CN113532539A - 同时测量温度、应变和压力的光纤传感系统、方法及装置 - Google Patents

同时测量温度、应变和压力的光纤传感系统、方法及装置 Download PDF

Info

Publication number
CN113532539A
CN113532539A CN202110848451.0A CN202110848451A CN113532539A CN 113532539 A CN113532539 A CN 113532539A CN 202110848451 A CN202110848451 A CN 202110848451A CN 113532539 A CN113532539 A CN 113532539A
Authority
CN
China
Prior art keywords
temperature
strain
pressure
pressure sensor
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110848451.0A
Other languages
English (en)
Other versions
CN113532539B (zh
Inventor
郭来功
朱敬宾
焦振华
王锦鹏
刘文杰
金涛
欧阳名三
焦森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geologychina Research Institute Of Chemical Geolgy And Mine Bureau
Anhui University of Science and Technology
Original Assignee
Geologychina Research Institute Of Chemical Geolgy And Mine Bureau
Anhui University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geologychina Research Institute Of Chemical Geolgy And Mine Bureau, Anhui University of Science and Technology filed Critical Geologychina Research Institute Of Chemical Geolgy And Mine Bureau
Priority to CN202110848451.0A priority Critical patent/CN113532539B/zh
Publication of CN113532539A publication Critical patent/CN113532539A/zh
Priority to US17/588,877 priority patent/US20230033792A1/en
Application granted granted Critical
Publication of CN113532539B publication Critical patent/CN113532539B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • G01L11/025Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means using a pressure-sensitive optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/04Means for compensating for effects of changes of temperature, i.e. other than electric compensation

Abstract

本公开属于光纤传感器领域,公开同时测量温度、应变和压力的光纤传感系统、方法及装置,利用分布式光纤温度传感器用于进行温度监测,将监测的温度信息传输至所述光纤光栅应变压力传感器;所述光纤光栅应变压力传感器根据接收到的温度信息,进行自身温度补偿;所述光纤光栅应变压力传感器进行应变以及压力监测。并用分布式光纤温度传感器代替实现光纤光栅应变压力传感器的温补功能,可以感知沿线各点的温度分布状况,而且光纤光栅应变压力传感器内部得到简化,除去了对温度的解调,加快了获取应变和压力的数值。

Description

同时测量温度、应变和压力的光纤传感系统、方法及装置
技术领域
本公开属于光纤传感器领域,具体涉及同时测量温度、应变和压力的光纤传感系统、方法及装置。
背景技术
光纤传感技术自其发展以来,广泛应用在煤矿、油田、航空、土木等场合下,能够应用在传统传感器难以使用的情况下,如强电磁干扰、腐蚀性强的环境下。
温度这一参量对于很多场景来说有很重要的意义,通过分布式光纤传感器可以实现大范围的测量。应变和压力两个参量则根据实际情况,放置在需要测量的地点与并与该点温度关联起来,实现温度补偿,使该点测量的应变和压力更加准确;针对于要同时测量温度、应变和压力的运用场景显得更尤为重要,如煤矿地质勘探,用于测量钻孔内的温度、压力和应变,可以预防突水等问题,以及避开地热异常高温区和强地下水流区;地铁隧道的安全监测,运营隧道变形、温度、渗漏等不同灾害的监测。
发明内容
第一方面,针对现有技术的不足,本公开的目的在于提供同时测量温度、应变和压力的光纤传感系统,进行简化了光栅应变压力传感器的内部结构,缩短了光栅应变压力传感器解调时间,能够更加快速获取到待测量应变、压力信息。
本公开的目的可以通过以下技术方案实现:
同时测量温度、应变和压力的光纤传感系统,包括分布式光纤温度传感器和光纤光栅应变压力传感器;
所述分布式光纤温度传感器用于进行温度监测,将监测的温度信息传输至所述光纤光栅应变压力传感器;
所述光纤光栅应变压力传感器根据接收到的温度信息,进行自身温度补偿;
所述光纤光栅应变压力传感器进行应变以及压力监测。
在一些公开中,所述光纤光栅应变压力传感器内部结构由圆形的金属膜片和两个光栅组成,两个光栅分为压力光栅以及应变光栅。
第二方面,针对现有技术的不足,本公开的目的在于提供同时测量温度、应变和压力的方法,进行简化了光栅应变压力传感器的内部结构,缩短了光栅应变压力传感器解调时间,能够更加快速获取到待测量应变、压力信息。
同时测量温度、应变和压力的方法,包括以下步骤:
S1、利用分布式光纤温度传感器用于进行温度监测,将监测的温度信息传输至所述光纤光栅应变压力传感器;
S2、所述光纤光栅应变压力传感器根据接收到的温度信息,进行自身温度补偿;
S3、所述光纤光栅应变压力传感器进行应变以及压力监测。
第三方面,针对现有技术的不足,本公开的目的在于提供同时测量温度、应变和压力的装置,进行简化了光栅应变压力传感器的内部结构,缩短了光栅应变压力传感器解调时间,能够更加快速获取到待测量应变、压力信息。
同时测量温度、应变和压力的装置,包括分布式光纤温度传感器和光纤光栅应变压力传感器;
所述分布式光纤温度传感器用于进行温度监测,将监测的温度信息传输至所述光纤光栅应变压力传感器;
所述光纤光栅应变压力传感器根据接收到的温度信息,进行自身温度补偿;
所述光纤光栅应变压力传感器进行应变以及压力监测。
在一些公开中,所述光纤光栅应变压力传感器内部结构由圆形的金属膜片和两个光栅组成,两个光栅分为压力光栅以及应变光栅。
本公开的有益效果:
本公开用分布式光纤温度传感器代替实现光纤光栅应变压力传感器的温补功能,可以感知沿线各点的温度分布状况,而且光纤光栅应变压力传感器内部得到简化,除去了对温度的解调,加快了获取应变和压力的数值。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例的系统流程图;
图2是本公开实施例的光纤光栅应变压力传感器内部结构示意图;
图3是本公开实施例的整体示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
光栅只对温度和应变比较敏感,所以对于其他参量的测量,都是通过特殊的内部结构来实现转化。光纤光栅应变压力传感器整体上是一个圆柱形物体,有一个外壳来包裹保护内部结构,底部有圆形的膜片实现增敏,内部含有两个光栅,分别对应压力和应变;对于压力:采用拉杆式结构,是利用底部的高弹性金属膜片进行增敏,将受到的压力作用到金属膜片上使其发生微量位移,并传递给拉杆结构进而改变光栅的反射波长;对于应变:将光栅固定在内部结构上,受力产生的形变作用在光栅上,使光栅的周期和折射率发生变化,如图2所示;
如图1所示,本公开先通过分布式光纤温度传感器测出温度,再将温度值返回给光纤光栅应变压力传感器用来温度补偿,继而测出应变和压力,最终感知到温度、应变和压力三个参量;以往的光纤光栅压力、应变传感器内部都需要有一个温度光栅来实现温度补偿的功能,实现压力、应变的同时测量较为麻烦,用分布式光纤温度传感器代替实现温度光栅的温补功能,可以感知沿线各点的温度分布状况,而且光纤光栅应变温度传感器内部得到简化,除去了对温度的解调,加快了获取应变和压力的数值。
同时,如图3所示,分布式光纤温度传感器属于功能型光纤传感器,即整条光纤光缆实现了传和感两个功能,通过解调仪将传递的信号最终解调为温度数值,它的测量部分结构就是一条光缆。上述光纤光栅应变温度传感器是单点测量式的,只能测量传感器所在部位的参量,但可以通过复用技术把多个串联在一起,如图中下面三个所示。整体的结构就是将多个光纤光栅应变温度传感器连接好后,再固定在温度传感器上,实现共同测量。
针对于分布式光纤温度传感器的原理利用拉曼散射光信号对温度比较敏感,通过采集斯托克斯拉曼散射光和反斯托克斯拉曼散射光信号实现对温度的感知。
光纤中的缺陷(制造过程中、不同段相互连接处等原因造成)会影响折射率的均匀性,光经过时,光子和光纤的光声子发生非弹性碰撞,即拉曼效应。在散射光谱中,波长小于入射光的部分为反斯托克斯光(Anti-Stokes),波长大于入射光的部分为斯托克斯光(Stokes)。因为Anti-Stokes信号对温度的变化比较敏感,通常将其作为信号通道,而将Stokes信号作为参考通道。任意温度T时,Anti-Stokes 和Stokes的光通量比值为:
Figure 1
RAS、RS是Anti-Stokes和Stokes的温度调制函数,关系式为:
RAS(T)=[exp(hΔv/kT)-1]-1 (2)
RS(T)=[1-exp(-hΔv/kT)]-1 (3)
Figure 2
参考温度T0,则T0时Anti-Stokes和Stokes的光通量比值为:
Figure 3
Figure 4
最终温度值:
Figure 5
式中,ΦAS、ΦS是Anti-Stokes和Stokes在温度T时的光通量; KAS、KS是Anti-Stokes和Stokes的截面系数;vAS、vS是Anti-Stokes 和Stokes光子的频率;αAS、αS是Anti-Stokes和Stokes光在光纤中传输的损耗;L是散射光在光纤中的位置;h是普朗克常量,其值为6.626×10-34J·s;Δv是光纤的光声子频率,其值为1.32×1013Hz;k是玻尔兹曼常量,其值为1.38×10-23J·K。
针对于光纤光栅应变压力传感器中的应变、压力的测量,波长的偏移量受周期和折射率的影响:
ΔλB=2Λ·Δne+2ne·ΔΛ (8)
在轴向应变εz的作用下,可得:
Figure BDA0003181577280000071
横向应变εx可表示为:εx=-μεz
弹性范围内光栅周期的变化与轴向应变关系为:
Figure BDA0003181577280000072
设定有效弹光系数pe,表示为
Figure BDA0003181577280000073
故应变引起的波长偏移量为:
Figure BDA0003181577280000074
通过金属膜片,可将应变与压力联系起来,设定压力为P,则轴向应变受压力时表示为:
εz=-P·(1-2μ)/E (11)
光栅周期与压力的关系为:ΔΛ=Λ·εz=-Λ·P·(1-2μ)/E
由材料的弹光效应可得:
Figure BDA0003181577280000075
代入有效弹光系数后,压力引起的波长偏移量为:
Figure BDA0003181577280000076
温度引起的波长偏移量为:
Figure BDA0003181577280000081
当三种参量同时作用时,要增加上温度的影响,故:
Figure BDA0003181577280000082
其中,应变光栅和压力光栅是分离的,故单独的光栅都是只受温度和对应的参量的影响。令KT=(α+ξ)λB表示温度系数,KP=(1-2v)(pe-1)λB/E 表示压力系数,Kε=(α+ξ)λB表示应变系数,则对温度T已知的情况下,有:
ΔλB1=KT1·T+Kε·εz (16)
ΔλB2=KT2·T+Kp·P (17)
即温度补偿后应变和压力可表示为:
Figure BDA0003181577280000083
Figure BDA0003181577280000084
式中,ne为光纤的有效折射率,Λ为光栅的周期。α为光纤材料的热膨胀系数,ξ为光纤材料的热光系数,μ为光纤材料的泊松比,E为光纤材料的杨氏模量,p11、p12为弹光系数,数值均取决于所使用的材料。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上显示和描述了本公开的基本原理、主要特征和本公开的优点。本行业的技术人员应该了解,本公开不受上述实施例的限制,上述实施例和说明书中描述的只是说明本公开的原理,在不脱离本公开精神和范围的前提下,本公开还会有各种变化和改进,这些变化和改进都落入要求保护的本公开范围内。

Claims (5)

1.同时测量温度、应变和压力的光纤传感系统,其特征在于,包括分布式光纤温度传感器和光纤光栅应变压力传感器;
所述分布式光纤温度传感器用于进行温度监测,将监测的温度信息传输至所述光纤光栅应变压力传感器;
所述光纤光栅应变压力传感器根据接收到的温度信息,进行自身温度补偿;
所述光纤光栅应变压力传感器进行应变以及压力监测。
2.根据权利要求1所述的同时测量温度、应变和压力的光纤传感系统,其特征在于,所述光纤光栅应变压力传感器内部结构由圆形的金属膜片和两个光栅组成,两个光栅分为压力光栅以及应变光栅。
3.同时测量温度、应变和压力的方法,其特征在于,包括以下步骤:
S1、利用分布式光纤温度传感器用于进行温度监测,将监测的温度信息传输至所述光纤光栅应变压力传感器;
S2、所述光纤光栅应变压力传感器根据接收到的温度信息,进行自身温度补偿;
S3、所述光纤光栅应变压力传感器进行应变以及压力监测。
4.同时测量温度、应变和压力的装置,其特征在于,包括分布式光纤温度传感器和光纤光栅应变压力传感器;
所述分布式光纤温度传感器用于进行温度监测,将监测的温度信息传输至所述光纤光栅应变压力传感器;
所述光纤光栅应变压力传感器根据接收到的温度信息,进行自身温度补偿;
所述光纤光栅应变压力传感器进行应变以及压力监测。
5.根据权利要求4所述的同时测量温度、应变和压力的装置,其特征在于,所述光纤光栅应变压力传感器内部结构由圆形的金属膜片和两个光栅组成,两个光栅分为压力光栅以及应变光栅。
CN202110848451.0A 2021-07-27 2021-07-27 同时测量温度、应变和压力的光纤传感系统、方法及装置 Active CN113532539B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110848451.0A CN113532539B (zh) 2021-07-27 2021-07-27 同时测量温度、应变和压力的光纤传感系统、方法及装置
US17/588,877 US20230033792A1 (en) 2021-07-27 2022-01-31 Optical Fiber Sensing System, Method and Apparatus for Simultaneously Measuring Temperature, Strain, and Pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110848451.0A CN113532539B (zh) 2021-07-27 2021-07-27 同时测量温度、应变和压力的光纤传感系统、方法及装置

Publications (2)

Publication Number Publication Date
CN113532539A true CN113532539A (zh) 2021-10-22
CN113532539B CN113532539B (zh) 2024-01-26

Family

ID=78089127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110848451.0A Active CN113532539B (zh) 2021-07-27 2021-07-27 同时测量温度、应变和压力的光纤传感系统、方法及装置

Country Status (2)

Country Link
US (1) US20230033792A1 (zh)
CN (1) CN113532539B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116697924A (zh) * 2023-08-08 2023-09-05 交通运输部天津水运工程科学研究所 一种阵列式光纤光栅多参量传感器
CN117109465A (zh) * 2023-08-31 2023-11-24 交通运输部天津水运工程科学研究所 一种多物理场应变传感信号解耦校准方法
WO2024065261A1 (zh) * 2022-09-28 2024-04-04 宁德时代新能源科技股份有限公司 电芯组件、电池单体、电池及用电装置
WO2024065259A1 (zh) * 2022-09-28 2024-04-04 宁德时代新能源科技股份有限公司 电芯组件、电池单体、电池及用电装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147299A (zh) * 2010-12-29 2011-08-10 大连理工大学 光纤拉曼与光栅共线融合传感方法
CN103033308A (zh) * 2012-12-17 2013-04-10 中国船舶重工集团公司第七一五研究所 一种温度实时精确补偿的光纤光栅压力传感器
JP2013072701A (ja) * 2011-09-27 2013-04-22 Japan Aerospace Exploration Agency 温度及び歪分布計測システム
CN103674117A (zh) * 2013-12-20 2014-03-26 武汉理工大学 基于拉曼散射同时测量全同弱光纤光栅温度与应变的方法及装置
US20180364073A1 (en) * 2017-06-12 2018-12-20 Advanced Opto-Mechanical Systems And Technologies Inc. Multi-parameter distributed fiber optic sensor system and methods of sensor manufacturing
CN110440838A (zh) * 2019-08-19 2019-11-12 武汉地震工程研究院有限公司 一种基于多芯光纤的多参量光纤传感仪器和传感方法
CN110440837A (zh) * 2019-08-19 2019-11-12 武汉地震工程研究院有限公司 一种多参量光纤同步传感采集仪和传感采集方法
CN110686613A (zh) * 2019-11-14 2020-01-14 大连理工大学 一种基于分布式光纤动静应变测试的路基变形监测系统
CN210089716U (zh) * 2019-08-19 2020-02-18 武汉地震工程研究院有限公司 一种基于多芯光纤传感的多参量同步传感采集仪
CN111006603A (zh) * 2019-12-24 2020-04-14 石家庄铁道大学 一种钢筋应力应变计
AU2020103313A4 (en) * 2020-11-09 2021-01-14 Harbin Engineering University A distributed optical fiber Fizeau interferometer based on the principle of optical time domain reflection (OTDR)
US20210085198A1 (en) * 2018-02-07 2021-03-25 Koninklijke Philips N.V. Distributed intravascular fiber bragg pressure sensor
CN112649052A (zh) * 2021-01-19 2021-04-13 武汉理工大学 基于全光纤光栅传感网络的船体多参量监测系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW500912B (en) * 2001-11-30 2002-09-01 Nat Chao Tung University Libra Method to sense the stress and temperature distribution of fiber simultaneously
JP6039700B2 (ja) * 2012-03-07 2016-12-07 オーエフエス ファイテル,エルエルシー 回折格子に基づくセンサ
CN107271078B (zh) * 2017-07-14 2020-04-07 山东大学 智能化塑料管道的光纤光栅传感器嵌件、植入系统及方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147299A (zh) * 2010-12-29 2011-08-10 大连理工大学 光纤拉曼与光栅共线融合传感方法
JP2013072701A (ja) * 2011-09-27 2013-04-22 Japan Aerospace Exploration Agency 温度及び歪分布計測システム
CN103033308A (zh) * 2012-12-17 2013-04-10 中国船舶重工集团公司第七一五研究所 一种温度实时精确补偿的光纤光栅压力传感器
CN103674117A (zh) * 2013-12-20 2014-03-26 武汉理工大学 基于拉曼散射同时测量全同弱光纤光栅温度与应变的方法及装置
US20180364073A1 (en) * 2017-06-12 2018-12-20 Advanced Opto-Mechanical Systems And Technologies Inc. Multi-parameter distributed fiber optic sensor system and methods of sensor manufacturing
US20210085198A1 (en) * 2018-02-07 2021-03-25 Koninklijke Philips N.V. Distributed intravascular fiber bragg pressure sensor
CN110440837A (zh) * 2019-08-19 2019-11-12 武汉地震工程研究院有限公司 一种多参量光纤同步传感采集仪和传感采集方法
CN210089716U (zh) * 2019-08-19 2020-02-18 武汉地震工程研究院有限公司 一种基于多芯光纤传感的多参量同步传感采集仪
CN110440838A (zh) * 2019-08-19 2019-11-12 武汉地震工程研究院有限公司 一种基于多芯光纤的多参量光纤传感仪器和传感方法
CN110686613A (zh) * 2019-11-14 2020-01-14 大连理工大学 一种基于分布式光纤动静应变测试的路基变形监测系统
CN111006603A (zh) * 2019-12-24 2020-04-14 石家庄铁道大学 一种钢筋应力应变计
AU2020103313A4 (en) * 2020-11-09 2021-01-14 Harbin Engineering University A distributed optical fiber Fizeau interferometer based on the principle of optical time domain reflection (OTDR)
CN112649052A (zh) * 2021-01-19 2021-04-13 武汉理工大学 基于全光纤光栅传感网络的船体多参量监测系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIA JIANCHUN: "Simultaneous measurements of distributed temperature and discrete strain based on Hybrid Raman/FBG system", SENS. ACTUATOR A-PHYS, pages 235 - 240 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065261A1 (zh) * 2022-09-28 2024-04-04 宁德时代新能源科技股份有限公司 电芯组件、电池单体、电池及用电装置
WO2024065259A1 (zh) * 2022-09-28 2024-04-04 宁德时代新能源科技股份有限公司 电芯组件、电池单体、电池及用电装置
CN116697924A (zh) * 2023-08-08 2023-09-05 交通运输部天津水运工程科学研究所 一种阵列式光纤光栅多参量传感器
CN116697924B (zh) * 2023-08-08 2023-10-31 交通运输部天津水运工程科学研究所 一种阵列式光纤光栅多参量传感器
CN117109465A (zh) * 2023-08-31 2023-11-24 交通运输部天津水运工程科学研究所 一种多物理场应变传感信号解耦校准方法
CN117109465B (zh) * 2023-08-31 2024-04-12 交通运输部天津水运工程科学研究所 一种多物理场应变传感信号解耦校准方法

Also Published As

Publication number Publication date
US20230033792A1 (en) 2023-02-02
CN113532539B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
CN113532539A (zh) 同时测量温度、应变和压力的光纤传感系统、方法及装置
US5877426A (en) Bourdon tube pressure gauge with integral optical strain sensors for measuring tension or compressive strain
Aref et al. Fiber optic Fabry–Perot pressure sensor with low sensitivity to temperature changes for downhole application
Hoffmann et al. Applications of fibre optic temperature measurement.
Zhao et al. Simultaneous measurement of down-hole high pressure and temperature with a bulk-modulus and FBG sensor
CN105788749B (zh) 一种监测结构局部大变形的智能光电复合缆及监测方法
CN201392418Y (zh) 复合型传感光缆
JP5322238B2 (ja) 物理量測定装置
Zhou et al. Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method
EP2976500B1 (en) Distributed strain and temperature sensing system
CN109406528B (zh) 一种用于检测钢筋腐蚀的光纤传感装置及其温度补偿方法
Li et al. Combined interrogation using an encapsulated FBG sensor and a distributed Brillouin tight buffered fiber sensor in a tunnel
CN101975638A (zh) 矿用光纤布拉格光栅正压传感器
EP1324082B1 (en) Dual-parameter optical waveguide grating sensing device and sensor
CN113188692B (zh) 一种水土压力监测预警装置
CN106644161A (zh) 一种投弃式全光纤海水温深剖面传感器
CN112378556A (zh) 一种基于光纤传感的顶管管节内壁混凝土应力监测方法
Ferdinand et al. Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EURAM STABILOS project
CN101936792A (zh) 矿用光纤布拉格光栅负压传感器
KR101474068B1 (ko) 광섬유 브래그 격자를 이용한 원전 환경 모니터링 시스템
CN205748774U (zh) 耐高温光纤光栅压力传感器
CN115452196A (zh) 一种光纤敏感环高精度温度灵敏度系数测试的装置及方法
CN208968667U (zh) 一种准分布式声波探测传感器
CN201803825U (zh) 矿用光纤布拉格光栅正压传感器
Kulchin et al. Combined time-wavelength interrogation of fiber-Bragg gratings based on an optical time-domain reflectometry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant