected to the second end of the optical fiber.
  • the demodulator is used to demodulate the sensing signals of the sensors in the sensor array 21 to obtain the status information of the target position, which is the setting position of the sensor array 21.
  • the laser and the demodulator are arranged outside the battery core assembly.
  • the laser is used to emit laser light to the first end of the optical fiber 20, and the demodulator is used to receive the optical signal from the second end of the optical fiber 20. Therefore, the first end of the optical fiber 20 can be regarded as the incident light port, and the second end of the optical fiber 20 can be regarded as the outgoing light port.
  • the demodulator can accurately demodulate the sensing signals of each sensor based on changes in the intensity, wavelength, frequency, phase, polarization state, etc. of the received light, thereby improving the reliability of obtaining the internal state of the battery cell.
  • the demodulator can be specifically used for:
  • the sensing signal of the pressure sensor is demodulated to obtain a first pressure value of the target position.
  • the embodiment of the present application further provides a battery, comprising: a battery housing and a battery cell provided in the embodiment of the present application, wherein the battery cell is disposed in the battery housing.
  • a battery may include one or more battery cells.
  • the battery may be a battery module or a battery pack.
  • the battery module may include at least one battery cell.
  • the battery pack may include at least one battery module.
  • the optical fiber is arranged inside the battery cell, the internal state of the battery cell can be detected immediately, thereby improving the reliability of the battery cell state detection.
  • an optical fiber is further disposed on the outside of the battery housing, so that external state detection of the battery cell can be realized, enriching the state detection method.
  • the battery when the sensor array 21 includes strain sensors, temperature sensors and pressure sensors, and the battery cell includes a demodulator, the battery may also include: a battery management system (BMS), which is disposed in the battery housing and is electrically connected to the demodulator.
  • BMS battery management system
  • Battery management system can be used for:
  • the first deformation amount is the deformation amount of the target position detected by the strain sensor
  • the first pressure value is the pressure value of the target position detected by the pressure sensor
  • the BMS can use the basic deformation amount corresponding to the temperature value detected by the temperature sensor in the sensor array 21 to perform temperature compensation on the deformation amount detected by the strain sensor in the sensor array 21 and the pressure value detected by the pressure sensor in the sensor array 21.
  • the first deformation amount is the deformation amount before temperature compensation
  • the second deformation amount is the deformation amount after temperature compensation
  • the first pressure value is the pressure value before temperature compensation
  • the second pressure value is the pressure value after temperature compensation.
  • the basic deformation variable (or basic pressure value) corresponding to the temperature value can reflect the influence of temperature on deformation (or pressure) detection.
  • the basic deformation variable (or basic pressure value) corresponding to the temperature value can be tested.
  • the temperature of the battery cell assembly can be changed by changing the environment in which the battery cell assembly is located, thereby making the temperature value detected by the temperature sensor in the sensor array 21 in the battery cell assembly different.
  • the deformation variable (or pressure value) detected by the strain sensor (or pressure sensor) in the sensor array 21 under each environment is used as the basic deformation variable (or basic pressure value) corresponding to the temperature value detected by the temperature sensor in the sensor array 21, and the basic deformation variable (or basic pressure value) corresponding to different temperature values is obtained.
  • the degree to which temperature affects deformation (or pressure) at different positions in the pole piece assembly may be different. Therefore, for sensor arrays 21 at different positions, the basic deformation value (or basic pressure value) corresponding to the same temperature value may be different, which is specifically determined based on actual test results.
  • the battery management system is further configured to:
  • the target deformation variable output by the demodulator is compared with the deformation variable threshold, and when the target deformation variable is greater than the deformation variable threshold, an abnormal deformation warning message is output;
  • the target deformation amount is the first deformation amount or the second deformation amount of the target position; and the target pressure value is the first pressure value or the second pressure value of the target position.
  • the deformation threshold may be: the maximum deformation that the battery cell is allowed to withstand under normal operation.
  • the pressure threshold may be: the maximum pressure value that the battery cell is allowed to withstand under normal operation.
  • the deformation abnormality warning information is output to warn that the deformation of the battery cell has exceeded the maximum deformation variable. If the battery cell continues to work, it may cause a serious battery cell safety accident, so that the user can operate the battery cell to stop working, thereby improving the safety of battery use.
  • the deformation abnormality warning information is output to warn that the cell deformation has exceeded the maximum pressure value. If the cell continues to work, it may cause a serious cell safety accident, so that the user can operate the cell to stop working, thereby improving the safety of battery use.
  • the deformation abnormality warning information is used to indicate the cause of the abnormal deformation of the battery cell; and the pressure abnormality warning information is used to indicate the cause of the abnormal pressure of the battery cell.
  • the battery management system may also be used to:
  • the target position When the target position is located on the pole piece assembly 10, it is determined that the abnormal deformation of the battery is caused by the abnormal deformation inside the battery cell assembly; when the target position is located outside the battery casing, it is determined that the abnormal deformation of the battery is caused by external force on the battery;
  • optical fibers can be arranged both inside and outside the battery cell assembly.
  • the optical fibers arranged inside the battery cell assembly are used to detect the internal state of the battery cell assembly, and the optical fibers arranged outside the battery cell assembly are used to detect the external state of the battery cell assembly.
  • the demodulator and the battery management system can distinguish the optical fibers corresponding to the various state quantities (or pressure values) after demodulation.
  • the target state quantities (or target pressure values) greater than the state quantity threshold are all optical fibers arranged inside the battery cell assembly, it can be determined that the deformation (or pressure) occurs inside the battery cell assembly, and the cause of the deformation (or pressure) is the deformation (or pressure generation) inside the battery cell assembly.
  • the target state quantities (or target pressure values) greater than the state quantity threshold are all optical fibers arranged outside the battery cell assembly, it can be determined that the deformation (or pressure) occurs outside the battery cell assembly, and the cause of the deformation (or pressure) is the external deformation (or pressure) of the battery cell assembly.
  • the battery management system can determine the cause of deformation (or pressure cause) by first detecting the setting position of the optical fiber corresponding to the target state quantity (or target pressure value) greater than the state quantity threshold.
  • the setting position of the optical fiber corresponding to the target state quantity (or target pressure value) that is previously detected to be greater than the state quantity threshold is the optical fiber set outside the battery cell assembly, which means that the deformation (or pressure) inside the battery cell assembly is caused by the external deformation (or pressure), and the state cause is the external deformation (or pressure) of the battery cell assembly.
  • the setting position of the optical fiber corresponding to the target state quantity (or target pressure value) that is detected previously and is greater than the state quantity threshold is the optical fiber set inside the battery cell assembly, which means that the deformation (or pressure) outside the battery cell assembly is caused by the internal deformation (or pressure), and the state cause is the internal deformation (or pressure) of the battery cell assembly.
  • the battery management system may also be used to:
  • the state prediction model is trained using the target position and the state information of the target position.
  • the target position is the setting position of the optical fiber;
  • the state prediction model is used to predict the state information of the second position, where the second position is located inside the pole piece assembly 10 or outside the battery cell housing.
  • a state prediction model may be established, and the state information detected by the optical fiber may be used to train the state prediction model and calibrate the state prediction model. Afterwards, the state prediction model may be used to predict the state of each position.
  • a state prediction model can be established for the inside and outside of the battery cell respectively.
  • the state information detected by the optical fiber arranged inside the battery cell can be used to train the state prediction model, and then the state prediction model can be used to predict the state information of each position inside the battery cell.
  • the state information detected by the optical fiber arranged outside the battery cell can be used to train the state prediction model, and then the state prediction model is used to predict the state information of each position outside the battery cell.
  • the status of each position of the battery can be predicted, and the method of obtaining the battery status can be enriched.
  • the embodiment of the present application also provides an electrical device, including the battery provided in the embodiment of the present application.
  • Optical fibers are arranged inside the battery cell pole pieces, and distributed pressure, strain, and temperature sensor arrays are integrated inside the optical fibers. These sensors are distributed on the battery cell pole pieces to collect pressure, temperature, and deformation signals at the pole piece level, and then the stress, temperature, and deformation degree inside the battery cell are determined. The state of the pole pieces inside the battery cell is presented in multiple parameters and positions, which is more accurate and faster.
  • An optical fiber-based distributed sensor array which integrates temperature, pressure, and deformation sensors, is an optical fiber sensor. By recording many gratings in a long optical fiber, each grating works as a single strain sensor. The optical fiber is then arranged in the pole piece, such as the large surface and corners of the outermost circle, the middle circle, and the innermost circle, to measure the pressure, temperature, and deformation distribution changes of the battery core from the inside to the outside.
  • the built-in distributed deformation sensors at the pole piece level can directly measure the deformation pressure degree at the pole piece level inside the battery cell, more accurately determine the pressure and strain condition inside the battery cell, and more quickly detect and warn the battery cell with abnormal deformation pressure. This enables non-destructive testing without disassembling the battery cell.
  • sensors with different numbers of turns are distributed in the winding structure, covering both large surfaces and corners, forming a three-dimensional monitoring and sensing network, which can output and feedback the measurement results in real time, and is used to build a three-dimensional simulation model of battery cell force and heat, and realize the prediction of force and heat at each position of the battery cell.
  • the temperature sensor can not only reflect the temperature conditions inside the battery cell, but also perform temperature compensation on the deformation and pressure signals measured by the integrated deformation and pressure sensors, thereby eliminating the interference of temperature changes on deformation testing.
  • Temperature is an important factor affecting the fiber optic test signal. Temperature fluctuations cannot be completely eliminated in the battery system, that is, the battery cannot maintain a constant temperature both inside and outside. This is mainly due to the influence of factors such as resistance/reaction exothermicity during the charging and discharging process.
  • the deformation and pressure signals can be temperature compensated to eliminate the influence of temperature on deformation and pressure tests, so that the deformation and pressure tests can more accurately reflect the deformation of the battery cell and the electrode itself.
  • sensors are arranged on the outside of the cell shell, module, and battery pack, such as large surfaces, four corners, and sides, to further determine the deformation, pressure, and temperature status of the cell. This can reflect abnormal conditions such as stress and deformation caused by external squeezing, collision, and scraping of the battery pack, module, or cell.
  • the deformation of the cell, module, or battery pack is further transmitted to the inside of the cell.
  • the signal is transmitted from the outside to the inside.
  • Sensors are arranged on the outside of the cell shell, module, and battery pack, such as the large surface, four corners, and sides, to further determine the deformation state of the cell. Combined with internal sensing technology, deformation pressure detection from the inside out and from the outside to the inside is achieved.
  • Step 1 Implant deformation, pressure and temperature sensors inside the electrode.
  • each sensing unit works as a single strain sensor array, multiple sensing units are distributed in one optical fiber, and one optical fiber is distributed in the battery cell electrode, with the arrangement shown in Figure 1.
  • optical fibers with concentrated sensor units are distributed on the pole piece surface, and sensor units are arranged at the four corners, the middle of the edge, and the center of the pole piece for monitoring.
  • optical fibers are arranged on the outermost, middle, and innermost pole pieces of the winding structure to measure the temperature, pressure, and deformation of different windings, determine the signal changes from the outside to the inside of the battery cell winding structure, and form a three-dimensional sensor monitoring network.
  • An interactive coupling simulation model of the force field and thermal field at the pole piece level is established to realize the prediction of thermal, force, and deformation parameters at any position of a single pole piece or pole pieces with different layers, and the model is calibrated through measured data to further optimize the model prediction accuracy.
  • the positive electrode, separator and negative electrode of the battery cell are wound, and optical fibers are arranged in the outermost layer, middle layer and innermost layer of the wound structure.
  • Each sensor array unit includes temperature, pressure and deformation grating parts.
  • a single sensor array is magnified as shown in Figure 2.
  • the integrated optical fiber is mainly composed of three gratings with different wavelength ranges.
  • the temperature grating is in the middle and can perform temperature compensation with the pressure and deformation measurement gratings next to it.
  • the grating types can be: Bragg grating, chirp grating, long period grating, blazed grating, phase grating, etc.
  • Each layer is a separate optical fiber.
  • the optical fiber has incident light and outgoing light at the end. The outgoing light will then enter the demodulator for demodulation to display the temperature, pressure and deformation of each area.
  • the optical fiber inside the pole piece can be fixed tightly to the pole piece surface by packaging glue, and the diameter of the packaged optical fiber should be less than 10um so as not to affect the interface of the battery core.
  • Step 2 Arrange deformation temperature sensors on the outside of the battery cell, module, and battery pack.
  • optical fibers with concentrated sensor units are distributed on the cell shell, module, and battery pack surfaces, and sensor units are arranged at the four corners, edges, and the middle to collect sensor signals.
  • a three-level sensor network is formed from the cell shell, module, and battery pack.
  • a three-level sensor monitoring network for battery packs, modules, and cell shells caused by external mechanical abuse, such as scraping, extrusion, and vibration, is established to achieve real-time monitoring of external forces, heat, and deformation, establish an interactive coupling simulation model of force field and thermal field, predict thermal and force parameters at any external position, and calibrate the model through measured data to further optimize the model prediction accuracy.
  • the optical fiber with integrated sensor array is fixed to the battery cell, module, battery pack, and the large surface and side surfaces with encapsulation glue. It is distributed in the four corners, the middle, and the middle of the edge line on the outside of the battery cell, module, and battery pack. There are two separate optical fibers on the large surface and one optical fiber on the side. The optical fiber has incident light and outgoing light at the end. The outgoing light will then enter the demodulator for demodulation to display the temperature, pressure, and deformation corresponding to each area.
  • the optical fiber outside the battery cell can be fixed to the surface of the battery cell, module, and battery pack with encapsulation glue, and the diameter of the encapsulated optical fiber should be less than 50um so as not to affect the arrangement of the battery cell.
  • Step 3 Measure the effect of temperature on strain detection and perform temperature compensation.
  • Step 4 Measure the deformation, pressure and temperature data of each position under the actual state.
  • Step 5 Detection, early warning and judgment of deformation.
  • Step 6 Detection, early warning and judgment of local overvoltage.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电芯组件、电池单体、电池及用电装置。电芯组件,包括:极片组件;光纤,所述光纤设置有传感器阵列,所述传感器阵列中的传感器均为光纤传感器。

Description

电芯组件、电池单体、电池及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电芯组件、电池单体、电池及用电装置。
背景技术
电池经过长时间的循环使用,可能会导致电芯产气或膨胀进而导致电芯发生形变,而电芯形变如果超过一定程度,会导致严重的电芯安全事故,造成安全隐患。
现有技术中,通常是在电池外部设置应变片检测电芯的形变程度,然而,若电芯形变是因电芯产气或膨胀导致的,只有在电芯形变积累到一定程度才会被设置在电池外部的应变片检测到,形变检测具有滞后性,导致形变检测的可靠性较低。
发明内容
本申请提供了一种电芯组件、电池单体、电池及用电装置,其能提高电芯状态检测的可靠性。
第一方面,本申请实施例提供了一种电芯组件,包括:
极片组件;
光纤,所述光纤设置于所述极片组件上,所述光纤设置有传感器阵列,所述传感器阵列中的传感器均为光纤传感器。
本申请实施例的电芯组件,通过在极片组件上设置集成有传感器阵列的光纤,可以通过传感器阵列检测电芯内部的状态信息,实现电芯内部的状态的即时检测,可以提高电芯内部状态检测的可靠性。
在一些实施例中,所述传感器阵列包括以下至少一项:应变传感器、温度传感器和压力传感器。
本实施例的电芯组件,可实现电芯内部温度、压力和形变的即时检测。进一步地,还可以利用传感器阵列中的温度传感器检测到的温度值对应的基础形变量,对传感器阵列中的应变传感器检测到的形变量,以及传感器阵列中的压力传感器检测到的压力值进行温度补偿,消除或减少温度对形变和压力检测的影响,使得补偿后的形变量和压力值更加准确反映传感器阵列的设置位置的形变情况和压力情况,进而提高电芯组件的形变检测和压力检测的准确性和可靠性。
在一些实施例中,所述应变传感器为刻录在所述光纤中的应变光栅;所述温度传感器为刻录在所述光纤中的温度光栅,所述压力传感器为刻录在所述光纤中的压力光栅;
其中,所述应变光栅、所述温度光栅和所述压力光栅的波长范围不同。
本实施例的电芯组件,一个光栅可以作为一个传感器。通过在光纤中刻录对应不同波长的光栅,可得到对应不同的传感器。这样,解调仪可以基于接收到的光的强度、波长、频率、相位、偏振态等发生变化,实现各传感器的传感信号的精准解调,提高电芯内部状态的获取可靠性。
在一些实施例中,所述光栅的类型为:布拉格光栅、啁秋光栅、长周期光栅、闪耀光栅或相位光栅。
在一些实施例中,所述温度传感器位于所述应变传感器与所述压力传感器之间。如此,可以提高温度补偿的可靠性。
在一些实施例中,所述光纤的设置数量为多个;所述多个光纤均匀设置于所述极片组件的内部。
本实施例的电芯组件,可以实现极片组件内部状态的均匀检测,可以提高电芯内部状态检测的准确性。
在一些实施例中,所述极片组件为卷绕结构,包括N圈,N为大于2的整数;
所述光纤分别设置于所述极片组件的最内圈、中间圈和最外圈。
本实施例的电芯组件,可以实现极片组件由内到外的圈级状态检测。
在一些实施例中,所述光纤设置的所述传感器阵列的设置数量为多个,所述多个传感器阵列均匀设置于所述光纤中。
本实施例的电芯组件,可以实现圈级状态的均匀检测,提高电芯内部状态检测的可靠性。
在一些实施例中,所述极片组件为卷绕结构,包括N圈,N为大于2的整数;
所述光纤设置在目标圈上,所述目标圈由平面与曲面组成,所述目标圈为所述N圈中的任一圈;
所述传感器阵列在所述光纤中的设置位置分别与以下位置对应设置:所述平面的中心位置、所述曲面的中心位置,以及所述平面与所述曲面的连接线的中心位置。
本实施例的电芯组件,可以实现圈级状态的可靠监测,从而提高极片组件的状态检测的可靠性。
在一些实施例中,所述光纤的厚度小于10微米。
本实施例的电芯组件,可以减少光纤对极片组件的影响。
在一些实施例中,所述光纤通过封装胶进行固定。
第二方面,本申请实施例提供一种电池单体,包括:
电芯壳体;
如第一方面所述的电芯组件,所述电芯组件设置于所述电芯壳体内。
在一些实施例中,所述电芯壳体的外部还设置有所述光纤。
本实施例的电池单体,通过在电芯组件的内部设置集成有传感器阵列的光纤,可实现电芯内部状态的即时检测,可提高电芯状态检测的可靠性。
在一些实施例中,设置在所述电芯壳体的外部的所述光纤的厚度小于50微米。
本实施例的电池单体,可以减小光纤对电池单体的影响。
在一些实施例中,所述电池单体还包括:
激光器,所述激光器设置于所述电芯壳体内,所述激光器与所述光纤的第一端电连接;
解调仪,所述解调仪设置于所述电芯壳体内,所述解调仪与所述光纤的第二端电连接,所述解调仪用于解调所述传感器阵列中传感器的传感信号,得到目标位置的状态信息,所述目标位置为所述传感器阵列的设置位 置。
本实施例的电池单体,解调仪可以基于接收到的光的强度、波长、频率、相位、偏振态等发生变化,实现各传感器的传感信号的精准解调,提高电芯内部状态的获取可靠性。
在一些实施例中,在所述传感器阵列包括应变传感器、温度传感器和压力传感器的情况下,所述解调仪用于:
解调所述应变传感器的传感信号,得到所述目标位置的第一形变量;
解调所述温度传感器的传感信号,得到所述目标位置的目标温度值;
解调所述压力传感器的传感信号,得到所述目标位置的第一压力值。
本实施例的电芯组件,可实现电芯内部温度、压力和形变的即时检测。
第三方面,本申请实施例还提供一种电池,包括:
电池壳体;
如第二方面所述的电池单体,所述电池单体设置于所述电池壳体内。
本申请实施例提供的电池,由于电池单体内部设置有光纤,可以实现电池单体内部状态的即使检测,从而可以提高电池单体状态检测的可靠性。
在一些实施例中,所述电池壳体的外部还设置有所述光纤。
本实施例的电池,可以实现电池单体的外部状态检测,丰富状态检测的方式。
在一些实施例中,在所述传感器阵列包括应变传感器、温度传感器和压力传感器,所述电池单体包括解调仪的情况下,所述电池还包括:
电池管理系统,所述电池管理系统设置于所述电池壳体内,所述电池管理系统与所述解调仪电连接,所述电池管理系统用于:
将第一形变量减去目标温度值对应的基础形变量,得到所述目标位置的第二形变量;
将第一压力值减去所述目标温度值对应的基础压力值,得到所述目标位置的第二压力值;
其中,所述第一形变量为所述应变传感器检测到的所述目标位置的形变量,所述第一压力值为所述压力传感器检测到的所述目标位置的压力值。
本实施例的电池,可以对形变和压力进行温度补偿,提高形变和压力 检测的可靠性。
在一些实施例中,在所述电池单体包括解调仪的情况下,所述电池还包括:
电池管理系统,所述电池管理系统设置于所述电池壳体内,所述电池管理系统与所述解调仪电连接,所述电池管理系统用于:
将所述解调仪输出的目标形变量与形变量阈值进行比较,并在所述目标形变量大于所述形变量阈值的情况下,输出形变异常预警信息;
将所述解调仪输出的目标压力值与压力阈值进行比较,并在所述目标压力值大于所述压力阈值的情况下,输出压力异常预警信息;
其中,所述目标形变量为所述目标位置的第一形变量或第二形变量;所述目标压力值为所述目标位置的第一压力值或第二压力值。
本实施例的电池单体,在目标形变量大于形变量阈值的情况下,输出形变异常预警信息,用于预警电芯形变已超出最大形变量。在目标压力值大于压力值阈值的情况下,输出形变异常预警信息,用于预警电芯形变已超出最大压力值,若电芯继续工作,可能会导致严重的电芯安全事故,以使用户可以操作电芯停止工作,从而可以提高电池使用安全性。
在一些实施例中,在所述电池壳体的外部还设置有所述光纤的情况下,所述形变异常预警信息用于指示所述电池的形变异常原因;所述压力异常预警信息用于指示所述电池的压力异常原因。
如此,可以让用户知晓电池形变原因或压力产生原因。
在一些实施例中,所述电池管理系统还用于:
在目标位置位于所述极片组件上的情况下,确定所述电池的形变异常原因为所述电芯组件内部形变异常导致;在所述目标位置位于所述电池壳体的外部的情况下,确定所述电池的形变异常原因为所述电池受到外力导致,所述目标位置为所述传感器阵列的设置位置;
在所述目标位置位于所述极片组件上的情况下,确定所述电池的形变异常原因为所述电芯组件内部压力异常导致;在所述目标位置位于所述电池壳体的外部的情况下,确定所述电池的形变异常原因为所述电池受到外力导致。
在一些实施例中,所述电池还包括:
电池管理系统,所述电池管理系统设置于所述电池壳体内,所述电池管理系统与所述解调仪电连接,所述电池管理系统用于:
利用所述目标位置和所述目标位置的状态信息,训练状态预测模型;
利用所述状态预测模型预测第二位置的状态信息,所述第二位置位于所述极片组件内部,或,所述电芯壳体的外部。
本实施例的电池单体,可以利用状态预测模型预测各位置的状态,可以丰富电池状态的获取方式。
第四方面,本申请实施例还提供一种用电装置,包括:
如第三方面所述的电池。
本申请实施例提供的用电装置,本申请实施例的用电装置,由于电芯内部集成有传感器阵列,可以实现电芯内部状态的即时检测,可以提高电芯内部状态检测的准确性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请实施例提供的电芯组件的俯视示意图;
图2是本申请实施例提供的传感器阵列的结构示意图;
图3是本申请实施例提供的电池单体的外部示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于 本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池 单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
在本申请实施例中,如图1所示,电芯组件包括极片组件10和光纤20,光纤20设置于极片组件10上。
光纤20设置有传感器阵列21,感器阵列中的传感器均为光纤传感器。传感器阵列21可以用于检测传感器阵列21的设置位置的状态信息。状态信息可包括以下至少一项:温度值、形变量、压力值等。
极片组件10可以包括正极极片、负极极片以及将正极极片和负极极片隔开的隔膜。
在一些实施例中,如图1所示,极片组件10可以由正极极片、负极极片和隔膜卷绕得到,图1为电芯组件的俯视示意图。在此实施例中,极片组件10为卷绕结构,包括N圈(也可以称为N层,一圈视为一层),N为大于1的整数,光纤可以设置于极片组件10的圈的表面,具体可以设置在极片组件10的圈的内表面或外表面。
在另一些实施例中,极片组件10可以由正极极片、负极极片和隔膜层叠得到。在此实施例中,极片组件10为叠片结构,包括N层,N为大于1的整数,传感器阵列21可以设置于极片组件10的层的表面,具体可以设置在极片组件10的层的内表面或外表面。
在本申请实施例中,通过在极片组件上设置集成有传感器阵列的光纤,可以通过传感器阵列检测电芯内部的状态信息,实现电芯内部的状态的即时检测,可以提高电芯内部状态检测的可靠性。
在一些实施例中,传感器阵列21可以包括以下至少一项:应变传感器、温度传感器和压力传感器。
传感器阵列21中的应变传感器可以用于检测传感器阵列21的设置位置的形变量。
传感器阵列21中的温度传感器可以用于检测传感器阵列21的设置位置的温度值。
传感器阵列21中的压力传感器可以用于检测传感器阵列21的设置位 置的压力值。
如此,可以实现电芯内部温度、压力和形变的即时检测。
在一些实施例中,温度传感器还可以对应变传感器和压力传感器检测到的传感信号进行温度补偿。在此实施例中,温度传感器可以位于应变传感器与压力传感器之间,如此,可以提高温度补偿的可靠性。
在一些实施例中,如图2所示,应变传感器为刻录在光纤20中的应变光栅211;温度传感器为刻录在光纤20中的温度光栅212,压力传感器为刻录在光纤20中的压力光栅213;
其中,应变光栅211、温度光栅212和压力光栅213的波长范围不同。
在本实施例中,一个光栅可以作为一个传感器。通过在光纤20中刻录对应不同波长范围的光栅,可以得到对应类型的传感器。这样,解调仪可以基于接收到的光的强度、波长、频率、相位、偏振态等发生变化,实现各传感器的传感信号的精准解调,进而提高电芯内部状态的获取可靠性。
在本申请实施例中,光栅的类型可以为:布拉格光栅、啁秋光栅、长周期光栅、闪耀光栅或相位光栅。可以理解地是,对于不同的光栅,光栅的类型可以相同或不同,具体可以基于实际需求决定,本申请实施例对此不作限定。
在一些实施例中,光纤的设置数量可以为1个。在此实施例中,对于卷绕结构的极片组件10,可以将光纤设置在极片组件10的最内圈;对于叠片结构的极片组件10,可以将光纤设置在极片组件10的中间层。这样,对于由内到外的形变,可以实现电芯内部状态的即时检测。
在另一些实施例中,光纤的设置数量可以为多个。在此实施例中,多个光纤可以均匀设置于极片组件10上,如此,可以实现极片组件10内部状态的均匀检测,可以提高电芯内部状态检测的准确性。
一些可选地实现方式中,对于卷绕结构的极片组件10,如图1所示,光纤可以分别设置于极片组件10的最内圈11、中间圈12和最外圈13。
如此,可以实现极片组件10由内到外的圈级状态检测。进一步地,可以通过比较各圈设置的光纤检测到的形变量(或压力值),分析形变产生原因(或压力产生原因),如:若外圈设置的光纤检测到的形变量(或压 力值)大于内圈设置的光纤检测到的形变量(或压力值),说明形变(或压力)是由外到内产生的,形变原因(或压力原因)可能是外部导致的,如因外部受力挤压导致的形变(或压力);若内部设置的光纤检测到的形变量或压力值)大于内圈设置的光纤检测到的形变量或压力值),说明形变(或压力)是由内到外产生的,形变原因(或压力原因)可能是内部导致的,如因电芯产生气体或膨胀导致的形变。这样,可进一步提高状态检测的可靠性。
进一步地,光纤20设置的传感器阵列21的设置数量为多个,多个传感器阵列21均匀设置于光纤20中,如:可以设置于光纤20中覆盖每层卷绕结构的中间与拐点等代表性位置。如此,可以实现每层卷绕结构的均匀检测,提高电芯内部状态检测的可靠性。
一种可选地实现方式中,光纤设置在目标圈上,目标圈由平面与曲面组成,目标圈为N圈中的任一圈;
传感器阵列21在光纤20中的设置位置分别与以下位置对应设置:平面的中心位置、曲面的中心位置,以及平面与曲面的连接线的中心位置。
极片组件10的圈由平面和曲面组成,具体地,包括两个平面和两个曲面,在一些实施例中,平面也可以称为大面,曲面也可以称为拐角,拐角的边缘为平面与曲面的连接线。一种可选地实现方式中,可以在大面和拐角设置传感器阵列21。
作为一个示例,如图1所示,可以在平面的中心设置一个传感器阵列21,在曲面的中心设置一个传感器阵列21,在曲面与平面的连接线的中心设置一个传感器阵列21,如此,可以实现圈级状态的可靠监测,从而提高极片组件10的状态检测的可靠性。
对于叠片结构的极片组件10,类似地,多个传感器阵列21可以分别设置于极片组件10的最下层、中间层和最上层。如此,可以实现极片组件10由内到外的层级状态检测。
在一些实施例中,光纤的厚度小于10微米。进一步地,光纤的厚度可以小于5微米。如此,可以减少光纤对极片组件10的影响。
本申请实施例并不限定光纤的固定方式,在一些实施例中,光纤通过 封装胶进行固定。
本申请实施例还提供一种电池单体,包括电芯壳体30和本申请实施例提供的电芯组件,电芯组件设置于电芯壳体30内。
本申请实施例的电池单体,通过在电芯组件的内部设置集成有传感器阵列的光纤,可实现电芯内部状态的即时检测,可以提高电芯状态检测的可靠性。
在一些实施例中,电芯壳体的外部还可以设置有光纤。如此,可以检测受外部挤压、碰撞或刮地等外力造成的电芯形变和压力,实现由内而外,由外到内的状态检测。
电芯壳体外部的光纤的设置数量可以为一个或多个,设置位置的选取具有代表性,可以全面反映电芯外部的状态。在一些可选地实现方式中,传感器阵列21可以设置于电芯壳体的大面、侧面、底面和四角,为方便理解,可参见图3。
在一些实施例中,设置在电芯壳体的外部的光纤的厚度可以小于50微米。如此,可以减少光纤对电池单体的影响。
在一些实施例中,电池单体还包括:
激光器,激光器设置于电芯壳体内,激光器与光纤的第一端电连接;
解调仪,解调仪设置于电芯壳体内,解调仪与光纤的第二端电连接,解调仪用于解调传感器阵列21中传感器的传感信号,得到目标位置的状态信息,目标位置为传感器阵列21的设置位置。
激光器与解调仪设置在电芯组件的外部。激光器用于向光纤20的第一端发射激光,解调仪用于从光纤20的第二端的光信号。因此,光纤20的第一端可以视为入射光端口,光纤20的第二端可以视为出射光端口。
这样,解调仪可以基于接收到的光的强度、波长、频率、相位、偏振态等发生变化,实现各传感器的传感信号的精准解调,进而提高电芯内部状态的获取可靠性。
在一些实施例中,在传感器阵列21包括应变传感器、温度传感器和压力传感器的情况下,解调仪具体可以用于:
解调应变传感器的传感信号,得到目标位置的第一形变量;
解调温度传感器的传感信号,得到目标位置的目标温度值;
解调压力传感器的传感信号,得到目标位置的第一压力值。
如此,可以实现形变、温度和压力检测。
本申请实施例还提供一种电池,包括:电池壳体和本申请实施例提供的电池单体,电池单体设置于电池壳体内。
在实际应用中,电池可以包括一个或多个电池单体。
电池可以为电池模组或电池包。在电池为电池模组的情况下,电池模组可以包括至少一个电池单体。在电池为电池包的情况下,电池包可以包括至少一个电池模组。
由于电池单体内部设置有光纤,可以实现电池单体内部状态的即使检测,从而可以提高电池单体状态检测的可靠性。
在一些实施例中,电池壳体的外部还设置有光纤。如此,可以实现电池单体的外部状态检测,丰富状态检测的方式。
在一些实施例中,在传感器阵列21包括应变传感器、温度传感器和压力传感器,电池单体包括解调仪的情况下,电池还可以包括:电池管理系统(BMS),电池管理系统设置于电池壳体内,电池管理系统与解调仪电连接。
电池管理系统,可以用于:
将第一形变量减去目标温度值对应的基础形变量,得到目标位置的第二形变量;
将第一压力值减去目标温度值对应的基础压力值,得到目标位置的第二压力值;
其中,第一形变量为应变传感器检测到的目标位置的形变量,第一压力值为压力传感器检测到的目标位置的压力值。
在本实施例中,BMS可以利用传感器阵列21中的温度传感器检测到的温度值对应的基础形变量,对传感器阵列21中的应变传感器检测到的形变量,以及传感器阵列21中的压力传感器检测到的压力值进行温度补偿,第一形变量为进行温度补偿前的形变量,第二形变量为进行温度补偿后的形变量,第一压力值为进行温度补偿前的压力值,第二压力值为进行温度补 偿后的压力值。如此,消除或减少温度对形变和压力检测的影响,使得补偿后的形变量和压力值更加准确反映传感器阵列21的设置位置的形变情况和压力情况,进而提高电芯组件的形变检测和压力检测的准确性和可靠性。
温度值对应的基础形变量(或基础压力值)可以反映温度对形变(或压力)检测的影响。温度值对应的基础形变量(或基础压力值)可以测试得到。在测试阶段,可以通过改变电芯组件所处环境,使得电芯组件的温度不同,进而使得电芯组件中的传感器阵列21中的温度传感器检测到的温度值不同。将传感器阵列21中的应变传感器(或压力传感器)在每个环境下检测到的形变量(或压力值),作为传感器阵列21中的温度传感器检测到的温度值对应的基础形变量(或基础压力值),得到不同温度值对应的基础形变量(或基础压力值)。
可以理解地是,极片组件中的不同位置,温度对其形变(或压力)的影响程度可能不同,因此,对于不同位置的传感器阵列21,同一温度值对应的基础形变量(或基础压力值)可能不同,具体基于实际测试结果决定。
在一些实施例中,电池管理系统,还用于:
将解调仪输出的目标形变量与形变量阈值进行比较,并在目标形变量大于形变量阈值的情况下,输出形变异常预警信息;
将解调仪输出的目标压力值与压力阈值进行比较,并在目标压力值大于压力阈值的情况下,输出压力异常预警信息;
其中,目标形变量为目标位置的第一形变量或第二形变量;目标压力值为目标位置的第一压力值或第二压力值。
形变量阈值可以为:电芯正常工作下允许承受的最大形变量。压力阈值可以为:电芯正常工作下允许承受的最大压力值。
在目标形变量大于形变量阈值的情况下,输出形变异常预警信息,用于预警电芯形变已超出最大形变量,若电芯继续工作,可能会导致严重的电芯安全事故,以使用户可以操作电芯停止工作,从而可以提高电池使用安全性。
在目标压力值大于压力值阈值的情况下,输出形变异常预警信息,用于预警电芯形变已超出最大压力值,若电芯继续工作,可能会导致严重的 电芯安全事故,以使用户可以操作电芯停止工作,从而可以提高电池使用安全性。
进一步地,在电池壳体的外部还设置有光纤的情况下,形变异常预警信息用于指示电池单体的形变异常原因;压力异常预警信息用于指示电池单体的压力异常原因。
在一些实施例中,电池管理系统还可以用于:
在目标位置位于极片组件10上的情况下,确定电池的形变异常原因为电芯组件内部形变异常导致;在目标位置位于电池壳体的外部的情况下,确定电池的形变异常原因为电池受到外力导致;
在目标位置位于极片组件10上的情况下,确定电池单体的形变异常原因为电芯组件内部压力异常导致;在目标位置位于电池壳体的外部的情况下,确定电池的形变异常原因为电池受到外力导致。
由前述内容可知,电芯组件的内部和外部均可以设置光纤,设置在电芯组件内部的光纤用于检测电芯组件的内部状态,设置在电芯组件外部的光纤用于检测电芯组件的外部状态。
解调仪和电池管理系统可以区分解调后的各个状态量(或压力值)对应的光纤。
若大于状态量阈值的目标状态量(或目标压力值)均为设置在电芯组件内部的光纤,可以确定形变(或压力)发生在电芯组件内部,形变原因(或压力原因)为电芯组件内部形变(或产生压力)。
若大于状态量阈值的目标状态量(或目标压力值)均为设置在电芯组件外部的光纤,可以确定形变(或压力)发生在电芯组件外部,形变原因(或压力原因)为电芯组件外部形变(或受到压力)。
若大于状态量阈值的目标状态量(或目标压力值)对应有设置在电芯组件外部的光纤,以及设置在电芯组件内部的光纤,电池管理系统可以通过先检测到的大于状态量阈值的目标状态量(或目标压力值)所对应的光纤的设置位置,确定形变原因(或压力原因)。
在先检测到的大于状态量阈值的目标状态量(或目标压力值)所对应的光纤的设置位置为设置在电芯组件外部的光纤,说明电芯组件内部的形 变(或压力)是由外部形变(或压力)引起的,状态原因为电芯组件外部形变(或受到压力)。
在先检测到的大于状态量阈值的目标状态量(或目标压力值)所对应的光纤的设置位置为设置在电芯组件内部的光纤,说明电芯组件外部的形变(或压力)是由内部形变(或压力)引起的,状态原因为电芯组件内部形变(或产生压力)。
如此,可以准确识别形变原因和压力产生原因。
在一些实施例中,电池管理系统,还可以用于:
利用目标位置和目标位置的状态信息,训练状态预测模型。目标位置为光纤的设置位置;
利用状态预测模型预测第二位置的状态信息,第二位置位于极片组件10内部,或,电芯壳体的外部。
在本实施例中,可以建立状态预测模型,利用光纤检测到的状态信息,训练该状态预测模型,对状态预测模型进行校准。之后,可以利用状态预测模型预测各位置的状态。
具体实现时,可以分别为电芯内部和电芯外部建立一个状态预测模型。
对于电芯内部的状态预测模型,可以利用设置在电芯内部的光纤检测到的状态信息,对该状态预测模型进行训练,之后,利用该状态预测模型预测电芯内部各位置的状态信息。
对于电芯外部的状态预测模型,可以利用设置在电芯外部的光纤检测到的状态信息,对该状态预测模型进行训练,之后,利用该状态预测模型预测电芯外部各位置的状态信息。
如此,可以实现对电池各位置的状态预测,可以丰富电池状态的获取方式。
本申请实施例还提供一种用电装置,包括本申请实施例提供的电池。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本申请实施例中:
1)在电芯极片内部布置光纤,光纤内部集成分布式压力、应变、温度 传感器阵列,分布于电芯极片上采集极片层级的压力、温度和形变信号,进而判断电芯内部的受力、温度、形变程度,多参量多位置呈现电芯内部极片的状态,更加准确与快速。
一根基于光纤的分布式传感器阵列,其中集成了温度,压力,形变传感器均属于光纤类传感器,通过将许多光栅刻录在一根长的光纤中,每个光栅作为单个应变传感器工作。再将光纤布置于极片内,如最外圈,中间圈与最内圈的大面与拐角处,测定电芯由里及外的压力,温度与形变分布变化。
通过极片层级内置分布式形变传感器可以直接测量电芯内部极片层级的形变压力程度,更加准确测定电芯内部的压力,应变状况,对于形变压力异常的电芯可进行更为快速的检测和预警判断。实现不用拆解电芯的无损检测。同时不同圈数布置的传感器分布于卷绕结构中,大面与拐角均可覆盖,形成三维立体的监测与传感网络,可将测量结果实时输出反馈,用于构建电芯力,热的三维仿真模型,实现电芯各个位置力热的预测。
2)温度传感器不仅可以反应电芯内部的温度情况,也可以对集成在一起的形变,压力传感器测到的形变,压力的信号进行温度补偿,排除温度变化对形变测试的干扰。
温度是光纤测试信号的重要影响因素,温度波动在电池体系中是无法彻底消除,即电池内外部均无法保持恒温状态,这主要是由于充放电过程中存在电阻/反应放热等因素影响。通过集成温度传感器与形变、压力传感器形成传感器阵列,测量形变压力的同时也可测量到周边的温度情况,可对形变、压力信号进行温度补偿,排除温度对形变、压力测试的影响,使得形变、压力测试更加准确反应电芯和极片本身的形变情况。
3)除内部布置温度、压力、形变传感器阵列外,在电芯壳体,模组与电池包的外部如大面,四角,侧面做传感器布置,进一步确定电芯的形变、压力、温度状态,可以反映电池包或模组,电芯受外部挤压,碰撞,刮底而造成的受力,形变等异常情况。
当电芯,模组,电池包受外部挤压,碰撞,刮底而造成的由外力造成的电芯,模组,电池包的形变,进一步传导到电芯内部,这时候信号相应 是由外到内,在电芯壳体,模组与电池包的外部如大面,四角,侧面做传感器布置,进一步确定电芯的形变状态。加上内部的传感技术,实现由内而外,由外到内的形变压力检测。
在一些实施例中:
步骤一、形变、压力、温度传感器的植入极片内部。
将形变、温度与压力组成一个传感单元,每个传感单元作为单个应变传感器阵列工作,多个传感单元分布于一根光纤中,一根光纤分布于电芯极片中,具有排布方式如图1所示。
在极片层级,集中了传感单元的光纤分布于极片表面,分别在四角,边缘的中间,极片中心均布置传感单元进行监测。从电芯厚度方向上,分别在卷绕结构的最外圈,中间圈数与最内圈极片上进行布置光纤,测量不同卷绕圈数的温度,压力与形变情况,确定电芯卷绕结构由表及里的信号变化,形成三维立体传感监测网络。建立极片层级力场、热场的交互耦合仿真模型,实现单个极片、不同层数极片的任意位置进行热、力、形变参数的预测,并通过实测数据进行模型校准,进一步优化模型预测精度。
以图1卷绕结构的极片组件为例,进行如下描述:
电芯正极,隔膜,负极进行卷绕,在卷绕结构的最外层,中间层,最内层设置光纤。
一根光纤中集成若干传感阵列,每个传感阵列单元包括温度、压力与形变光栅部分,单个传感阵列放大后如图2所示,集成光纤中主要时三段不同波长范围的光栅组成,其中温度光栅在中间,可与旁边的压力与形变的测定光栅进行温度补偿。
光栅类型可以为:布拉格光栅、啁秋光栅、长周期光栅、闪耀光栅、相位光栅等。
每层为单独一根光纤,光纤有入射光,在末端有出射光,出射光后续会进入解调仪进行解调,显示各区域对应的温度,压力与形变情况。极片内部的光纤可通过封装胶进行固定紧贴极片表面,加上封装光纤直径应小于10um以不影响电芯的界面。
步骤二、电芯外部、模组、电池包形变温度传感器布置。
在电芯壳体、模组、电池包层级,将集中了传感单元的光纤分布于电芯壳体、模组、电池包表面,分别在四角、边缘、中间均布置传感单元进行传感信号的采集。形成外部从电芯壳体、模组、电池包三级传感网络,建立由于外部力学滥用,如刮底、挤压、震动造成的电池包、模组、电芯壳体三级传感监测网络,实现外部力,热、形变的实时监测,建立力场、热场的交互耦合仿真模型,对外部任意位置进行热、力参数的预测,并通过实测数据进行模型校准,进一步优化模型预测精度。
以图2为例,进行如下描述:
在电芯外部、模组、电池包中的大面与侧面均使用封装胶将集成了传感阵列的光纤固定与电芯,模组、电池包上,分布在四角,中间,边缘线中部。大面处有两根单独光纤,侧面为一根光纤。光纤有入射光,在末端有出射光,出射光后续会进入解调仪进行解调,显示各区域对应的温度,压力与形变情况。电芯外部的光纤可通过封装胶进行固定紧贴电芯,模组、电池包的表面,加上封装光纤直径应小于50um以不影响电芯排布。
步骤三、测定温度对应变检测的影响,并进行温度补偿。
取上述布置了内外置温度形变压力温度传感器的电芯、模组、电池包改变环境测定不同位置不同温度T时对应的形变变量和压力X 0,P 0作为该温度T下的基础形变和压力X 0,P 0。后续形变的测试应该减去基础形变和压力X 0,P 0以消除温度波动对应变,压力的影响。
步骤四、测定真实状态下各个位置的形变、压力与温度数据。
取上述布置了内外置温度形变温度传感器的电芯、模组、电池包不同位置对应的温度T和形变量和压力X 1,P 1根据温度确定该位置处的基础形变和压力X 0,P 0消除温度波动对应变,压力的影响后真实形变量X=X 1-X 0,P=P 1-P 0
步骤五、形变情况的检测预警判断。
当电芯、模组、电池包任意位置的真实形变量X与形变值预警X*作比较,当X>X*时,即发出该位置的形变预警。当最先出现形变预警的位置在模组或电池包时,则进一步作出外部受力异常预警判断。若最先出现的形变预警的位置在电芯内部,则进一步作出内部形变异常的预警判断。
步骤六、局部过压的检测预警判断。
当电芯、模组、电池包任意位置的真实压力P与压力值预警P*作比较,当P>P*时,即发出该位置的压力预警。当最先出现压力预警的位置在模组或电池包时,则进一步作出外部受力异常预警判断。若最先出现的压力预警的位置在电芯内部,则进一步作出内部压力异常的预警判断。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (24)

  1. 一种电芯组件,包括:
    极片组件;
    光纤,所述光纤设置于所述极片组件上,所述光纤设置有传感器阵列,所述传感器阵列中的传感器均为光纤传感器。
  2. 根据权利要求1所述的电芯组件,其中,所述传感器阵列包括以下至少一项:应变传感器、温度传感器和压力传感器。
  3. 根据权利要求2所述的电芯组件,其中,所述应变传感器为刻录在所述光纤中的应变光栅;所述温度传感器为刻录在所述光纤中的温度光栅,所述压力传感器为刻录在所述光纤中的压力光栅;
    其中,所述应变光栅、所述温度光栅和所述压力光栅的波长范围不同。
  4. 根据权利要求3所述的电芯组件,其中,所述光栅的类型为:布拉格光栅、啁秋光栅、长周期光栅、闪耀光栅或相位光栅。
  5. 根据权利要求2所述的电芯组件,其中,所述温度传感器位于所述应变传感器与所述压力传感器之间。
  6. 根据权利要求1所述的电芯组件,其中,所述光纤的设置数量为多个;所述多个光纤均匀设置于所述极片组件上。
  7. 根据权利要求6所述的电芯组件,其中,所述极片组件为卷绕结构,包括N圈,N为大于2的整数;
    所述光纤分别设置于所述极片组件的最内圈、中间圈和最外圈。
  8. 根据权利要求1所述的电芯组件,其中,所述光纤设置的所述传感器阵列的设置数量为多个,所述多个传感器阵列均匀设置于所述光纤中。
  9. 根据权利要求8所述的电芯组件,其中,所述极片组件为卷绕结构,包括N圈,N为大于2的整数;
    所述光纤设置在目标圈上,所述目标圈由平面与曲面组成,所述目标圈为所述N圈中的任一圈;
    所述传感器阵列在所述光纤中的设置位置分别与以下位置对应设置:所述平面的中心位置、所述曲面的中心位置,以及所述平面与所述曲面的连接线的中心位置。
  10. 根据权利要求1所述的电芯组件,其中,所述光纤的厚度小于10微米。
  11. 根据权利要求1所述的电芯组件,其中,所述光纤通过封装胶进行固定。
  12. 一种电池单体,包括:
    电芯壳体;
    如权利要求1至11中任一项所述的电芯组件,所述电芯组件设置于所述电芯壳体内。
  13. 根据权利要求12所述的电池单体,其中,所述电芯壳体的外部还设置有所述光纤。
  14. 根据权利要求13所述的电池单体,其中,设置在所述电芯壳体的外部的所述光纤的厚度小于50微米。
  15. 根据权利要求12所述的电池单体,其中,所述电池单体还包括:
    激光器,所述激光器设置于所述电芯壳体内,所述激光器与所述光纤的第一端电连接;
    解调仪,所述解调仪设置于所述电芯壳体内,所述解调仪与所述光纤的第二端电连接,所述解调仪用于解调所述传感器阵列中传感器的传感信号,得到目标位置的状态信息,所述目标位置为所述传感器阵列的设置位置。
  16. 根据权利要求15所述的电池单体,其中,在所述传感器阵列包括 应变传感器、温度传感器和压力传感器的情况下,所述解调仪用于:
    解调所述应变传感器的传感信号,得到所述目标位置的第一形变量;
    解调所述温度传感器的传感信号,得到所述目标位置的目标温度值;
    解调所述压力传感器的传感信号,得到所述目标位置的第一压力值。
  17. 一种电池,包括:
    电池壳体;
    如权利要求12至16中任一项所述的电池单体,所述电池单体设置于所述电池壳体内。
  18. 根据权利要求17所述的电池,其中,所述电池壳体的外部还设置有所述光纤。
  19. 根据权利要求17所述的电池,其中,在所述传感器阵列包括应变传感器、温度传感器和压力传感器,所述电池单体包括解调仪的情况下,所述电池还包括:
    电池管理系统,所述电池管理系统设置于所述电池壳体内,所述电池管理系统与所述解调仪电连接,所述电池管理系统用于:
    将第一形变量减去目标温度值对应的基础形变量,得到所述目标位置的第二形变量;
    将第一压力值减去所述目标温度值对应的基础压力值,得到所述目标位置的第二压力值;
    其中;所述第一形变量为所述应变传感器检测到的所述目标位置的形变量,所述第一压力值为所述压力传感器检测到的所述目标位置的压力值。
  20. 根据权利要求17所述的电池,其中,在所述电池单体包括解调仪的情况下,所述电池还包括:
    电池管理系统,所述电池管理系统设置于所述电池壳体内,所述电池管理系统与所述解调仪电连接,所述电池管理系统用于:
    将所述解调仪输出的目标形变量与形变量阈值进行比较,并在所述目标形变量大于所述形变量阈值的情况下,输出形变异常预警信息;
    将所述解调仪输出的目标压力值与压力阈值进行比较,并在所述目标压力值大于所述压力阈值的情况下,输出压力异常预警信息;
    其中,所述目标形变量为目标位置的第一形变量或第二形变量,所述目标位置为所述传感器阵列的设置位置;所述目标压力值为所述目标位置的第一压力值或第二压力值。
  21. 根据权利要求20所述的电池,其中,在所述电池壳体的外部还设置有所述光纤的情况下,所述形变异常预警信息用于指示所述电池的形变异常原因;所述压力异常预警信息用于指示所述电池的压力异常原因。
  22. 根据权利要求20所述的电池,其中,所述电池管理系统还用于:
    在所述目标位置位于所述极片组件上的情况下,确定所述电池的形变异常原因为所述电芯组件内部形变异常导致;在所述目标位置位于所述电池壳体的外部的情况下,确定所述电池的形变异常原因为所述电池受到外力导致;
    在所述目标位置位于所述极片组件上的情况下,确定所述电池的形变异常原因为所述电芯组件内部压力异常导致;在所述目标位置位于所述电池壳体的外部的情况下,确定所述电池的形变异常原因为所述电池受到外力导致。
  23. 根据权利要求18所述的电池,其中,在所述电池单体包括解调仪的情况下,所述电池还包括:
    电池管理系统,所述电池管理系统设置于所述电池壳体内,所述电池管理系统与所述解调仪电连接,所述电池管理系统用于:
    利用目标位置和所述目标位置的状态信息,训练状态预测模型,所述目标位置为所述传感器阵列的设置位置;
    利用所述状态预测模型预测第二位置的状态信息,所述第二位置位于所述极片组件内部,或,所述电池壳体的外部。
  24. 一种用电装置,包括:
    如权利要求17至23中任一项所述的电池。
PCT/CN2022/122066 2022-09-28 2022-09-28 电芯组件、电池单体、电池及用电装置 WO2024065259A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122066 WO2024065259A1 (zh) 2022-09-28 2022-09-28 电芯组件、电池单体、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122066 WO2024065259A1 (zh) 2022-09-28 2022-09-28 电芯组件、电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024065259A1 true WO2024065259A1 (zh) 2024-04-04

Family

ID=90475176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122066 WO2024065259A1 (zh) 2022-09-28 2022-09-28 电芯组件、电池单体、电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024065259A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280290A1 (en) * 2014-04-01 2015-10-01 Palo Alto Research Center Incorporated Method For Monitoring/Managing Electrochemical Energy Device By Detecting Intercalation Stage Changes
CN111082166A (zh) * 2019-11-20 2020-04-28 国网江苏省电力有限公司电力科学研究院 一种电化学储能安全预警系统及方法
CN111089672A (zh) * 2019-12-25 2020-05-01 河南新太行电源股份有限公司 一种利用形变压力差对电池模组进行不安全预警的方法
CN113466701A (zh) * 2021-06-29 2021-10-01 武汉理工大学 基于fbg的储能电池内部多参量一体化在线监测系统及方法
CN113532539A (zh) * 2021-07-27 2021-10-22 安徽理工大学 同时测量温度、应变和压力的光纤传感系统、方法及装置
CN114199434A (zh) * 2021-11-24 2022-03-18 华中科技大学 方形锂电池卷绕参数的测量系统、测量方法及优化方法
CN217182205U (zh) * 2022-03-30 2022-08-12 宁德时代新能源科技股份有限公司 电池的电极组件、电池单体、电池和用电设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280290A1 (en) * 2014-04-01 2015-10-01 Palo Alto Research Center Incorporated Method For Monitoring/Managing Electrochemical Energy Device By Detecting Intercalation Stage Changes
CN111082166A (zh) * 2019-11-20 2020-04-28 国网江苏省电力有限公司电力科学研究院 一种电化学储能安全预警系统及方法
CN111089672A (zh) * 2019-12-25 2020-05-01 河南新太行电源股份有限公司 一种利用形变压力差对电池模组进行不安全预警的方法
CN113466701A (zh) * 2021-06-29 2021-10-01 武汉理工大学 基于fbg的储能电池内部多参量一体化在线监测系统及方法
CN113532539A (zh) * 2021-07-27 2021-10-22 安徽理工大学 同时测量温度、应变和压力的光纤传感系统、方法及装置
CN114199434A (zh) * 2021-11-24 2022-03-18 华中科技大学 方形锂电池卷绕参数的测量系统、测量方法及优化方法
CN217182205U (zh) * 2022-03-30 2022-08-12 宁德时代新能源科技股份有限公司 电池的电极组件、电池单体、电池和用电设备

Similar Documents

Publication Publication Date Title
Nascimento et al. Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries
WO2022056957A1 (zh) 一种智能电池
US10403922B2 (en) Battery with embedded fiber optic cable
CN203758658U (zh) 输电线路力学监测数字传感器
CN109115118A (zh) 一种基于分布式光纤传感的变压器绕组检测系统
Meyer et al. Fiber optical sensors for enhanced battery safety
CN109950641A (zh) 一种锂离子电池内部温度测量系统及方法
CN114199434A (zh) 方形锂电池卷绕参数的测量系统、测量方法及优化方法
CN114166374A (zh) 一种动力电池Pack内部温度检测装置及系统
CN115472941A (zh) 一种单体锂电池植入式氢气检测装置及方法
CN112946509A (zh) 一种基于电极应变的锂离子电池老化状态估计方法
WO2024065259A1 (zh) 电芯组件、电池单体、电池及用电装置
CN208704945U (zh) 一种电池包气压监测系统
Matuck et al. Customized Optical Fiber Birefringent Sensors to Multipoint and Simultaneous Temperature and Radial Strain Tracking of Lithium‐Ion Batteries
Zhang et al. Health monitoring by optical fiber sensing technology for rechargeable batteries
CN115266075B (zh) 鼓凸自感知的板式支座及制作方法、监测系统及监测方法
WO2024065261A1 (zh) 电芯组件、电池单体、电池及用电装置
CN115629133A (zh) 一种基于光纤光栅声发射传感器的核电装备损伤检测系统
CN108871657A (zh) 一种电池包气压监测系统
CN115377540A (zh) 一种基于光纤光栅的锂电池热失控内部多特征检测装置及方法
CN112198085B (zh) 一种基于边孔光纤的液体密度测量装置及其测量方法
CN114994545A (zh) 一种基于光纤spr和fbg传感器的混合监测电池结构健康系统
CN115876232A (zh) 电池单体以及用于该电池单体的光纤
CN114056186A (zh) 一种动力电池的充电监测装置、充电系统和充电方法
CN116914299A (zh) 一种锂离子电池内部压力原位监测系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959907

Country of ref document: EP

Kind code of ref document: A1