WO2024063034A1 - 植物センサ - Google Patents

植物センサ Download PDF

Info

Publication number
WO2024063034A1
WO2024063034A1 PCT/JP2023/033817 JP2023033817W WO2024063034A1 WO 2024063034 A1 WO2024063034 A1 WO 2024063034A1 JP 2023033817 W JP2023033817 W JP 2023033817W WO 2024063034 A1 WO2024063034 A1 WO 2024063034A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement light
wavelength
reflected
measurement
Prior art date
Application number
PCT/JP2023/033817
Other languages
English (en)
French (fr)
Inventor
太一 湯浅
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2024063034A1 publication Critical patent/WO2024063034A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration

Definitions

  • the present invention relates to a plant sensor that irradiates agricultural crops with measurement light and analyzes the reflected light to measure the growth status of the crops.
  • Detecting the growth status of plants, especially agricultural crops, is important in agricultural production management.
  • plants are irradiated with detection light diffused in one direction, and the growth state of the plants is detected based on the detection light reflected from the leaves of the plants.
  • the reflected detection light also included reflected detection light from soil other than plant leaves, so the detection results contained noise.
  • noise such as reflected detection light from the soil can be removed and detection accuracy can be improved. is also being carried out.
  • the present invention provides a plant sensor that reduces the number of parts and costs.
  • the present invention provides a first light emitting section that emits a first measurement light including a first wavelength band at a predetermined spread angle, and a second light emitting section that emits a second measurement light including a second wavelength band at a predetermined spread angle. and at least one light receiving unit that receives the first reflected measurement light and the second reflected measurement light from the measurement target, and the first wavelength band and the second wavelength band from at least one of each measurement light and each reflected measurement light.
  • the wavelength selection member has a wavelength selection member that extracts
  • a plant sensor configured to have a wavelength selective film formed on at least one of the surfaces thereof, the wavelength selective film having a concave portion whose film thickness increases in response to an increase in the incident angle of each measurement light or each reflected measurement light with respect to the wavelength selection member. This is related.
  • the present invention relates to a plant sensor in which the film thickness of the recess is set so that the transmitted wavelength is constant or substantially constant regardless of the incident angle of each measurement light or each reflected measurement light with respect to the recess. .
  • the wavelength selection member is arranged on the optical path of each measurement light so as to be orthogonal to the optical axis of each measurement light, and each measurement light selects each wavelength with the incident angle being rotationally symmetrical.
  • the present invention relates to a plant sensor configured to be incident on a selection member.
  • the present invention provides a deflection optical member provided on a common optical path of the first light emitting section and the second light emitting section, the deflection optical member transmitting one of the measurement lights transmitted through each wavelength selection member,
  • the present invention relates to a plant sensor configured to deflect the measuring light so that its optical axis coincides with the measuring light that is transmitted through the other side.
  • the present invention provides a deflection optical member that deflects the optical axis of the first measurement light to match the optical axis of the second measurement light on a common optical path of the first light emission section and the second light emission section.
  • the wavelength selection member is arranged to be perpendicular to the optical axis of the second measurement light, and each measurement light is configured to coaxially enter the wavelength selection member with the incident angles being rotationally symmetrical. This relates to a plant sensor.
  • the present invention also relates to a plant sensor configured such that the wavelength selection member is on the optical path of each reflected measurement light, is arranged perpendicular to the optical axis of each reflected measurement light, and each reflected measurement light is incident on the wavelength selection member with an incident angle that is rotationally symmetric.
  • the present invention includes a first light receiving section that receives the first reflected measurement light, and a second light receiving section that receives the second reflected measurement light, and the wavelength selection member selects a wavelength of each reflected measurement light.
  • a plant sensor arranged on the optical path and perpendicular to the optical axis of each reflected measurement light, and configured such that each reflected measurement light enters each wavelength selection member with the angle of incidence rotationally symmetrical. This is related to.
  • the first light emitting section emits the first measurement light including the first wavelength band at a predetermined spread angle
  • the second light emitting section emits the second measurement light including the second wavelength band at a predetermined spread angle.
  • a light-emitting section at least one light-receiving section that receives a first reflected measurement light and a second reflected measurement light from a measurement object
  • the wavelength selection member includes a wavelength selection member that extracts a wavelength band, and a control unit that calculates the growth status of the measurement target based on the light intensity of each measurement light and the received light amount of each reflected measurement light, and the wavelength selection member is configured to and a wavelength selection film having a concave portion whose film thickness increases in response to an increase in the incident angle of each measurement light or each reflected measurement light with respect to the wavelength selection member is formed on at least one of the exit surfaces.
  • FIG. 1 is an explanatory diagram illustrating an example of use of a plant sensor according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a plant sensor according to a first embodiment of the present invention.
  • FIG. 3 is a side sectional view illustrating the wavelength selection member according to the first embodiment of the present invention.
  • FIG. 4(A) is a graph illustrating the transmitted wavelength for each incident angle in a wavelength selection member with a constant film thickness
  • FIG. 4(B) is a graph illustrating the wavelength selection member according to the first embodiment of the present invention.
  • 2 is a graph illustrating the transmission wavelength for each incident angle at FIG.
  • FIG. 5 is a graph illustrating a curve showing the gradient of film thickness from the center of the recessed portion of the wavelength selection member to the outer periphery.
  • FIG. 6 is a schematic diagram of a plant sensor according to a second embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a plant sensor according to a third embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a plant sensor according to a fourth embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a plant sensor according to a fifth embodiment of the present invention.
  • FIG. 1 schematically shows a plant sensor according to a first embodiment of the present invention.
  • 1 indicates a plant sensor held in the hand of a worker.
  • the plant sensor 1 alternately irradiates a measurement object 3 such as a field (for example, agricultural products) with a laser beam (measurement light 2) of two wavelengths. Further, the plant sensor 1 detects the amount of light received for each wavelength of the measurement light 2 (reflected measurement light 4) reflected by the measurement object 3, and measures the reflectance for each wavelength from each amount of received light.
  • a measurement object 3 such as a field (for example, agricultural products) with a laser beam (measurement light 2) of two wavelengths.
  • the plant sensor 1 detects the amount of light received for each wavelength of the measurement light 2 (reflected measurement light 4) reflected by the measurement object 3, and measures the reflectance for each wavelength from each amount of received light.
  • the measurement light 2 two types of measurement light with different wavelengths are emitted from the plant sensor 1, and the two types of measurement light are collectively referred to as the measurement light 2.
  • the measurement light 2 two types of measurement light are reflected on the measurement object 3, and the two types of reflected measurement light are collectively referred to as the reflected measurement light 4.
  • the plant sensor 1 can measure the growth status of the measurement target 3 based on the reflectance of each wavelength at the irradiation position of the measurement light 2.
  • the measurement light 2 there are 735 nm as the first measurement wavelength band and 808 nm as the second wavelength band.
  • the first measurement light 2a having a wavelength near 735 nm, which is the first wavelength band (wavelength in a predetermined range centered around 735 nm)
  • the measurement light 2 if the measurement target 3 contains nitrogen, Although reflected by the measurement object 3, the amount of reflected measurement light 4 does not change regardless of the nitrogen content.
  • the measurement target 3 may contain nitrogen. It is known that the reflectance varies depending on the content of nitrogen, and that the amount of reflected light increases as the content increases.
  • the leaves of crops contain nitrogen, and when the growth conditions are good, the nitrogen content is high, and when the growth conditions are poor, the nitrogen content is low.
  • soil may also contain nitrogen, but the reflectance of soil and leaves is significantly different (the reflectance of soil is significantly lower). Therefore, by comparing only the amount of reflected light without limiting the wavelength, it is possible to determine whether the reflection is from the soil or from the leaves. By removing the reflected measurement light 4 that has been determined to be reflected from the soil, noise can be reduced. Can be removed.
  • the measurement light 2 is alternately irradiated with the first measurement light 2a having a wavelength around 735 nm and the second measurement light 2b having a wavelength around 808 nm. That is, the first measurement light 2a and the second measurement light 2b are irradiated on the same or substantially the same optical axis, and are irradiated to the same or substantially the same irradiation range.
  • the amount of reflected light of the reflected measurement light 4 changes under the influence of the condition of the reflective surface, such as whether the reflective surface is clean or dirty.
  • the measurement light 2 of two wavelengths is irradiated to the same point on the reflection surface, the measurement light 2 of each wavelength is affected by the state of the reflection surface in the same way.
  • the nitrogen content ratio of the measurement object 3 can be determined. If the nitrogen content ratio of the leaves of the crop corresponding to the growth condition is obtained in advance, the growth condition of the crop to be measured 3 can be determined.
  • the plant sensor 1 may have a built-in inclination sensor that detects the inclination of the plant sensor 1.
  • the inclination of the plant sensor 1 with respect to the horizontal (or vertical) can be detected based on the detection result of the inclination sensor.
  • FIG. 2 shows a schematic configuration diagram of the plant sensor 1 according to the first embodiment of the present invention.
  • the plant sensor 1 includes a first light emitting section 5, a second light emitting section 6, a light receiving section 7, a first wavelength selection member 8, a second wavelength selection member 9, a control section 11, a storage section 12, a display section 13, and an operation section. 14, and each component is housed in a housing 15. Further, a window portion 16 having a predetermined opening area is formed in the housing 15.
  • the first light emitting unit 5 has a first measurement light source 17 and a first light amount sensor 18.
  • the first measurement light source 17 is an LED light source
  • the first measurement light source 17 is a first measurement light source having a first wavelength band, that is, a predetermined wavelength range including a wavelength around 735 nm, on the first projection optical axis 19 at a predetermined spread angle, for example, ⁇ 25°. It is configured to irradiate light 21.
  • the first light amount sensor 18 is, for example, a photodiode (PD), and receives a part of the first measurement light 21 emitted from the first measurement light source 17, and detects the amount of light emitted from the first measurement light source 17. is configured so that it can be detected in real time. The amount of light detected by the first light amount sensor 18 is transmitted to the controller 11 in real time.
  • PD photodiode
  • the second light emitting section 6 has a second measurement light source 22 and a second light amount sensor 23.
  • the second measurement light source 22 is an LED light source
  • the second measurement light source 22 has a second wavelength band on the second projection optical axis 24 at a predetermined spread angle, for example, ⁇ 25°, that is, a second measurement in a predetermined wavelength range including a wavelength around 808 nm. It is configured to irradiate light 25.
  • the second light amount sensor 23 is, for example, a photodiode (PD), and receives a part of the second measurement light 25 emitted from the second measurement light source 22, and detects the amount of light emitted from the second measurement light source 22. is configured so that it can be detected in real time. The amount of light detected by the second light amount sensor 23 is transmitted to the control unit 11 in real time.
  • PD photodiode
  • the light receiving section 7 is a light receiving element provided on the light receiving optical axis 26, such as a photodiode (PD) or an avalanche photodiode (APD). Further, the light receiving section 7 is capable of detecting the amounts of the first reflected measuring light 4a and the second reflected measuring light 4b that are incident along the light receiving optical axis 26, respectively. The amounts of the first reflected measurement light 4a and the second reflected measurement light 4b detected by the light receiving section 7 are each transmitted to the control section 11 in real time as received light amount data.
  • PD photodiode
  • APD avalanche photodiode
  • the first wavelength selection member 8 is disposed on the optical path of the first measurement light 21 so as to be perpendicular to the first light projection optical axis 19, and all of the first measurement light 21 is directed to the first wavelength selection member. 8. That is, the angle of incidence of the first measurement light 21 on the first wavelength selection member 8 is rotationally symmetrical. Further, the first wavelength selection member 8 includes, for example, a bandpass filter, and has an optical property of transmitting light with a wavelength around 735 nm and blocking light with other wavelengths.
  • the second wavelength selection member 9 is disposed on the optical path of the second measurement light 25 so as to be orthogonal to the second light projection optical axis 24, and all of the second measurement light 25 is directed to the second wavelength selection member. 9. That is, the angle of incidence of the second measurement light 25 on the second wavelength selection member 9 is rotationally symmetrical. Further, the second wavelength selection member 9 includes, for example, a bandpass filter, and has an optical property of transmitting light with a wavelength around 808 nm and blocking light with other wavelengths.
  • the control unit 11 executes various programs stored in the storage unit 12, which will be described later. Thereby, the control section 11 controls the light emission of the first measurement light source 17 and the second measurement light source 22, and also controls the reflected measurement light 4 received by the light receiving section 7 (the first reflected measurement light 4a). , controls the process of measuring the growth condition of the measurement object 3 based on the second reflected measurement light 4b).
  • the storage unit 12 stores a sequence for activating the first measurement light source 17 and the second measurement light source 22 to alternately irradiate the measurement object 3 with the first measurement light 2a and the second measurement light 2b.
  • program a determination program for determining the growth state of the measurement target 3 based on the received light amount data, a noise removal program for removing noise data from the received light amount data, fertilizer according to the growth state of the measurement target 3 A calculation program, etc. for calculating the amount of spraying is stored.
  • the noise removal program includes thresholds necessary for noise determination, such as thresholds related to the amount of received light.
  • the storage unit 12 stores the nitrogen content ratio of leaves corresponding to the growth condition of the measurement target 3, which is an agricultural product, and the ratio of the first measurement light 2a in the first measurement light 21. and the ratio of the second measurement light 2b in the second measurement light 25 are stored.
  • FIG. 3 shows the first wavelength selection member 8. Note that since the first wavelength selection member 8 and the second wavelength selection member 9 have the same configuration, the first wavelength selection member 8 will be described below, and the description of the second wavelength selection member 9 will be explained below. omitted.
  • the first wavelength selection member 8 includes a disk-shaped glass plate 27 and a wavelength selection film 28 formed on both the incident surface and the exit surface of the glass plate 27.
  • the first wavelength selection member 8 is arranged so that the beam diameter (effective diameter) is 13 mm.
  • FIG. 4(B) is a graph showing the optical characteristics of the wavelength selection film 28 according to the first example of the present invention.
  • the wavelength selection film 28 is a bandpass filter that selectively transmits wavelengths around 735 nm.
  • the transmitted wavelength of a band-pass filter shifts depending on the angle of incidence on the band-pass filter.
  • FIG. 4(A) when the thickness of the wavelength selection film 28 is constant from the center to the outer periphery, there is a case where the first measurement light 21 is incident at an incident angle of 0°; The transmitted wavelength is different from the case where the first measurement light 21 is incident at an angle of 25°. That is, the wavelength selective film 28 has a shorter transmission wavelength when the incident angle is 25° (dashed line in FIG. 4(A)) than when the incident angle is 0° (solid line in FIG. 4(A)). It shifts to the side by about 17 nm.
  • the thickness of the wavelength selection film 28 is increased in response to an increase in the angle of incidence of the first measurement light 21, and regardless of the angle of incidence of the first measurement light 21,
  • the thickness of the wavelength selection film 28 is set so that the transmitted wavelength is constant or substantially constant.
  • the broken line in the case of an incident angle of 25°
  • the solid line in the case of an incident angle of 0°
  • it is different from the solid line. It matches or almost matches the broken line.
  • the wavelength selection film 28 is centered around the first light projection optical axis 19, and has a small film thickness toward the center and increases in film thickness concentrically toward the outer circumference.
  • a recess 29 having a bowl-shaped concave curved surface is formed.
  • the outer diameter of the recess 29 matches or is slightly larger than the diameter of the light beam when the first measurement light 21 enters the wavelength selection film 28 and exits from the wavelength selection film 28. . That is, the recess 29 of the wavelength selection film 28 on the incident side has a smaller outer diameter than the recess 29 of the wavelength selection film 28 on the exit side.
  • FIG. 5 is a graph showing the relationship between the radial position of the recess 29 and the film thickness.
  • a curve 31 in FIG. 5 is a curve showing the gradient of the film thickness of the recess 29, and is configured so that the film thickness gradually increases concentrically from the center toward the outer periphery and draws a downwardly convex curve. be done.
  • the shape of the curve 31 varies depending on the spread angle of the first measurement light 21, the maximum angle of incidence on the wavelength selection film 28, and the effective diameter.
  • the shape of the curve 31 is always a downward convex curve with respect to a straight line connecting the center and the outer periphery of the wavelength selection film 28.
  • the curve 31 can be defined, for example, as a polynomial of degree two or lower.
  • the shape of the curve 31 is different between the recess 29 on the entrance side and the recess 29 on the exit side. It's different.
  • the second wavelength selection member 9 also has a wavelength selection film 32 and a recess 33 formed therein.
  • the wavelength selection film 32 is a bandpass filter that selectively transmits light having a wavelength around 808 nm.
  • the wavelength selection film 32 and the recess 33 have the same configuration as the wavelength selection film 28 and the recess 29 except for the transmission wavelength.
  • the display section 13 displays the measurement result of the measurement object 3, that is, the nitrogen content ratio of the measurement object 3 in the range irradiated with the measurement light 2. For example, the information is displayed in different colors depending on the nitrogen content ratio. Alternatively, the amount of fertilizer applied to the measurement object 3 is displayed based on the measurement results.
  • the operation unit 14 is capable of starting and stopping measurement of the measurement target 3. Note that by using a touch panel as the display section 13, the display section 13 and the operation section 14 can be used together. In this case, the operation section 14 can be omitted.
  • the control unit 11 controls the first measurement light source 17 and the second measurement light source 22.
  • the first measurement light 21 and the second measurement light 25 are alternately emitted in pulses.
  • the first measurement light 21 enters the first wavelength selection member 8 while being diffused at a predetermined spread angle on the first projection optical axis 19. Further, the light intensity of the first measurement light 21 is detected in real time by the first light intensity sensor 18, and the detection result is output to the control section 11.
  • the first wavelength selection member 8 transmits only the first measurement light 2a having a wavelength in the first wavelength band, that is, around 735 nm, and blocks the first measurement light 21 having other wavelengths.
  • the first measurement light 2a that has passed through the first wavelength selection member 8 is irradiated onto the measurement object 3 through the window 16.
  • the thickness of the wavelength selection film 28 changes depending on the angle of incidence of the first measurement light 2a, regardless of the angle of incidence with respect to the wavelength selection film 28, Only the first measurement light 2a passes through the wavelength selection film 28.
  • the distance from the plant sensor 1 to the measurement object 3 is selected within a range of, for example, 50 cm to 5 m. Further, the irradiation area of the measurement light 2 on the measurement object 3 is, for example, ⁇ 30 cm when the distance to the measurement object 3 is 1 m.
  • the first measurement light 2a is reflected at a predetermined reflectance based on the nitrogen content ratio of the measurement object 3, and the first reflected measurement light 4a is received by the light receiving section 7 through the window section 16. .
  • the light receiving section 7 outputs the received amount of the first reflected measurement light 4a to the control section 11.
  • the second measurement light 25 enters the second wavelength selection member 9 while being diffused on the second projection optical axis 24 at a predetermined spread angle. Further, the light intensity of the second measurement light 25 is detected in real time by the second light intensity sensor 23, and the detection result is output to the control section 11.
  • the second wavelength selection member 9 transmits only the second measurement light 2b having a wavelength in the second wavelength band, that is, around 808 nm, and blocks the second measurement light 25 having other wavelengths.
  • the second measurement light 2b transmitted through the second wavelength selection member 9 is irradiated onto the measurement object 3 through the window 16.
  • the wavelength selection film 32 since the thickness of the wavelength selection film 32 changes depending on the angle of incidence of the second measurement light 2b, the wavelength selection film 32 has a thickness that varies depending on the angle of incidence of the second measurement light 2b. Only the second measurement light 2b is transmitted through the wavelength selection film 32.
  • the second measurement light 2b is reflected at a predetermined reflectance based on the nitrogen content ratio of the measurement object 3, and the second reflected measurement light 4b is received by the light receiving section 7 through the window section 16. .
  • the light receiving section 7 outputs the received amount of the second reflected measurement light 4b to the control section 11.
  • the light receiving section 7 alternately receives the first reflected measurement light 4a and the second reflected measurement light 4b, and alternately transmits each received light amount data to the control section 11.
  • the control unit 11 controls the light intensity of the first measurement light 21 input from the first light intensity sensor 18, the light intensity of the second measurement light 25 input from the second light intensity sensor 23, and the first measurement light intensity.
  • the nitrogen content ratio of the measurement object 3 is calculated based on the amount of the second reflected measurement light 4b received.
  • control unit 11 compares the nitrogen content ratio of the leaves of the measurement target 3 corresponding to the growth status obtained in advance with the calculated content ratio, and determines the growth status of the measurement target 3 based on the comparison result. At the same time, the growth status is displayed on the display section 13. Further, the control unit 11 calculates the amount of fertilizer required for the measurement target 3 based on the content ratio, and displays the calculation result on the display unit 13.
  • the measurement light 2 is irradiated onto the measurement object 3 again, and the measurement is executed. The above process is repeated until measurement of the entire desired measurement range is completed.
  • the wavelength selection film 28 of the first wavelength selection member 8 and the wavelength selection film 32 of the second wavelength selection member 9 It is configured to increase the film thickness in response to an increase in the incident angle of the second measurement light 25.
  • the wavelength selection film 28 and the wavelength selection film 32 transmit the first measurement light 21 and the second measurement light 25 regardless of the angle of incidence.
  • the wavelengths of the first measurement light 2a and the second measurement light 2b can be made constant.
  • the transmission wavelength is constant, it is possible to use a bandpass filter with a narrow range of transmission wavelengths, so that a sufficient amount of light can be ensured for the first measurement light 2a and the second measurement light 2b, and the Loss in the amount of light of the first measurement light 21 and the second measurement light 25 can be suppressed. Further, by using measurement light in a narrow range centered on the first wavelength band and the second wavelength band, measurement accuracy can be improved.
  • the first measurement light 21 and the second measurement light 21 do not need to be aligned.
  • a lens for converting the measurement light 25 into a parallel light beam is not required, and the number of parts and size can be reduced, and manufacturing costs can be reduced.
  • the plant sensor 1 is made portable, and the operator points the plant sensor 1 directly at the measurement target 3 to measure the growth status of the measurement target 3.
  • the plant sensor 1 may be mounted on a moving body such as a tractor or a UAV, and the growth status of the measurement target 3 may be measured by remote control.
  • a position measuring device such as a GNSS device is provided on the moving body, and the measurement position when the measurement target 3 is measured is obtained, so that a map of the growth status of the measurement target 3 can be created, making it possible to carry out measurements even if the measurement target 3 is located over a wide area.
  • the transmission wavelengths of the wavelength selection film 28 and the wavelength selection film 32 also change depending on the temperature. Therefore, by controlling the light emission of the first measurement light source 17 and the second measurement light source 22, the shift in the transmission wavelength caused by the temperature of the first measurement light source 17 and the second measurement light source 22 can be suppressed, and the measurement accuracy can be improved.
  • a temperature sensor capable of detecting the temperatures of the first measurement light source 17 and the second measurement light source 22 and the temperature outside the plant sensor 1 is provided, and the shift amount of the transmission wavelength is calculated based on the detection results of the temperature sensor.
  • the measurement results may be corrected based on the calculated shift amount.
  • the first wavelength selection member 8 is formed by the glass plate 27 and the wavelength selection film 28 provided on both the incident surface and the exit surface of the glass plate 27.
  • the first wavelength selection member 8 may be formed by the glass plate 27 and the wavelength selection film 28 provided on either the entrance surface or the exit surface of the glass plate 27.
  • the second wavelength selection member 9 may be formed by providing the wavelength selection film 32 on either the entrance surface or the exit surface of a glass plate (not shown). good.
  • the window portion 16 may be made of a material that absorbs external light, such as colored glass that absorbs wavelengths in the visible region, or a reflective film may be deposited on the window portion 16. Thereby, it is possible to suppress the incidence of external light on the light receiving section 7, and it is possible to improve measurement accuracy.
  • the first light amount sensor 18 is provided near the first measurement light source 17, and the second light amount sensor 23 is provided near the second measurement light source 22.
  • the first measuring light 2a and the second measuring light 2b are respectively irradiated onto a target having reflective properties or diffuse reflective properties, and the amount of each of the first reflected measuring light 4a and the second reflected measuring light 4b received at that time. may be obtained in advance. In this case, the first light amount sensor 18 and the second light amount sensor 23 can be omitted.
  • the first measuring light 2a and the second measuring light 2b, and the first reflected measuring light 4a and the second reflected measuring light 4b both pass through the window portion 16.
  • the window portion through which the first measuring light 2a and the second measuring light 2b pass, and the window portion through which the first reflected measuring light 4a and the second reflected measuring light 4b pass may be separate members. By separating the window, it is possible to prevent the first measurement light 2a and the second measurement light 2b (stray light) reflected by the window from being received by the light receiving section 7, thereby improving measurement accuracy. can be improved.
  • FIG. 6 the same parts as those in FIG. 2 are given the same reference numerals, and the explanation thereof will be omitted.
  • the first light-emitting unit 5 and the second light-emitting unit 6 are provided so that the first light-projecting optical axis 19 and the second light-projecting optical axis 24 are perpendicular to each other.
  • a deflection optical member 35 is provided at the intersection of the first light-projecting optical axis 19 and the second light-projecting optical axis 24, on the common optical path of the first light-emitting unit 5 and the second light-emitting unit 6.
  • a first wavelength selection member 8 is disposed between the first light emitting unit 5 and the deflection optical member 35, and the first measurement light 21 is directed to the first wavelength selection member with the incident angle being rotationally symmetrical.
  • a second wavelength selection member 9 is disposed between the second light emitting unit 6 and the deflection optical member 35, and the second measurement light 25 emitted alternately with the first measurement light 21 has an incident angle rotated. It is configured so that it enters the second wavelength selection member 9 in a symmetrical state.
  • the deflection optical member 35 is, for example, a glass plate provided with a dichroic filter on its surface, and has an optical property of transmitting light in the second wavelength band, that is, a wavelength around 808 nm, and reflecting light of other wavelengths. are doing.
  • the deflection optical member 35 may have an optical property of transmitting light with a wavelength in the first wavelength band, that is, around 735 nm, and reflecting light with other wavelengths. That is, the first light emitting section 5 may be arranged on the transmission side of the deflection optical member 35, and the second light emission section 6 may be arranged on the reflection side of the deflection optical member 35.
  • the second measurement light 2b emitted from the second measurement light source 22 and transmitted through the second wavelength selection member 9 is transmitted through the deflection optical member 35.
  • the first measurement light 2a emitted from the first measurement light source 17 and transmitted through the first wavelength selection member 8 is divided into the first light projection optical axis 19 and the second light projection optical axis by the deflection optical member 35. 24 are deflected at right angles so that they coincide with each other.
  • the first measurement light 21 including the first wavelength band irradiated toward the measurement object 3 passes through the first wavelength selection member 8, that is, the recess 29.
  • the first wavelength selection member 8 that is, the recess 29.
  • the second measurement light 25 including the second wavelength band irradiated toward the measurement object 3 is transmitted through the second wavelength selection member 9, that is, the recess 33, and the second measurement light 25 includes the second wavelength band. Only the second measurement light 2b is extracted, and after passing through the deflection optical member 35, it is irradiated onto the measurement object 3 through the window 16.
  • the first reflected measurement light 4a and the second reflected measurement light 4b reflected by the measurement object 3 are alternately received by the light receiving section 7 via the window section 16.
  • the processing after receiving the first reflected measurement light 4a and the second reflected measurement light 4b is the same as in the first embodiment.
  • the deflection optical member 35 is provided on a common optical path between the first light emitting section 5 and the second light emitting section 6, and the first light emitting optical axis 19 and the second light emitting section 6 are connected to each other.
  • the first measurement light 2a is deflected so that it coincides with the light optical axis 24.
  • the window portion 16 can be made smaller, so the size of the plant sensor 1 can be reduced. Can be done.
  • FIG. 7 Components in FIG. 7 that are the same as those in FIG. 6 are given the same reference numerals, and their explanations will be omitted.
  • the wavelength selection member 36 is arranged between the deflection optical member 35 and the window 16 so as to be orthogonal to the first light projection optical axis 19 and the second light projection optical axis 24. That is, the first measurement light 21 and the second measurement light 25 enter the wavelength selection member 36 with their incident angles being rotationally symmetrical.
  • the wavelength selection member 36 has a wavelength selection film 37 on at least one of the entrance surface and the exit surface.
  • the wavelength selection film 37 is, for example, a dual pass filter, and has the optical property of selectively transmitting light in the first wavelength band, i.e., light with a wavelength around 735 nm, and light in the second wavelength band, i.e., light with a wavelength around 808 nm.
  • the wavelength selection film 37 has a film thickness centered around the first light projection optical axis 19 and the second light projection optical axis 24, the film thickness being small on the center side and increasing in film thickness concentrically toward the outer circumference.
  • a recess 38 having a bowl-shaped concave curved surface is formed. The recess 38 has a size such that the first measurement light 2a reflected by the deflection optical member 35 and the second measurement light 2b transmitted through the deflection optical member 35 can all enter.
  • the first measurement light 21 and the second measurement light 25 are alternately irradiated.
  • the first measurement light 21 including the first wavelength band irradiated toward the measurement object 3 (see FIG. 1) is reflected by the deflection optical member 35 and then passes through the wavelength selection member 36, that is, the recess 38.
  • the wavelength selection member 36 that is, the recess 38.
  • only the first measurement light 2a in the first wavelength band is extracted and irradiated onto the measurement object 3 through the window 16.
  • the second measurement light 25 including the second wavelength band irradiated toward the measurement object 3 passes through the deflection optical member 35 and then passes through the wavelength selection member 36, that is, the recess 38. Only the second measurement light 2b having the second wavelength band is extracted and irradiated onto the measurement object 3 through the window section 16.
  • the first reflected measurement light 4a and the second reflected measurement light 4b reflected by the measurement object 3 are alternately received by the light receiving section 7 through the window section 16.
  • the processing after receiving the first reflected measurement light 4a and the second reflected measurement light 4b is the same as in the first embodiment.
  • a common wavelength selection member 36 is provided for the first measuring light 21 and the second measuring light 25.
  • FIG. 8 a fourth embodiment of the present invention will be described.
  • the same parts as those in FIG. 2 are denoted by the same reference numerals, and the explanation thereof will be omitted.
  • the wavelength selection member 39 is located not on the optical path of the first measurement light 21 or the second measurement light 25, but on the optical path of the first reflected measurement light 41 and the second reflected measurement light 42, so that the wavelength selection member 39 is located on the light receiving optical axis. 26. That is, the first reflected measurement light 41 and the second reflected measurement light 42 enter the wavelength selection member 39 with their incident angles being rotationally symmetrical. Further, the wavelength selection member 39 has a dual-pass filter that extracts light in a first wavelength band (near 735 nm) and light in a second wavelength band (near 808 nm).
  • a first measurement light 21 having a wavelength in a first wavelength band is irradiated toward the measurement object 3 (see FIG. 1), and a second measurement light 21 having a wavelength in a second wavelength band is emitted toward the measurement target 3 (see FIG. 1).
  • the light 25 is alternately irradiated onto the measurement object 3 through the window 16 while maintaining the wavelength band and light intensity.
  • the first reflected measurement light 4a and the second reflected measurement light 4b are alternately received by the light receiving section 7.
  • the processing after receiving the first reflected measurement light 4a and the second reflected measurement light 4b is the same as in the first embodiment.
  • the wavelength selection member 39 is provided on the optical path of the first reflected measurement light 41 and the second reflected measurement light 42, and the wavelength selection member 39 is provided on the optical path of the first reflected measurement light 41 and the second reflected measurement light 42, and It is configured such that only the second reflected measuring light 4b in two wavelength bands is incident on the light receiving section 7.
  • the recess 44 formed in the wavelength selection film 43 makes it possible to suppress a shift in the transmission wavelength of the wavelength selection film 43 based on the incident angle. Therefore, a sufficient amount of light can be obtained even if the transmission wavelength of the wavelength selection film 43 is in a narrow band, so that the effect of suppressing the reception of external light can be further enhanced, and the measurement accuracy can be further improved.
  • the wavelength selection member 39 can be made smaller, the number of parts can be reduced, and manufacturing costs can be reduced. Can be done.
  • FIG. 9 the same components as those in FIG. 8 are given the same reference numerals, and their explanations will be omitted.
  • a first light receiving unit 45 for receiving the first reflected measurement light 4a is provided in correspondence with a first light emitting unit 5 for irradiating the first measurement light 21, and a second light receiving unit 46 for receiving the second reflected measurement light 4b is provided in correspondence with a second light emitting unit 6 for irradiating the second measurement light 25.
  • the same number of light receiving units as the number of light emitting units are provided.
  • the first wavelength selection member 47 is disposed on the optical path of the first reflected measurement light 41 so as to be orthogonal to the first light receiving optical axis 49, and selects the first reflected measurement light 4a having a first wavelength band. It has a bandpass filter that extracts the first reflected measurement light 41. The first reflected measurement light 41 enters the first wavelength selection member 47 with the angle of incidence being rotationally symmetrical.
  • the second wavelength selection member 48 is disposed on the optical path of the second reflected measurement light 42 so as to be perpendicular to the second light receiving optical axis 51, and selects the second reflected measurement light 4b having a second wavelength band from the second reflected measurement light 4b. It has a bandpass filter that extracts the reflected measurement light 42.
  • the second reflected measurement light 42 enters the second wavelength selection member 48 with the angle of incidence being rotationally symmetrical.
  • the first measuring light 21 having a wavelength in the first wavelength band and the second measuring light 25 having a wavelength in the second wavelength band are irradiated toward the measurement object 3 (see FIG. 1) simultaneously through the window portion 16 to the measurement object 3 while maintaining the wavelength band and light amount.
  • the first reflected measurement light 41 reflected by the measurement object 3 enters the first wavelength selection member 47 through the window 16, and the second reflected measurement light 42 enters the first wavelength selection member 47 through the window 16.
  • the light is incident on the second wavelength selection member 48 .
  • the first wavelength selection member 47 has a recess 52 whose film thickness increases in accordance with an increase in the incident angle of the first reflected measurement light 41.
  • a wavelength selection film 53 is provided, and the second wavelength selection member 48 is provided with a wavelength selection film 55 having a recess 54 whose film thickness increases in response to an increase in the incident angle of the second reflected measurement light 42. ing.
  • the first reflected measurement light 4a is extracted and received by the first light receiving unit 45.
  • the second reflected measurement light 4b is extracted and received by the second light receiving unit 46 simultaneously with the first reflected measurement light 4a.
  • the processing after reception of the first reflected measurement light 4a and the second reflected measurement light 4b is the same as in the first embodiment.
  • the first measurement light 21 and the second measurement light 25 can be emitted simultaneously, and the first reflected measurement light 4a and the second reflected measurement light 4b can be received simultaneously. ing.
  • Plant sensor 2 Measurement light 3 Measurement object 4 Reflected measurement light 5 First light emitting section 6 Second light emitting section 7 Light receiving section 8 First wavelength selection member 9 Second wavelength selection member 21 First measurement light 25 Second measurement light 28 Wavelength Selective film 29 Recess 35 Deflection optical member 41 First reflected measurement light 42 Second reflected measurement light

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

第1波長帯域を含む第1測定光(21)を所定の広がり角で発光する第1発光部(5)と、第2波長帯域を含む第2測定光(25)を所定の広がり角で発光する第2発光部(6)と、測定対象からの第1反射測定光と第2反射測定光を受光する少なくとも1つの受光部(7)と、各測定光と各反射測定光の少なくとも一方から前記第1波長帯域と前記第2波長帯域を抽出する波長選択部材(8,9)と、各測定光の光量と各反射測定光の受光量とに基づき前記測定対象の生育状況を演算する制御部とを有し、前記波長選択部材は、入射面と射出面の少なくとも一方に、前記波長選択部材に対する各測定光又は各反射測定光の入射角の増加に対応して膜厚を増加させる凹部を有する波長選択膜(28)が形成される様構成された。

Description

植物センサ
 本発明は、農作物に対して測定光を照射し、反射光を解析して農作物の生育状況を測定する植物センサに関するものである。
 植物、特に農作物の生育状況を検出することは、農作物の生産管理に於いて重要である。従来、一方向に拡散させた検出光を植物に照射し、植物の葉からの反射検出光に基づき植物の生育状態を検出することが行われている。この場合、反射検出光には植物の葉以外の土からの反射検出光も含まれる為、検出結果にノイズが含まれていた。
 又、波長の異なる2つの検出光を植物に照射し、植物の葉からの各反射検出光の光量を比較することで、土からの反射検出光等のノイズを除去し、検出精度を高めることも行われている。
 然し乍ら、特定の波長の検出光を照射する為には、バンドパスフィルタ等の波長選択膜に対する入射角を一定にする必要があることから、部品点数が増加し、コストの増加を招いていた。
特開2012-247235号公報
 本発明は、部品点数及びコストの低減を図る植物センサを提供するものである。
 本発明は、第1波長帯域を含む第1測定光を所定の広がり角で発光する第1発光部と、第2波長帯域を含む第2測定光を所定の広がり角で発光する第2発光部と、測定対象からの第1反射測定光と第2反射測定光を受光する少なくとも1つの受光部と、各測定光と各反射測定光の少なくとも一方から前記第1波長帯域と前記第2波長帯域を抽出する波長選択部材と、各測定光の光量と各反射測定光の受光量とに基づき前記測定対象の生育状況を演算する制御部とを有し、前記波長選択部材は、入射面と射出面の少なくとも一方に、前記波長選択部材に対する各測定光又は各反射測定光の入射角の増加に対応して膜厚を増加させる凹部を有する波長選択膜が形成される様構成された植物センサに係るものである。
 又本発明は、前記凹部の膜厚は、該凹部に対する各測定光又は各反射測定光の入射角に拘らず透過波長が一定又は略一定となる様に設定された植物センサに係るものである。
 又本発明は、前記波長選択部材は、各測定光の光路上に、各測定光の光軸と直交する様にそれぞれ配置され、各測定光は入射角が回転対称となった状態で各波長選択部材に入射する様構成された植物センサに係るものである。
 又本発明は、前記第1発光部と前記第2発光部の共通光路上に偏向光学部材が設けられ、該偏向光学部材は、各波長選択部材を透過した各測定光の一方を透過させ、他方を透過させた前記測定光と光軸が合致する様に偏向する様構成された植物センサに係るものである。
 又本発明は、前記第1発光部と前記第2発光部の共通光路上に、前記第1測定光の光軸を前記第2測定光の光軸と合致する様偏向する偏向光学部材が設けられ、前記波長選択部材は前記第2測定光の光軸と直交する様に配置され、各測定光はそれぞれ入射角が回転対称となった状態で前記波長選択部材に同軸で入射する様構成された植物センサに係るものである。
 又本発明は、前記波長選択部材は、各反射測定光の光路上であり、各反射測定光の光軸と直交する様に配置され、各反射測定光は入射角が回転対称となった状態で前記波長選択部材に入射する様構成された植物センサに係るものである。
 更に又本発明は、前記第1反射測定光を受光する第1受光部と、前記第2反射測定光を受光する第2受光部とを有し、前記波長選択部材は、各反射測定光の光路上であり、各反射測定光の光軸と直交する様にそれぞれ配置され、各反射測定光は入射角が回転対称となった状態でそれぞれ各波長選択部材に入射する様構成された植物センサに係るものである。
 本発明によれば、第1波長帯域を含む第1測定光を所定の広がり角で発光する第1発光部と、第2波長帯域を含む第2測定光を所定の広がり角で発光する第2発光部と、測定対象からの第1反射測定光と第2反射測定光を受光する少なくとも1つの受光部と、各測定光と各反射測定光の少なくとも一方から前記第1波長帯域と前記第2波長帯域を抽出する波長選択部材と、各測定光の光量と各反射測定光の受光量とに基づき前記測定対象の生育状況を演算する制御部とを有し、前記波長選択部材は、入射面と射出面の少なくとも一方に、前記波長選択部材に対する各測定光又は各反射測定光の入射角の増加に対応して膜厚を増加させる凹部を有する波長選択膜が形成される様構成されたので、各測定光を平行光束とする為の光学系が不要となり、部品点数の低減及び製作コストの低減を図ることができる。
図1は本発明の第1の実施例に係る植物センサの使用例について説明する説明図である。 図2は本発明の第1の実施例に係る植物センサの概略構成図である。 図3は本発明の第1の実施例に係る波長選択部材を説明する側断面図である。 図4(A)は膜厚を一定とした波長選択部材に於ける入射角毎の透過波長を説明するグラフであり、図4(B)は本発明の第1の実施例に係る波長選択部材に於ける入射角毎の透過波長を説明するグラフである。 図5は前記波長選択部材の凹部の中心から外周への膜厚の勾配を示す曲線を説明するグラフである。 図6は本発明の第2の実施例に係る植物センサの概略構成図である。 図7は本発明の第3の実施例に係る植物センサの概略構成図である。 図8は本発明の第4の実施例に係る植物センサの概略構成図である。 図9は本発明の第5の実施例に係る植物センサの概略構成図である。
 以下、図面を参照しつつ本発明の実施例を説明する。
 図1は、本発明の第1の実施例に係る植物センサの概略を示している。
 図1中、1は作業者の手に保持された植物センサを示している。該植物センサ1は、2波長のレーザ光線(測定光2)を圃場等の測定対象3(例えば農作物)に交互に照射する。又、前記植物センサ1は、前記測定対象3で反射された前記測定光2(反射測定光4)の波長毎の受光量を検出し、各受光量から波長毎の反射率を測定する。
 尚、前記植物センサ1からは、波長の異なる2種類の測定光が照射されるが、2種類の測定光を併せて前記測定光2と称している。同様に、前記測定対象3では2種類の反射測定光が反射されるが、2種類の反射測定光を併せて前記反射測定光4と称している。
 前記植物センサ1は、前記測定光2の照射位置に於ける各波長毎の反射率に基づき、前記測定対象3の生育状況を測定することができる。
 ここで、前記測定光2として使用される2波長の一例としては、第1測定波長帯としての735nm、第2波長帯としての808nmがある。前記測定光2として第1波長帯である735nm付近の波長(735nmを中心とした所定範囲の波長)からなる第1測定光2aを使用する場合、前記測定対象3が窒素を含んでいると該測定対象3で反射されるが、窒素の含有量に拘らず、前記反射測定光4の光量は変化しない。
 一方で、前記測定光2として第2波長帯である808nm付近の波長(808nmを中心とした所定範囲の波長)からなる第2測定光2bを使用する場合、前記測定対象3が窒素を含んでいると前記測定対象3で反射され、更に窒素の含有量によって反射率が異なり、含有量が多くなると反射光量も多くなることがわかっている。
 又、作物の葉には窒素が含まれ、生育状態がよい場合は窒素の含有量が多く、生育状態が悪い場合は、窒素の含有量が少ないということもわかっている。
 尚、前記測定対象3以外、例えば土も窒素を含む場合があるが、土と葉では反射率が大きく異なる(土の反射率が大幅に小さい)。従って、波長に限らず反射光量のみを比較すれば、土での反射か葉での反射かを判断できるので、土での反射と判断された前記反射測定光4を除去することで、ノイズを除去することができる。
 上記した様に、前記測定光2は、735nm付近の波長からなる前記第1測定光2aと808nm付近の波長からなる前記第2測定光2bとが交互に照射される。即ち、前記第1測定光2aと前記第2測定光2bは同一又は略同一光軸上に照射され、同一又は略同一の照射範囲に照射される。前記反射測定光4の反射光量は、反射面の清浄、汚れ等の反射面の状態の影響を受け、変化する。然し乍ら、2波長の前記測定光2が反射面の同一点に照射されているので、各波長の前記測定光2が反射面の状態から受ける影響は同一である。
 従って、808nm付近の波長からなる第2反射測定光4bの受光光量の大小は、窒素の含有量の大小によるものと判断されるので、第1反射測定光4aと前記第2反射測定光4bに基づき、前記測定対象3についての窒素の含有比率を求めることができる。予め、生育状況に対応する作物の葉の窒素の含有比率を取得しておけば、前記測定対象3の作物の生育状況を判断することができる。
 該測定対象3の窒素の含有比率は、第1測定波長帯(735nm付近)の反射率をR1、第2測定波長帯(808nm付近)の反射率をR2とした場合に、含有比率S=(R2/R1-1)×100で表すことができる。
 尚、前記植物センサ1は、該植物センサ1の傾斜を検出する傾斜センサが内蔵されていてもよい。該傾斜センサの検出結果に基づき前記植物センサ1の水平(又は鉛直)に対する傾斜を検出可能となっている。
 図2は、本発明の第1の実施例に係る前記植物センサ1の概略構成図を示している。
 該植物センサ1は、第1発光部5、第2発光部6、受光部7、第1波長選択部材8、第2波長選択部材9、制御部11、記憶部12、表示部13、操作部14とを具備し、各構成要素は筐体15に内蔵されている。又前記筐体15には、所定の開口面積を有する窓部16が形成されている。
 前記第1発光部5は、第1測定光源17と第1光量センサ18を有している。前記第1測定光源17はLED光源であり、所定の広がり角、例えば±25°で第1投光光軸19上に第1波長帯域、即ち735nm付近の波長を含む所定波長範囲の第1測定光21を照射する様に構成されている。又、前記第1光量センサ18は、例えばフォトダイオード(PD)であり、前記第1測定光源17から発せられる前記第1測定光21の一部を受光し、前記第1測定光源17の発光光量をリアルタイムで検出可能に構成されている。前記第1光量センサ18が検出した光量は、前記制御部11にリアルタイムで送信される。
 前記第2発光部6は、第2測定光源22と第2光量センサ23を有している。前記第2測定光源22はLED光源であり、所定の広がり角、例えば±25°で第2投光光軸24上に第2波長帯域、即ち808nm付近の波長を含む所定波長範囲の第2測定光25を照射する様に構成されている。又、前記第2光量センサ23は、例えばフォトダイオード(PD)であり、前記第2測定光源22から発せられる前記第2測定光25の一部を受光し、前記第2測定光源22の発光光量をリアルタイムで検出可能に構成されている。前記第2光量センサ23が検出した光量は、前記制御部11にリアルタイムで送信される。
 前記受光部7は、受光光軸26上に設けられた受光素子、例えばフォトダイオード(PD)、或はアバランシェフォトダイオード(APD)である。又、前記受光部7は、前記受光光軸26に沿って入射した前記第1反射測定光4aと前記第2反射測定光4bの受光量をそれぞれ検出可能となっている。前記受光部7で検出された前記第1反射測定光4aと前記第2反射測定光4bの受光量は、それぞれ受光量データとしてリアルタイムで前記制御部11に送信される。
 前記第1波長選択部材8は、前記第1測定光21の光路上に、前記第1投光光軸19と直交する様に配置され、前記第1測定光21が全て前記第1波長選択部材8に入射する様に構成されている。即ち、前記第1測定光21の前記第1波長選択部材8に対する入射角は回転対称となる。又、前記第1波長選択部材8は、例えばバンドパスフィルタを有し、735nm付近の波長の光を透過させ、その他の波長の光を遮断する光学特性を有している。
 前記第2波長選択部材9は、前記第2測定光25の光路上に、前記第2投光光軸24と直交する様に配置され、前記第2測定光25が全て前記第2波長選択部材9に入射する様に構成されている。即ち、前記第2測定光25の前記第2波長選択部材9に対する入射角は回転対称となる。又、前記第2波長選択部材9は、例えばバンドパスフィルタを有し、808nm付近の波長の光を透過させ、その他の波長の光を遮断する光学特性を有している。
 前記制御部11は、後述する前記記憶部12に格納された各種プログラムを実行する。これにより、前記制御部11は、前記第1測定光源17と前記第2測定光源22の発光を制御すると共に、前記受光部7で受光された前記反射測定光4(前記第1反射測定光4a、前記第2反射測定光4b)に基づく前記測定対象3の育成具合の測定処理を制御する。
 前記記憶部12には、前記第1測定光源17と前記第2測定光源22を作動させ、前記第1測定光2aと前記第2測定光2bを前記測定対象3に交互に照射する為のシーケンスプログラム、受光量データに基づき前記測定対象3の生育状態を判定する為の判定プログラム、受光量データからノイズとなるデータを除去する為のノイズ除去プログラム、前記測定対象3の生育状態に応じた肥料の散布量を演算する演算プログラム等が格納される。又、前記ノイズ除去プログラムには、受光量に関する閾値等のノイズ判定に必要な閾値が設定されている。又、前記記憶部12には、農作物である前記測定対象3の生育状況に対応する葉の窒素の含有比率が格納されると共に、前記第1測定光21中の前記第1測定光2aの割合と、前記第2測定光25中の前記第2測定光2bの割合とが格納されている。
 図3は、前記第1波長選択部材8を示している。尚、該第1波長選択部材8と前記第2波長選択部材9とは同等の構成となっているので、以下では前記第1波長選択部材8について説明し、前記第2波長選択部材9の説明を省略する。
 前記第1波長選択部材8は、円盤状のガラス板27と、該ガラス板27の入射面と射出面の両面に形成された波長選択膜28とを有している。前記第1波長選択部材8は、例えば半径r=15mmであり、該第1波長選択部材8に広がり角±25°で前記第1測定光21が照射された際の、該第1測定光21のビーム径(有効径)が13mmとなる様に前記第1波長選択部材8が配置されている。
 図4(B)は、本発明の第1の実施例に係る前記波長選択膜28の光学特性を示すグラフである。該波長選択膜28は、735nm付近の波長を選択して透過させるバンドパスフィルタとなっている。
 ここで、バンドパスフィルタは、バンドパスフィルタに対する入射角によって、透過する波長がシフトすることがわかっている。例えば、図4(A)に示される様に、前記波長選択膜28の膜厚が中心から外周に向って一定の場合、入射角0°で前記第1測定光21が入射した場合と、入射角25°で前記第1測定光21が入射した場合とでは、透過する波長が異なっている。即ち、前記波長選択膜28は、入射角25°の場合(図4(A)中の破線)、入射角0°の場合(図4(A)中の実線)よりも、透過波長が短波長側に17nm程度シフトする。
 一方で、前記波長選択膜28の膜厚を増加させると、透過する波長が長波長側にシフトすることもわかっている。
 そこで、第1の実施例では、前記第1測定光21の入射角の増加に対応して、前記波長選択膜28の膜厚を増加させ、前記第1測定光21の入射角に拘らず、透過する波長が一定又は略一定となる様、前記波長選択膜28の膜厚を設定している。尚、図4(B)中では、便宜上実線(入射角0°の場合)に対して破線(入射角25°の場合)が僅かに短波長側にシフトしているが、実際には実線と破線とは合致又は略合致している。
 図3、図5に示される様に、前記波長選択膜28は、前記第1投光光軸19を中心とし、中心側では膜厚が小さく、外周側向って同心円状に膜厚が大きくなるボウル状の凹曲面からなる凹部29が形成されている。該凹部29の外径は、前記第1測定光21が前記波長選択膜28に入射する際、及び該波長選択膜28から射出される際の光束径と合致するか、僅かに大きくなっている。即ち、入射側の前記波長選択膜28の前記凹部29は、射出側の前記波長選択膜28の前記凹部29よりも外径が小さくなっている。
 前記第1測定光21の光束径を有効径とし、有効径r=1に規格化し、前記凹部29の中心(r=0)、即ち前記第1投光光軸19上の前記凹部29(前記波長選択膜28)の膜厚t=1に規格化した場合、前記凹部29は有効径r=0の時、膜厚t=1であり、有効径r=1の時、膜厚t=1.025となる様構成されている。即ち、前記凹部29は、外周の膜厚が中心の膜厚よりも2.5%厚くなる様に構成されている。
 図5は、前記凹部29の径方向の位置と膜厚との関係を示したグラフである。図5の曲線31は、前記凹部29の膜厚の勾配を示す曲線となっており、中心から外周に向って同心円状に漸次膜厚が増加し、且つ下に凸の曲線を描く様に構成される。
 尚、前記曲線31の形状は、前記第1測定光21の広がり角や、前記波長選択膜28に対する最大入射角や有効径によって変化する。一方で、前記曲線31の形状は、前記波長選択膜28の中心と外周とを結ぶ直線に対して必ず下に凸の曲線となる。前記曲線31は、例えば2次以下の多項式として定義できる。
 又、前記第1波長選択部材8の入射面と射出面では、前記第1測定光21の有効径が異なるので、前記曲線31の形状は入射側の前記凹部29と射出側の前記凹部29とで異なる。
 尚、前記第1波長選択部材8と同様に、前記第2波長選択部材9にも波長選択膜32と凹部33が形成されている。前記波長選択膜32は、808nm付近の波長の光を選択して透過させるバンドパスフィルタとなっている。前記波長選択膜32及び前記凹部33は、透過波長を除き、前記波長選択膜28及び前記凹部29と同様の構成となっている。
 前記表示部13は、前記測定対象3の測定結果、即ち前記測定光2が照射された範囲に於ける前記測定対象3の窒素含有比率が表示される。例えば、窒素含有比率に対応して色分け表示する。或は、測定結果に基づき、前記測定対象3に対する施肥量を表示する。
 前記操作部14は、前記測定対象3に対する測定の開始及び停止が可能となっている。尚、前記表示部13をタッチパネルとすることで、該表示部13と前記操作部14とを兼用することができる。この場合、該操作部14は省略できる。
 次に、前記植物センサ1により前記測定対象3の生育状況を測定する場合について説明する。
 前記植物センサ1が作業者に手持された状態で、前記操作部14を介して測定開始が入力されると、前記制御部11は、前記第1測定光源17と前記第2測定光源22に対して前記第1測定光21と前記第2測定光25とを交互にパルス発光させる。
 前記第1測定光21は、前記第1投光光軸19上に所定の広がり角で拡散しつつ、前記第1波長選択部材8に入射する。又、前記第1測定光21の光量は、前記第1光量センサ18によりリアルタイムで検出され、検出結果は前記制御部11に出力される。
 前記第1波長選択部材8は、第1波長帯域、即ち735nm付近の波長からなる前記第1測定光2aのみを透過させ、その他の波長を有する前記第1測定光21を遮断する。
 前記第1波長選択部材8を透過した前記第1測定光2aは、前記窓部16を介して前記測定対象3に照射される。この時、前記波長選択膜28は、前記第1測定光2aの入射角に対応して膜厚が変化しているので、前記波長選択膜28に対する入射角に拘らず、第1波長帯域の前記第1測定光2aのみが前記波長選択膜28を透過する。
 尚、前記植物センサ1から前記測定対象3迄の距離は、例えば50cm~5mの範囲で選択される。又、前記測定対象3に対する前記測定光2の照射面積は、例えば前記測定対象3迄の距離が1mの時にφ30cmとなる。
 前記第1測定光2aは、前記測定対象3の窒素含有比率に基づき、所定の反射率で反射され、前記第1反射測定光4aが前記窓部16を介して前記受光部7に受光される。該受光部7は、前記第1反射測定光4aの受光量を前記制御部11に出力する。
 同様に、前記第2測定光25は、前記第2投光光軸24上に所定の広がり角で拡散しつつ、前記第2波長選択部材9に入射する。又、前記第2測定光25の光量は、前記第2光量センサ23によりリアルタイムで検出され、検出結果は前記制御部11に出力される。
 前記第2波長選択部材9は、第2波長帯域、即ち808nm付近の波長からなる前記第2測定光2bのみを透過させ、その他の波長を有する前記第2測定光25を遮断する。
 前記第2波長選択部材9を透過した前記第2測定光2bは、前記窓部16を介して前記測定対象3に照射される。この時、前記波長選択膜32は、前記第2測定光2bの入射角に対応して膜厚が変化しているので、前記波長選択膜32に対する入射角に拘らず、第2波長帯域の前記第2測定光2bのみが前記波長選択膜32を透過する。
 前記第2測定光2bは、前記測定対象3の窒素含有比率に基づき、所定の反射率で反射され、前記第2反射測定光4bが前記窓部16を介して前記受光部7に受光される。該受光部7は、前記第2反射測定光4bの受光量を前記制御部11に出力する。
 従って、前記受光部7は、前記第1反射測定光4aと前記第2反射測定光4bとを交互に受信し、各受光量データを前記制御部11に交互に送信する。
 該制御部11は、前記第1光量センサ18から入力された前記第1測定光21の光量と、前記第2光量センサ23から入力された前記第2測定光25の光量と、前記第1測定光21中の前記第1測定光2aの割合と、前記第2測定光25中の前記第2測定光2bの割合と、前記受光部7から入力された前記第1反射測定光4aと前記第2反射測定光4bの受光量とに基づき、前記測定対象3の窒素含有比率を演算する。
 又、前記制御部11は、予め取得した生育状況に対応する前記測定対象3の葉の窒素の含有比率と演算した含有比率とを比較し、比較結果に基づき前記測定対象3の生育状況を求めると共に、該生育状況を前記表示部13に表示する。更に、前記制御部11は、前記含有比率に基づき前記測定対象3に対して必要な施肥量を演算し、演算結果を前記表示部13に表示する。
 測定が完了すると、測定位置を変更した後、再度前記測定光2を前記測定対象3に照射し、測定を実行する。上記処理は、所望の測定範囲全域の測定が終了迄繰返される。
 上述の様に、第1の実施例では、前記第1波長選択部材8の前記波長選択膜28と前記第2波長選択部材9の前記波長選択膜32とが、前記第1測定光21と前記第2測定光25の入射角の増加に対応して膜厚を増加させる様構成されている。
 従って、入射角の変化による透過波長のシフトを防止できるので、前記第1測定光21と前記第2測定光25の入射角に拘らず、前記波長選択膜28と前記波長選択膜32が透過させる前記第1測定光2aと前記第2測定光2bの波長を一定とすることができる。
 又、透過波長が一定となることで、透過波長の範囲が狭いバンドパスフィルタを用いることができるので、前記第1測定光2aと前記第2測定光2bの光量を充分に確保できると共に、前記第1測定光21と前記第2測定光25の光量の損失を抑制することができる。又、第1波長帯及び第2波長帯を中心とした狭い範囲の測定光を使用することで、測定精度を向上させることができる。
 又、前記波長選択膜28に対する前記第1測定光21の入射角、前記波長選択膜32に対する前記第2測定光25の入射角を揃える必要がないので、前記第1測定光21と前記第2測定光25を平行光束とする為のレンズが不要となり、部品点数の低減及び小型化が図れると共に、製作コストの低減を図ることができる。
 尚、第1の実施例では、前記植物センサ1を携帯可能とし、作業者が前記植物センサ1を直接前記測定対象3に向け、該測定対象3の生育状況の測定を行っている。一方で、前記植物センサ1をトラクターやUAV等の移動体に搭載し、遠隔操作にて前記測定対象3の生育状況の測定を行ってもよい。
 この場合、移動体にGNSS装置等の位置測定装置を設け、前記測定対象3を測定した際の測定位置を取得することで、前記測定対象3の生育状況のマップを作ることができるので、前記測定対象3が広範囲に存在する場合であっても測定を実行することができる。
 又、前記波長選択膜28及び前記波長選択膜32の透過波長は、温度によっても変化する。従って、前記第1測定光源17及び前記第2測定光源22の発光を制御することで、前記第1測定光源17及び前記第2測定光源22の温度に起因する透過波長のシフトを抑制でき、測定精度を向上させることができる。
 又、前記第1測定光源17及び前記第2測定光源22の温度や前記植物センサ1の外部の気温を検出可能な温度センサを設け、該温度センサの検出結果に基づき透過波長のシフト量を演算し、演算したシフト量に基づき測定結果を補正してもよい。
 又、第1の実施例では、前記ガラス板27と、該ガラス板27の入射面と射出面の両方に設けられた前記波長選択膜28により前記第1波長選択部材8が形成されている。一方で、該第1波長選択部材8は、前記ガラス板27と、該ガラス板27の入射面と射出面のいずれか一方に設けられた前記波長選択膜28により形成してもよい。前記第2波長選択部材9についても同様に、ガラス板(図示せず)の入射面と射出面のいずれか一方に前記波長選択膜32を設け、前記第2波長選択部材9を形成してもよい。
 又、前記窓部16を外光を吸収する材料、例えば可視領域の波長を吸収する色ガラスとしてもよいし、前記窓部16に反射膜を蒸着させてもよい。これにより、前記受光部7に対する外光の入射を抑制でき、測定精度を向上させることができる。
 又、第1の実施例では、前記第1測定光源17の近傍に前記第1光量センサ18を設けると共に、前記第2測定光源22の近傍に前記第2光量センサ23を設けているが、再帰反射性又は拡散反射性を有するターゲット等に前記第1測定光2aと前記第2測定光2bをそれぞれ照射し、その時の前記第1反射測定光4aと前記第2反射測定光4bの各受光量を予め取得してもよい。この場合、前記第1光量センサ18と前記第2光量センサ23は省略することができる。
 又、第1の実施例では、前記第1測定光2aと前記第2測定光2b、前記第1反射測定光4aと前記第2反射測定光4bが共に前記窓部16を通過する構成となっている。一方で、前記第1測定光2aと前記第2測定光2bが通過する窓部と、前記第1反射測定光4aと前記第2反射測定光4bが通過する窓部を別部材としてもよい。該窓部を分けることで、該窓部で反射された前記第1測定光2aと前記第2測定光2b(迷光)が前記受光部7に受光されるのを抑制することができ、測定精度を向上させることができる。
 次に、図6を参照して、本発明の第2の実施例について説明する。尚、図6中、図2中と同等のものには同符号を付し、その説明を省略する。
 第2の実施例では、第1投光光軸19と第2投光光軸24とが直交する様に第1発光部5と第2発光部6が設けられている。又、前記第1投光光軸19と前記第2投光光軸24の交差位置であり、前記第1発光部5と前記第2発光部6の共通光路上には偏向光学部材35が設けられている。
 又、前記第1発光部5と前記偏向光学部材35との間に第1波長選択部材8が配置され、第1測定光21は入射角が回転対称となった状態で前記第1波長選択部材8に入射する様に構成される。又、前記第2発光部6と前記偏向光学部材35との間に第2波長選択部材9が配置され、前記第1測定光21と交互に発せられる第2測定光25は、入射角が回転対称となった状態で前記第2波長選択部材9に入射する様に構成される。
 前記偏向光学部材35は、例えば表面にダイクロイックフィルタが設けられたガラス板であり、第2波長帯域、即ち808nm付近の波長の光を透過し、それ以外の波長の光を反射する光学特性を有している。
 尚、前記偏向光学部材35は、第1波長帯域、即ち735nm付近の波長の光を透過し、それ以外の波長の光を反射させる光学特性としてもよい。即ち、前記第1発光部5を前記偏向光学部材35の透過側に配置し、前記第2発光部6を前記偏向光学部材35の反射側に配置してもよい。
 従って、第2測定光源22から発せられ、前記第2波長選択部材9を透過した第2測定光2bは、前記偏向光学部材35を透過する。又、第1測定光源17から発せられ、前記第1波長選択部材8を透過した第1測定光2aは、前記偏向光学部材35により前記第1投光光軸19と前記第2投光光軸24とが合致する様直角に偏向される。
 第2の実施例に於いては、測定対象3(図1参照)に向けて照射された第1波長帯域を含む前記第1測定光21は、前記第1波長選択部材8、即ち凹部29を透過する過程で第1波長帯域からなる前記第1測定光2aのみが抽出され、前記偏向光学部材35で反射された後、窓部16を介して前記測定対象3に照射される。
 又、前記測定対象3に向けて照射された第2波長帯域を含む前記第2測定光25は、前記第2波長選択部材9、即ち凹部33を透過する過程で第2波長帯域からなる前記第2測定光2bのみが抽出され、前記偏向光学部材35を透過した後、前記窓部16を介して前記測定対象3に照射される。
 該測定対象3で反射された第1反射測定光4aと第2反射測定光4bは、前記窓部16を介して受光部7に交互に受光される。前記第1反射測定光4aと前記第2反射測定光4bの受光後の処理は、第1の実施例と同様である。
 第2の実施例に於いては、前記第1発光部5と前記第2発光部6との共通光路上に前記偏向光学部材35を設け、前記第1投光光軸19と前記第2投光光軸24とが合致する様に前記第1測定光2aを偏向させている。
 従って、前記第1測定光2aと前記第2測定光2bを平行に照射していた場合と比較して、前記窓部16を小さくすることができるので、前記植物センサ1の小型化を図ることができる。
 次に、図7を参照して、本発明の第3の実施例について説明する。尚、図7中、図6中と同等のものには同符号を付し、その説明を省略する。
 第3の実施例では、波長選択部材36が偏向光学部材35と窓部16との間に、第1投光光軸19及び第2投光光軸24と直交する様に配置されている。即ち、第1測定光21及び第2測定光25は、入射角が回転対称となった状態で前記波長選択部材36に入射する。
 第3の実施例に於ける前記波長選択部材36は、入射面と射出面の少なくとも一方に波長選択膜37が設けられている。該波長選択膜37は、例えばデュアルパスフィルタとなっており、第1波長帯域、即ち735nm付近の波長の光と、第2波長帯域、即ち808nm付近の波長の光を選択して透過させる光学特性を有している。
 又、前記波長選択膜37には、前記第1投光光軸19及び前記第2投光光軸24を中心とし、中心側では膜厚が小さく、外周側向って同心円状に膜厚が大きくなるボウル状の凹曲面からなる凹部38が形成されている。該凹部38は、前記偏向光学部材35で反射された第1測定光2aと前記偏向光学部材35を透過した第2測定光2bが全て入射可能な大きさを有している。
 第3の実施例に於いては、前記第1測定光21と前記第2測定光25とが交互に照射される。測定対象3(図1参照)に向けて照射された第1波長帯域を含む前記第1測定光21は、前記偏向光学部材35で反射された後、前記波長選択部材36、即ち前記凹部38を透過する過程で第1波長帯域からなる前記第1測定光2aのみが抽出され、前記窓部16を介して前記測定対象3に照射される。
 又、前記測定対象3に向けて照射された第2波長帯域を含む前記第2測定光25は、前記偏向光学部材35を透過した後、前記波長選択部材36、即ち前記凹部38を透過する過程で第2波長帯域からなる前記第2測定光2bのみが抽出され、前記窓部16を介して前記測定対象3に照射される。
 該測定対象3で反射された第1反射測定光4aと第2反射測定光4bは、前記窓部16を介して受光部7に交互に受光される。前記第1反射測定光4aと前記第2反射測定光4bの受光後の処理は、第1の実施例と同様である。
 第3の実施例に於いては、前記第1測定光21と前記第2測定光25とに対して、共通の前記波長選択部材36を設けている。
 従って、各測定光毎に波長選択部材を設ける必要がないので、部品点数の低減を図ることができる。
 次に、図8に於いて、本発明の第4の実施例について説明する。尚、図8中、図2中と同等のものには同符号を付し、その説明を省略する。
 第4の実施例では、波長選択部材39が第1測定光21や第2測定光25の光路上ではなく、第1反射測定光41と第2反射測定光42の光路上に、受光光軸26と直交する様に配置されている。即ち、前記第1反射測定光41と前記第2反射測定光42は、入射角が回転対称となった状態で前記波長選択部材39に入射する。又、該波長選択部材39は、第1波長帯域(735nm付近)の光と第2波長帯域(808nm付近)の光を抽出するデュアルパスフィルタを有している。
 第4の実施例に於いては、測定対象3(図1参照)に向けて照射された第1波長帯域の波長を有する第1測定光21と、第2波長帯域の波長を有する第2測定光25は、波長帯域及び光量を維持した状態で窓部16を介して前記測定対象3に交互に照射される。
 該測定対象3で反射された前記第1反射測定光41と前記第2反射測定光42は、前記窓部16を介して前記波長選択部材39に入射する。該波長選択部材39は、第1の実施例~第3の実施例と同様に、前記第1反射測定光41と前記第2反射測定光42の入射角に対応して膜厚が変化する凹部44を有する波長選択膜43が設けられている。
 前記第1反射測定光41は、前記凹部44を透過する過程で、第1波長帯域からなる第1反射測定光4aのみが抽出される。又、前記第2反射測定光42は、前記凹部44を透過する過程で、第2波長帯域からなる第2反射測定光4bのみが抽出される。
 前記凹部44の透過後、前記第1反射測定光4aと前記第2反射測定光4bとが交互に受光部7に受光される。前記第1反射測定光4a及び前記第2反射測定光4bの受光後の処理は、第1の実施例と同様である。
 第4の実施例では、前記波長選択部材39が、前記第1反射測定光41と前記第2反射測定光42の光路上に設けられ、第1波長帯域の前記第1反射測定光4aと第2波長帯域の前記第2反射測定光4bのみが前記受光部7に入射する様に構成されている。
 従って、前記第1反射測定光4a、前記第2反射測定光4bと共に、外光が前記受光部7に入射するのを抑制でき、測定精度を向上させることができる。
 又、前記波長選択膜43に形成された前記凹部44により、入射角に基づく前記波長選択膜43の透過波長のシフトを抑制可能としている。従って、前記波長選択膜43の透過波長を狭帯域としても充分な受光量を得ることができるので、外光の受光抑制効果を更に高めることができ、測定精度を更に向上させることができる。
 更に、前記波長選択部材39は、前記反射測定光4の光路上に1つ設けるだけでよいので、前記波長選択部材39を小型化できると共に、部品点数を低減でき、製作コストの低減を図ることができる。
 次に、図9を参照して、本発明の第5の実施例について説明する。尚、図9中、図8中と同等のものには同符号を付し、その説明を省略する。
 第5の実施例では、第1測定光21を照射する為の第1発光部5に対応して第1反射測定光4aを受光する為の第1受光部45が設けられ、第2測定光25を照射する為の第2発光部6に対応して第2反射測定光4bを受光する為の第2受光部46が設けられている。即ち、発光部と同数の受光部が設けられている。
 又、第1波長選択部材47は、第1反射測定光41の光路上に、第1受光光軸49と直交する様に配置され、第1波長帯域からなる前記第1反射測定光4aを前記第1反射測定光41から抽出するバンドパスフィルタを有している。前記第1反射測定光41は、入射角が回転対称となった状態で前記第1波長選択部材47に入射する。
 第2波長選択部材48は、第2反射測定光42の光路上に、第2受光光軸51と直交する様に配置され、第2波長帯域からなる前記第2反射測定光4bを前記第2反射測定光42から抽出するバンドパスフィルタを有している。前記第2反射測定光42は、入射角が回転対称となった状態で前記第2波長選択部材48に入射する。
 第5の実施例に於いては、測定対象3(図1参照)に向けて照射された第1波長帯域の波長を有する前記第1測定光21と、第2波長帯域の波長を有する前記第2測定光25は、波長帯域及び光量を維持した状態で窓部16を介して前記測定対象3に同時に照射される。
 該測定対象3で反射された前記第1反射測定光41は、前記窓部16を介して前記第1波長選択部材47に入射し、前記第2反射測定光42は前記窓部16を介して前記第2波長選択部材48に入射する。
 第1の実施例~第4の実施例と同様に、前記第1波長選択部材47には、前記第1反射測定光41の入射角の増加に対応して膜厚が増加する凹部52を有する波長選択膜53が設けられ、前記第2波長選択部材48には、前記第2反射測定光42の入射角の増加に対応して膜厚が増加する凹部54を有する波長選択膜55が設けられている。
 前記第1反射測定光41が前記凹部52を透過する過程で、前記第1反射測定光4aが抽出され、前記第1受光部45に受光される。又、前記第2反射測定光42が前記凹部54を透過する過程で、前記第2反射測定光4bが抽出され、前記第2受光部46に前記第1反射測定光4aと同時に受光される。該第1反射測定光4a及び前記第2反射測定光4bの受光後の処理は、第1の実施例と同様である。
 第5の実施例では、前記第1測定光21と前記第2測定光25とを同時に照射可能であり、前記第1反射測定光4aと前記第2反射測定光4bとを同時に受光可能となっている。
 従って、前記第1測定光21の照射位置と前記第2測定光25の照射位置との位置ズレに基づく測定誤差を防止できるので、測定精度を更に向上させることができる。
    1       植物センサ
    2       測定光
    3       測定対象
    4       反射測定光
    5       第1発光部
    6       第2発光部
    7       受光部
    8       第1波長選択部材
    9       第2波長選択部材
    21      第1測定光
    25      第2測定光
    28      波長選択膜
    29      凹部
    35      偏向光学部材
    41      第1反射測定光
    42      第2反射測定光

Claims (7)

  1.  第1波長帯域を含む第1測定光を所定の広がり角で発光する第1発光部と、第2波長帯域を含む第2測定光を所定の広がり角で発光する第2発光部と、測定対象からの第1反射測定光と第2反射測定光を受光する少なくとも1つの受光部と、各測定光と各反射測定光の少なくとも一方から前記第1波長帯域と前記第2波長帯域を抽出する波長選択部材と、各測定光の光量と各反射測定光の受光量とに基づき前記測定対象の生育状況を演算する制御部とを有し、前記波長選択部材は、入射面と射出面の少なくとも一方に、前記波長選択部材に対する各測定光又は各反射測定光の入射角の増加に対応して膜厚を増加させる凹部を有する波長選択膜が形成される様構成された植物センサ。
  2.  前記凹部の膜厚は、該凹部に対する各測定光又は各反射測定光の入射角に拘らず透過波長が一定又は略一定となる様に設定された請求項1の植物センサ。
  3.  前記波長選択部材は、各測定光の光路上に、各測定光の光軸と直交する様にそれぞれ配置され、各測定光は入射角が回転対称となった状態で各波長選択部材に入射する様構成された請求項1又は請求項2の植物センサ。
  4.  前記第1発光部と前記第2発光部の共通光路上に偏向光学部材が設けられ、該偏向光学部材は、各波長選択部材を透過した各測定光の一方を透過させ、他方を透過させた前記測定光と光軸が合致する様に偏向する様構成された請求項3の植物センサ。
  5.  前記第1発光部と前記第2発光部の共通光路上に、前記第1測定光の光軸を前記第2測定光の光軸と合致する様偏向する偏向光学部材が設けられ、前記波長選択部材は前記第2測定光の光軸と直交する様に配置され、各測定光はそれぞれ入射角が回転対称となった状態で前記波長選択部材に同軸で入射する様構成された請求項1又は請求項2の植物センサ。
  6.  前記波長選択部材は、各反射測定光の光路上であり、各反射測定光の光軸と直交する様に配置され、各反射測定光は入射角が回転対称となった状態で前記波長選択部材に入射する様構成された請求項1又は請求項2の植物センサ。
  7.  前記第1反射測定光を受光する第1受光部と、前記第2反射測定光を受光する第2受光部とを有し、前記波長選択部材は、各反射測定光の光路上であり、各反射測定光の光軸と直交する様にそれぞれ配置され、各反射測定光は入射角が回転対称となった状態でそれぞれ各波長選択部材に入射する様構成された請求項1又は請求項2の植物センサ。
PCT/JP2023/033817 2022-09-21 2023-09-19 植物センサ WO2024063034A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-149891 2022-09-21
JP2022149891A JP2024044397A (ja) 2022-09-21 2022-09-21 植物センサ

Publications (1)

Publication Number Publication Date
WO2024063034A1 true WO2024063034A1 (ja) 2024-03-28

Family

ID=90454636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033817 WO2024063034A1 (ja) 2022-09-21 2023-09-19 植物センサ

Country Status (2)

Country Link
JP (1) JP2024044397A (ja)
WO (1) WO2024063034A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282245A (ja) * 1986-05-30 1987-12-08 Minolta Camera Co Ltd 群落のクロロフイル濃度測定装置
JP2009145779A (ja) * 2007-12-17 2009-07-02 Three M Innovative Properties Co 曲面状光干渉型赤外線カットフィルターの製造方法及びカットフィルター
JP2009540617A (ja) * 2006-06-12 2009-11-19 スリーエム イノベイティブ プロパティズ カンパニー 再発光半導体構造体及び反射体を有するled装置
JP2019045445A (ja) * 2017-09-07 2019-03-22 株式会社トプコン 測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282245A (ja) * 1986-05-30 1987-12-08 Minolta Camera Co Ltd 群落のクロロフイル濃度測定装置
JP2009540617A (ja) * 2006-06-12 2009-11-19 スリーエム イノベイティブ プロパティズ カンパニー 再発光半導体構造体及び反射体を有するled装置
JP2009145779A (ja) * 2007-12-17 2009-07-02 Three M Innovative Properties Co 曲面状光干渉型赤外線カットフィルターの製造方法及びカットフィルター
JP2019045445A (ja) * 2017-09-07 2019-03-22 株式会社トプコン 測定装置

Also Published As

Publication number Publication date
JP2024044397A (ja) 2024-04-02

Similar Documents

Publication Publication Date Title
CA2659522C (en) Optical sensing system and optical devices therefor
JP3617576B2 (ja) 光散乱体の光学測定装置
US9207170B2 (en) Gas detector system
CN112840176B (zh) 用于确定至少一个对象的位置的检测器
CN105122038B (zh) 开路式气体检测器
JPH03122517A (ja) 光電子工学系のための自動照準合せ装置
US6354716B1 (en) Light curtain device
JP2013504038A (ja) 動く繊維材料の光学的走査装置及び方法
US10561060B2 (en) Crop growth measurement device
CN207571026U (zh) 一种基于tdlas的多种气体遥测系统
US10908284B2 (en) Device for optically measuring the distance from a reflective target object
WO2024063034A1 (ja) 植物センサ
US7826039B2 (en) Target acquisition device
KR102020038B1 (ko) 라이다 센서 모듈
KR20030014034A (ko) 먼지측정장치
JP7532356B2 (ja) 少なくとも1つの物体の位置を決定する検出器及び方法
WO2024063033A1 (ja) 植物センサ
US8253942B2 (en) Optical gas detector
US10788581B2 (en) Device for optically measuring the distance from a reflective target object
CN106198398B (zh) 一种清晰度测量装置
JP6734886B2 (ja) アダプタ、及び、レーザドップラ速度計システム
WO2024070998A1 (ja) 測定装置
WO1995002179B1 (en) Misalignment detection apparatus for transmissometer with underfilled reflector
JP5011302B2 (ja) 偏光測定装置
CN108801155B (zh) 一种光谱编码距离传感器系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868155

Country of ref document: EP

Kind code of ref document: A1