WO2024062799A1 - 基板処理装置 - Google Patents
基板処理装置 Download PDFInfo
- Publication number
- WO2024062799A1 WO2024062799A1 PCT/JP2023/029415 JP2023029415W WO2024062799A1 WO 2024062799 A1 WO2024062799 A1 WO 2024062799A1 JP 2023029415 W JP2023029415 W JP 2023029415W WO 2024062799 A1 WO2024062799 A1 WO 2024062799A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- substrates
- processing
- transfer
- batch
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 775
- 238000012545 processing Methods 0.000 title claims abstract description 299
- 230000007246 mechanism Effects 0.000 claims abstract description 295
- 238000001035 drying Methods 0.000 claims abstract description 202
- 238000012546 transfer Methods 0.000 claims description 247
- 230000007723 transport mechanism Effects 0.000 claims description 77
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 238000007781 pre-processing Methods 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 9
- 230000001965 increasing effect Effects 0.000 abstract description 5
- 230000036544 posture Effects 0.000 description 52
- 230000032258 transport Effects 0.000 description 46
- 239000007788 liquid Substances 0.000 description 21
- 239000000126 substance Substances 0.000 description 21
- 238000010586 diagram Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 17
- 230000008859 change Effects 0.000 description 15
- 238000011282 treatment Methods 0.000 description 12
- 101100422889 Arabidopsis thaliana SWI3A gene Proteins 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- 230000008602 contraction Effects 0.000 description 9
- 238000012993 chemical processing Methods 0.000 description 8
- 238000003672 processing method Methods 0.000 description 8
- 238000010306 acid treatment Methods 0.000 description 7
- 101100534777 Arabidopsis thaliana SWI3B gene Proteins 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 230000003028 elevating effect Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000005192 partition Methods 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 206010034719 Personality change Diseases 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
Definitions
- the present invention is a substrate processing method that performs predetermined processing on various substrates such as semiconductor substrates, FPD (Flat Panel Display) substrates such as liquid crystal displays and organic EL (Electroluminescence) display devices, glass substrates for photomasks, and optical disk substrates. Regarding equipment.
- FPD Full Panel Display
- organic EL Electrode-EL
- a batch type module performs predetermined processing on a plurality of substrates at once.
- a single-wafer module performs predetermined processing on each substrate.
- Batch-type modules and single-wafer modules each have their own unique advantages. For example, single wafer modules have higher particle performance in drying processes than batch modules. Therefore, as an apparatus equipped with a batch type module and a single wafer type module, a configuration can be considered in which liquid processing is performed in the batch type module and then drying processing is performed in the single wafer type module.
- single-wafer chambers for performing drying processing are arranged in a horizontal row. Substrates after batch processing are subjected to drying processing in one of the multiple single-wafer chambers. That is, the substrates after batch processing are transported by a transport mechanism that can move in the arrangement direction of the single-wafer chambers, and are introduced into a single-wafer chamber that can accept substrates. When batch processing is completed, the multiple substrates are in a state waiting for drying processing.
- the single-wafer chamber can only perform drying processing on one substrate at a time. Therefore, the apparatus described in Patent Document 1 is equipped with multiple single-wafer chambers in order to increase throughput, and drying processing is performed on different substrates simultaneously. In the apparatus described in Patent Document 1, in order to quickly complete drying processing on multiple substrates, it is sufficient to arrange as many single-wafer chambers as possible in a horizontal row.
- the conventional device having such a configuration has the following problems. That is, in the conventional apparatus, if a single wafer type chamber is added, the size of the apparatus increases accordingly. According to the conventional configuration, if you try to increase the number of single wafer chambers, the only option is to arrange the single wafer chambers in a row horizontally, which increases the length of the substrate processing apparatus by the number of single wafer chambers. . There is a limit to the allowable length in a substrate processing apparatus. In order to comply with this limit, the conventional configuration has no choice but to limit the number of single-wafer chambers. According to such an apparatus, the processing speed of the single wafer chamber becomes a bottleneck in the processing speed of the entire apparatus, and the throughput of the entire process is low.
- the present invention has been made in view of these circumstances, and provides a substrate processing apparatus with improved throughput by increasing the number of single wafer chambers installed while reducing the size of the apparatus. It's about doing.
- a substrate processing apparatus that continuously performs batch processing in which a plurality of substrates are processed at once and single-wafer processing in which substrates are processed one by one, comprising a supply block that supplies a plurality of substrates, and a supply block that supplies the plurality of substrates, and a supply block that supplies the plurality of substrates;
- the supply block includes a transfer block adjacent to the block and a processing block adjacent to the transfer block, and the supply block is in a horizontal position and carries out a plurality of substrates arranged at predetermined intervals in the vertical direction from the carrier.
- the transfer block includes a bulk transport mechanism for storing a plurality of substrates at once, and changes the posture of the plurality of substrates from a horizontal posture to a vertical posture.
- the processing block includes a first attitude changing mechanism that converts the substrates, and a vertical substrate support member that waits a plurality of substrates in a vertical attitude at a vertical substrate transfer position in the transfer block, and the processing block has one end side facing the transfer block.
- a batch processing area that is adjacent to the loading block and whose other end side extends in a direction away from the transfer block; and a single wafer processing area whose one end side is adjacent to the transfer block and whose other end side extends in the direction away from the transfer block.
- a single wafer substrate transfer area interposed between the batch processing area and the single wafer processing area, one end side being adjacent to the transfer block and the other end side extending in a direction away from the transfer block; a batch substrate transfer area provided along the processing area, one end side being adjacent to the transfer block, and the other end side extending in a direction away from the transfer block, the batch processing area in the processing block including: A plurality of batch processing tanks for immersing a plurality of substrates at once are lined up in the direction in which the area extends, and furthermore, a plurality of batch processing tanks are arranged in a direction farthest from the transfer block to change the posture of the plurality of substrates to a vertical posture.
- the single wafer processing area includes a plurality of drying chambers arranged vertically for drying the substrates, and a substrate loading mechanism for loading the substrates to be dried into the drying chambers.
- the single wafer processing area in the block is provided with a plurality of drying chambers that perform drying processing of substrates in the vertical direction, and further includes a substrate loading mechanism that transports substrates before drying processing into the drying chamber, and
- the single wafer substrate transfer area in the processing block includes a single wafer substrate transfer mechanism that receives a substrate in a horizontal position from the horizontal substrate transfer position and transfers the substrate to the single wafer processing area, and a substrate that has been dried from the drying chamber.
- a substrate unloading mechanism that unloads the substrate to the return route substrate delivery position in the transfer block, and the batch substrate transport area in the processing block includes the vertical substrate delivery position defined in the transfer block. and a batch substrate transport mechanism that transports a plurality of substrates at once between each of the batch processing tanks and the second attitude changing mechanism.
- the substrates are taken out at once from a carrier that stores a plurality of substrates in a horizontal posture, and the first posture changing mechanism changes the posture of the substrates from a horizontal posture to a vertical posture. Convert in batch to . Then, the plurality of substrates are subjected to batch processing in the batch processing area while maintaining the vertical posture. After the batch processing is performed, the second attitude conversion mechanism converts the attitude of the substrate from a vertical attitude to a horizontal attitude all at once. Thereafter, the substrate is subjected to single-wafer processing in the single-wafer processing area while maintaining the horizontal orientation. Specifically, single wafer processing includes substrate drying processing.
- the single wafer substrate processing area of the present invention is equipped with a substrate loading mechanism for transporting wet substrates to be dried to a drying chamber, and further equipped with a substrate transporting mechanism for transporting dry substrates after drying processing from the drying chamber.
- a substrate loading mechanism for transporting wet substrates to be dried to a drying chamber
- a substrate transporting mechanism for transporting dry substrates after drying processing from the drying chamber.
- the present invention also has the following features.
- the substrate loading mechanism that loads the substrates into the drying chamber receives the substrates from the single wafer substrate delivery mechanism located in the batch processing area.
- the substrate loading mechanism can be placed at a position away from the batch processing area. Therefore, according to the invention according to (2), a plurality of stacked drying chambers can be provided around the substrate loading mechanism, and a substrate processing apparatus with high throughput can be provided.
- the single wafer processing area is provided with a substrate drying pretreatment chamber that performs pretreatment for drying processing, and the single wafer transfer mechanism is arranged such that the single wafer processing area A substrate processing apparatus, wherein the substrate is delivered to a processing chamber, and the substrate loading mechanism receives the substrate from the substrate drying preprocessing chamber.
- the single substrate transfer mechanism delivers the substrate to the substrate drying pretreatment chamber, and the substrate carrying mechanism receives the substrate from the substrate drying pretreatment chamber.
- the single wafer substrate transfer mechanism includes a robot that also serves as the substrate unloading mechanism, and the single wafer substrate transfer mechanism supports the substrate before drying processing.
- a substrate processing apparatus comprising a transfer arm, wherein the substrate carry-out mechanism has a carry-out arm that supports a substrate after drying processing, and the carry-out arm is provided above the transfer arm.
- the single substrate transfer mechanism is composed of a robot that also serves as the substrate unloading mechanism, and the unloading arm that supports the substrate after drying is provided above the transfer arm that supports the substrate before drying.
- the substrate is dried in a state where the surface tension is zero, so that the pattern of the circuit provided on the surface of the substrate does not collapse.
- pretreatment for drying the substrate can be reliably performed using isopropyl alcohol.
- the substrate processing apparatus characterized in that the single wafer processing area in the processing block is provided with a stack of drying chambers on both sides of the substrate loading mechanism.
- a stack of drying chambers is provided on both sides of the substrate loading mechanism in the single substrate processing area.
- the number of drying chambers facing the substrate loading mechanism can be increased, so that drying processes can be performed on more substrates in parallel.
- a substrate processing apparatus with high throughput can be provided.
- the batch substrate transport area in the processing block includes a first substrate transport mechanism that transports the substrate in the upper layer of the stack of the drying chambers, and a first substrate transport mechanism that transports the substrates in the upper layer of the drying chamber stack.
- the transfer block is provided with a first return substrate delivery position from which the first substrate unloading mechanism unloads the substrate;
- a substrate processing apparatus characterized in that a second return path substrate delivery position is set at which the second substrate carry-out mechanism carries out the substrates.
- the first substrate unloading mechanism and the second substrate unloading mechanism correspond to different routes, and the first substrate unloading mechanism transports the substrates related to the first route, and the second substrate transporting mechanism transports the substrates related to the second route. This is done by the board unloading mechanism.
- the present invention it is possible to provide a substrate processing apparatus with improved throughput by increasing the number of single-wafer chambers disposed while suppressing the size of the apparatus.
- the conventional configuration if an attempt is made to increase the number of single wafer chambers, the only option is to arrange the single wafer chambers in a row in the horizontal direction, so the length of the substrate processing apparatus is increased by the number of single wafer chambers.
- the present invention since single wafer chambers can be stacked vertically, it is possible to provide a substrate processing apparatus equipped with more single wafer chambers even if the floor area is the same as that of the conventional apparatus.
- the mechanism for loading the substrate into the single-wafer type chamber (substrate drying processing chamber) and the mechanism for transporting the substrate from the substrate drying processing chamber are provided independently, the substrate transport around the drying chamber can be smoothly carried out. It can be configured as follows. According to the present invention, it is possible to provide a substrate processing apparatus that is small but has high throughput.
- FIG. 1 is a plan view illustrating the overall configuration of a substrate processing apparatus according to Example 1.
- FIG. FIG. 2 is a functional block diagram illustrating the configuration of a batch transport mechanism according to the first embodiment.
- FIG. 2 is a perspective view illustrating the configuration of a collective gripping hand according to the first embodiment.
- FIG. 3 is a functional block diagram illustrating the configuration of a first attitude changing mechanism according to the first embodiment.
- 2 is a functional block diagram illustrating the configuration of a substrate pickup mechanism according to Example 1.
- FIG. FIG. 3 is a schematic diagram illustrating the transportation of substrates in the transfer block according to the first embodiment.
- FIG. 3 is a schematic diagram illustrating the transportation of substrates in the transfer block according to the first embodiment.
- FIG. 3 is a schematic diagram illustrating the transportation of substrates in the transfer block according to the first embodiment.
- FIG. 3 is a schematic diagram illustrating the transportation of substrates in the transfer block according to the first embodiment.
- FIG. 3 is a schematic diagram illustrating the transportation of substrates in the transfer block according to the first embodiment.
- FIG. 3 is a schematic diagram illustrating the operation of the substrate pickup mechanism in the transfer block according to the first embodiment.
- FIG. 3 is a perspective view illustrating the operation of the substrate pickup mechanism in the transfer block according to the first embodiment.
- FIG. 3 is a schematic diagram illustrating the operation of the substrate pickup mechanism in the transfer block according to the first embodiment.
- FIG. 3 is a schematic diagram illustrating the transportation of substrates in the transfer block according to the first embodiment.
- FIG. 3 is a schematic diagram illustrating the operation of the substrate pickup mechanism in the transfer block according to the first embodiment.
- FIG. 3 is a schematic diagram illustrating the operation of the pusher mechanism in the transfer block according to the first embodiment.
- FIG. 3 is a perspective view illustrating the configuration of a second attitude changing mechanism according to the first embodiment.
- FIG. 3 is a schematic diagram illustrating the operation of the second attitude changing mechanism according to the first embodiment.
- 2 is a side view illustrating the configuration of a single wafer processing area according to Example 1.
- FIG. 1 is a plan view illustrating the configuration of a drying chamber according to Example 1.
- FIG. FIG. 2 is a functional block diagram illustrating the configuration of a wet transport mechanism according to the first embodiment.
- FIG. 2 is a functional block diagram illustrating the configuration of a single wafer substrate transfer area according to the first embodiment.
- FIG. 2 is a plan view illustrating the configuration of a substrate loading mechanism according to the first embodiment.
- FIG. 3 is a plan view illustrating the delivery of substrates according to the first embodiment.
- 5 is a flowchart illustrating the operation of substrate processing according to the first embodiment.
- 3 is a plan view illustrating the flow of substrates according to Example 1.
- FIG. 3 is a plan view illustrating the flow of substrates according to Example 1.
- FIG. 3 is a plan view illustrating the flow of substrates according to Example 1.
- FIG. 3 is a plan view illustrating the flow of substrates according to Example 1.
- FIG. FIG. 2 is a plan view illustrating the overall configuration of a substrate processing apparatus according to a second embodiment.
- FIG. 3 is a side view illustrating the configuration of a single wafer processing area according to Example 2;
- FIG. 7 is a side view illustrating the configuration of a single wafer substrate transfer area according to Example 2.
- 7 is a flowchart illustrating the operation of substrate processing according to the second embodiment.
- 13 is a plan view illustrating the flow of a substrate according to a second embodiment.
- FIG. 7 is a plan view illustrating the flow of substrates according to Example 2.
- FIG. 7 is a plan view illustrating the flow of substrates according to Example 2.
- the substrate processing apparatus of the present invention is an apparatus that performs batch processing in which a plurality of substrates W are processed at once, and then single-wafer processing in which substrates W are processed one by one.
- the substrate processing apparatus 1 has blocks partitioned by partition walls, as shown in FIG. That is, the substrate processing apparatus 1 includes a carry-in/out block 3 on which carriers for storing substrates are placed, a supply block 5 adjacent to the carry-in/out block 3, a transfer block 7 adjacent to the supply block 5, and a transfer block. A processing block 9 adjacent to the processing block 7 is provided.
- the supply block 5 corresponds to the supply block of the present invention
- the transfer block 7 corresponds to the transfer block 7 of the present invention.
- Processing block 9 corresponds to the processing block of the present invention.
- the substrate processing apparatus 1 performs various predetermined processes on the substrate W, such as a chemical treatment, a cleaning process, and a drying process, for example.
- the substrate processing apparatus 1 uses a processing method (so-called hybrid method) that combines both a batch processing method in which a plurality of substrates W are processed at once and a single wafer processing method in which substrates W are processed one by one. is adopted.
- the batch processing method is a processing method in which a plurality of substrates W arranged in a vertical posture are processed at once.
- the single-wafer processing method is a processing method in which substrates W in a horizontal position are processed one by one.
- the direction in which the carry-in/out block 3, the supply block 5, the transfer block 7, and the processing block 9 are arranged is referred to as the "back-and-forth direction X.”
- the front-rear direction X extends horizontally.
- the direction from the supply block 5 to the loading/unloading block 3 is referred to as the "front”.
- the direction opposite to the front is called “backward.”
- the direction perpendicular to the front-rear direction X is called the "width direction Y.”
- the width direction Y extends horizontally.
- width direction Y For convenience, one direction in the width direction Y will be referred to as the "right side,” and the opposite direction will be referred to as the "left side.”
- the direction (height direction) orthogonal to the front-rear direction X and the width direction Y is referred to as the "vertical direction Z.”
- the front, rear, right, left, top, and bottom are shown as appropriate for reference.
- the loading/unloading block 3 includes a carrier holding section 11 that holds a carrier C that stores a plurality of substrates W arranged vertically at predetermined intervals in a horizontal position.
- the carrier holding portion 11 is provided on the outer wall of the loading/unloading block 3 extending in the width direction (Y direction). Some of the carrier holding parts 11 are provided on the right side when viewed from the center of the substrate processing apparatus 1 in the width direction (Y direction), and others are provided on the left side.
- the two carrier holders 11 are called one load port.
- a plurality of substrates W are stacked and housed in one carrier C in a horizontal position at regular intervals.
- a carrier C containing a substrate W to be processed that is to be carried into the substrate processing apparatus 1 is first placed on one of the carrier holding sections 11 .
- the carrier holding unit 11 includes, for example, two mounting tables 15 on which the carriers C are mounted.
- the carrier C is formed with a plurality of grooves (not shown) extending in the horizontal direction and accommodating the substrates W with their surfaces spaced apart from each other.
- the plurality of grooves are spaced apart so as to form a comb shape as a whole.
- One substrate W is inserted into each of the grooves.
- As the carrier C for example, there is a closed type FOUP (Front Opening Unify Pod). In the present invention, an open container may be employed as the carrier C.
- FOUP Front Opening Unify Pod
- the supply block 5 has a function of supplying a plurality of substrates to the subsequent transfer block 7. That is, the supply block 5 is provided at a position sandwiched between the carry-in/out block 3 and the transfer block 7.
- the supply block 5 has a batch transfer mechanism 19 that takes out a plurality of substrates at once from the carrier C held by the carrier holding section 11 in the loading/unloading block 3 and transfers them to the transfer block 7.
- a support 81 of the bulk transport mechanism 19 extending in the vertical direction Z is provided at a central position in the supply block 5, that is, at a central position in both the X direction and the Y direction.
- the batch transfer hand 71 moves up and down, left and right, and back and forth.
- the supply block 5 has a space large enough so as not to interfere with the operation of the batch transfer hand 71.
- the batch transfer mechanism 19 has a function of taking out a plurality of substrates W at once from the carrier C held by the carrier holding part 11 in the loading/unloading block 3 and placing them at the forward substrate delivery position P1 of the transfer block 7. and a function of receiving a plurality of substrates W at once from the return substrate delivery position P4 of the transfer block 7 and returning them to the carrier C held in the carrier holding part 11 of the loading/unloading block 3. has.
- the batch transport mechanism 19 transports the plurality of substrates W from the carrier C to the forward substrate delivery position P1 while maintaining the positional relationship of each of the plurality of substrates W stored in the carrier C.
- the batch transfer mechanism 19 transports the plurality of substrates W from the return substrate delivery position P4 to the carrier C while maintaining the positional relationship of each of the plurality of substrates W arranged at the return substrate delivery position P4. Transport to. By this transport by the batch transport mechanism 19, the substrates W to be processed stored in the carrier C are returned to the original carrier C after being subjected to various processes by the substrate processing apparatus 1.
- the batch transport mechanism 19 does not necessarily need to include a mechanism for changing the postures of the plurality of substrates W.
- the batch transport mechanism 19 in this example transports the plurality of substrates W from the carrier C to the forward substrate delivery position P1 while maintaining the posture and arrangement pitch. Therefore, the plurality of substrates W are transported by the batch transport mechanism 19 in a state in which they are arranged at full pitch in a horizontal position. The same situation applies to the substrate transfer from the return trip substrate delivery position P4 to the carrier C by the batch transfer mechanism 19.
- FIG. 2 is a functional block diagram illustrating the configuration of the batch transport mechanism 19.
- the batch conveyance mechanism 19 has a column 81 extending in the vertical direction (Z direction) to support each mechanism.
- the batch conveyance mechanism 19 is equipped with an elevating mechanism 82 that can move up and down.
- the elevating mechanism 82 is supported by a support column 81 so as to be able to move up and down.
- the elevating mechanism 82 rotatably supports the rotating member 83.
- the rotating member 83 can rotate around a rotation axis AX3 parallel to the extending direction (Z direction) of the support column 81 while being supported by the elevating mechanism 82.
- the rotation axis AX3 is a virtual straight line located at the center of the support column 81.
- the rotating member 83 supports a telescopic arm 85a.
- the arm 85a includes a first arm 84 connected to the rotating member 83 and a second arm 85 connected to the first arm 84.
- the connecting portion of the first arm 84 in the rotating member 83 is a protruding portion extending in a direction away from the center of rotation of the rotating member 83, and the first arm 84 is configured to extend so as to extend the protruding portion. be.
- the second arm 85 extends so as to extend the first arm 84 .
- the rotating member 83 supports the first arm 84 so that the first arm 84 is movable in the extending direction of the first arm 84, and the first arm 84 supports the second arm 85 in the extending direction of the second arm 85. supports the second arm 85 so that it is movable. Therefore, the arm 85a is extendable and retractable in the direction in which the first arm 84 and the second arm 85 extend.
- a rotatable direction changing member 86 is provided at the tip of the second arm 85.
- the direction changing member 86 supports a rail 87 extending in the horizontal direction. Therefore, the batch conveyance mechanism 19 is configured to be able to change the direction in which the rails 87 extend by rotating for direction change.
- the direction changing member 86 rotates around an imaginary line that is located at the center of the direction changing member 86 and extends in the vertical direction (Z direction). By this rotation, the batch transfer hand 71 can be directed toward the loading/unloading block 3 side or toward the transfer block 7 side.
- the rail 87 supports the batch transfer hand 71 that collectively holds a plurality of substrates W so as to be movable in the direction in which the rail 87 extends. Therefore, the batch transfer hand 71 can move forward and backward along the rail 87.
- the vertical position of the rail 87 can be changed by the lifting mechanism 82.
- the position of the rail 87 on the horizontal plane can be changed by the arm and the rotating member 83. Therefore, the batch transfer hand 71 can freely move in the space within the supply block 5.
- the direction of the rail 87 can be changed by the direction changing member 86. Therefore, the batch transfer hand 71 can move in the front-rear direction (X direction) at any position in the space within the supply block 5.
- the batch transfer hand 71 can move to the carrier C held by the carrier holding part 11 in the loading/unloading block 3, and by moving forward on the rail 87, the batch transfer hand 71 moves to the inside of the carrier C. It is possible that Then, the batch transfer hand 71 can take out the plurality of held substrates W from the carrier C by retreating on the rails 87. By reversing these operations, the batch transfer hand 71 can return the plurality of substrates W it is holding to the carrier C. Although the above-mentioned example concerns the carrier C, the batch transfer hand 71 can take out or transfer a plurality of substrates W by the same operation at the substrate transfer position as well.
- the elevation control section 82a is configured to control the elevation mechanism 82.
- the rotation mechanism 83a is a mechanism that rotates the rotation member 83 relative to the elevating mechanism 82, and the rotation control section 83b is configured to control the rotation mechanism 83a.
- the expansion/contraction mechanism 84a is a mechanism that expands/contracts the arm 85a in the stretching direction, and the expansion/contraction control section 84b is configured to control the expansion/contraction mechanism 84a.
- the direction change mechanism 86a is a mechanism that rotates the direction change member 86 with respect to the second arm 85, and the direction change control section 86b is configured to control the direction change mechanism 86a.
- the shift mechanism 87a is a mechanism for moving the batch transfer hand 71 forward and backward with respect to the rail 87, and the shift control section 87b is configured to control the shift mechanism 87a.
- the hand drive mechanism 71c is a mechanism that drives the batch transfer hand 71 to cause the batch transfer hand 71 to grip a plurality of substrates W or to release the gripped plurality of substrates W.
- the hand control section 71d is configured to control the hand drive mechanism 71c.
- FIG. 3 explains the configuration of the batch transfer hand 71.
- the batch transfer hand 71 is configured by a pair of hand pieces 71a arranged in the vertical direction (Z direction). Each of the pair of hand pieces 71a is collectively connected to a hand base 71e.
- the hand base 71e is configured to be able to move forward and backward on the rail 87.
- the pair of hand pieces 71a are provided in the batch transfer hand 71 by the number of substrates W to be accommodated in the carrier C. Therefore, the batch transfer hand 71 is provided with 25 pairs of hand pieces 71a. In this regard, in FIG. 3, the number of hand pieces 71a is reduced for convenience of drawing.
- the transfer block 7 is disposed adjacent to the rear of the supply block 5.
- the transfer block 7 is provided with an outward substrate transfer position P1 on which a substrate W to be processed is placed, and a plurality of substrates W are collectively carried into this position from the supply block 5.
- the transfer block 7 is provided with a first position changing mechanism PCR that can access the outward substrate transfer position P1, a substrate pickup mechanism WDB that receives a substrate W in a vertical position from the first position changing mechanism PCR and changes the arrangement of the substrates W to a half pitch, and a pusher mechanism 22 that receives a plurality of substrates W from the substrate pickup mechanism WDB and transports the plurality of substrates W to the vertical substrate transfer position P2.
- FIG. 4 explains the configuration of the first posture conversion mechanism PCR in this example.
- the first posture changing mechanism PCR has a batch hand composed of a pair of clamping hands 69 that clamps the substrate W. Since the holding hand 69 is configured to sandwich the substrate W from both sides of the substrate W, the plurality of substrates W will not slip off from the batch hand even if the batch hand is rotated.
- the batch hand is configured by a pair of clamping hands 69 arranged in the vertical direction (Z direction). Each of the pair of clamping hands 69 is collectively connected to a hand base 69a.
- the hand base 69a can rotate by -90° and 90° so that the plurality of substrates W, which are in a horizontal position, are brought into a vertical position.
- the pair of holding hands 69 are provided in the batch hand by the number of substrates W stored in the carrier C. Therefore, the batch hand is provided with 25 pairs of clamping hands 69. In this regard, the number of holding hands 69 is reduced in FIG. 4 for convenience of drawing.
- the first attitude changing mechanism PCR can also move in the width direction (Y direction). That is, the first attitude changing mechanism PCR can access the outbound substrate delivery position P1 in an attitude that can hold the substrate W in a horizontal attitude (the attitude on the left side of FIG. 4), the substrate pickup mechanism WDB can be accessed.
- the batch hand drive mechanism 79a is a mechanism that operates each of the clamping hands 69 at once, and is a mechanism that operates between a clamping state in which a plurality of substrates W is clamped and a release state in which the plurality of substrates W are released from clamping.
- the state of the clamping hand 69 is changed by .
- the batch hand control section 79b is configured to control the batch hand drive mechanism 79a.
- the hand base rotation mechanism 79c is a mechanism that rotationally drives the hand base 69a.
- the posture of the plurality of substrates is converted from a horizontal posture to a vertical posture by the mechanism.
- the hand base rotation control section 79d is configured to control the hand base rotation mechanism 79c.
- FIG. 5 illustrates the substrate pickup mechanism WDB in this example.
- the substrate pickup mechanism WDB has two support rods 70 extending in the width direction (Y direction).
- Each of the support rods 70 is provided with 50 grooves 70c, and the peripheral edge of the substrate W fits into these grooves 70c.
- the arrangement pitch of the grooves 70c is a half pitch.
- the half pitch is a pitch that is half the arrangement pitch (full pitch) of the substrates W among the plurality of substrates W stored in the carrier C.
- one groove 70c in each of the two support rods 70 is illustrated with emphasis.
- the grooves 70c in the support rod 70 have a corresponding relationship with the grooves 70c in the pair of support rods 70, and the pair of grooves 70c are configured to sandwich a single substrate W.
- the front and back surfaces of the sandwiched substrates W are perpendicular to the width direction (Y direction). Therefore, the distance from the groove 70c into which one end of the substrate W is fitted to the support body 70a that supports the support rod 70 is equal to the distance from the groove 70c into which the other end of the substrate W is fitted to the support body 70a.
- the pair of support rods 70 can expand and contract by a distance corresponding to a half pitch without changing the direction in which the substrates W to be held are faced.
- the support body 70a itself can be moved up and down. The pair of support rods 70 and the substrate W held between the support rods 70 move up and down as the support body 70a moves up and down.
- the support body elevating mechanism 90a is a mechanism that moves the support body 70a in the Z direction and raises and lowers it.
- the support elevation control section 90b is configured to control the support elevation mechanism 90a.
- the support rod expansion/contraction mechanism 90c is configured to expand/contract the support rod 70.
- the support rod expansion/contraction control section 90d is configured to control the support rod expansion/contraction mechanism 90c.
- FIG. 6 shows a plurality of substrates W being held by the batch transfer hand 71 of the batch transfer mechanism 19 in the supply block 5.
- the arrangement pitch of the substrates W at this time is a full pitch. This arrangement pitch is the same as the arrangement pitch when a plurality of substrates W are housed in the carrier C.
- the batch transport mechanism 19 transports the plurality of gripped substrates W to the forward substrate delivery position P1 in the transfer block 7.
- a path capable of holding 25 substrates W at once is provided at the forward substrate transfer position P1.
- FIG. 8 shows a state in which a plurality of substrates W are transferred to the forward substrate transfer position P1 by the batch transfer mechanism 19.
- FIG. 9 shows how the first posture conversion mechanism PCR receives a plurality of substrates W from the path at the forward substrate delivery position P1.
- FIG. 10 shows the state when the first attitude changing mechanism PCR moves in the width direction (Y direction) away from the forward substrate delivery position P1 from the state shown in FIG. In this way, when the first attitude changing mechanism PCR leaves the outward substrate delivery position P1 while holding a plurality of substrates W, the hand base 69a of the first attitude changing mechanism PCR can rotate by 90 degrees. It becomes like this.
- FIG. 11(b) shows the state when the support body 70a in the substrate pickup mechanism WDB is raised.
- the pair of support rods 70 also rises accordingly.
- the distance between the support rods 70 in the front-rear direction (X direction) is made sufficiently larger than the width of the clamping hand 69 of the first attitude changing mechanism PCR. Therefore, the holding hand 69 passes through the gap between the pair of support rods 70 and does not collide with the support rods 70.
- the distance between the support rods 70 in the front-rear direction (X direction) is made sufficiently smaller than the diameter of the substrate W. Therefore, the pair of support rods 70 that have passed through the holding hands 69 abut different ends of the plurality of substrates W, respectively.
- the peripheral edge of the substrate W at this time fits into the groove 70c provided in the support rod 70.
- FIG. 12 shows a situation when a plurality of substrates W in a vertical posture supported by the clamping hands 69 of the first posture changing mechanism PCR come into contact with a pair of support rods 70. If the gripping hand 69, which was in the gripping state at this time, is changed to a released state, the plurality of substrates W are transferred from the first attitude changing mechanism PCR to the substrate pickup mechanism WDB at once.
- FIG. 13(a) shows the situation when the support body 70a in the substrate pickup mechanism WDB further rises from the state shown in FIG. 12.
- the pair of support rods 70 have a plurality of substrates W with a full pitch arrangement pitch.
- the pair of support rods 70 in the substrate pickup mechanism WDB are provided with 50 grooves 70c at a half pitch, the pair of support rods 70 have grooves 70c in which the substrate W is fitted, and grooves 70c in which the substrate W is not inserted.
- the empty grooves 70c are arranged alternately.
- FIG. 13(b) shows the situation when the pair of support rods 70 extend from the state of FIG. 13(a) by a distance corresponding to a half pitch with respect to the support body 70a in the substrate pickup mechanism WDB.
- the grooves 70c provided in the pair of support rods 70 and the holding hand 69 of the first attitude changing mechanism PCR are shifted by a distance corresponding to a half pitch.
- the holding hand 69 of the first attitude changing mechanism PCR moves in the width direction (Y direction) and rotates by 90 degrees, returning to the state shown in FIG. 6.
- the support body 70a in the substrate pickup mechanism WDB returns to the position shown in FIG. 6 while supporting the plurality of substrates W in a vertical posture.
- the batch transfer mechanism 19 takes out the plurality of substrates W from a carrier C that is different from the carrier C that has stored the plurality of substrates W supported by the substrate pickup mechanism WDB, and moves it to the outbound substrate delivery position. Transport to P1.
- FIG. 14 shows how the holding hands 69 of the first posture changing mechanism PCR support the plurality of substrates W located at the forward substrate transfer position P1.
- FIG. 15(b) shows the situation when the gripping hand 69 of the first attitude changing mechanism PCR moves upward and away from the substrate pickup mechanism WDB from the state of FIG. 15(a).
- a plurality of substrates W are arranged at half pitch in the substrate pickup mechanism WDB.
- the substrates W for two carriers (50 substrates W) are arranged in the substrate pickup mechanism WDB.
- Such an operation of arranging the substrates W is called batch assembly.
- the substrates W are arranged in a face-to-back manner in which the device surface on which the circuit is formed on the substrate W and the back surface of the adjacent substrate W (the back surface of the adjacent substrate W with respect to the device surface) face each other.
- the holding hand 69 of the first attitude changing mechanism PCR is retracted from the upper part of the substrate pickup mechanism WDB and returns to the original position shown in FIG.
- FIG. 16(a) shows the pusher mechanism 22 located further below the support body 70a included in the substrate pickup mechanism WDB shown in FIG.
- the pusher mechanism 22 is equipped with a pusher having parallel grooves arranged at a half pitch on its upper surface, and the pusher can move up and down.
- FIG. 16(b) shows the state when the pusher in the pusher mechanism 22 is raised. When the pusher rises from the state shown in FIG. 16(a), the pusher approaches the support rod 70.
- the distance between the support rods 70 of the substrate pickup mechanism WDB in the front-rear direction (X direction) is made sufficiently larger than the width of the pusher of the pusher mechanism 22. Therefore, the pusher passes through the gap between the pair of support rods 70 and does not collide with the support rods 70.
- the pusher mechanism 22 corresponds to the vertical substrate support member of the present invention.
- the pusher mechanism 22 is configured to move the pusher up and down, but the pusher can be moved not only in the up and down direction (Z direction) but also in the front and back direction (X direction), and the ), the vertical board transfer position P2 may be provided at a different position.
- the processing block 9 performs various processing on the plurality of substrates W.
- the processing block 9 is divided into a batch processing region R1, a single wafer processing region R2, a single wafer substrate transport region R3, and a batch substrate transport region R4, each extending in the front-rear direction (X direction).
- the batch processing area R1 is arranged on the left side within the processing block 9.
- the single wafer processing area R2 is arranged on the right side of the processing block 9.
- the single wafer substrate transfer area R3 is located at a position sandwiched between the batch processing area R1 and the single wafer processing area R2, that is, at the center of the processing block 9.
- the batch substrate transfer area R4 is located at the leftmost position within the processing block 9.
- the batch processing region R1 in the processing block 9 is a rectangular region extending in the front-rear direction (X direction).
- One end side (front side) of the batch processing region R1 is adjacent to the transfer block 7.
- the other end side of the batch processing region R1 extends in a direction away from the transfer block 7 (rear side).
- the batch processing area R1 includes a batch processing section that mainly performs batch processing. Specifically, in the batch processing region R1, a plurality of batch processing units BPU1 to BPU3 that collectively immerse a plurality of substrates W are arranged in the direction in which the batch processing region R1 extends.
- the first batch processing unit BPU1 is adjacent to the transfer block 7 from the rear.
- the second batch processing unit BPU2 is adjacent to the first batch processing unit BPU1 from the rear.
- the third batch processing unit BPU3 is adjacent to the second batch processing unit BPU2 from the rear.
- an attitude conversion unit VHU is provided at a position farthest from the transfer block 7 than the batch processing units BPU1 to BPU3 for collectively converting the attitude of a plurality of substrates W in a vertical attitude into a horizontal attitude. There is. In this way, the first batch processing unit BPU1, the second batch processing unit BPU2, the third batch processing unit BPU3, and the posture conversion unit VHU are lined up in this order in the direction in which the batch processing area R1 extends (X direction).
- the first batch processing unit BPU1 includes a batch chemical liquid processing tank CHB1 that collectively processes a lot (a set of 50 substrates W arranged in half pitch) with a chemical liquid, and a lifter LF1 that raises and lowers the lot. .
- the batch chemical treatment tank CHB1 performs acid treatment on lots.
- the acid treatment may be phosphoric acid treatment, but treatment using other acids may also be used.
- the phosphoric acid treatment a plurality of substrates W constituting a lot are etched.
- the nitride film on the surface of the substrate W is chemically etched.
- the first batch chemical liquid processing tank CHB1 accommodates a chemical liquid such as a phosphoric acid solution.
- a chemical liquid is supplied from the bottom to the top and caused to circulate within the tank.
- Lifter LF1 can move up and down in the vertical direction (Z direction). Specifically, the lifter LF1 moves up and down between a processing position located inside the batch chemical processing tank CHB1 and a delivery position located above the batch chemical processing tank CHB1.
- the lifter LF1 holds a lot made up of substrates W in a vertical direction.
- the lifter LF1 transfers the lot to and from the transport mechanism WTR at the transfer position.
- the entire area of the substrate W is located below the surface of the chemical solution.
- the entire area of the substrate W is located above the liquid level of the chemical solution.
- the second batch processing unit BPU2 includes a batch chemical processing tank CHB2 and a lifter LF2 that raises and lowers the lot.
- the batch chemical liquid processing tank CHB2 has the same configuration as the above-described batch chemical liquid processing tank CHB1. That is, the batch chemical liquid processing tank CHB2 stores the above-mentioned chemical liquid, and is provided with a lifter LF2 that moves up and down between the processing position and the delivery position.
- the batch chemical processing tank CHB2 performs the same processing on lots as the batch chemical processing tank CHB1.
- the substrate processing apparatus 1 of this example includes a plurality of processing tanks capable of performing the same chemical processing. This is because phosphoric acid treatment requires more time than other treatments.
- the phosphoric acid treatment requires a long time (for example, 60 minutes). Therefore, in the apparatus of this example, acid treatment can be performed in parallel using a plurality of batch chemical treatment tanks. Therefore, the lot to be treated is acid-treated in either the batch chemical treatment tank CHB1 or the batch chemical treatment tank CHB2. With this configuration, the throughput of the device increases.
- the third batch processing unit BPU3 includes a batch rinsing tank ONB that contains a rinsing liquid, and a lifter LF3 that raises and lowers the lot.
- the batch rinsing tank ONB has the same configuration as the batch chemical solution processing tank CHB1 described above. That is, the batch rinsing treatment tank ONB contains a rinsing liquid and is provided with a lifter LF3.
- the batch rinsing processing tank ONB unlike other processing tanks, contains pure water and is provided for the purpose of cleaning chemical solutions adhering to a plurality of substrates W. In the batch rinsing treatment tank ONB, when the specific resistance of the pure water in the tank rises to a predetermined value, the chemical solution treatment ends.
- the batch chemical processing tank CHB1 and the batch chemical processing tank CHB2 in Example 1 are located closer to the transfer block 7 than the batch rinsing processing tank ONB.
- the attitude conversion unit VHU includes a VHU pusher mechanism 23 that receives a lot composed of substrates W in a vertical attitude from the transport mechanism WTR, and a VHU pusher mechanism 23 that receives the lot from the VHU pusher mechanism 23 and changes the attitude of a plurality of substrates W from a vertical attitude to a horizontal attitude.
- a second posture conversion mechanism 20 that converts the posture into the following.
- the VHU pusher mechanism 23 has a similar configuration to the above-described pusher mechanism 22, and includes a pusher that moves up and down.
- the pusher has 50 grooves arranged in parallel at a half pitch.
- the transport mechanism WTR is capable of fitting one substrate W into each groove provided in the pusher.
- FIG. 17 explains the second attitude changing mechanism 20 of this example.
- the second attitude changing mechanism 20 includes a pair of horizontal holding parts 20B extending in the vertical direction (Z direction) and a pair of vertical holding parts 20C extending in the same direction.
- the support stand 20A has a support surface extending in the XY plane that supports the horizontal holding section 20B and the vertical holding section 20C.
- the rotation drive mechanism 20D is configured to rotate the support base 20A by 90 degrees. As the support base 20A rotates, the horizontal holding part 20B and the vertical holding part 20C also rotate by 90 degrees and become members extending in the horizontal direction.
- FIG. 18 is a schematic diagram illustrating the operation of the second attitude changing mechanism 20. Hereinafter, the configuration of each part will be explained with reference to FIGS. 17 and 18.
- the horizontal holding unit 20B supports a plurality of substrates W in a horizontal position from below. That is, the horizontal holding section 20B has a comb-shaped structure having a plurality of recesses corresponding to the substrates W to be supported.
- the recesses are parallel to each other and have an elongated structure in which the peripheral edge of the substrate W is located. Further, the recesses are arranged at half pitch.
- the vertical holding section 20C supports a plurality of substrates W in a vertical posture. That is, the vertical holding section 20C has a comb-shaped structure having a plurality of V grooves corresponding to the substrates W to be supported.
- the V-grooves are parallel to each other and have an elongated structure into which the peripheral edge of the substrate W fits. Further, the V grooves are arranged at a harp pitch.
- a pair of horizontal holding parts 20B and a pair of vertical holding parts 20C extending in the vertical direction (Z direction) are provided along a virtual circle corresponding to the substrate W in a horizontal position so as to surround the substrate W to be held.
- the pair of horizontal holding parts 20B are separated by the diameter of the substrate W, and hold one end of the substrate W and the other end farthest from the one end. In this way, the pair of horizontal holding parts 20B support the substrate W in a horizontal position.
- the pair of vertical holding parts 20C are spaced apart by a distance shorter than the diameter of the substrate W, and support a predetermined portion of the substrate W and a specific portion located near the predetermined portion. In this way, the pair of vertical holding parts 20C support the substrate in a vertical position.
- the pair of horizontal holding parts 20B are located at the same position in the left-right direction (Y direction), and the pair of vertical holding parts 20C are also located at the same position in the left-right direction (Y direction).
- the pair of vertical holding parts 20C are provided closer to the direction in which the support base 20A is rotated and falls down (leftward) than the pair of horizontal holding parts 20B.
- the rotational drive mechanism 20D rotatably supports the support base 20A by at least 90° around a horizontal axis AX2 extending in the front-rear direction (X direction).
- a horizontal axis AX2 extending in the front-rear direction (X direction).
- FIG. 18(a) shows a state in which the transport mechanism WTR passes the lot to the VHU pusher mechanism 23.
- the support stand 20A in the vertical state in the second attitude changing mechanism 20 has a vertical holding part 20C extending horizontally, and the horizontal holding part 20B and the vertical holding part 20C are the pushers of the VHU pusher mechanism 23. It is located at the bottom of the.
- FIG. 18(b) shows how a plurality of substrates W are supported by the vertical holding part 20C in the second attitude changing mechanism 20.
- FIG. 18(c) shows how a plurality of substrates W are supported by a pair of horizontal holding parts 20B arranged on the support stand 20A which is in a horizontal state. Further, FIG. 18(c) shows how the second attitude changing mechanism 20 causes a plurality of substrates W to stand by at the horizontal substrate delivery position P3.
- the horizontal substrate transfer position P3 is a position where a first robot CR1, which will be described later, receives a substrate W in a horizontal position.
- the single wafer processing area R2 in the processing block 9 is a rectangular area extending in the front-back direction (X direction).
- One end side (front side) of the single wafer processing area R2 is adjacent to the transfer block 7.
- the other end side of the single wafer processing area R2 extends in a direction away from the transfer block 7 (backward side).
- the single wafer processing region R2 in the processing block 9 includes a drying chamber 37 mainly involved in drying processing, and a wet transport mechanism WR that transports a substrate W (horizontal posture) before drying processing to each of the drying chambers 37.
- a drying chamber 37 is provided at a position adjacent to the transfer block 7, and a wet transport mechanism WR is provided at a position adjacent to the rear of the drying chamber 37. It is set in.
- Another drying chamber 37 is provided in the single wafer processing region R2. This drying chamber 37 is provided at a position adjacent to the rear of the wet transport mechanism WR. Therefore, the wet transport mechanism WR is arranged at a position sandwiched between the two drying chambers 37. The wet transport mechanism WR can access these drying chambers 37.
- the drying chamber 37 is a supercritical fluid chamber, and specifically, the substrate W is dried using carbon dioxide that has become a supercritical fluid. Substances other than carbon dioxide may be used as the supercritical fluid.
- a supercritical state is obtained by subjecting carbon dioxide to its own critical pressure and temperature. The specific pressure is 7.38 MPa and the temperature is 31°C. In a supercritical state, the surface tension of the fluid becomes zero, so the circuit pattern on the substrate surface is not affected by the gas-liquid interface. Therefore, by drying the substrate W using a supercritical fluid, it is possible to prevent the circuit pattern from collapsing on the substrate, that is, so-called pattern collapse.
- the drying chamber 37 has an inlet 37a for introducing the substrate W into the chamber and an outlet 37b for discharging the substrate W out of the chamber.
- the loading port 37a is provided on the side wall of the drying chamber 37 facing the wet transport mechanism WR.
- the export port 37b is provided on a side wall of the drying chamber 37 facing the single substrate transfer area R3.
- a shutter capable of closing the passage port for the substrate W is provided at both the loading port 37a and the loading port 37b, and each shutter closes the corresponding passage port during the drying process of the substrate.
- a circular support member 37c is provided that supports the substrate W via a pin 37d with which the substrate W comes into contact.
- the support member 37c is provided with three pins 37d, and these pins 37d abut on each of three different portions of the peripheral edge of the substrate W introduced into the drying chamber 37. In this way, the substrate W is supported at three points within the drying chamber 37.
- the drying chamber 37 dries the substrate W, supercritical fluid is generated inside the chamber.
- the drying chamber 37 is configured to have sufficient pressure resistance to maintain a critical pressure inside the chamber.
- FIG. 19 is a side view of the single wafer processing region R2 when viewed from the single wafer substrate transport region R3 side.
- the single wafer processing region R2 is provided with two stacked bodies in which three drying chambers 37 are stacked.
- the wet transport mechanism WR is provided at a position sandwiched between the two stacked bodies, and can carry the substrate W into each of the drying chambers 37 forming each stacked body. At this time, the substrate W is loaded through the loading port 37a provided in the drying chamber 37.
- a wet substrate transfer area is provided between the two stacked bodies to ensure a movable range of the wet transfer mechanism WR.
- the wet transport mechanism WR is configured to be able to move within the transport area.
- FIG. 20(a) shows the situation when the wet transport mechanism WR carries the substrate W to be dried into the drying chamber 37.
- the wet transport mechanism WR includes a pair of wet arms 74 that grip the substrate W before drying processing.
- the wet arm 74 is configured to be able to enter the chamber through the loading port 37a of the drying chamber 37 while holding the substrate W, and transfer the substrate W to the support member 37c.
- the wet arm base 74a is configured to support a pair of wet arms 74.
- the pin 37d of the support member 37c is provided at a position that avoids the wet arm 74. Therefore, the pins 37d do not collide with the wet arm 74 that has come to pass the substrate W inside the chamber.
- the substrate processing apparatus 1 of this example includes a mechanism different from the wet transport mechanism WR whose purpose is to transport the substrate W after the drying process from the drying chamber 37.
- the position of the pin 37d in the support member 37c is optimized for carrying in the substrate W by the wet arm 74, so when the substrate W after the drying process is carried out of the chamber, the arm holding the substrate W is aligned with the pin 37d. There is a possibility of collision.
- the apparatus of this example as shown in FIG.
- the support member rotation mechanism 36a that rotates the support member 37c and the support member rotation mechanism 36a are controlled so that the substrate W can be reliably transported out of the chamber.
- a support member rotation control section 36b is provided.
- FIG. 21 is a functional block diagram illustrating the configuration of the wet transport mechanism WR.
- the wet transport mechanism WR is a mechanism that receives a substrate W before drying processing from a single wafer transport region R3, which will be described later, and delivers it to the drying chamber 37.
- the wet transport mechanism WR has a WR support column 101 that supports each mechanism and extends in the vertical direction (Z direction).
- the wet transport mechanism WR also includes a WR lifting mechanism 102 that is capable of vertical movement.
- the WR lifting mechanism 102 is supported by the WR support column 101 so as to be able to rise and fall freely.
- the WR lifting mechanism 102 rotatably supports the WR rotating member 183.
- the WR rotation member 183 is rotatable around a rotation axis AX4 parallel to the extending direction (Z direction) of the WR column 101 while being supported by the WR lifting mechanism 102.
- the rotation axis AX4 is a virtual straight line located at the center of the WR column 101.
- the wet transport mechanism WR supports a telescopic WR arm 185a.
- the WR arm 185a has a first arm 184 connected to the WR rotating member 183, and a base (second arm) 74a connected to the first arm 184.
- the connecting portion of the first arm 184 in the WR rotation member 183 is a protrusion that extends in a direction away from the rotation center of the WR rotation member 183, and the first arm 184 extends so as to extend the protrusion. It is the composition.
- the wet arm base 74a extends so as to extend the first arm 184.
- the WR rotation member 183 supports the first arm 184 so that the first arm 184 is movable in the extending direction of the first arm 184, and the first arm 184 supports the wet arm base 74a in the extending direction of the wet arm base 74a.
- the wet arm base 74a is supported so that the wet arm 74a is movable. Therefore, the WR arm 185a is expandable and retractable in the extending direction of the first arm 184 and the wet arm base 74a.
- the WR lift control unit 182a is configured to control the WR lift mechanism 102.
- the WR rotation mechanism 183a is a mechanism that rotates the WR rotation member 183 relative to the WR lifting mechanism 102, and the WR rotation control section 183b is configured to control the WR rotation mechanism 183a.
- the expansion/contraction mechanism 184a is configured to expand/contract the WR arm 185a in the extending direction, and the expansion/contraction control section 184b is configured to control the expansion/contraction mechanism 184a.
- the WR hand drive mechanism 171c is a mechanism that drives the wet arm 74 to grip only one substrate W in a horizontal position or release the grip of the substrate W.
- the hand control section 171d is configured to control the WR hand drive mechanism 171c.
- the wet transport mechanism WR of this example simplifies the above-mentioned batch transport mechanism 19 and has a configuration that does not include the rail 87, the direction changing member 86, and each mechanism and control unit related to the operation.
- the present invention is not limited to this configuration, and may be configured to include each of these members, each mechanism related thereto, and each control section.
- the wet transport mechanism WR can access any of the six drying chambers 37 forming a stack of chambers provided on the left and right sides of the wet transport mechanism WR, and can carry the substrate W to be dried into any of the drying chambers 37. This is a configuration that allows for
- the single wafer substrate transfer area R3 in the processing block 9 is a rectangular area extending in the front-rear direction (X direction).
- the single wafer substrate transfer region R3 is interposed between the batch processing region R1 and the single wafer processing region R2, and has one end adjacent to the transfer block 7 and the other end extending in a direction away from the transfer block 7.
- the single substrate transfer area R3 includes a first robot CR1 that can access the second attitude changing mechanism 20 located at a horizontal substrate transfer position P3 provided in the batch processing area R1, and a first robot CR1 It has a second robot CR2 provided on the upper part of the robot.
- the single wafer substrate transfer region R3 is divided into upper and lower portions by partition walls.
- a first robot CR1 is provided in the lower section, and a second robot is provided in the upper section. In this way, since the first robot CR1 and the second robot CR2 are provided in different sections, one robot does not interfere with the substrate transport of the other robot.
- the configuration of the lower section in the single wafer substrate transfer region R3 will be explained.
- the section faces the second attitude changing mechanism 20 located at the horizontal substrate transfer position P3 in the batch processing area R1, and is located in the lowermost layer of the drying chambers 37 (more specifically, in the chamber , the wet transport mechanism WR, and the return substrate transfer position (more precisely, the first return substrate transfer position P4a).
- the first robot CR1 transfers the substrate between the second posture changing mechanism 20 located at the horizontal substrate transfer position P3, the lowest layer drying chamber 37, the wet transfer mechanism WR, and the first return substrate transfer position P4a in the transfer block 7.
- the first return substrate transfer position P4a is a path capable of holding a plurality of substrates W at full pitch, similar to the outward substrate transfer position P1.
- the first return board transfer position P4a is located below the outward board transfer position P1.
- the first robot CR1 is equipped with a CR wet arm 72 that supports the substrate W (horizontal position) before drying, and a dry arm 73a that holds the substrate W (horizontal position) after drying.
- the CR wet arm 72 and dry arm 73a are mounted on a single robot, and the CR wet arm 72 is always located below the dry arm 73a. This configuration prevents the CR wet arm 72 supporting the wet substrate W from dripping liquid onto the dry arm 73a, and ensures that the dry arm 73a remains dry.
- the first robot CR1 uses the CR wet arm 72 when transporting the substrate W from the second position conversion mechanism 20 at the horizontal substrate transfer position P3 to the wet transport mechanism WR.
- the first robot CR1 uses the dry arm 73a when transporting the substrate W from the lowest drying chamber 37 to the first return substrate transfer position P4a.
- a robot guide rail 97a that can guide the first robot CR1 is provided on the floor surface of the lower section in the single substrate transfer area R3. Since the rail extends in the front-rear direction (X direction), the first robot CR1 can also move along the rail in the front-rear direction (X direction).
- the dry arm drive mechanism 92a is a mechanism that drives the dry arm 73a, and the dry arm drive control section 92b controls the dry arm drive mechanism 92a.
- the CR wet arm drive mechanism 93a is a mechanism that drives the CR wet arm 72, and the CR wet arm drive control section 93b controls the CR wet arm drive mechanism 93a.
- the slide mechanism 94a is a mechanism for moving the first robot CR1 along the robot guide rail 97a, and the slide control section 94b controls the slide mechanism 94a.
- this section faces the uppermost and middle layer drying chambers 37 (more specifically, the chamber outlet 37b), and is located at the return substrate transfer position (more precisely, the second It faces the return board delivery position P4b).
- the second robot CR2 transports the substrate W between the drying chamber 37 located at the top layer or the middle layer and the second return substrate delivery position P4b in the transfer block 7.
- the second return substrate transfer position P4b is a path that can hold a plurality of substrates W at full pitch, similar to the outward substrate transfer position P1.
- the second return substrate transfer position P4b is located above the outward substrate transfer position P1.
- the second robot CR2 is equipped with a dry arm 73b that grips the substrate W (horizontal posture) after the drying process.
- a robot guide rail 97b that can guide the second robot CR2 is provided on the floor surface of the upper section in the single substrate transfer region R3. Since the rail extends in the front-rear direction (X direction), the second robot CR2 can also move along the rail in the front-rear direction (X direction).
- the dry arm drive mechanism 95a is a mechanism that drives the dry arm 73b, and the dry arm drive control section 95b controls the dry arm drive mechanism 95a.
- the slide mechanism 96a is a mechanism for moving the second robot CR2 along the robot guide rail 97b, and the slide control section 96b controls the slide mechanism 96a.
- FIG. 23 shows how the first robot CR1 carries out the substrate W after the drying process from the drying chamber 37 in the lowest layer.
- the dry arm 73a is configured to be able to enter the drying chamber 37 through the export port 37b and obtain the substrate W from the support member 37c.
- the base 73m is configured to support a pair of dry arms 73a.
- the pin 37d of the support member 37c is provided at a position that avoids the dry arm 73a. Therefore, the pin 37d does not collide with the dry arm 73a that has come to retrieve the substrate W inside the chamber.
- the pin 37d can be rotated by the support member rotation mechanism 36a, so when the pin 37d is in a position where it collides with the dry arm 73a, it is necessary to By appropriately changing the position of the pin 37d, it is possible to prevent the pin 37d from colliding with the dry arm 73a.
- FIG. 23 also describes the CR wet arm 72 provided on the first robot CR1.
- the CR wet arm 72 can be rotated relative to the dry arm 73a by a CR wet arm drive mechanism 93a.
- the CR wet arm 72 is rotated by 90 degrees with respect to the dry arm 73a so as not to interfere with the transport of the substrate W by the dry arm 73a.
- FIG. 24(a) describes a case where the CR wet arm 72 provided on the first robot CR1 is located at a position overlapping the dry arm 73a.
- the dry arm 73a has a configuration that grips both ends of the substrate W, whereas the CR wet arm 72 has a single plate-like configuration. Therefore, the substrate W is transported while being placed on the CR wet arm 72.
- FIG. 24(b) explains the situation when the first robot CR1 is passing the substrate W to be dried to the wet transport mechanism WR.
- the CR wet arm 72 has tabs 72a provided at three locations on a plate-like member. The tab 72a is configured to temporarily fix the peripheral edge of the substrate W when the CR wet arm 72 transports the substrate W.
- the CR wet arm 72 holding the substrate W is placed in a space surrounded by the pair of wet arms 74. In this state, the substrate W is gripped by the wet transport mechanism WR, and the holding of the substrate W by the CR wet arm 72 is released. Then, the substrate W is transferred from the first robot CR1 to the wet transport mechanism WR.
- FIG. 24(b) also describes the dry arm 73a provided on the first robot CR1.
- the dry arm 73a can be rotated relative to the CR wet arm 72 by a dry arm drive mechanism 92a.
- the dry arm 73a is rotated by 90 degrees with respect to the CR wet arm 72 so as not to interfere with the transport of the substrate W by the CR wet arm 72.
- FIG. 23 is a description of the first robot CR1, it has a configuration including a CR wet arm 72.
- the second robot CR2 When the second robot CR2 carries out the drying-processed substrate W from the top layer or middle layer drying chamber 37, the second robot CR2, which is not equipped with the CR wet arm 72, uses the dry arm 73b to dry the substrate W from the drying chamber 37. The processed substrate W is carried out. That is, the second robot CR2 differs from the first robot CR1 in that it does not include the CR wet arm 72, but the operation of the dry arm 73b is similar to the dry arm 73a in the first robot CR1. Further, the manner in which the pin 37d in the uppermost or middle layer drying chamber 37 rotates and avoids the drying arm 73b is similar to that in the lowermost layer drying chamber 37.
- the batch substrate transfer area R4 in the processing block 9 is a rectangular area extending in the front-rear direction (X direction).
- the batch substrate transfer region R4 is provided along the outer edge of the batch processing region R1, and one end side extends to the transfer block 7, and the other end side extends in a direction away from the transfer block 7.
- the batch substrate transport region R4 is provided with a transport mechanism WTR that transports a plurality of substrates W (in a vertical posture) all at once.
- the transport mechanism WTR transfers a plurality of substrates W (lots) arranged at half pitch to a vertical substrate transfer position P2 defined in the transfer block 7, to each of the batch processing units BPU1 to BPU3, and to the posture conversion unit VHU. be transported in bulk between
- the transport mechanism WTR is configured to be able to reciprocate in the front-rear direction (X direction) across the transfer block 7 and the processing block 9. That is, the transport mechanism WTR can move not only to the processing block 9 but also to the vertical substrate delivery position P2 in the transfer block 7.
- the transport mechanism WTR corresponds to the batch substrate transport mechanism of the present invention.
- the transport mechanism WTR includes a pair of hands 23 that grip the lot.
- the pair of hands 23 includes, for example, a rotating shaft oriented in the width direction (Y direction), and swings around this rotating shaft.
- the pair of hands 23 clamps both ends of a plurality of substrates W constituting a lot.
- the transport mechanism WTR transfers lots between the vertical substrate transfer position P2 in the transfer block 7, the lifters LF1 to LF3 belonging to the batch processing units BPU1 to BPU3, and the VHU pusher 23a in the attitude changing unit VHU.
- the substrate processing apparatus 1 of this example includes a CPU (Central Processing Unit) 89a that controls each mechanism and each processing part, and a memory that stores various information necessary for the processing process such as programs and setting values.
- a portion 89b is provided.
- the control performed by the CPU includes, for example, the batch transfer mechanism 19, the first posture conversion mechanism PCR, the substrate pickup mechanism WDB, each batch processing unit BPU1 to BPU3, the posture conversion unit VHU, the wet transfer mechanism WR, the first robot CR1, and the first robot CR1. This control is related to the operations of the 2 robot CR2, the transport mechanism WTR, etc.
- ⁇ Substrate processing flow> 25 is a flowchart for explaining the flow of substrate processing in this example.
- the substrate processing in this example is, for example, performing each process related to surface etching of a substrate W in a semiconductor device manufacturing process.
- the flow of the substrate processing will be specifically explained below with reference to the flowchart.
- Step S11 The carrier C that accommodates the substrate W to be processed is set in the carrier holding section 11. The plurality of substrates W are taken out from the carrier C by the batch transport mechanism 19 and transported to the forward substrate delivery position P1.
- Step S12 The plurality of substrates W are passed to the first posture conversion mechanism PCR.
- the first attitude conversion mechanism PCR converts the attitude of the substrate W from a horizontal attitude to a vertical attitude.
- Step S13 The plurality of substrates W whose posture has been converted to the vertical posture are passed to the pusher mechanism 22.
- the pusher mechanism 22 cooperates with the substrate pickup mechanism WDB to change the arrangement pitch of the substrates W, which is a full pitch, to a half pitch, thereby executing batch grouping.
- Step S14 The plurality of substrates W transported to the vertical substrate delivery position P2 are transported to the batch processing area R1 by the substrate transport mechanism WTR.
- the plurality of substrates W are subjected to various liquid treatments while forming a lot.
- Step S15 The plurality of substrates W transported to the attitude changing unit VHU by the substrate transport mechanism WTR are delivered to the second attitude changing mechanism 20.
- the second attitude conversion mechanism 20 converts the attitude of the substrate W from a vertical attitude to a horizontal attitude, and causes the plurality of substrates W to wait at the horizontal substrate delivery position P3.
- FIG. 26 explains substrate transport related to steps S11 to S15. In each process shown in FIG. 26, a plurality of substrates W are transported at once.
- Step S16 The first robot CR1 in the single wafer processing area R3 receives one substrate W from the second attitude changing mechanism 20 using the CR wet arm 72, and transfers it to the wet transport mechanism in the single wafer processing area R2. It is passed to the WR (see FIG. 24(b)).
- Step S17 The wet transport mechanism WR carries the substrate W to be dried into one of the empty drying chambers 37 (drying chambers 37 not in the process of drying) located at the top, middle, and bottom layers.
- the drying chamber 37 performs a drying process on the loaded substrate W.
- Step S18 The substrate W after the drying process is carried out from the chamber by the first robot CR1 or the second robot CR2. Specifically, the substrate W in the drying chamber 37 located at the lowest layer is transported to the first return substrate delivery position P4a by the dry arm 73a of the first robot CR1. Further, the substrate W in the drying chamber 37 located in the uppermost layer and the middle layer is transported to the second return substrate delivery position P4b by the second robot CR2.
- FIG. 27 explains the substrate transport in steps S16 to S18. In each process shown in FIG. 27, substrates W are transported one by one.
- FIG. 27 illustrates the manner in which a substrate W in the drying chamber 37 located at the bottom is transported to the first return path substrate transfer position P4a.
- Step S19 Steps S16 to 18 described above are repeated several times, and a predetermined number of substrates W are filled into the path arranged at the first return substrate transfer position P4a or the second return substrate transfer position P4b. Then, the substrates W in the pass are grasped by the batch transport mechanism 19 and returned to the original carrier C.
- FIG. 28 shows how a plurality of substrates W are transported at once in step S19. Note that FIG. 28 illustrates how a plurality of substrates W are transported from the first return substrate delivery position P4a. In this way, the substrate processing by the substrate processing apparatus 1 according to this example is completed.
- the substrates W are taken out all at once from the carrier C that stores a plurality of substrates W in a horizontal attitude, and the attitude of the substrates W is changed from the horizontal attitude to the vertical attitude by the first attitude changing mechanism PCR. Convert in batch. Then, the plurality of substrates W are subjected to batch processing in the batch processing area R1 while maintaining the vertical posture, and the postures of the substrates W are collectively converted from the vertical posture to the horizontal posture by the second posture conversion mechanism 20. Thereafter, the substrate W is subjected to single-wafer processing in the single-wafer processing region R2 while maintaining the horizontal attitude. Specifically, the single wafer process is a substrate drying process.
- the single wafer processing region R2 of the present invention is equipped with a wet transport mechanism WR that transports the wet substrate W to be dried to the drying chamber 37, and a first wet transport mechanism WR that transports the dry substrate W after the drying process to the drying chamber 37. It includes a robot CR1 and a second robot CR2. With this configuration, the loading and unloading of the substrates W into and out of the drying chamber 37 can be realized by different mechanisms, so that there is no congestion in transporting the substrates around the drying chamber 37.
- the drying chambers 37 are stacked vertically, and the structure is such that substrate transportation around the drying chambers 37 is smooth, so that many drying chambers can be mounted on the same floor space as the conventional device. It is possible to provide a substrate processing apparatus that
- the substrate processing apparatus 2 according to this embodiment differs from the apparatus according to the first embodiment in that a third robot CR3 and a fourth robot CR4 are provided in the lower section of the single substrate transport area R3.
- the specific apparatus configuration will be described later.
- FIG. 29 describes the overall configuration of the substrate processing apparatus 2.
- the loading/unloading block 3, supply block 5, and transfer block 7 in the substrate processing apparatus 2 are the same as those in the apparatus of the first embodiment. Further, the configuration of the batch processing area R1 and the batch substrate transport area R4 in the processing block 9 of this example is also the same as that of the first embodiment.
- ⁇ Single-substrate processing area> 30 is a side view illustrating the single wafer processing region R2 of this embodiment.
- the single wafer processing region R2 of this embodiment is provided with six single wafer type substrate processing chambers.
- This embodiment is similar to the first embodiment in that three substrate processing chambers are stacked to form a stack, two stacks are provided, and a wet transport mechanism WR is provided between the two stacks.
- the laminates located away from the transfer block 7 are subjected to substrate drying pre-treatment, which performs pre-treatment for drying, unlike in Example 1.
- a chamber 38 is provided.
- the substrate drying pretreatment chamber 38 supplies IPA (isopropyl alcohol) to the surface of the substrate to be dried to perform a preliminary process of drying.
- the liquid to be supplied is not limited to IPA, and may be a mixture of IPA and water.
- the substrate drying pretreatment chamber 38 is provided at the lowest layer in the stack.
- the plan view of FIG. 29 illustrates a single wafer processing chamber located at the lowest layer of the stack in the single wafer processing region R2. Therefore, the wet transport mechanism WR in FIG. 29 is located between the drying chamber 37 provided on the transfer block 7 side and the substrate drying pretreatment chamber 38 provided at a position away from the transfer block 7. .
- the substrate drying pretreatment chamber 38 is located at the same position as the second attitude change mechanism 20 in the front-to-rear direction (X direction).
- the substrate drying pretreatment chamber 38 includes an inlet 38a and an outlet 38b, each of which is equipped with a shutter. During the pre-drying process, the shutters at the inlet 38a and the outlet 38b are closed to prevent IPA in the chamber from scattering outside the chamber.
- the substrate drying pretreatment chamber 38 unlike the drying chamber 37, does not necessarily need to have pressure resistance.
- the substrate drying pretreatment chamber 38 includes a rotation processing section 33 that rotates the substrate W in a horizontal position, and a nozzle 35 that supplies processing liquid (IPA) toward the substrate W.
- the rotation processing unit 33 rotates the substrate W within the XY plane (horizontal plane).
- the nozzle 35 is rotatable between a standby position away from the rotation processing section 33 and a supply position located above the rotation processing section 33 .
- FIG. 31 is a side view illustrating the single wafer substrate transfer region R3 of this example.
- the single wafer substrate transfer region R3 of this example is provided with an upper section and a lower section formed by partition walls, and the upper section has the same configuration as the first embodiment. That is, this section receives dried substrates from the drying chambers 37 located at the top and middle layers of the stack of chambers provided in the single wafer processing region R2, and transfers them to the second return substrate delivery position P4b.
- a second handing robot CR2 is provided.
- the second robot CR2 is movable in the front-rear direction (X direction) and includes a dry arm 73b that grips the substrate W after the drying process.
- Two robots are provided in the lower area of the single wafer substrate transfer area R3 in this example. That is, the lower region is provided with a third robot CR3 that transports the substrate W after the drying process, and a fourth robot CR4 that transports the wet substrate W that is the target of the drying process.
- the third robot CR3 is provided with a dry arm 73c similar to the dry arm 73b of the second robot CR2, and the fourth robot CR4 is provided with a CR wet arm 72 similar to the dry arm 72 of the first robot CR1 of the first embodiment. It is equipped with a CR wet arm 75.
- the third robot CR3 is provided closer to the transfer block 7 than the fourth robot CR4, and extends from the drying chamber 37 adjacent to the transfer block 7 in the single wafer processing area R2 to the first return substrate delivery position P4a.
- the substrate W (horizontal posture) after the drying process is transported.
- One drying chamber 37 adjacent to the transfer block 7 is provided in each of the top layer, middle layer, and bottom layer, and the third robot CR3 can access the drying chamber 37 located in the bottom layer among these. It is.
- substrates W are arranged at full pitch intervals in the vertical direction (Z direction). Therefore, the dry arm 73c of the third robot CR3 can move up and down so that the substrates W can be stacked at the first return substrate transfer position P4a.
- the fourth robot CR4 is provided at a position farther from the transfer block 7 than the third robot CR3.
- the fourth robot CR4 receives the substrate W (horizontal attitude) from the horizontal substrate delivery position P3 in the batch processing area R1, and receives the substrate W (horizontal attitude) from the loading port 38a of the substrate drying preprocessing chamber 38 in the single wafer processing area R2. It can be carried into the substrate drying pretreatment chamber 38.
- substrates W are arranged at half-pitch intervals in the vertical direction (Z direction). Therefore, the CR wet arm 75 of the fourth robot CR4 can move up and down so that it can acquire the stacked substrates W at the horizontal substrate transfer position P3.
- the fourth robot CR4 is located at the same position as the substrate drying pre-processing chamber 38 and the second attitude changing mechanism 20 in the front-rear direction (X direction). Therefore, the fourth robot CR4 faces the substrate drying pre-processing chamber 38 and also faces the second attitude changing mechanism 20. In this way, the fourth robot CR4 is placed at a position suitable for transporting the substrate W between the second attitude changing mechanism 20 and the substrate drying pretreatment chamber 38.
- the third robot CR3, wet transport mechanism WR, and fourth robot CR4 are at different positions in the front-rear direction (X direction).
- the device of this example can be configured without the mechanism for horizontally moving the third robot CR3 and the control section.
- the fourth robot CR4 it is sufficient for the fourth robot CR4 to be able to access the single substrate drying pretreatment chamber 38 provided in the single wafer processing region R2, and it is not necessarily necessary to move in the front-rear direction (X direction). . Therefore, the device of this example can be configured without the mechanism for horizontally moving the fourth robot CR4 and the control section.
- the CPU in the second embodiment realizes a control unit for the third robot CR3 and the fourth robot CR4, and the storage unit 89b in the second embodiment has the functions according to the first embodiment.
- information regarding the control of the third robot CR3 and fourth robot CR4 is stored.
- the specific configuration of the CPU is not particularly limited. The entire device may include one CPU, or each block may include one or more CPUs. The same applies to the storage section 89b.
- FIG. 32 is a flowchart illustrating the flow of substrate processing in this example. Similar to the first embodiment, the substrate processing in this example involves, for example, various processes related to surface etching of the substrate W in the manufacturing process of a semiconductor device. Hereinafter, the flow of substrate processing will be specifically explained along the flowchart.
- Step S21 As in step S11 in the first embodiment, a carrier C that stores substrates W to be processed is set in the carrier holding unit 11. Multiple substrates W are removed from the carrier C by the batch transport mechanism 19 and transported to the outbound substrate transfer position P1.
- Step S22 Similar to step S12 in the first embodiment, the multiple substrates W are handed over to the first position change mechanism PCR.
- the first position change mechanism PCR changes the position of the substrates W from a horizontal position to a vertical position.
- Step S23 Similar to step S13 of the first embodiment, the plurality of substrates W whose posture has been converted to the vertical posture are passed to the pusher mechanism 22.
- the pusher mechanism 22 cooperates with the substrate pickup mechanism WDB to change the arrangement pitch of the substrates W from full pitch to half pitch.
- Step S24 Similar to step S14 of Example 1, the plurality of substrates W transported to the vertical substrate delivery position P2 are transported to the batch processing area R1 by the substrate transport mechanism WTR. The plurality of substrates W are subjected to various liquid treatments while forming a lot.
- Step S25 As in step S15 in the first embodiment, the multiple substrates W transported by the substrate transport mechanism WTR to the orientation change unit VHU are handed over to the second orientation change mechanism 20.
- the second orientation change mechanism 20 changes the orientation of the substrates W from a vertical orientation to a horizontal orientation, and causes the multiple substrates W to wait at the horizontal substrate transfer position P3.
- FIG. 33 explains substrate transport related to steps S21 to 25. In each process shown in FIG. 33, a plurality of substrates W are transported at once.
- Step S26 The plurality of substrates W waiting at the horizontal substrate delivery position P3 are transported one by one to the substrate drying pretreatment chamber 38 by the fourth robot CR4. That is, the substrate W at the horizontal substrate transfer position P3 is gripped by the CR wet arm 75 of the fourth robot CR4 and carried into an empty substrate drying preprocessing chamber 38 (a substrate drying preprocessing chamber 38 that is not undergoing drying preprocessing). .
- the fourth robot CR4 waits without gripping the substrate W until the substrate drying preprocessing chamber 38 is empty, and the fourth robot CR4 waits without gripping the substrate W until the substrate drying preprocessing chamber 38 is empty.
- the chamber becomes vacant one substrate W is acquired from the horizontal substrate transfer position P3 and transported to the substrate drying pretreatment chamber 38.
- Step S27 When the substrate W is loaded into the substrate drying pretreatment chamber 38, the shutters at the loading entrance 38a and unloading exit 38b are closed and a drying pretreatment is carried out inside the chamber. This process supplies IPA to the surface of the substrate W.
- Step S28 Similar to step S17 of the first embodiment, the wet transport mechanism WR transfers the substrate W to be dried to the empty drying chambers 37 (drying chambers 37 that are not undergoing drying) located at the top, middle, and bottom layers. Transport it to either location.
- the drying chamber 37 performs a drying process on the loaded substrate W.
- Step S29 Similar to step S18 of Example 1, the substrate W after the drying process is carried out from the chamber by the second robot CR2 or the third robot CR3. Specifically, the substrate W in the drying chamber 37 located at the lowest layer is transported to the first return substrate delivery position P4a by the dry arm 73c of the third robot CR3. Further, the substrate W in the drying chamber 37 located in the uppermost layer and the middle layer is transported to the second return substrate delivery position P4b by the second robot CR2.
- FIG. 34 explains the substrate transport in steps S26 to S29.
- substrates W in a horizontal position are transported one by one.
- FIG. 34 illustrates how a substrate W in the drying chamber 37 located at the bottom is transported by the third robot CR3 to the first return substrate transfer position P4a.
- Step S30 Steps S26 to 29 described above are repeated several times, and a predetermined number of substrates W are filled into the path arranged at the first return substrate transfer position P4a or the second return substrate transfer position P4b. Then, the substrates W in the pass are grasped by the batch transport mechanism 19 and returned to the original carrier C. This step is similar to step 19 of the first embodiment.
- FIG. 35 shows how a plurality of substrates W are transported all at once in step S30. Note that FIG. 35 illustrates how a plurality of substrates W are transported from the first return substrate delivery position P4a. In this way, the substrate processing by the substrate processing apparatus 2 according to this example is completed.
- the fourth robot CR4 of this example sends the substrate W to the substrate drying pretreatment chamber 38, and the wet transport mechanism WR receives the substrate W from the substrate drying pretreatment chamber 38.
- the substrate W can be transferred more reliably, and the substrate W to be dried can be
- a substrate processing apparatus 2 that can perform processing reliably can be provided.
- the present invention is not limited to the above-described configuration, and can be modified as follows.
- the drying chamber 37 described above is a supercritical fluid chamber, the present invention is not limited to this configuration.
- the drying chamber 37 may be configured as a chamber capable of spin drying.
- ⁇ Modification 3> In the single wafer processing region R2 described above, a plurality of laminates in which a predetermined number of drying chambers 37 are stacked in the vertical direction (Z direction) are provided, but the present invention is not limited to this configuration. It can also be applied to devices with Such an apparatus has a configuration in which the stack on the right or left side of the wet transport mechanism WR in FIG. 19 is omitted.
- the single substrate transfer area R3 may not be divided by a partition wall, and instead of the first robot CR1 and the second robot CR2, a single robot may be provided that collectively performs the transfer performed by each robot.
- the first robot CR1 in the single wafer substrate transfer area R3 described above can access the chamber located at the bottom layer in the single wafer processing area R2, and the second robot CR2 can access the chamber located at the bottom layer in the single wafer processing area R2. Although the chamber located therein is accessible, the invention is not limited to this configuration.
- the first robot CR1 may be configured to be able to access a chamber located at the middle or lowest level in the single wafer processing area R2, and the second robot CR2 may be configured to be able to access a chamber located at the lowest level in the single wafer processing area R2 accordingly. .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
装置のサイズを抑えつつ、配設される枚葉式チャンバの個数を増加させることにより、スループットが改善された基板処理装置を提供する。本発明によれば、枚葉式チャンバを鉛直方向に積層できるので、従来装置と同じ床面積であってもより多くの枚葉式チャンバが搭載された基板処理装置を提供できる。更に、枚葉式チャンバ(乾燥チャンバ37)に基板Wを搬入する機構と、乾燥チャンバ37から基板Wを搬出する機構とを独立して設ける構成とすれば、乾燥チャンバ37周辺の基板搬送がスムーズとなるように構成できる。本発明によれば、小型でありながらスループットが高い基板処理装置1が提供できる。
Description
本発明は、半導体基板、液晶表示用や有機EL(Electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、フォトマスク用ガラス基板、光ディスク用基板等の各種基板に所定の処理を行う基板処理装置に関する。
従来、この種の装置として、バッチ式モジュール、枚葉式モジュールを備えたものがある(例えば、特許文献1参照)。バッチ式モジュールは、複数枚の基板に対して一括して所定の処理を行う。枚葉式モジュールは、1枚ずつの基板に所定の処理を行う。バッチ式モジュール、枚葉式モジュールには、それぞれ固有の長所がある。例えば、枚葉式モジュールは、バッチ式モジュールよりも乾燥処理におけるパーティクル性能が高い。従って、バッチ式モジュール、枚葉式モジュールを備えた装置としては、バッチ式モジュールにおいて液処理を行った後、枚葉式モジュールにおいて乾燥処理を行う構成が考えられる。
特許文献1に記載の装置においては、乾燥処理を行う枚葉式チャンバが水平方向に一列に配列される。バッチ処理後の基板には、複数設けられた枚葉式チャンバのいずれかで乾燥処理が施される。すなわち、バッチ処理後の基板は、枚葉式チャンバの配列方向に移動可能な搬送機構によって搬送され、基板の受け入れが可能な枚葉式チャンバに導入される。バッチ処理が終了すると、複数枚の基板が乾燥処理待ちの状態となる。枚葉式チャンバは、1枚ずつしか基板の乾燥処理を行えない。そこで、特許文献1に記載の装置は、スループットを高める目的で複数の枚葉式チャンバを装置に搭載して、異なる基板に対し乾燥処理を同時に行うようにしている。特許文献1に記載の装置において、複数枚の基板に対する乾燥処理を素早く終えるには、可能な限り多くの枚葉式チャンバを水平方向に一列に配列すればよい。
しかしながら、この様な構成を有する従来装置は、次のような問題点がある。
すなわち、従来装置においては、枚葉式チャンバを増設すればその分、装置が大型化してしまう。従来構成によれば、枚葉式チャンバを増設しようとすると、枚葉式チャンバを水平方向に一列に配列するしかないので、枚葉式チャンバの数だけ基板処理装置の長さが延伸してしまう。基板処理装置において許容できる長さには限界がある。その限界に従おうとすると、従来構成によれば、枚葉式チャンバの個数を限定するしかない。このような装置によれば、枚葉式チャンバの処理速度が装置全体の処理速度におけるボトルネックになってしまい、処理全体としてのスループットが低い。
すなわち、従来装置においては、枚葉式チャンバを増設すればその分、装置が大型化してしまう。従来構成によれば、枚葉式チャンバを増設しようとすると、枚葉式チャンバを水平方向に一列に配列するしかないので、枚葉式チャンバの数だけ基板処理装置の長さが延伸してしまう。基板処理装置において許容できる長さには限界がある。その限界に従おうとすると、従来構成によれば、枚葉式チャンバの個数を限定するしかない。このような装置によれば、枚葉式チャンバの処理速度が装置全体の処理速度におけるボトルネックになってしまい、処理全体としてのスループットが低い。
本発明はこの様な事情に鑑みてなされたものであって、装置のサイズを抑えつつ、配設される枚葉式チャンバの個数を増加させることにより、スループットが改善された基板処理装置を提供することにある。
本発明はこの様な目的を達成するために次のような構成をとる。
複数枚の基板を一括して処理するバッチ処理と、基板を1枚ずつ処理する枚葉処理とを連続して行う基板処理装置であって、複数枚の基板を供給する供給ブロックと、前記供給ブロックに隣接する移載ブロックと、前記移載ブロックに隣接する処理ブロックと、を備え、前記供給ブロックは、水平姿勢であり鉛直方向に所定間隔で配列された複数枚の基板をキャリアから搬出して前記移載ブロックにおける往路用基板受け渡し位置に送出し、水平姿勢であり鉛直方向に前記所定間隔で配列された複数枚の基板を前記移載ブロックにおける復路用基板受け渡し位置から受け取って前記キャリアに収納する一括搬送機構を備え、前記移載ブロックは、前記往路用基板受け渡し位置で待機する複数枚の基板を一括に保持して、複数枚の基板の姿勢を水平姿勢から鉛直姿勢に一括して変換する第1姿勢変換機構と、鉛直姿勢となっている複数枚の基板を前記移載ブロックにおける鉛直基板受け渡し位置に待機させる鉛直基板支持部材と、を備え、前記処理ブロックは、一端側が前記移載ブロックに隣接し、他端側が前記移載ブロックから離れる方向に延びるバッチ処理領域と、一端側が前記移載ブロックに隣接し、他端側が前記移載ブロックから離れる方向に延びる枚葉処理領域と、前記バッチ処理領域と前記枚葉処理領域との間に介在して、一端側が前記移載ブロックに隣接し、他端側が前記移載ブロックから離れる方向に延びる枚葉基板搬送領域と、前記バッチ処理領域に沿って設けられ、一端側が前記移載ブロックに隣接し、他端側が前記移載ブロックから離れる方向に延びるバッチ基板搬送領域と、を備え、前記処理ブロックにおける前記バッチ処理領域には、その領域が延びる方向に複数枚の基板を一括して浸漬処理する複数個のバッチ処理槽が並び、更に、前記移載ブロックから最も離れた位置に複数枚の基板の姿勢を一括して鉛直姿勢から水平姿勢に変換する第2姿勢変換機構と、水平姿勢となっている複数枚の基板を前記バッチ処理領域における水平基板受け渡し位置に待機させる水平基板支持部材と、が備えられ、前記処理ブロックにおける前記枚葉処理領域には、基板の乾燥処理を行う複数個の乾燥チャンバが鉛直方向に並び、更に、前記乾燥チャンバに乾燥処理前の基板を搬入する基板搬入機構と、が備えられ、前記処理ブロックにおける前記枚葉処理領域には、鉛直方向に基板の乾燥処理を行う複数の乾燥チャンバが並び、更に、前記乾燥チャンバに乾燥処理前の基板を搬入する基板搬入機構と、が備えられ、前記処理ブロックにおける前記枚葉基板搬送領域には、前記水平基板受け渡し位置から水平姿勢の基板を受け取り、前記枚葉処理領域に基板を渡す枚葉基板受け渡し機構と、前記乾燥チャンバから乾燥処理後の基板を前記移載ブロックにおける前記復路用基板受け渡し位置まで搬出する基板搬出機構と、が備えられ、前記処理ブロックにおける前記バッチ基板搬送領域には、前記移載ブロック内に定められた前記鉛直基板受け渡し位置と、前記バッチ処理槽の各々と前記第2姿勢変換機構との間で複数枚の基板を一括して搬送するバッチ基板搬送機構と、が備えられることを特徴とする基板処理装置。
複数枚の基板を一括して処理するバッチ処理と、基板を1枚ずつ処理する枚葉処理とを連続して行う基板処理装置であって、複数枚の基板を供給する供給ブロックと、前記供給ブロックに隣接する移載ブロックと、前記移載ブロックに隣接する処理ブロックと、を備え、前記供給ブロックは、水平姿勢であり鉛直方向に所定間隔で配列された複数枚の基板をキャリアから搬出して前記移載ブロックにおける往路用基板受け渡し位置に送出し、水平姿勢であり鉛直方向に前記所定間隔で配列された複数枚の基板を前記移載ブロックにおける復路用基板受け渡し位置から受け取って前記キャリアに収納する一括搬送機構を備え、前記移載ブロックは、前記往路用基板受け渡し位置で待機する複数枚の基板を一括に保持して、複数枚の基板の姿勢を水平姿勢から鉛直姿勢に一括して変換する第1姿勢変換機構と、鉛直姿勢となっている複数枚の基板を前記移載ブロックにおける鉛直基板受け渡し位置に待機させる鉛直基板支持部材と、を備え、前記処理ブロックは、一端側が前記移載ブロックに隣接し、他端側が前記移載ブロックから離れる方向に延びるバッチ処理領域と、一端側が前記移載ブロックに隣接し、他端側が前記移載ブロックから離れる方向に延びる枚葉処理領域と、前記バッチ処理領域と前記枚葉処理領域との間に介在して、一端側が前記移載ブロックに隣接し、他端側が前記移載ブロックから離れる方向に延びる枚葉基板搬送領域と、前記バッチ処理領域に沿って設けられ、一端側が前記移載ブロックに隣接し、他端側が前記移載ブロックから離れる方向に延びるバッチ基板搬送領域と、を備え、前記処理ブロックにおける前記バッチ処理領域には、その領域が延びる方向に複数枚の基板を一括して浸漬処理する複数個のバッチ処理槽が並び、更に、前記移載ブロックから最も離れた位置に複数枚の基板の姿勢を一括して鉛直姿勢から水平姿勢に変換する第2姿勢変換機構と、水平姿勢となっている複数枚の基板を前記バッチ処理領域における水平基板受け渡し位置に待機させる水平基板支持部材と、が備えられ、前記処理ブロックにおける前記枚葉処理領域には、基板の乾燥処理を行う複数個の乾燥チャンバが鉛直方向に並び、更に、前記乾燥チャンバに乾燥処理前の基板を搬入する基板搬入機構と、が備えられ、前記処理ブロックにおける前記枚葉処理領域には、鉛直方向に基板の乾燥処理を行う複数の乾燥チャンバが並び、更に、前記乾燥チャンバに乾燥処理前の基板を搬入する基板搬入機構と、が備えられ、前記処理ブロックにおける前記枚葉基板搬送領域には、前記水平基板受け渡し位置から水平姿勢の基板を受け取り、前記枚葉処理領域に基板を渡す枚葉基板受け渡し機構と、前記乾燥チャンバから乾燥処理後の基板を前記移載ブロックにおける前記復路用基板受け渡し位置まで搬出する基板搬出機構と、が備えられ、前記処理ブロックにおける前記バッチ基板搬送領域には、前記移載ブロック内に定められた前記鉛直基板受け渡し位置と、前記バッチ処理槽の各々と前記第2姿勢変換機構との間で複数枚の基板を一括して搬送するバッチ基板搬送機構と、が備えられることを特徴とする基板処理装置。
[作用・効果]上述した(1)に係る発明によれば、水平姿勢で複数枚の基板を収納するキャリアから基板を一括に取り出し、第1姿勢変換機構で基板の姿勢を水平姿勢から鉛直姿勢に一括で変換する。そして、鉛直姿勢を保った状態で複数枚の基板はバッチ処理領域によりバッチ処理が施される。バッチ処理が施された後、第2姿勢変換機構で基板の姿勢を鉛直姿勢から水平姿勢に一括で変換する。その後、水平姿勢を保った状態で基板は、枚葉処理領域により、枚葉処理がされる。枚葉処理には具体的には、基板乾燥処理を含む。本発明の枚葉基板処理領域には、乾燥処理対象の濡れた基板を乾燥チャンバに搬送する基板搬入機構を備え、更に乾燥処理後の乾いた基板を乾燥チャンバから搬出する基板搬出機構を備えている。この様に構成することで、乾燥チャンバに対する基板の搬入と搬出を異なる機構で実現できるので、乾燥チャンバ周辺において基板の搬送が渋滞しない。本発明によれば、乾燥チャンバが鉛直方向に積層され、更に、乾燥チャンバ周辺の基板搬送がスムーズとなるように構成されているので、従来装置と同じ床面積に多くの乾燥チャンバを搭載する基板処理装置を提供できる。
本発明は以下のような特徴も有している。
(2)(1)に記載の基板処理装置において、前記基板搬入機構は、前記枚葉基板受け渡し機構より基板を受け取ることを特徴とする基板処理装置。
[作用・効果]上述した(2)に係る発明によれば、乾燥チャンバに基板を搬入する基板搬入機構は、バッチ処理領域に位置する枚葉基板受け渡し機構より基板を受け取る。この様に構成すれば、基板搬入機構をバッチ処理領域から離れた位置に配置することができる。したがって、(2)に係る発明によれば、基板搬入機構の周りに乾燥チャンバの積層体を複数設けることができ、スループットの高い基板処理装置を提供できる。
(3)(1)に記載の基板処理装置において、前記枚葉処理領域には、乾燥処理の前処理を行う基板乾燥前処理チャンバが備えられ、前記枚葉基板受け渡し機構は、前記基板乾燥前処理チャンバに基板を送出し、前記基板搬入機構は、前記基板乾燥前処理チャンバより基板を受け取ることを特徴とする基板処理装置。
[作用・効果]上述した(3)に係る発明によれば、枚葉基板受け渡し機構は、基板乾燥前処理チャンバに基板を送出し、基板搬入機構は、基板乾燥前処理チャンバより基板を受け取る。この様に構成すれば、基板搬入機構と枚葉基板受け渡し機構との間で基板の受け渡しをする必要がなくなるので、より確実に基板を搬送し、且つ、乾燥処理対象の基板の前処理を確実に行うことができる基板処理装置を提供できる。
(4)(2)に記載の基板処理装置において、前記枚葉基板受け渡し機構は、前記基板搬出機構と兼用のロボットで構成され、前記枚葉基板受け渡し機構は、乾燥処理前の基板を支持する受け渡しアームを有し、前記基板搬出機構は、乾燥処理後の基板を支持する搬出アームを有し、前記搬出アームは、前記受け渡しアームの上部に設けられていることを特徴とする基板処理装置。
[作用・効果]上述した(4)に係る発明によれば、枚葉基板受け渡し機構は、基板搬出機構と兼用のロボットで構成され、乾燥処理後の基板を支持する搬出アームは、乾燥処理前の基板を支持する受け渡しアームの上部に設けられている。この様に構成すれば、濡れた基板を搬送する受け渡しアームから液が乾燥した基板を搬送する搬出アームに垂れ落ちて基板に悪影響を与えることがない。
(5)(1)に記載の基板処理装置において、前記乾燥チャンバは、超臨界流体により基板を乾燥させることを特徴とする基板処理装置。
[作用・効果]上述した(5)に係る発明によれば、表面張力が0の状態で基板の乾燥が行われるので、基板表面に設けられた回路のパターン倒れが発生しない。
(6)(3)に記載の基板処理装置において、前記基板乾燥前処理チャンバは、イソプロピルアルコールにより基板を予備乾燥させることを特徴とする基板処理装置。
[作用・効果]上述した(6)に係る発明によれば、イソプロピルアルコールにより確実に基板乾燥の前処理を実行することができる。
(7)(1)に記載の基板処理装置において、前記処理ブロックにおける前記枚葉処理領域には、前記基板搬入機構の両側に前記乾燥チャンバの積層体が設けられることを特徴とする基板処理装置。
[作用・効果]上述した(7)に係る発明によれば、枚葉処理領域には、基板搬入機構の両側に乾燥チャンバの積層体が設けられる。この様に構成すれば、基板搬入機構に面する乾燥チャンバの個数を増やすことができるので、より多くの基板に対して乾燥処理を平行して行える。この様に構成すれば、スループットが高い基板処理装置が提供できる。
(8)(1)に記載の基板処理装置において、前記処理ブロックにおける前記バッチ基板搬送領域には、前記乾燥チャンバの積層体の上層において基板を搬出する第1基板搬出機構と、前記乾燥チャンバの積層体の下層において基板を搬出する第2基板搬出機構と、が備えられ、前記移載ブロックには、前記第1基板搬出機構が基板を搬出する第1復路用基板受け渡し位置が設定され、前記第2基板搬出機構が基板を搬出する第2復路用基板受け渡し位置が設定されることを特徴とする基板処理装置。
[作用・効果]上述した(8)に係る発明によれば、乾燥処理済みの基板がキャリアに戻る経路が複数存在する。そして、第1基板搬出機構、第2基板搬出機構は、互いに異なる経路の各々に対応し、第1の経路に関する基板搬送は第1基板搬出機構が行い、第2の経路に関する基板搬送は第2基板搬出機構が行う。この様に構成すれば、スループットが高い基板処理装置が提供できる。
本発明によれば、装置のサイズを抑えつつ、配設される枚葉式チャンバの個数を増加させることにより、スループットが改善された基板処理装置を提供できる。従来構成においては、枚葉式チャンバを増設しようとすると、枚葉式チャンバを水平方向に一列に配列するしかないので、枚葉式チャンバの数だけ基板処理装置の長さが延伸してしまう。これに比べて本発明によれば、枚葉式チャンバを鉛直方向に積層できるので、従来装置と同じ床面積であってもより多くの枚葉式チャンバが搭載された基板処理装置を提供できる。更に、枚葉式チャンバ(基板乾燥処理チャンバ)に基板を搬入する機構と、基板乾燥処理チャンバから基板を搬出する機構とを独立して設ける構成とすれば、乾燥チャンバ周辺の基板搬送がスムーズとなるように構成できる。本発明によれば、小型でありながらスループットが高い基板処理装置が提供できる。
以下、図面を参照しながら本発明の実施例について説明する。本発明の基板処理装置は、複数枚の基板Wを一括して処理するバッチ処理の後、基板Wを1枚ずつ処理する枚葉処理を行う装置である。
<1.全体構成>
基板処理装置1は、図1に示すように隔壁により区画された各ブロックを有している。すなわち、基板処理装置1は、基板を収納するキャリアを載置する搬入出ブロック3と、搬入出ブロック3に隣接した供給ブロック5と、供給ブロック5に隣接する移載ブロック7と、移載ブロック7に隣接する処理ブロック9を備えている。供給ブロック5は、本発明の供給ブロックに相当し、移載ブロック7は、本発明の移載ブロック7に相当する。処理ブロック9は、本発明の処理ブロックに相当する。
基板処理装置1は、図1に示すように隔壁により区画された各ブロックを有している。すなわち、基板処理装置1は、基板を収納するキャリアを載置する搬入出ブロック3と、搬入出ブロック3に隣接した供給ブロック5と、供給ブロック5に隣接する移載ブロック7と、移載ブロック7に隣接する処理ブロック9を備えている。供給ブロック5は、本発明の供給ブロックに相当し、移載ブロック7は、本発明の移載ブロック7に相当する。処理ブロック9は、本発明の処理ブロックに相当する。
基板処理装置1は、例えば、基板Wに対して、薬液処理、洗浄処理、乾燥処理などの所定の各処理を行う。基板処理装置1は、複数枚の基板Wを一括しに処理するバッチ式の処理方法と、基板Wを1枚ずつ処理する枚葉式の処理方法の両方を併用した処理方式(いわゆるハイブリッド方式)を採用している。バッチ式の処理方法は、鉛直姿勢で配列された複数枚の基板Wを一括で処理する処理方法である。枚葉式の処理方法は、水平姿勢となっている基板Wを1枚ずつ処理する処理方法である。
本明細書では、便宜上、搬入出ブロック3と、供給ブロック5と、移載ブロック7と、処理ブロック9と、が配列する方向を「前後方向X」とよぶ。当該前後方向Xは、水平に延びる。前後方向Xのうち、供給ブロック5から搬入出ブロック3に向かう方向を「前方」とよぶ。前方と反対側の方向を「後方」とよぶ。前後方向Xと直交する方向を「幅方向Y」とよぶ。当該幅方向Yは、水平に延びる。幅方向Yの一方向を便宜上「右方」とよび、反対側の方向を「左方」とよぶ。前後方向X,幅方向Yと直交する方向(高さ方向)を便宜上「鉛直方向Z」とよぶ。各図では、参考として前、後、右、左、上、下を適宜示す。
<2.搬入出ブロック>
搬入出ブロック3は、複数枚の基板Wを水平姿勢で所定間隔を空けて鉛直方向に配列させて収納するキャリアCを保持するキャリア保持部11を備える。キャリア保持部11は、幅方向(Y方向)に延びる搬入出ブロック3の外壁に設けられている。キャリア保持部11には、基板処理装置1における幅方向(Y方向)の中央部から見て右方に設けられているものと、左方に設けられているものとがある。2つのキャリア保持部11は、1つのロードポートとよばれる。
搬入出ブロック3は、複数枚の基板Wを水平姿勢で所定間隔を空けて鉛直方向に配列させて収納するキャリアCを保持するキャリア保持部11を備える。キャリア保持部11は、幅方向(Y方向)に延びる搬入出ブロック3の外壁に設けられている。キャリア保持部11には、基板処理装置1における幅方向(Y方向)の中央部から見て右方に設けられているものと、左方に設けられているものとがある。2つのキャリア保持部11は、1つのロードポートとよばれる。
基板Wは、複数枚(例えば25枚)が1つのキャリアC内に水平姿勢で一定の間隔を空けて積層収納される。基板処理装置1に搬入される処理対象の基板Wを収納したキャリアCは、まず、キャリア保持部11のいずれかに載置される。キャリア保持部11は、例えば、キャリアCが載置される載置台15を2つ備える。キャリアCは、基板Wの面同士を離間させた状態で収容する水平方向に延びる複数の溝(図示省略)が形成されている。複数の溝は、全体として櫛形となるように離間して配置されている。当該溝の各々に基板Wが1枚ずつ挿入される。キャリアCとしては、例えば、密閉型のFOUP(Front Opening Unify Pod)がある。本発明においては、キャリアCとして開放型容器を採用してもよい。
<3.供給ブロック>
供給ブロック5は、複数枚の基板を後続の移載ブロック7に供給する機能を有している。すなわち、供給ブロック5は、搬入出ブロック3と移載ブロック7とに挟まれる位置に設けられている。供給ブロック5は、搬入出ブロック3におけるキャリア保持部11に保持されたキャリアCから複数枚の基板を一括して取り出して、これらを移載ブロック7に渡す一括搬送機構19を有している。一括搬送機構19が有する鉛直方向Zに延びる支柱81は、供給ブロック5における中央の位置、すなわち、X方向、Y方向のいずれにおいても中央となる位置に設けられており、この支柱81を基準として一括搬送ハンド71が上下、左右、前後方向に移動する。供給ブロック5は、この一括搬送ハンド71の動作の妨げとならないように十分な大きさの空間を有している。
供給ブロック5は、複数枚の基板を後続の移載ブロック7に供給する機能を有している。すなわち、供給ブロック5は、搬入出ブロック3と移載ブロック7とに挟まれる位置に設けられている。供給ブロック5は、搬入出ブロック3におけるキャリア保持部11に保持されたキャリアCから複数枚の基板を一括して取り出して、これらを移載ブロック7に渡す一括搬送機構19を有している。一括搬送機構19が有する鉛直方向Zに延びる支柱81は、供給ブロック5における中央の位置、すなわち、X方向、Y方向のいずれにおいても中央となる位置に設けられており、この支柱81を基準として一括搬送ハンド71が上下、左右、前後方向に移動する。供給ブロック5は、この一括搬送ハンド71の動作の妨げとならないように十分な大きさの空間を有している。
一括搬送機構19は、搬入出ブロック3におけるキャリア保持部11に保持されているキャリアCから複数枚の基板Wを一括して取り出し、移載ブロック7の往路用基板受け渡し位置P1に載置する機能と、移載ブロック7の復路用基板受け渡し位置P4から複数枚の基板Wを一括して受け取り、搬入出ブロック3におけるキャリア保持部11に保持されているキャリアCに戻す機能と、の2つの機能を有する。一括搬送機構19は、キャリアCに収納される複数枚の基板Wにおける各々の位置関係を保った状態で複数枚の基板WをキャリアCから往路用基板受け渡し位置P1まで搬送する。同様に、一括搬送機構19は、復路用基板受け渡し位置P4で配列されている複数枚の基板Wにおける各々の位置関係を保った状態で複数枚の基板Wを復路用基板受け渡し位置P4からキャリアCまで搬送する。この一括搬送機構19の搬送により、キャリアCに収納されている処理対象の基板Wは、基板処理装置1により種々の処理が施された後、元のキャリアCに戻る。一括搬送機構19は、必ずしも複数枚の基板Wの姿勢を変換する機構を備える必要はない。本例における一括搬送機構19は、複数枚の基板Wの姿勢および配列ピッチを保った状態でキャリアCから往路用基板受け渡し位置P1に搬送する。したがって、複数枚の基板Wは、水平姿勢においてフルピッチで配列された状態で一括搬送機構19により搬送される。この様な事情は、一括搬送機構19による復路用基板受け渡し位置P4からキャリアCまでの基板搬送についても同様である。
図2を参照して一括搬送機構19の構成について説明する。図2は、一括搬送機構19の構成を説明する機能ブロック図である。図2が示すように、一括搬送機構19は、各機構を支持する鉛直方向(Z方向)に延びた支柱81を有する。一括搬送機構19は、その他、上下移動が可能な昇降機構82が備えられている。昇降機構82は、支柱81により昇降自在に支持されている。昇降機構82は、回転部材83を回転自在に支持する。回転部材83は、昇降機構82に支持された状態で支柱81の延伸方向(Z方向)と平行な回転軸AX3周りに回転することが可能である。回転軸AX3は、支柱81の中心に位置する仮想的な直線である。
回転部材83は、伸縮自在のアーム85aを支持する。アーム85aは、回転部材83に連接した第1アーム84と、第1アーム84に連接した第2アーム85を備えている。回転部材83における第1アーム84の連接部は、回転部材83の回転中心から遠ざかる方向に延びた突出部となっており、第1アーム84は、当該突出部を延伸するように延びた構成である。第2アーム85は第1アーム84を延伸するように延びた構成である。回転部材83は、第1アーム84の延伸方向に第1アーム84が移動自在となるように第1アーム84を支持し、第1アーム84は、第2アーム85の延伸方向に第2アーム85が移動自在となるように第2アーム85を支持する。したがってアーム85aは、第1アーム84,第2アーム85の延伸方向について伸縮自在である。
第2アーム85の先端には、回転自在な方向転換部材86が備えられている。方向転換部材86は、水平方向に延びたレール87を支持する。したがって、一括搬送機構19は、方向転換の回転により、レール87の延伸方向を変更できるように構成されている。方向転換部材86は、方向転換部材86の中心にあり鉛直方向(Z方向)に延びる仮想線周りに回転する。この回転により、一括搬送ハンド71を搬入出ブロック3側に向けることもできれば、移載ブロック7側に向けることもできる。
レール87は、複数枚の基板Wを一括に把持する一括搬送ハンド71をレール87の延伸方向に移動可能に支持する。したがって一括搬送ハンド71は、レール87に沿って進退することができる。レール87の上下方向における位置は、昇降機構82により変更可能である。レール87の水平面上の位置は、アームと回転部材83により変更可能である。したがって、一括搬送ハンド71は、供給ブロック5内の空間において自在に移動することができる。そして、レール87の向きは方向転換部材86により変更可能である。したがって、一括搬送ハンド71は、供給ブロック5内の空間における任意の位置において前後方向(X方向)に移動することができる。したがって、一括搬送ハンド71は、搬入出ブロック3におけるキャリア保持部11に保持されたキャリアCまで移動可能であり、レール87上を前進することにより、一括搬送ハンド71は、キャリアCの内部まで移動されることが可能である。そして、一括搬送ハンド71は、レール87上を後退することにより、把持した複数枚の基板WをキャリアCから取り出すことができる。これら動作の逆を辿れば、一括搬送ハンド71は、把持している複数枚の基板WをキャリアCに戻すことができる。上述した例は、キャリアCに関していたが、基板受け渡し位置についても一括搬送ハンド71は、同様の動作により、複数枚の基板Wを取り出し、または、受け渡しの動作をすることができる。
以降、一括搬送機構19に備えられた各種機構、およびこれらを制御する制御部について説明する。昇降制御部82aは、昇降機構82を制御する構成である。回転機構83aは、回転部材83を昇降機構82に対して回転させる機構であり、回転制御部83bは、回転機構83aを制御する構成である。伸縮機構84aは、アーム85aを延伸方向について伸縮させる機構であり、伸縮制御部84bは、伸縮機構84aを制御する構成である。方向転換機構86aは、方向転換部材86を第2アーム85に対して回転させる機構であり、方向転換制御部86bは、方向転換機構86aを制御する構成である。シフト機構87aは、レール87に対して一括搬送ハンド71を進退させる機構であり、シフト制御部87bは、シフト機構87aを制御する構成である。ハンド駆動機構71cは、一括搬送ハンド71を駆動させて、一括搬送ハンド71に複数枚の基板Wを把持させたり、把持した複数枚の基板Wを離させたり機構である。ハンド制御部71dは、ハンド駆動機構71cを制御する構成である。
図3は、一括搬送ハンド71の構成を説明している。一括搬送ハンド71は、一対のハンド片71aが鉛直方向(Z方向)に配列されて構成されている。一対のハンド片71aの各々は一括してハンド基部71eに連接している。ハンド基部71eは、レール87上を進退することができる構成となっている。一対のハンド片71aは、一括搬送ハンド71においてキャリアCに収納される基板Wの枚数だけ設けられている。したがって、一括搬送ハンド71には、一対のハンド片71aが25だけ設けられていることになる。この点、図3では作図の便宜上、ハンド片71aは減らされている。
<4.移載ブロック>
移載ブロック7は、供給ブロック5の後方に隣接して配置される。移載ブロック7には、処理対象の基板Wが載置される往路用基板受け渡し位置P1が設定されており、供給ブロック5より複数枚の基板Wが一括して当該位置に搬入される。移載ブロック7には、往路用基板受け渡し位置P1にアクセス可能な第1姿勢変換機構PCRと、第1姿勢変換機構PCRから鉛直姿勢の基板Wを受け取って、基板Wの配列をハーフピッチ化する基板ピックアップ機構WDBと、基板ピックアップ機構WDBから複数枚の基板Wを受け取って、複数枚の基板Wを鉛直基板受け渡し位置P2まで搬送するプッシャ機構22を備えている。
移載ブロック7は、供給ブロック5の後方に隣接して配置される。移載ブロック7には、処理対象の基板Wが載置される往路用基板受け渡し位置P1が設定されており、供給ブロック5より複数枚の基板Wが一括して当該位置に搬入される。移載ブロック7には、往路用基板受け渡し位置P1にアクセス可能な第1姿勢変換機構PCRと、第1姿勢変換機構PCRから鉛直姿勢の基板Wを受け取って、基板Wの配列をハーフピッチ化する基板ピックアップ機構WDBと、基板ピックアップ機構WDBから複数枚の基板Wを受け取って、複数枚の基板Wを鉛直基板受け渡し位置P2まで搬送するプッシャ機構22を備えている。
図4は、本例における第1姿勢変換機構PCRの構成を説明している。第1姿勢変換機構PCRは、図4に示すように、基板Wを挟持する一対の挟持ハンド69から構成されるバッチハンドを有している。挟持ハンド69は、基板Wにおける一端と他端との両側から基板Wを挟み込むように挟持する構成なので、バッチハンドを回転させても、複数枚の基板Wはバッチハンドから滑り落ちることがない。バッチハンドは、一対の挟持ハンド69が鉛直方向(Z方向)に配列されて構成されている。一対の挟持ハンド69の各々は一括してハンド基台69aに連接している。ハンド基台69aは、水平姿勢となっている複数枚の基板Wの姿勢を鉛直姿勢とするように-90°、および90°回転することができる。一対の挟持ハンド69はバッチハンドにおいてキャリアCに収納される基板Wの枚数だけ設けられている。したがって、バッチハンドには、一対の挟持ハンド69が25だけ設けられていることになる。この点、図4では作図の便宜上、挟持ハンド69は減らされている。
その他、第1姿勢変換機構PCRは、幅方向(Y方向)に移動することもできる。すなわち、第1姿勢変換機構PCRは、水平姿勢の基板Wを保持できる姿勢(図4左側の姿勢)において往路用基板受け渡し位置P1にアクセス可能であり、鉛直姿勢の基板Wを保持できる姿勢(図4右側の姿勢)において基板ピックアップ機構WDBにアクセス可能である。
以降、第1姿勢変換機構PCRに備えられた各種機構、およびこれらを制御する制御部について説明する。バッチハンド駆動機構79aは、挟持ハンド69の各々を一括して動作させる機構であって、複数枚の基板Wを挟持する挟持状態と、複数枚の基板Wの挟持を解除する解除状態との間で挟持ハンド69の状態を変化させる。バッチハンド制御部79bは、バッチハンド駆動機構79aを制御する構成である。ハンド基台回転機構79cは、ハンド基台69aを回転駆動する機構である。複数枚の基板の姿勢は、当該機構により水平姿勢から鉛直姿勢に変換される。ハンド基台回転制御部79dは、ハンド基台回転機構79cを制御する構成である。
図5は、本例における基板ピックアップ機構WDBを説明している。基板ピックアップ機構WDBは、図5に示すように、幅方向(Y方向)に延びた2本の支持棒70を有している。支持棒70の各々には、50本の溝70cが設けられており、これら溝70cに基板Wの周縁が嵌入する。溝70cの配列ピッチは、ハーフピッチとなっている。ハーフピッチとは、キャリアCに収納された複数枚の基板Wにおける基板Wの配列ピッチ(フルピッチ)の半分のピッチのことである。図5においては、2本の支持棒70における各1ずつの溝70cを強調して図示している。支持棒70における溝70cには、対をなす支持棒70における溝70cと対応関係が存在し、一対の溝70cが単一の基板Wを挟持する構成となっている。挟持される基板Wは、表面および裏面が幅方向(Y方向)に直交している。したがって、基板Wの一端を嵌入させる溝70cから支持棒70を支持する支持体70aまでの距離と、基板Wの他端を嵌入させる溝70cから支持体70aまでの距離は等しい。また、一対の支持棒70は、挟持する基板Wが向く方向を変えぬままハーフピッチに相当する距離だけ伸縮することができる。また、支持体70a自体は、上下移動することができる。一対の支持棒70および支持棒70に挟持される基板Wは、支持体70aの上下移動に伴って上下に移動する。
以降、基板ピックアップ機構WDBに備えられた各種機構、およびこれらを制御する制御部について説明する。支持体昇降機構90aは、支持体70aをZ方向に移動させて昇降させる機構である。支持体昇降制御部90bは、支持体昇降機構90aを制御する構成である。支持棒伸縮機構90cは、支持棒70を伸縮させる構成である。支持棒伸縮制御部90dは、支持棒伸縮機構90cを制御する構成である。
図6~図16に基づいて、移載ブロック7内で複数枚の基板Wが受け渡される様子について説明する。図6は、複数枚の基板Wが供給ブロック5における一括搬送機構19の一括搬送ハンド71によって把持されている様子を示している。このときの基板Wの配列ピッチは、フルピッチとなっている。この配列ピッチは、複数枚の基板WがキャリアCに収納されていたときの配列ピッチと同じである。その後、図7に示すように一括搬送機構19は、把持した複数枚の基板Wを移載ブロック7における往路用基板受け渡し位置P1まで搬送する。往路用基板受け渡し位置P1には、25枚の基板Wを一括して保持できるパスが設けられている。図8は、一括搬送機構19により往路用基板受け渡し位置P1に複数枚の基板Wが渡された様子を示している。
図9は、第1姿勢変換機構PCRが往路用基板受け渡し位置P1におけるパスから複数枚の基板Wを受け取る様子を示している。そして、図10は、図9の状態から第1姿勢変換機構PCRが幅方向(Y方向)において往路用基板受け渡し位置P1から離れる方向に移動したときの様子を示している。このように第1姿勢変換機構PCRが複数枚の基板Wを保持した状態で往路用基板受け渡し位置P1から離れれば、第1姿勢変換機構PCRのハンド基台69aは、90°回転することができるようになる。
ハンド基台69aが90°回転すると、それに伴いバッチハンドおよび複数枚の基板Wが図11(a)に示すように90°回転する。これにより、水平姿勢となっていた複数枚の基板Wの姿勢は、鉛直姿勢となる。このときの基板ピックアップ機構WDBが有する支持棒70は、第1姿勢変換機構PCRが有するバッチハンドの下部に位置している。
図11(b)は、基板ピックアップ機構WDBにおける支持体70aが上昇したときの様子を示している。図11(a)の状態から支持体70aが上昇すると、これに連れて一対の支持棒70も上昇することになる。支持棒70の前後方向(X方向)における離間距離は、第1姿勢変換機構PCRが有する挟持ハンド69の幅よりも十分に大きくされている。したがって、挟持ハンド69は、一対の支持棒70の隙間を通過し、支持棒70に衝突しない。しかし、支持棒70の前後方向(X方向)における離間距離は、基板Wの直径よりも十分に小さくされている。したがって、挟持ハンド69を通り抜けさせた一対の支持棒70は、それぞれ、複数枚の基板Wの異なる端部に当接する。このときの基板Wの周縁は、支持棒70に設けられた溝70cに嵌入する。
図12は、第1姿勢変換機構PCRが有する挟持ハンド69に支持された鉛直姿勢となっている複数枚の基板Wが一対の支持棒70に当接したときの様子を示している。このとき挟持状態となっていた挟持ハンド69の状態を解除状態とすれば、複数枚の基板Wが第1姿勢変換機構PCRから基板ピックアップ機構WDBに一括に渡されたことになる。
図13(a)は、図12の状態から基板ピックアップ機構WDBにおける支持体70aが更に上昇したときの様子を示している。第1姿勢変換機構PCRは、配列ピッチがフルピッチとなっている複数枚の基板Wを基板ピックアップ機構WDBに渡したことを考えると、一対の支持棒70には、フルピッチで複数枚の基板Wが配列される。基板ピックアップ機構WDBにおける一対の支持棒70には、ハーフピッチで50本の溝70cが設けられているから、一対の支持棒70には、基板Wが嵌入した溝70cと、基板Wを有しない空の溝70cとが交互に配列されていることになる。
図13(b)は、図13(a)の状態から、一対の支持棒70が基板ピックアップ機構WDBにおける支持体70aに対してハーフピッチに相当する距離だけ伸長したときの様子を示している。このような動作をすることで、一対の支持棒70に設けられた溝70cと、第1姿勢変換機構PCRが有する挟持ハンド69とがハーフピッチに相当する距離だけずれる。この状態で、第1姿勢変換機構PCRが有する挟持ハンド69は、幅方向(Y方向)の移動と、90°回転を行うことで、図6に示した状態に戻る。そして、基板ピックアップ機構WDBにおける支持体70aは、複数枚の基板Wを鉛直姿勢で支持したまま、図6に示す位置まで戻る。そして、一括搬送機構19は、基板ピックアップ機構WDBが支持している複数枚の基板Wを収納していたキャリアCとは別のキャリアCから複数枚の基板Wを取り出して、往路用基板受け渡し位置P1まで搬送する。図14は、往路用基板受け渡し位置P1に位置していた複数枚の基板Wを第1姿勢変換機構PCRが有する挟持ハンド69が支持する様子を示している。
図14の状態のハンド基台69aが図11(a)で説明した回転方向と逆方向に90°回転すると、それに伴いバッチハンドおよび複数枚の基板Wが-90°回転する。これにより、水平姿勢となっていた複数枚の基板Wの姿勢は、鉛直姿勢となる。このときの基板ピックアップ機構WDBが有する支持棒70は、複数枚の基板Wを保持したまま第1姿勢変換機構PCRが有するバッチハンドの下部に位置する。
この状態で、基板ピックアップ機構WDBが有する支持体70aが上昇すると、図15(a)に示すように、第1姿勢変換機構PCRが有する挟持ハンド69が挟持する複数枚の基板Wが基板ピックアップ機構WDBにおける支持棒70に位置する空の溝70cの各々に収まる。基板ピックアップ機構WDBが有する支持体70aと第1姿勢変換機構PCRが有する挟持ハンド69とは、ハーフピッチに相当する距離だけずれているからである。このとき挟持状態となっていた挟持ハンド69の状態を解除状態とすれば、複数枚の基板Wが第1姿勢変換機構PCRから基板ピックアップ機構WDBに一括に渡されたことになる。
図15(b)は、図15(a)の状態から第1姿勢変換機構PCRが有する挟持ハンド69が上方に移動して基板ピックアップ機構WDBから離れたときの様子を示している。当該図を参照すれば分かるように、基板ピックアップ機構WDBには、複数枚の基板Wがハーフピッチで配列されている。基板ピックアップ機構WDBには、キャリア2個分の基板W(50枚の基板W)が配列されていることになる。このような基板Wの配列操作はバッチ組とよばれる。このときの基板Wの配列は、基板Wにおいて回路が形成されたデバイス面と隣の基板Wの裏面(隣の基板Wにおけるデバイス面に対する裏面)とが互いに向き合うフェイストゥバック方式となっている。その後、第1姿勢変換機構PCRが有する挟持ハンド69は、基板ピックアップ機構WDBの上部から待避して、図6に示した元の位置に戻る。
図16(a)は、図6に示す基板ピックアップ機構WDBが有する支持体70aの更に下部に位置するプッシャ機構22を示している。プッシャ機構22には、上面にハーフピッチで配列される平行な溝が設けられたプッシャが備えられており、プッシャは、上下動することができる。図16(b)は、プッシャ機構22におけるプッシャが上昇したときの様子を示している。図16(a)の状態からプッシャが上昇すると、プッシャが支持棒70に接近する。基板ピックアップ機構WDBが有する支持棒70の前後方向(X方向)における離間距離は、プッシャ機構22が有するプッシャの幅よりも十分に大きくされている。したがって、プッシャは、一対の支持棒70の隙間を通過し、支持棒70に衝突しない。更にプッシャを上昇させると、支持棒70における各溝70cに収まっていた複数枚の基板Wは、プッシャに刻まれた複数の溝に嵌入し、プッシャとともに基板ピックアップ機構WDBから離れる。そしてプッシャは、更に上昇し、移載ブロック7において設定された鉛直基板受け渡し位置P2まで複数枚の基板Wを搬送する。プッシャ機構22は、本発明の鉛直基板支持部材に相当する。本例では、プッシャ機構22はプッシャを上下動させる構成であるが、プッシャを上下方向(Z方向)に加えて前後方向(X方向)に移動可能とし、基板ピックアップ機構WDBと前後方向(X方向)について異なる位置に鉛直基板受け渡し位置P2を設けるようにしてもよい。
<5.処理ブロック>
処理ブロック9は、複数枚の基板Wに対して種々の処理を行う。処理ブロック9は、それぞれ前後方向(X方向)に延びたバッチ処理領域R1,枚葉処理領域R2,枚葉基板搬送領域R3,バッチ基板搬送領域R4に分けられる。詳細には、バッチ処理領域R1は、処理ブロック9内の左方に配置されている。枚葉処理領域R2は、処理ブロック9内の右方に配置されている。枚葉基板搬送領域R3は、バッチ処理領域R1と枚葉処理領域R2とに挟まれた位置、つまり処理ブロック9における中央部に配置されている。バッチ基板搬送領域R4は、処理ブロック9内の最も左方に配置されている。
処理ブロック9は、複数枚の基板Wに対して種々の処理を行う。処理ブロック9は、それぞれ前後方向(X方向)に延びたバッチ処理領域R1,枚葉処理領域R2,枚葉基板搬送領域R3,バッチ基板搬送領域R4に分けられる。詳細には、バッチ処理領域R1は、処理ブロック9内の左方に配置されている。枚葉処理領域R2は、処理ブロック9内の右方に配置されている。枚葉基板搬送領域R3は、バッチ処理領域R1と枚葉処理領域R2とに挟まれた位置、つまり処理ブロック9における中央部に配置されている。バッチ基板搬送領域R4は、処理ブロック9内の最も左方に配置されている。
<5.1.バッチ処理領域>
処理ブロック9におけるバッチ処理領域R1は、前後方向(X方向)に延びた矩形の領域となっている。バッチ処理領域R1の一端側(前方側)は、移載ブロック7に隣接している。バッチ処理領域R1の他端側は、移載ブロック7から離れる方向(後方側)に延びている。
処理ブロック9におけるバッチ処理領域R1は、前後方向(X方向)に延びた矩形の領域となっている。バッチ処理領域R1の一端側(前方側)は、移載ブロック7に隣接している。バッチ処理領域R1の他端側は、移載ブロック7から離れる方向(後方側)に延びている。
バッチ処理領域R1は、主としてバッチ式の処理を行うバッチ式処理部を備えている。具体的には、バッチ処理領域R1は、バッチ処理領域R1が延びる方向に複数枚の基板Wを一括して浸漬処理する複数個のバッチ処理ユニットBPU1~BPU3が配列されている。第1バッチ処理ユニットBPU1は、移載ブロック7に後方から隣接する。第2バッチ処理ユニットBPU2は、第1バッチ処理ユニットBPU1に後方から隣接する。第3バッチ処理ユニットBPU3は、第2バッチ処理ユニットBPU2に後方から隣接する。そして、バッチ処理ユニットBPU1~BPU3よりも移載ブロック7から最も離れた位置に鉛直姿勢となっている複数枚の基板Wの姿勢を一括して水平姿勢に変換する姿勢変換ユニットVHUが備えられている。このように、第1バッチ処理ユニットBPU1,第2バッチ処理ユニットBPU2,第3バッチ処理ユニットBPU3,姿勢変換ユニットVHUは、この順にバッチ処理領域R1の延びる方向(X方向)に並ぶ。
第1バッチ処理ユニットBPU1は、具体的には、ロット(ハーフピッチで配列された50枚組の基板W)を一括して薬液処理するバッチ薬液処理槽CHB1とロットを昇降させるリフタLF1とを備える。バッチ薬液処理槽CHB1は、ロットに対して酸処理を行う。酸処理としては、具体的にはリン酸処理でよいが、他の酸を用いた処理であってもよい。リン酸処理は、ロットを構成する複数枚の基板Wに対してエッチング処理を施す。エッチング処理は、例えば、基板Wの表面上の窒化膜を化学的に食刻する。
第1バッチ薬液処理槽CHB1は、リン酸溶液などの薬液を収容する。バッチ薬液処理槽CHB1は、例えば薬液を下方から上方に向けて供給して槽内で対流させる。リフタLF1は、鉛直方向(Z方向)に昇降可能である。具体的には、リフタLF1は、バッチ薬液処理槽CHB1の内部に当たる処理位置と、バッチ薬液処理槽CHB1の上方に当たる受け渡し位置に亘って昇降する。リフタLF1は、鉛直方向の基板Wで構成されるロットを保持する。リフタLF1は、受け渡し位置においてロットを搬送機構WTRとの間で受け渡しする。リフタLF1がロットを保持した状態で受け渡し位置から処理位置まで下降すると、基板Wの全域は、薬液の液面下に位置する。リフタLF1がロットを保持した状態で処理位置から受け渡し位置まで上昇すると、基板Wの全域は薬液の液面上に位置する。
第2バッチ処理ユニットBPU2は、具体的には、バッチ薬液処理槽CHB2とロットを昇降させるリフタLF2と、を備える。バッチ薬液処理槽CHB2は、上述のバッチ薬液処理槽CHB1と同様の構成である。つまり、バッチ薬液処理槽CHB2には上述した薬液が収容され、処理位置と受け渡し位置との間で昇降するリフタLF2が付設されている。バッチ薬液処理槽CHB2は、ロットに対しバッチ薬液処理槽CHB1と同様の処理を行う。本例の基板処理装置1は、同じ薬液処理が可能な処理槽を複数備える。これは、リン酸処理が他の処理よりも時間を要することによる。リン酸処理は、長時間(例えば、60分)の時間を要する。そこで、本例の装置は、複数のバッチ薬液処理槽により、酸処理を平行して行うことができる様にしている。従って、処理目的のロットは、バッチ薬液処理槽CHB1,バッチ薬液処理槽CHB2のいずれかで酸処理される。この様に構成すれば、装置のスループットが高まる。
第3バッチ処理ユニットBPU3は、具体的には、リンス液を収容するバッチリンス処理槽ONBと、ロットを昇降させるリフタLF3と、を備える。バッチリンス処理槽ONBは、上述のバッチ薬液処理槽CHB1と同様の構成である。つまり、バッチリンス処理槽ONBは、リンス液を収容しリフタLF3が付設されている。バッチリンス処理槽ONBは、他の処理槽とは異なり、純水を収容しており、複数枚の基板Wに付着する薬液を洗浄する目的で設けられている。バッチリンス処理槽ONBにおいて、槽内の純水の比抵抗が所定の値に上昇すれば、薬液処理は終了となる。
この様に実施例1におけるバッチ薬液処理槽CHB1,バッチ薬液処理槽CHB2は、バッチリンス処理槽ONBよりも移載ブロック7に近い側にある。
姿勢変換ユニットVHUは、鉛直姿勢の基板Wで構成されたロットを搬送機構WTRから受け取るVHUプッシャ機構23と、VHUプッシャ機構23からロットを受け取って複数枚の基板Wの姿勢を鉛直姿勢から水平姿勢へと変換する第2姿勢変換機構20と、を備えている。
VHUプッシャ機構23は、上述のプッシャ機構22と同様の構成であり、上下動されるプッシャを備える。当該プッシャには、ハーフピッチで50の溝が平行に配列されている。搬送機構WTRは、プッシャに設けられた溝の各々に基板Wを1枚ずつ嵌入させることが可能である。
図17は、本例の第2姿勢変換機構20を説明している。第2姿勢変換機構20は、縦方向(Z方向)に延びる一対の水平保持部20Bと、同方向に延びる一対の垂直保持部20Cを備えている。支持台20Aは、水平保持部20B,垂直保持部20Cを支持するXY平面に広がる支持面を有している。回転駆動機構20Dは、支持台20Aを90°回転させる構成である。支持台20Aの回転に伴い、水平保持部20B,垂直保持部20Cも90°回転して水平方向に延びた部材となる。図18は、第2姿勢変換機構20の動作を説明する模式図である。以降、図17および図18を参照しながら各部の構成について説明する。
水平保持部20Bは、水平姿勢となっている複数枚の基板Wを下側から支持する。すなわち、水平保持部20Bは、支持対象の基板Wに対応した複数の凹部を有する櫛形の構造となっている。当該凹部は、互いに平行であり、基板Wの周縁部が位置する細長状の構造をしている。また、当該凹部は、ハーフピッチで配列されている。
垂直保持部20Cは、鉛直姿勢となっている複数枚の基板Wを支持する。すなわち、垂直保持部20Cは、支持対象の基板Wに対応した複数のV溝を有する櫛形の構造となっている。当該V溝は、互いに平行であり、基板Wの周縁部が嵌入する細長状の構造をしている。また、当該V溝は、ハープピッチで配列される。
縦方向(Z方向)に延びる一対の水平保持部20Bおよび一対の垂直保持部20Cは、保持対象の基板Wを囲むように水平姿勢の基板Wに相当する仮想円に沿って設けられている。一対の水平保持部20Bは、基板Wの直径だけ離れており、基板Wの一端と当該一端から最も離れた他端を保持する。このようにして一対の水平保持部20Bは、水平姿勢の基板Wを支持する。一方、一対の垂直保持部20Cは、基板Wの直径よりも短い距離だけ離間しており、基板Wの所定部と当該所定部の近傍に位置する特定部を支持する。このようにして一対の垂直保持部20Cは、鉛直姿勢の基板を支持する。一対の水平保持部20Bは、左右方向(Y方向)について同じ位置にあり、一対の垂直保持部20Cも左右方向(Y方向)について同じ位置にある。一対の垂直保持部20Cは、一対の水平保持部20Bよりも支持台20Aが回転されて倒れる方向(左方向)の側に設けられている。
回転駆動機構20Dは、前後方向(X方向)に延びる水平軸AX2周りに支持台20Aを少なくとも90°だけ回転可能に支持する。垂直状態の支持台20Aが90°回転すると、支持台20Aは水平状態となり、支持台20A上に位置する複数枚の基板Wの姿勢は垂直姿勢から水平姿勢に変換される。
図18を参照して第2姿勢変換機構20とVHUプッシャ機構23の動作を説明する。図18(a)は、搬送機構WTRがロットをVHUプッシャ機構23に渡した状態を示している。このときの第2姿勢変換機構20における垂直状態の支持台20Aは、水平に延びた垂直保持部20Cを有しており、水平保持部20B,垂直保持部20Cは、VHUプッシャ機構23が有するプッシャの下部に位置している。この状態でVHUプッシャ機構23のプッシャが下降すると、プッシャ上に保持されていた鉛直姿勢の各基板Wは、垂直保持部20Cに備えられている各V溝に嵌入する。このようにして、複数枚の基板Wは、VHUプッシャ機構23に第2姿勢変換機構20に渡される。図18(b)は、複数枚の基板Wが第2姿勢変換機構20における垂直保持部20Cに支持される様子を示している。
図18(b)の状態から支持台20Aが90°回転すると、支持台20Aは、水平状態となり、それに伴い、垂直保持部20Cは、鉛直方向に延びた状態となる。すると、垂直保持部20Cの各V溝に嵌入した各基板Wは、互いの位置関係を維持した状態で90°回転することになる。図18(c)は、水平状態となった支持台20Aに配置されている一対の水平保持部20Bに複数枚の基板Wが支持される様子を示している。また、図18(c)第2姿勢変換機構20が水平基板受け渡し位置P3において複数枚の基板Wを待機させる様子を示している。水平基板受け渡し位置P3は、水平姿勢の基板Wを後述の第1ロボットCR1が受け取る位置となっている。
<5.2.枚葉処理領域>
処理ブロック9における枚葉処理領域R2は、前後方向(X方向)に延びた矩形の領域となっている。枚葉処理領域R2の一端側(前方側)は、移載ブロック7に隣接している。枚葉処理領域R2の他端側は、移載ブロック7から離れる方向(後方側)に延びている。
処理ブロック9における枚葉処理領域R2は、前後方向(X方向)に延びた矩形の領域となっている。枚葉処理領域R2の一端側(前方側)は、移載ブロック7に隣接している。枚葉処理領域R2の他端側は、移載ブロック7から離れる方向(後方側)に延びている。
処理ブロック9における枚葉処理領域R2には、主に乾燥処理に係る乾燥チャンバ37と、乾燥チャンバ37の各々に乾燥処理前の基板W(水平姿勢)を搬送するウエット搬送機構WRとを備えている。まず図1を参照してウエット搬送機構WRと乾燥チャンバ37との位置関係について説明する。図1を参照すれば分かるように、枚葉処理領域R2には、乾燥チャンバ37が移載ブロック7に隣接する位置に設けられ、ウエット搬送機構WRは、その乾燥チャンバ37の後方に隣接する位置に設けられている。そして、枚葉処理領域R2には、もう一つの乾燥チャンバ37が設けられている。この乾燥チャンバ37は、ウエット搬送機構WRの後方に隣接する位置に設けられている。したがって、ウエット搬送機構WRは、2つの乾燥チャンバ37に挟まれる位置に配置されている。ウエット搬送機構WRは、これら乾燥チャンバ37にアクセス可能である。
乾燥チャンバ37について説明する。乾燥チャンバ37は、超臨界流体チャンバであり、具体的には、超臨界流体となった二酸化炭素により基板Wの乾燥処理を行う。超臨界流体として二酸化炭素以外の物質を用いてもよい。超臨界状態は、二酸化炭素を固有の臨界圧力と臨界温度下に置くことで得られる。具体的な圧力は、7.38MPaであり、温度は31°Cである。超臨界状態においては、流体の表面張力がゼロになるので、基板表面の回路パターンに気液界面の影響が生じない。従って、超臨界流体により基板Wの乾燥処理を行えば、基板上で回路パターンが崩壊する、いわゆるパターン倒れの発生を防止できる。
乾燥チャンバ37の構成について更に説明する。乾燥チャンバ37は、図1に示すように、基板Wをチャンバ内に導入する搬入口37aと基板Wをチャンバ外に払い出す搬出口37bと、を有している。搬入口37aは、乾燥チャンバ37におけるウエット搬送機構WRに対向する側壁に設けられている。搬出口37bは、乾燥チャンバ37における枚葉基板搬送領域R3に対向する側壁に設けられている。搬入口37a,搬出口37bのいずれにも基板Wの通過口を閉塞可能なシャッターが設けられており、基板の乾燥処理中において、各シャッターは対応する通過口の各々を閉鎖する。
乾燥チャンバ37の内部には、基板Wが当接するピン37dを介して基板Wを支持する円形の支持部材37cが備えられている。支持部材37cには、3つのピン37dが設けられており、これらピン37dは、乾燥チャンバ37に導入される基板Wの周縁部における異なる3つの部位の各々に当接する。このようにして、基板Wは、乾燥チャンバ37内において3点で支えられることになる。乾燥チャンバ37が基板Wを乾燥させるときには、チャンバ内部で超臨界流体が発生する。乾燥チャンバ37は、チャンバ内部を臨界圧力とするのに十分な耐圧性を有する構成となっている。
図19は、枚葉処理領域R2を枚葉基板搬送領域R3側から見たときの側面図である。枚葉処理領域R2は、3つの乾燥チャンバ37が積層されて構成される積層体が2つ設けられている。ウエット搬送機構WRは、2つの積層体に挟まれる位置に設けられており、各積層体を構成する乾燥チャンバ37の各々に基板Wを搬入することができる。この時の基板Wの搬入は、乾燥チャンバ37に備えられている搬入口37aを介して行われる。
2つの積層体の間には、ウエット搬送機構WRの可動域を確保するウエット基板搬送領域が設けられている。ウエット搬送機構WRは、当該搬送領域内を移動することができる構成である。
図20(a)は、ウエット搬送機構WRが乾燥チャンバ37に乾燥処理対象の基板Wを搬入するときの様子を示している。図20に示すようにウエット搬送機構WRは、乾燥処理前の基板Wを把持する一対のウエットアーム74を備えている。ウエットアーム74は、基板Wを把持した状態で乾燥チャンバ37における搬入口37aを介してチャンバ内に進入可能であり、支持部材37cに基板Wを渡す構成である。ウエットアーム基部74aは、一対のウエットアーム74を支持する構成である。
図20(a)を参照すれば分かるように、支持部材37cにおけるピン37dは、ウエットアーム74を避ける位置に設けられている。したがって、ピン37dは、チャンバ内部において基板Wを渡しに来たウエットアーム74に衝突してしまうことがない。
なお、ウエットアーム74に係るウエット搬送機構WRは、乾燥処理前の基板Wを乾燥チャンバ37に搬入することを目的として設けられている。したがって、本例の基板処理装置1は、乾燥処理後の基板Wを乾燥チャンバ37から搬出することを目的とするウエット搬送機構WRとは異なる機構を備えている。支持部材37cにおけるピン37dの位置は、ウエットアーム74による基板Wの搬入に最適化されているので、乾燥処理後の基板Wをチャンバ外に搬出する際に、基板Wを保持するアームがピン37dに衝突する可能性がある。本例の装置では、図20(b)に示すように、基板Wをチャンバ外に確実に搬出できるように、支持部材37cを回転させる支持部材回転機構36aと、支持部材回転機構36aを制御する支持部材回転制御部36bを備えている。支持部材回転機構36aにより、支持部材37cが回転されると、支持部材37c上のピン37dが円形となっている支持部材37cの中心周りに移動する。したがって、基板Wをチャンバ外に搬出する際、ピン37dを当該搬出の妨げにならない位置まで移動させることができる。
図21は、ウエット搬送機構WRの構成を説明する機能ブロック図である。ウエット搬送機構WRは、後述の枚葉基板搬送領域R3から乾燥処理前の基板Wを受け取って乾燥チャンバ37に渡す機構である。図21が示すように、ウエット搬送機構WRは、各機構を支持する鉛直方向(Z方向)に延びたWR支柱101を有する。ウエット搬送機構WRは、その他、上下移動が可能なWR昇降機構102を備えている。WR昇降機構102は、WR支柱101により昇降自在に支持されている。WR昇降機構102は、WR回転部材183を回転自在に支持する。WR回転部材183は、WR昇降機構102に支持された状態でWR支柱101の延伸方向(Z方向)と平行な回転軸AX4周りに回転可能である。回転軸AX4は、WR支柱101の中心に位置する仮想的な直線である。
ウエット搬送機構WRは、伸縮自在のWRアーム185aを支持する。WRアーム185aは、WR回転部材183に連接した第1アーム184と、第1アーム184に連接した基部(第2アーム)74aと、を有する。WR回転部材183における第1アーム184の連接部は、WR回転部材183の回転中心から遠ざかる方向に延びた突出部となっており、第1アーム184は、当該突出部を延伸するように延びた構成である。ウエットアーム基部74aは、第1アーム184を延伸するように延びた構成である。WR回転部材183は、第1アーム184の延伸方向に第1アーム184が移動自在となるように第1アーム184を支持し、第1アーム184は、ウエットアーム基部74aの延伸方向にウエットアーム基部74aが移動自在となるようにウエットアーム基部74aを支持する。したがって、WRアーム185aは、第1アーム184,ウエットアーム基部74aの延伸方向について伸縮自在である。
以降、ウエット搬送機構WRに備えられた各機構、およびこれらを制御する制御部について説明する。WR昇降制御部182aは、WR昇降機構102を制御する構成である。WR回転機構183aは、WR回転部材183をWR昇降機構102に対して回転させる機構であり、WR回転制御部183bは、WR回転機構183aを制御する構成である。伸縮機構184aは、WRアーム185aを延伸方向について伸縮させる構成であり、伸縮制御部184bは、伸縮機構184aを制御する構成である。WRハンド駆動機構171cは、ウエットアーム74を駆動させて、水平姿勢の基板Wを1枚だけ把持したり、基板Wの把持を解除したりする機構である。ハンド制御部171dは、WRハンド駆動機構171cを制御する構成である。
このように、本例のウエット搬送機構WRは、上述の一括搬送機構19を簡略化して、レール87,方向転換部材86および動作に関連する各機構、各制御部を備えない構成としている。本発明はこの構成に限らず、これら各部材やこれに関連する各機構、各制御部を備える構成としてもよい。
ウエット搬送機構WRは、その左右に設けられたチャンバの積層体を構成する6つの乾燥チャンバ37のいずれにもアクセス可能であり、いずれの乾燥チャンバ37に対しても乾燥処理対象の基板Wを搬入することが可能な構成である。
<5.3.枚葉基板搬送領域>
処理ブロック9における枚葉基板搬送領域R3は、前後方向(X方向)に延びた矩形の領域となっている。枚葉基板搬送領域R3は、バッチ処理領域R1と枚葉処理領域R2との間に介在して、一端が移載ブロック7に隣接し、他端が移載ブロック7から離れる方向に延びる。
処理ブロック9における枚葉基板搬送領域R3は、前後方向(X方向)に延びた矩形の領域となっている。枚葉基板搬送領域R3は、バッチ処理領域R1と枚葉処理領域R2との間に介在して、一端が移載ブロック7に隣接し、他端が移載ブロック7から離れる方向に延びる。
枚葉基板搬送領域R3は、図22に示すように、バッチ処理領域R1に設けられた水平基板受け渡し位置P3にある第2姿勢変換機構20にアクセス可能な第1ロボットCR1と、第1ロボットCR1の上部に設けられている第2ロボットCR2を有する。
枚葉基板搬送領域R3は、隔壁により上下に分割された構成となっている。下側の区画には、第1ロボットCR1が設けられており、上側の区画には第2ロボットが設けられている。このように、第1ロボットCR1,第2ロボットCR2は、互いに異なる区画に設けられているので、一方のロボットが他方のロボットの基板搬送を妨げることがない。
枚葉基板搬送領域R3における下側の区画の構成について説明する。当該区画はバッチ処理領域R1における水平基板受け渡し位置P3にある第2姿勢変換機構20に面し、積層体を構成する乾燥チャンバ37のうち、最下層の乾燥チャンバ37(より具体的には、チャンバの搬出口37b)に面し、ウエット搬送機構WRに面し、復路用基板受け渡し位置(正確には第1復路用基板受け渡し位置P4a)に面している。第1ロボットCR1は、水平基板受け渡し位置P3にある第2姿勢変換機構20,最下層の乾燥チャンバ37,ウエット搬送機構WR,および移載ブロック7における第1復路用基板受け渡し位置P4aの間で基板Wを搬送する。第1復路用基板受け渡し位置P4aは、往路用基板受け渡し位置P1と同様、複数枚の基板Wをフルピッチで保持可能なパスである。第1復路用基板受け渡し位置P4aは、往路用基板受け渡し位置P1の下側に位置する。
第1ロボットCR1は、乾燥処理前の基板W(水平姿勢)を支持するCRウエットアーム72と、乾燥処理後の基板W(水平姿勢)を把持するドライアーム73aを備えている。CRウエットアーム72,ドライアーム73aは、単一のロボットに搭載され、CRウエットアーム72は、常にドライアーム73aの下部に位置している。この様に構成することで、濡れた基板Wを支持したCRウエットアーム72がドライアーム73aに向けて液を垂れ落とすことがなく、ドライアーム73aの乾燥状態を確実に保つことができる。第1ロボットCR1は、水平基板受け渡し位置P3にある第2姿勢変換機構20からウエット搬送機構WRまで基板Wを搬送するときには、CRウエットアーム72を用いる。第1ロボットCR1は、最下層の乾燥チャンバ37から第1復路用基板受け渡し位置P4aまで基板Wを搬送する時にはドライアーム73aを用いる。
枚葉基板搬送領域R3における下側の区画の床面には、第1ロボットCR1を案内可能なロボット案内レール97aが設けられている。当該レールは、前後方向(X方向)に延びるので、第1ロボットCR1もこれに沿って前後方向(X方向)に移動が可能である。
以降、第1ロボットCR1に関する各機構、各制御部について説明する。ドライアーム駆動機構92aは、ドライアーム73aを駆動する機構であり、ドライアーム駆動制御部92bは、ドライアーム駆動機構92aを制御する。CRウエットアーム駆動機構93aは、CRウエットアーム72を駆動する機構であり、CRウエットアーム駆動制御部93bは、CRウエットアーム駆動機構93aを制御する。スライド機構94aは、ロボット案内レール97aに沿って第1ロボットCR1を移動させる機構であり、スライド制御部94bは、スライド機構94aを制御する。
枚葉基板搬送領域R3における上側の区画の構成について説明する。当該区画は積層体を構成する乾燥チャンバ37のうち、最上層、中層の乾燥チャンバ37(より具体的には、チャンバの搬出口37b)に面し、復路用基板受け渡し位置(正確には第2復路用基板受け渡し位置P4b)に面している。第2ロボットCR2は、最上層または中層に位置する乾燥チャンバ37と移載ブロック7における第2復路用基板受け渡し位置P4bの間で基板Wを搬送する。第2復路用基板受け渡し位置P4bは、往路用基板受け渡し位置P1と同様、複数枚の基板Wをフルピッチで保持可能なパスである。第2復路用基板受け渡し位置P4bは、往路用基板受け渡し位置P1の上側に位置する。
第2ロボットCR2は、乾燥処理後の基板W(水平姿勢)を把持するドライアーム73bを備えている。枚葉基板搬送領域R3における上側の区画の床面には、第2ロボットCR2を案内可能なロボット案内レール97bが設けられている。当該レールは、前後方向(X方向)に延びるので、第2ロボットCR2もこれに沿って前後方向(X方向)に移動が可能である。
以降、第2ロボットCR2に関する各機構、各制御部について説明する。ドライアーム駆動機構95aは、ドライアーム73bを駆動する機構であり、ドライアーム駆動制御部95bは、ドライアーム駆動機構95aを制御する。スライド機構96aは、ロボット案内レール97bに沿って第2ロボットCR2を移動させる機構であり、スライド制御部96bは、スライド機構96aを制御する。
図23は、第1ロボットCR1が最下層の乾燥チャンバ37から乾燥処理後の基板Wを搬出するときの様子を示している。ドライアーム73aは、乾燥チャンバ37における搬出口37bを介してチャンバ内に進入可能であり、支持部材37cから基板Wを取得する構成である。基部73mは、一対のドライアーム73aを支持する構成である。
図23を参照すれば分かるように、支持部材37cにおけるピン37dは、ドライアーム73aを避ける位置に設けられている。したがって、ピン37dは、チャンバ内部において基板Wを取得しに来たドライアーム73aに衝突してしまうことがない。なお、ピン37dは、支持部材回転機構36aにより、回転移動をすることができるので、ピン37dがドライアーム73aに衝突してしまう位置にあるときは、ドライアーム73aを搬出口37bに導入する前にピン37dの位置を適宜変更させてピン37dがドライアーム73aに衝突しないようにすることができる。
図23には、第1ロボットCR1に設けられているCRウエットアーム72についても説明がされている。CRウエットアーム72は、CRウエットアーム駆動機構93aによりドライアーム73aに対して回転移動することができる。図23においては、ドライアーム73aによる基板Wの搬送の妨げにならないようにCRウエットアーム72がドライアーム73aに対して90°回転した状態となっている。
図24(a)は、第1ロボットCR1に設けられているCRウエットアーム72がドライアーム73aと重なる位置にある場合について説明している。ドライアーム73aは、基板Wの両端を把持する構成であったのに対し、CRウエットアーム72は、単一の板状の構成である。したがって基板Wは、CRウエットアーム72に載置された状態で搬送される。
図24(b)は、第1ロボットCR1がウエット搬送機構WRに乾燥処理対象の基板Wを渡している時の様子を説明している。CRウエットアーム72は、板状の部材の3箇所にタブ72aが設けられている。タブ72aは、CRウエットアーム72が基板Wを搬送する際に基板Wの周縁部を仮固定する構成である。第1ロボットCR1からウエット搬送機構WRに基板Wが渡されるときには、基板Wを保持したCRウエットアーム72が一対のウエットアーム74で囲まれる空間に配置される。この状態でウエット搬送機構WRによって基板Wが把持され、CRウエットアーム72による基板Wの保持が解除される。すると、基板Wは、第1ロボットCR1からウエット搬送機構WRに渡される。
図24(b)は、第1ロボットCR1に設けられているドライアーム73aについても説明がされている。ドライアーム73aは、ドライアーム駆動機構92aによりCRウエットアーム72に対して回転移動することができる。図24(b)においては、CRウエットアーム72による基板Wの搬送の妨げにならないようにドライアーム73aがCRウエットアーム72に対して90°回転した状態となっている。
図23は、第1ロボットCR1についての説明なので、CRウエットアーム72を有する構成である。第2ロボットCR2が最上層、または中層の乾燥チャンバ37から乾燥処理後の基板Wを搬出するときは、CRウエットアーム72を備えない第2ロボットCR2がドライアーム73bを用いて乾燥チャンバ37から乾燥処理後の基板Wを搬出する。すなわち、第2ロボットCR2は、CRウエットアーム72を備えない点で第1ロボットCR1とは異なるが、ドライアーム73bの動作については、第1ロボットCR1におけるドライアーム73aと同様である。また、最上層、または中層の乾燥チャンバ37におけるピン37dが回転してドライアーム73bから回避する様子も、最下層の乾燥チャンバ37と同様である。
<5.4.バッチ基板搬送領域>
処理ブロック9におけるバッチ基板搬送領域R4は、前後方向(X方向)に延びた矩形の領域となっている。バッチ基板搬送領域R4は、バッチ処理領域R1の外縁に沿って設けられ、一端側が移載ブロック7まで延び、他端側が移載ブロック7から離れる方向に延びる。
処理ブロック9におけるバッチ基板搬送領域R4は、前後方向(X方向)に延びた矩形の領域となっている。バッチ基板搬送領域R4は、バッチ処理領域R1の外縁に沿って設けられ、一端側が移載ブロック7まで延び、他端側が移載ブロック7から離れる方向に延びる。
バッチ基板搬送領域R4には、複数枚の基板W(鉛直姿勢)を一括して搬送する搬送機構WTRが設けられている。搬送機構WTRは、ハーフピッチで配列された複数枚の基板W(ロット)を移載ブロック7内に定められた鉛直基板受け渡し位置P2と、各バッチ処理ユニットBPU1~BPU3と、姿勢変換ユニットVHUとの間で一括して搬送する。搬送機構WTRは、移載ブロック7と処理ブロック9とに亘って前後方向(X方向)に往復可能に構成されている。すなわち、搬送機構WTRは、処理ブロック9のみならず、移載ブロック7における鉛直基板受け渡し位置P2までも移動が可能である。搬送機構WTRは、本発明のバッチ基板搬送機構に相当する。
搬送機構WTRは、ロットを把持する一対のハンド23を備えている。一対のハンド23は、例えば、幅方向(Y方向)に向けられた回転軸を備えており、この回転軸周りに揺動する。一対のハンド23は、ロットを構成する複数枚の基板Wの両端部を挟持する。搬送機構WTRは、移載ブロック7における鉛直基板受け渡し位置P2,バッチ処理ユニットBPU1~BPU3に属する各リフタLF1~リフタLF3,姿勢変換ユニットVHUにおけるVHUプッシャ23aとの間でロットを受け渡す。
本例の基板処理装置1は、上述した各部の他、各機構および各処理部を制御するCPU(Central Processing Unit)89aと、プログラムや設定値など処理過程に必要な種々の上方を記憶する記憶部89bを備えている。なお、CPUの具体的構成は特に限定されない。装置全体で1つのCPUを備えるようにしてもよいし、各ブロックに1つまたは複数のCPUを備えるようにしてもよい。この点は記憶部89bも同様である。CPUが行う制御としては、例えば、一括搬送機構19,第1姿勢変換機構PCR,基板ピックアップ機構WDB,各バッチ処理ユニットBPU1~BPU3,姿勢変換ユニットVHU,ウエット搬送機構WR,第1ロボットCR1,第2ロボットCR2,搬送機構WTR等の動作に関する制御である。
<基板処理の流れ>
図25は、本例の基板処理の流れを説明するフローチャートである。本例の基板処理は、例えば、半導体デバイス製造過程における基板Wの表面エッチングに関する各処理を行うものである。以下、当該フローチャートに沿って基板処理の流れを具体的に説明する。
図25は、本例の基板処理の流れを説明するフローチャートである。本例の基板処理は、例えば、半導体デバイス製造過程における基板Wの表面エッチングに関する各処理を行うものである。以下、当該フローチャートに沿って基板処理の流れを具体的に説明する。
ステップS11:処理対象の基板Wを収納するキャリアCがキャリア保持部11にセットされる。複数枚の基板Wは、一括搬送機構19によりキャリアCから取り出されて、往路用基板受け渡し位置P1に搬送される。
ステップS12:複数枚の基板Wは、第1姿勢変換機構PCRに渡される。第1姿勢変換機構PCRは、基板Wの姿勢を水平姿勢から鉛直姿勢に変換する。
ステップS13:姿勢が鉛直姿勢に変換された複数枚の基板Wは、プッシャ機構22に渡される。プッシャ機構22は、基板ピックアップ機構WDBと協働して、フルピッチとなっている基板Wの配列ピッチをハーフピッチに変更することでバッチ組を実行する。
ステップS14:鉛直基板受け渡し位置P2まで搬送された複数枚の基板Wは、基板搬送機構WTRによりバッチ処理領域R1に搬送される。複数枚の基板Wは、ロットを構成した状態で種々の液処理を受ける。
ステップS15:基板搬送機構WTRにより姿勢変換ユニットVHUまで搬送された複数枚の基板Wは、第2姿勢変換機構20に渡される。第2姿勢変換機構20は、基板Wの姿勢を鉛直姿勢から水平姿勢に変換して、複数枚の基板Wを水平基板受け渡し位置P3で待機させる。
図26は、ステップS11~ステップS15に係る基板搬送について説明している。図26が示す各過程では、複数枚の基板Wが一括して搬送される。
ステップS16:枚葉基板搬送領域R3における第1ロボットCR1は、CRウエットアーム72を用いて第2姿勢変換機構20より1枚の基板Wを受け取って、これを枚葉処理領域R2におけるウエット搬送機構WRに渡す(図24(b)参照)。
ステップS17:ウエット搬送機構WRは、乾燥処理対象の基板Wを最上層、中層、最下層に位置する空きの乾燥チャンバ37(乾燥処理中でない乾燥チャンバ37)のいずれかに搬入する。乾燥チャンバ37は、搬入された基板Wに対し乾燥処理を施す。
ステップS18:乾燥処理後の基板Wは、第1ロボットCR1または第2ロボットCR2によりチャンバから搬出される。具体的には、最下層に位置する乾燥チャンバ37内の基板Wは、第1ロボットCR1のドライアーム73aにより第1復路用基板受け渡し位置P4aまで搬送される。また、最上層、中層に位置する乾燥チャンバ37内の基板Wは、第2ロボットCR2により第2復路用基板受け渡し位置P4bまで搬送される。
図27は、ステップS16~ステップS18に係る基板搬送について説明している。図27が示す各過程では、基板Wが1枚ずつ搬送される。なお、図27は、最下層に位置する乾燥チャンバ37内の基板Wが第1復路用基板受け渡し位置P4aまで搬送される様子を例示している。
ステップS19:上述のステップS16~ステップ18が幾度か繰り返されて、第1復路用基板受け渡し位置P4aまたは第2復路用基板受け渡し位置P4bに配置されているパスに所定数の基板Wが充填されると、パスの基板Wは、一括搬送機構19により把持されて元のキャリアCに返却される。
図28は、ステップS19において複数枚の基板Wが一括して搬送される様子を示している。なお、図28は、複数枚の基板Wが第1復路用基板受け渡し位置P4aから搬送される様子が例示されている。この様にして、本例に係る基板処理装置1による基板処理は終了となる。
以上のように、本例によれば、水平姿勢で複数枚の基板Wを収納するキャリアCから基板Wを一括に取り出し、第1姿勢変換機構PCRで基板Wの姿勢を水平姿勢から鉛直姿勢に一括で変換する。そして、鉛直姿勢を保った状態で複数枚の基板Wは、バッチ処理領域R1によりバッチ処理が施され、第2姿勢変換機構20で基板Wの姿勢を鉛直姿勢から水平姿勢に一括で変換する。その後、水平姿勢を保った状態で基板Wは、枚葉処理領域R2により、枚葉処理がされる。枚葉処理には具体的には、基板乾燥処理である。本発明の枚葉処理領域R2には、乾燥処理対象の濡れた基板Wを乾燥チャンバ37に搬送するウエット搬送機構WRを備え、乾燥処理後の乾いた基板Wを乾燥チャンバ37に搬送する第1ロボットCR1,第2ロボットCR2を備えている。この様に構成することで、乾燥チャンバ37に対する基板Wの搬入と搬出を異なる機構で実現できるので、乾燥チャンバ37周辺において基板の搬送が渋滞しない。本発明によれば、乾燥チャンバ37が鉛直方向に積層され、更に、乾燥チャンバ37周辺の基板搬送がスムーズとなるように構成されているので、従来装置と同じ床面積に多くの乾燥チャンバを搭載する基板処理装置を提供できる。
続いて実施例2に係る基板処理装置2について説明する。本例に係る基板処理装置2は、枚葉基板搬送領域R3における下側の区画に、第3ロボットCR3,第4ロボットCR4が設けられている点で実施例1の装置と異なる。具体的な装置構成については、後述する。
図29は、基板処理装置2の全体構成について説明している。基板処理装置2における搬入出ブロック3,供給ブロック5,移載ブロック7については実施例1の装置と同様である。また、本例の処理ブロック9におけるバッチ処理領域R1,バッチ基板搬送領域R4についても実施例1の構成と同様である。
<枚葉基板処理領域>
図30は、本例の枚葉処理領域R2を説明する側面図である。本例の枚葉処理領域R2には、枚葉式の基板処理チャンバが6つ備えられている。本例において、3つの基板処理チャンバが積層されて積層体が構成される点、2つの積層体を備える点、2つの積層体に挟まれる位置にウエット搬送機構WRが設けられている点は、実施例1と同様である。
図30は、本例の枚葉処理領域R2を説明する側面図である。本例の枚葉処理領域R2には、枚葉式の基板処理チャンバが6つ備えられている。本例において、3つの基板処理チャンバが積層されて積層体が構成される点、2つの積層体を備える点、2つの積層体に挟まれる位置にウエット搬送機構WRが設けられている点は、実施例1と同様である。
本例の枚葉処理領域R2に設けられた積層体のうち、移載ブロック7から離れた位置にある積層体は、実施例1とは異なり、乾燥処理の前処理を実行する基板乾燥前処理チャンバ38が設けられている。基板乾燥前処理チャンバ38は、乾燥処理対象の基板表面に対し、IPA(イソプロピルアルコール)を供給して乾燥処理の予備的な過程を実行する。供給する液体としては、IPAに限られず、IPAと水との混合液でもよい。基板乾燥前処理チャンバ38は、積層体における最下層に設けられている。図29の平面図では、枚葉処理領域R2における積層体の最下層に位置する枚葉処理チャンバを説明している。したがって、図29におけるウエット搬送機構WRは、移載ブロック7側に設けられた乾燥チャンバ37と、移載ブロック7から離れた位置に設けられた基板乾燥前処理チャンバ38とに挟まれる位置にある。
基板乾燥前処理チャンバ38は、前後方向(X方向)について第2姿勢変換機構20と同じ位置にある。
基板乾燥前処理チャンバ38は、乾燥チャンバ37と同様にそれぞれシャッターを備えた搬入口38aと搬出口38bと、を備える。乾燥前処理中においては、チャンバ内のIPAがチャンバ外に飛び散るのを防ぐ目的で搬入口38a,搬出口38bのシャッターは閉鎖される。基板乾燥前処理チャンバ38は、乾燥チャンバ37とは異なり、必ずしも耐圧性を有する必要は無い。
基板乾燥前処理チャンバ38は、水平姿勢の基板Wを回転させる回転処理部33と、処理液(IPA)を基板Wに向けて供給するノズル35と、を備えている。回転処理部33は、基板WをXY平面(水平面)内で回転駆動する。ノズル35は、回転処理部33から離れた待機位置と回転処理部33の上方に位置する供給位置との間で旋回可能である。
<枚葉基板搬送領域>
図31は、本例の枚葉基板搬送領域R3を説明する側面図である。本例の枚葉基板搬送領域R3には隔壁により形成された上側の区画と下側の区画が設けられており、上側の区画については、実施例1の構成と同様である。すなわち当該区画には、枚葉処理領域R2に設けられたチャンバの積層体のうち、最上層および中層に位置する乾燥チャンバ37から乾燥処理済みの基板を受け取って第2復路用基板受け渡し位置P4bに渡す第2ロボットCR2が設けられている。第2ロボットCR2は、前後方向(X方向)に移動可能であり、乾燥処理後の基板Wを把持するドライアーム73bを備えている。
図31は、本例の枚葉基板搬送領域R3を説明する側面図である。本例の枚葉基板搬送領域R3には隔壁により形成された上側の区画と下側の区画が設けられており、上側の区画については、実施例1の構成と同様である。すなわち当該区画には、枚葉処理領域R2に設けられたチャンバの積層体のうち、最上層および中層に位置する乾燥チャンバ37から乾燥処理済みの基板を受け取って第2復路用基板受け渡し位置P4bに渡す第2ロボットCR2が設けられている。第2ロボットCR2は、前後方向(X方向)に移動可能であり、乾燥処理後の基板Wを把持するドライアーム73bを備えている。
本例の枚葉基板搬送領域R3における下側の領域には、2つのロボットが設けられている。すなわち、下側の領域には、乾燥処理後の基板Wを搬送する第3ロボットCR3と、乾燥処理の対象となる濡れた基板Wを搬送する第4ロボットCR4とが備えられている。第3ロボットCR3には、第2ロボットCR2のドライアーム73bと同様なドライアーム73cが設けられており、第4ロボットCR4には、実施例1の第1ロボットCR1のCRウエットアーム72と同様なCRウエットアーム75を備えている。
第3ロボットCR3は、第4ロボットCR4と比べて移載ブロック7側に設けられており、枚葉処理領域R2における移載ブロック7に隣接した乾燥チャンバ37から第1復路用基板受け渡し位置P4aまで乾燥処理後の基板W(水平姿勢)を搬送する。移載ブロック7に隣接した乾燥チャンバ37は、最上層、中層、最下層のそれぞれに1つずつ設けられているが、第3ロボットCR3はこれらのうち最下層に位置する乾燥チャンバ37にアクセス可能である。第1復路用基板受け渡し位置P4aには、鉛直方向(Z方向)に基板Wがフルピッチの間隔を隔てて配列される。したがって、第3ロボットCR3が有するドライアーム73cは、第1復路用基板受け渡し位置P4aに基板Wを積層できるように昇降移動が可能である。
第4ロボットCR4は、第3ロボットCR3よりも移載ブロック7から離れた位置に設けられている。第4ロボットCR4は、バッチ処理領域R1における水平基板受け渡し位置P3から基板W(水平姿勢)を受け取り、枚葉処理領域R2における基板乾燥前処理チャンバ38の搬入口38aから基板W(水平姿勢)を基板乾燥前処理チャンバ38に搬入することができる。水平基板受け渡し位置P3には、鉛直方向(Z方向)に基板Wがハーフピッチの間隔を隔てて配列される。したがって、第4ロボットCR4が有するCRウエットアーム75は、水平基板受け渡し位置P3に積層された基板Wを取得できるように昇降移動が可能である。
第4ロボットCR4は、前後方向(X方向)について基板乾燥前処理チャンバ38,第2姿勢変換機構20と同じ位置にある。したがって、第4ロボットCR4は、基板乾燥前処理チャンバ38に対向し、第2姿勢変換機構20にも対向している。このように、第4ロボットCR4は、第2姿勢変換機構20と基板乾燥前処理チャンバ38との間で基板Wの搬送を行うのに適した位置に配置されている。
第3ロボットCR3,ウエット搬送機構WR,第4ロボットCR4は、前後方向(X方向)について互いに異なる位置にある。
第3ロボットCR3は、枚葉処理領域R2において5つ設けられている乾燥チャンバ37のうちの1つにアクセス可能であれば十分であり、前後方向(X方向)に移動する必要は必ずしも無い。したがって、本例の装置を、第3ロボットCR3を水平移動させる機構、および制御部が省かれた構成とすることができる。同様に、第4ロボットCR4は、枚葉処理領域R2において1つ設けられている基板乾燥前処理チャンバ38にアクセス可能であれば十分であり、前後方向(X方向)に移動する必要は必ずしも無い。したがって、本例の装置を、第4ロボットCR4を水平移動させる機構、および制御部が省かれた構成とすることができる。
実施例2におけるCPUは、実施例1に係るCPU89aの機能に加え、第3ロボットCR3,第4ロボットCR4に関する制御部を実現し、実施例2における記憶部89bは、実施例1に係る機能に加え、第3ロボットCR3,第4ロボットCR4の制御に関する情報を記憶する。なお、実施例1と同様に、CPUの具体的構成は特に限定されない。装置全体で1つのCPUを備えるようにしてもよいし、各ブロックに1つまたは複数のCPUを備えるようにしてもよい。この点は記憶部89bも同様である。
<基板処理の流れ>
図32は、本例の基板処理の流れを説明するフローチャートである。本例の基板処理は、実施例1と同様、例えば、半導体デバイスの製造過程における基板Wの表面エッチングに関する各処理を行うものである。以下、当該フローチャートに沿って基板処理の流れを具体的に説明する。
図32は、本例の基板処理の流れを説明するフローチャートである。本例の基板処理は、実施例1と同様、例えば、半導体デバイスの製造過程における基板Wの表面エッチングに関する各処理を行うものである。以下、当該フローチャートに沿って基板処理の流れを具体的に説明する。
ステップS21:実施例1のステップS11と同様、処理対象の基板Wを収納するキャリアCがキャリア保持部11にセットされる。複数枚の基板Wは、一括搬送機構19によりキャリアCから取り出されて、往路用基板受け渡し位置P1に搬送される。
ステップS22:実施例1のステップS12と同様、複数枚の基板Wは、第1姿勢変換機構PCRに渡される。第1姿勢変換機構PCRは、基板Wの姿勢を水平姿勢から鉛直姿勢に変換する。
ステップS23:実施例1のステップS13と同様、姿勢が鉛直姿勢に変換された複数枚の基板Wは、プッシャ機構22に渡される。プッシャ機構22は、基板ピックアップ機構WDBと協働して、フルピッチとなっている基板Wの配列ピッチをハーフピッチに変更する。
ステップS24:実施例1のステップS14と同様、鉛直基板受け渡し位置P2まで搬送された複数枚の基板Wは、基板搬送機構WTRによりバッチ処理領域R1に搬送される。複数枚の基板Wは、ロットを構成した状態で種々の液処理を受ける。
ステップS25:実施例1のステップS15と同様、基板搬送機構WTRにより姿勢変換ユニットVHUまで搬送された複数枚の基板Wは、第2姿勢変換機構20に渡される。第2姿勢変換機構20は、基板Wの姿勢を鉛直姿勢から水平姿勢に変換して、複数枚の基板Wを水平基板受け渡し位置P3で待機させる。
図33は、ステップS21~ステップ25に係る基板搬送について説明している。図33が示す各過程では、複数枚の基板Wが一括して搬送される。
ステップS26:水平基板受け渡し位置P3で待機している複数枚の基板Wは、第4ロボットCR4によって1枚ずつ基板乾燥前処理チャンバ38に搬送される。すなわち、水平基板受け渡し位置P3における基板Wは、第4ロボットCR4のCRウエットアーム75により把持されて空きの基板乾燥前処理チャンバ38(乾燥前処理中でない基板乾燥前処理チャンバ38)に搬入される。基板乾燥前処理チャンバ38が乾燥前処理中であるときは、第4ロボットCR4は、基板乾燥前処理チャンバ38が空きとなるまで基板Wを把持しない状態で待機し、基板乾燥前処理チャンバ38が空きとなった時点で水平基板受け渡し位置P3から1枚の基板Wを取得して、これを基板乾燥前処理チャンバ38へと搬送する。
ステップS27:基板乾燥前処理チャンバ38に基板Wが搬入されると、搬入口38aおよび搬出口38bのシャッターが閉鎖状態となり、チャンバ内部で乾燥前処理が実行される。この処理により、基板Wの表面にIPAが供給される。
ステップS28:実施例1のステップS17と同様、ウエット搬送機構WRは、乾燥処理対象の基板Wを最上層、中層、最下層に位置する空きの乾燥チャンバ37(乾燥処理中でない乾燥チャンバ37)のいずれかに搬入する。乾燥チャンバ37は、搬入された基板Wに対し乾燥処理を施す。
ステップS29:実施例1のステップS18と同様、乾燥処理後の基板Wは、第2ロボットCR2または第3ロボットCR3によりチャンバから搬出される。具体的には、最下層に位置する乾燥チャンバ37内の基板Wは、第3ロボットCR3のドライアーム73cにより第1復路用基板受け渡し位置P4aまで搬送される。また、最上層、中層に位置する乾燥チャンバ37内の基板Wは、第2ロボットCR2により第2復路用基板受け渡し位置P4bまで搬送される。
図34は、ステップS26~ステップS29に係る基板搬送について説明している。図34が示す各過程では、水平姿勢の基板Wが1枚ずつ搬送される。なお、図34は、最下層に位置する乾燥チャンバ37内の基板Wが第3ロボットCR3により第1復路用基板受け渡し位置P4aまで搬送される様子を例示している。
ステップS30:上述のステップS26~ステップ29が幾度か繰り返されて、第1復路用基板受け渡し位置P4aまたは第2復路用基板受け渡し位置P4bに配置されているパスに所定数の基板Wが充填されると、パスの基板Wは、一括搬送機構19により把持されて元のキャリアCに返却される。本ステップは、実施例1のステップ19と同様である。
図35は、ステップS30において複数枚の基板Wが一括して搬送される様子を示している。なお、図35は、複数枚の基板Wが第1復路用基板受け渡し位置P4aから搬送される様子が例示されている。この様にして、本例に係る基板処理装置2による基板処理は終了となる。
以上のように、本例によれば実施例1と同様の効果の他、以下のような効果を奏する。すなわち本例の第4ロボットCR4は、基板乾燥前処理チャンバ38に基板Wを送出し、ウエット搬送機構WRは、基板乾燥前処理チャンバ38より基板Wを受け取る。この様に構成すれば、ウエット搬送機構WRと第4ロボットCR4との間で基板Wの受け渡しをする必要がなくなるので、より確実に基板Wを搬送し、且つ、乾燥処理対象の基板Wの前処理を確実に行うことができる基板処理装置2を提供できる。
本発明は上述の構成に限られず、下記の様に変形実施が可能である。
<変形例1>
上述の乾燥チャンバ37は、超臨界流体チャンバとなっていたが、本発明はこの構成に限られない。乾燥チャンバ37をスピンドライ処理が可能なチャンバで構成してもよい。
上述の乾燥チャンバ37は、超臨界流体チャンバとなっていたが、本発明はこの構成に限られない。乾燥チャンバ37をスピンドライ処理が可能なチャンバで構成してもよい。
<変形例2>
上述の枚葉処理領域R2における乾燥チャンバ37は、鉛直方向(Z方向)に3つ積層されて積層体を構成していたが、本発明はこの構成限られず、積層体を構成する乾燥チャンバ37の個数を適宜増減することが可能である。
上述の枚葉処理領域R2における乾燥チャンバ37は、鉛直方向(Z方向)に3つ積層されて積層体を構成していたが、本発明はこの構成限られず、積層体を構成する乾燥チャンバ37の個数を適宜増減することが可能である。
<変形例3>
上述の枚葉処理領域R2において、乾燥チャンバ37が鉛直方向(Z方向)に所定数だけ積層された積層体が複数設けられていたが、本発明はこの構成に限られず、単一の積層体を有する装置にも適用できる。この様な装置では、図19におけるウエット搬送機構WRの右側、または左側の積層体が省かれた構成となる。
上述の枚葉処理領域R2において、乾燥チャンバ37が鉛直方向(Z方向)に所定数だけ積層された積層体が複数設けられていたが、本発明はこの構成に限られず、単一の積層体を有する装置にも適用できる。この様な装置では、図19におけるウエット搬送機構WRの右側、または左側の積層体が省かれた構成となる。
<変形例4>
上述の枚葉基板搬送領域R3は、上下に区画され、上側の区画と下側の区画に独立したロボットを有する構成であったが、本発明はこの構成に限られない。枚葉基板搬送領域R3を隔壁で分割せず、第1ロボットCR1,第2ロボットCR2の代わりに各ロボットが実行する搬送をまとめて行う単一のロボットを備える構成としてもよい。
上述の枚葉基板搬送領域R3は、上下に区画され、上側の区画と下側の区画に独立したロボットを有する構成であったが、本発明はこの構成に限られない。枚葉基板搬送領域R3を隔壁で分割せず、第1ロボットCR1,第2ロボットCR2の代わりに各ロボットが実行する搬送をまとめて行う単一のロボットを備える構成としてもよい。
<変形例5>
上述の枚葉基板搬送領域R3の第1ロボットCR1は、枚葉処理領域R2における最下層に位置するチャンバにアクセス可能であり、第2ロボットCR2は、枚葉処理領域R2における最上層、中層に位置するチャンバにアクセス可能となっていたが、本発明はこの構成に限られない。第1ロボットCR1を枚葉処理領域R2における中層、最下層に位置するチャンバにアクセス可能としてよく、それに合わせて第2ロボットCR2を枚葉処理領域R2における最下層に位置するチャンバにアクセス可能としてよい。
上述の枚葉基板搬送領域R3の第1ロボットCR1は、枚葉処理領域R2における最下層に位置するチャンバにアクセス可能であり、第2ロボットCR2は、枚葉処理領域R2における最上層、中層に位置するチャンバにアクセス可能となっていたが、本発明はこの構成に限られない。第1ロボットCR1を枚葉処理領域R2における中層、最下層に位置するチャンバにアクセス可能としてよく、それに合わせて第2ロボットCR2を枚葉処理領域R2における最下層に位置するチャンバにアクセス可能としてよい。
5 供給ブロック
7 移載ブロック
9 処理ブロック
19 一括搬送機構
20 第2姿勢変換機構
20B 水平保持部(水平基板支持部材)
22 プッシャ機構(鉛直基板支持部材)
37 乾燥チャンバ
38 基板乾燥前処理チャンバ
72 CRウエットアーム(受け渡しアーム)
73a ドライアーム(搬出アーム)
C キャリア
CR1 第1ロボット(枚葉基板受け渡し機構、基板搬出機構、第1基板搬出機構)
CR2 第2ロボット(第2基板搬出機構)
P1 往路用基板受け渡し位置
P2 鉛直基板受け渡し位置
P3 水平基板受け渡し位置
P4 復路用基板受け渡し位置
P4a 第1復路用基板受け渡し位置
P4b 第2復路用基板受け渡し位置
PCR 第1姿勢変換機構
R1 バッチ処理領域
R2 枚葉処理領域
R3 枚葉基板搬送領域
R4 バッチ基板搬送領域
W 基板
WR ウエット搬送機構(基板搬入機構)
WTR 基板搬送機構(バッチ基板搬送機構)
7 移載ブロック
9 処理ブロック
19 一括搬送機構
20 第2姿勢変換機構
20B 水平保持部(水平基板支持部材)
22 プッシャ機構(鉛直基板支持部材)
37 乾燥チャンバ
38 基板乾燥前処理チャンバ
72 CRウエットアーム(受け渡しアーム)
73a ドライアーム(搬出アーム)
C キャリア
CR1 第1ロボット(枚葉基板受け渡し機構、基板搬出機構、第1基板搬出機構)
CR2 第2ロボット(第2基板搬出機構)
P1 往路用基板受け渡し位置
P2 鉛直基板受け渡し位置
P3 水平基板受け渡し位置
P4 復路用基板受け渡し位置
P4a 第1復路用基板受け渡し位置
P4b 第2復路用基板受け渡し位置
PCR 第1姿勢変換機構
R1 バッチ処理領域
R2 枚葉処理領域
R3 枚葉基板搬送領域
R4 バッチ基板搬送領域
W 基板
WR ウエット搬送機構(基板搬入機構)
WTR 基板搬送機構(バッチ基板搬送機構)
Claims (8)
- 複数枚の基板を一括して処理するバッチ処理と、基板を1枚ずつ処理する枚葉処理とを連続して行う基板処理装置であって、
複数枚の基板を供給する供給ブロックと、前記供給ブロックに隣接する移載ブロックと、前記移載ブロックに隣接する処理ブロックと、を備え、
前記供給ブロックは、
水平姿勢であり鉛直方向に所定間隔で配列された複数枚の基板をキャリアから搬出して前記移載ブロックにおける往路用基板受け渡し位置に送出し、水平姿勢であり鉛直方向に前記所定間隔で配列された複数枚の基板を前記移載ブロックにおける復路用基板受け渡し位置から受け取って前記キャリアに収納する一括搬送機構を備え、
前記移載ブロックは、
前記往路用基板受け渡し位置で待機する複数枚の基板を一括に保持して、複数枚の基板の姿勢を水平姿勢から鉛直姿勢に一括して変換する第1姿勢変換機構と、鉛直姿勢となっている複数枚の基板を前記移載ブロックにおける鉛直基板受け渡し位置に待機させる鉛直基板支持部材と、を備え、
前記処理ブロックは、
一端側が前記移載ブロックに隣接し、他端側が前記移載ブロックから離れる方向に延びるバッチ処理領域と、
一端側が前記移載ブロックに隣接し、他端側が前記移載ブロックから離れる方向に延びる枚葉処理領域と、
前記バッチ処理領域と前記枚葉処理領域との間に介在して、一端側が前記移載ブロックに隣接し、他端側が前記移載ブロックから離れる方向に延びる枚葉基板搬送領域と、
前記バッチ処理領域に沿って設けられ、一端側が前記移載ブロックに隣接し、他端側が前記移載ブロックから離れる方向に延びるバッチ基板搬送領域と、を備え、
前記処理ブロックにおける前記バッチ処理領域には、その領域が延びる方向に複数枚の基板を一括して浸漬処理する複数個のバッチ処理槽が並び、更に、前記移載ブロックから最も離れた位置に複数枚の基板の姿勢を一括して鉛直姿勢から水平姿勢に変換する第2姿勢変換機構と、水平姿勢となっている複数枚の基板を前記バッチ処理領域における水平基板受け渡し位置に待機させる水平基板支持部材と、が備えられ、
前記処理ブロックにおける前記枚葉処理領域には、基板の乾燥処理を行う複数個の乾燥チャンバが鉛直方向に並び、更に、前記乾燥チャンバに乾燥処理前の基板を搬入する基板搬入機構と、が備えられ、
前記処理ブロックにおける前記枚葉基板搬送領域には、前記水平基板受け渡し位置から水平姿勢の基板を受け取り、前記枚葉処理領域に基板を渡す枚葉基板受け渡し機構と、前記乾燥チャンバから乾燥処理後の基板を前記移載ブロックにおける前記復路用基板受け渡し位置まで搬出する基板搬出機構と、が備えられ、
前記処理ブロックにおける前記バッチ基板搬送領域には、前記移載ブロック内に定められた前記鉛直基板受け渡し位置と、前記バッチ処理槽の各々と前記第2姿勢変換機構との間で複数枚の基板を一括して搬送するバッチ基板搬送機構と、が備えられる
ことを特徴とする基板処理装置。 - 請求項1に記載の基板処理装置において、
前記基板搬入機構は、前記枚葉基板受け渡し機構より基板を受け取る
ことを特徴とする基板処理装置。 - 請求項1に記載の基板処理装置において、
前記枚葉処理領域には、乾燥処理の前処理を行う基板乾燥前処理チャンバが備えられ、
前記枚葉基板受け渡し機構は、前記基板乾燥前処理チャンバに基板を送出し、
前記基板搬入機構は、前記基板乾燥前処理チャンバより基板を受け取る
ことを特徴とする基板処理装置。 - 請求項2に記載の基板処理装置において、
前記枚葉基板受け渡し機構は、前記基板搬出機構と兼用のロボットで構成され、
前記枚葉基板受け渡し機構は、乾燥処理前の基板を支持する受け渡しアームを有し、
前記基板搬出機構は、乾燥処理後の基板を支持する搬出アームを有し、
前記搬出アームは、前記受け渡しアームの上部に設けられている
ことを特徴とする基板処理装置。 - 請求項1に記載の基板処理装置において、
前記乾燥チャンバは、超臨界流体により基板を乾燥させる
ことを特徴とする基板処理装置。 - 請求項3に記載の基板処理装置において、
前記基板乾燥前処理チャンバは、イソプロピルアルコールにより基板を予備乾燥させる
ことを特徴とする基板処理装置。 - 請求項1に記載の基板処理装置において、
前記処理ブロックにおける前記枚葉処理領域には、
前記基板搬入機構の両側に前記乾燥チャンバの積層体が設けられる
ことを特徴とする基板処理装置。 - 請求項1に記載の基板処理装置において、
前記処理ブロックにおける前記バッチ基板搬送領域には、
前記乾燥チャンバの積層体の上層において基板を搬出する第1基板搬出機構と、
前記乾燥チャンバの積層体の下層において基板を搬出する第2基板搬出機構と、が備えられ、
前記移載ブロックには、
前記第1基板搬出機構が基板を搬出する第1復路用基板受け渡し位置が設定され、
前記第2基板搬出機構が基板を搬出する第2復路用基板受け渡し位置が設定される
ことを特徴とする基板処理装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-151711 | 2022-09-22 | ||
JP2022151711A JP2024046372A (ja) | 2022-09-22 | 2022-09-22 | 基板処理装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024062799A1 true WO2024062799A1 (ja) | 2024-03-28 |
Family
ID=90454195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/029415 WO2024062799A1 (ja) | 2022-09-22 | 2023-08-14 | 基板処理装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2024046372A (ja) |
TW (1) | TW202418454A (ja) |
WO (1) | WO2024062799A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006261546A (ja) * | 2005-03-18 | 2006-09-28 | Dainippon Screen Mfg Co Ltd | 基板処理装置 |
JP2021064652A (ja) * | 2019-10-10 | 2021-04-22 | 東京エレクトロン株式会社 | 基板処理システム、及び基板処理方法 |
JP2022087065A (ja) * | 2020-11-30 | 2022-06-09 | セメス カンパニー,リミテッド | 基板処理装置 |
-
2022
- 2022-09-22 JP JP2022151711A patent/JP2024046372A/ja active Pending
-
2023
- 2023-08-14 WO PCT/JP2023/029415 patent/WO2024062799A1/ja unknown
- 2023-08-18 TW TW112131053A patent/TW202418454A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006261546A (ja) * | 2005-03-18 | 2006-09-28 | Dainippon Screen Mfg Co Ltd | 基板処理装置 |
JP2021064652A (ja) * | 2019-10-10 | 2021-04-22 | 東京エレクトロン株式会社 | 基板処理システム、及び基板処理方法 |
JP2022087065A (ja) * | 2020-11-30 | 2022-06-09 | セメス カンパニー,リミテッド | 基板処理装置 |
Also Published As
Publication number | Publication date |
---|---|
TW202418454A (zh) | 2024-05-01 |
JP2024046372A (ja) | 2024-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7175191B2 (ja) | 基板処理装置および基板搬送方法 | |
KR20240049784A (ko) | 기판 처리 장치 및 방법 | |
WO2024062799A1 (ja) | 基板処理装置 | |
TWI853611B (zh) | 基板處理裝置 | |
WO2024042815A1 (ja) | 基板処理装置 | |
WO2024062695A1 (ja) | 基板処理装置 | |
US20240105484A1 (en) | Substrate treating apparatus | |
US20240105486A1 (en) | Substrate treating apparatus | |
US20240258147A1 (en) | Substrate processing system | |
US20240105482A1 (en) | Substrate treating apparatus | |
WO2024062683A1 (ja) | 基板処理装置 | |
EP4333037A1 (en) | Substrate treating apparatus | |
TW202431473A (zh) | 基板處理裝置 | |
TW202431474A (zh) | 基板處理裝置 | |
KR20240041248A (ko) | 기판 처리 장치 | |
JP2024044508A (ja) | 基板処理装置 | |
TW202418453A (zh) | 基板處理裝置 | |
JP2024046369A (ja) | 基板処理装置 | |
TW202431472A (zh) | 基板處理裝置 | |
KR20240001738A (ko) | 버퍼 챔버, 기판 처리 장치 및 기판 처리 방법 | |
JP2022159601A (ja) | 基板処理装置、及び基板処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23867924 Country of ref document: EP Kind code of ref document: A1 |