WO2024060748A1 - 卷径检测方法及装置、膜卷输送装置、辊压装置 - Google Patents

卷径检测方法及装置、膜卷输送装置、辊压装置 Download PDF

Info

Publication number
WO2024060748A1
WO2024060748A1 PCT/CN2023/102841 CN2023102841W WO2024060748A1 WO 2024060748 A1 WO2024060748 A1 WO 2024060748A1 CN 2023102841 W CN2023102841 W CN 2023102841W WO 2024060748 A1 WO2024060748 A1 WO 2024060748A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll diameter
film roll
time point
angular velocity
roller
Prior art date
Application number
PCT/CN2023/102841
Other languages
English (en)
French (fr)
Inventor
蔡浩
黄慧平
吴堃
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2024060748A1 publication Critical patent/WO2024060748A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/10Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters
    • G01B21/12Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters of objects while moving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a roll diameter detection method and device, a film roll conveying device, a rolling device, electronic equipment and a computer-readable storage medium.
  • Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy conservation and environmental protection.
  • battery technology is an important factor related to their development.
  • Electrode plates are the foundation of power batteries and directly determine the electrochemical performance and safety of the battery.
  • the electrode pole piece consists of a current collector and a coating evenly coated on the current collector.
  • the electrode plate coating process used for preparing battery electrodes is to evenly coat the uniformly stirred slurry on the foil (i.e., current collector), and dry the organic solvent in the slurry.
  • the electrode pieces can be transported in the form of rolls during the preparation process. Accurately obtaining the roll diameter of the film roll during the transportation process is a necessary means in the production equipment control process.
  • This application aims to solve at least one of the technical problems existing in the prior art.
  • one purpose of this application is to propose a roll diameter detection method, roll diameter detection device, film roll conveying device, rolling device, electronic equipment and storage medium to solve the problem of roll diameter measurement when film rolls are transported.
  • the embodiment of the first aspect of the present application provides a roll diameter detection method, which includes: Step S101: During the film roll transport process, obtain the linear velocity information of the traction roller and the angular velocity information of the measuring roller according to the preset sampling frequency; Step S102 : Based on the sampled linear velocity information of the traction roller and the angular velocity information of the measuring roller, calculate the film roll diameter on the measuring roller according to the preset calculation frequency during the film roll transport process; Step S103: At least based on the calculation before the current time point The obtained film roll diameter determines the current film roll diameter on the measuring roller.
  • the length of the film roll passed by the traction roller and the unwinding roller or rewinding roller in the same time
  • the length of the film roll passed by the roller is equal, that is to say, the linear speed of the traction roller and the linear speed of the surface of the measuring roll where the film roll is located are equal.
  • the corresponding film can be obtained by using the relationship between linear speed, angular velocity and radius. Roll diameter.
  • the linear speed of the traction roller and the angular speed of the measuring roller can be obtained without additional sensors, which reduces the cost of equipment and the difficulty of sensor installation and debugging.
  • calculating the film roll diameter on the measuring roller according to a preset calculation frequency during the film roll transport process includes: on the film roll During the transfer process, the film roll diameter calculation is triggered according to the preset calculation frequency; the film roll diameter calculation is configured to be based on at least the previous trigger time point when the last film roll diameter calculation was performed and the current time when the current film roll diameter calculation was performed.
  • the linear velocity information of the traction roller and the angular velocity information of the measuring roller sampled between the post-triggering time points are used to calculate the film roll diameter on the measuring roller corresponding to the post-triggering time point.
  • the film roll diameter is calculated periodically by setting a preset calculation frequency that is different from the preset sampling frequency.
  • the sampling data can be obtained at a higher frequency to ensure timely updating of the data.
  • the high sampling frequency can ensure that the data obtained each time is the latest data that is close to real-time, and can also ensure that the calculation accuracy of results.
  • triggering the film roll diameter calculation according to the preset calculation frequency during the film roll transport process includes: sampling between the previous trigger time point and the current time point when performing the last film roll diameter calculation.
  • the angular velocity information of the measuring roller is integrated and calculated to obtain the first current angular velocity integral value corresponding to the current time point; in response to the first current angular velocity integral value being greater than or equal to the first preset angle, the current time point is used as the execution time of this film
  • the roll diameter calculation is triggered at the later trigger point, which triggers the film roll diameter calculation this time.
  • the first current angular velocity integral calculated by integrating the angular velocity of the measuring roller between the previous triggering time point and the current time point is compared with the first preset angle as the triggering condition for the film roll diameter. , thereby realizing the periodic calculation of the film roll diameter.
  • This periodic determination method can directly use the obtained angular velocity information of the measuring roller to calculate, without the need to set up additional sensors for detection, and considering that there will inevitably be some fluctuations in the film roll delivery process, sampling The angle of rotation is determined relative to a fixed time interval, which can ensure that the film roll is transferred at any two calculation times.
  • the feeding length is the same, which helps to improve the accuracy of the roll diameter calculation results and avoid calculation errors caused by fluctuations during transportation.
  • the calculation of the film roll diameter includes: performing an integral calculation based on the linear speed information of the traction roller sampled between the first trigger time point and the later trigger time point to obtain the linear velocity information corresponding to the later trigger time point.
  • Linear velocity integral value perform an integral calculation based on the angular velocity information of the measuring roller sampled between the first trigger time point and the later trigger time point to obtain the angular velocity integral value corresponding to the later trigger time point; at least according to the later trigger time point
  • the linear velocity integral value and the angular velocity integral value corresponding to the time point are used to calculate the film roll diameter on the measuring roller corresponding to the post-triggering time point.
  • the linear velocity integral and angular velocity integral calculated by this method also have the same timeliness.
  • the calculated roll diameter can ensure the smooth change of the roll diameter and avoid distortion of the roll diameter measurement results due to fluctuations during the transmission process; and because the angular velocity and linear velocity are continuously updated according to the preset sampling frequency, the accuracy of the roll diameter results can be ensured sex and timeliness.
  • calculating the roll diameter of the film roll on the measuring roller corresponding to the post-trigger time point at least based on the linear velocity integral value and the angular velocity integral value corresponding to the post-trigger time point includes: storing the diameter of each film roll The angular velocity integral value and the linear velocity integral value corresponding to the trigger time point of the radius calculation; accumulate the preset number of angular velocity integral values with the latest storage time to obtain the angular velocity integral cumulative value; accumulate the preset number of linear velocity integral values with the latest storage time The linear velocity integral cumulative value is obtained, and the film roll diameter on the measuring roller corresponding to the post-triggering time point is calculated based on the angular velocity integral cumulative value and the linear velocity integral cumulative value.
  • the current calculation result can be made smoother than the calculation result at the previous calculation point, and transmission can be avoided.
  • the fluctuation causes the data corresponding to some time points to have large fluctuations in the calculation results, which in turn affects the accuracy of the roll diameter calculation results.
  • the angular velocity integral value and the linear velocity integral value corresponding to the trigger time point of each film roll diameter calculation are stored in a first-in, first-out manner.
  • storing in a first-in, first-out manner can ensure that the stored data is always the closest data to the current point in time.
  • the data stored in the storage space can be continuously updated, which can ensure that the data It has real-time performance, and at the same time, individual data with large deviations will not always participate in the cumulative calculation, thus eliminating errors caused by system accumulation and making subsequent calculation results more accurate.
  • determining the current film roll diameter on the measuring roller based at least on the film roll diameter calculated before the current time point includes: in response to the first current angular velocity integrated value being greater than or equal to the first preset angle. case, The film roll diameter on the measuring roller calculated from the current film roll diameter calculation is determined as the current film roll diameter on the measuring roller; in response to the first current angular velocity integral value being less than the first preset angle, according to the current The current film roll diameter on the measuring roller is obtained by the film roll diameter calculated from the last two film roll diameter calculations before the time point and the first current angular velocity integral interpolation calculation.
  • the current film roll diameter at the triggering time point is directly determined by calculation.
  • the roll diameter is determined by calculating the film roll diameters of the two most recent triggering film rolls before the current time point.
  • the roll diameter is calculated by interpolation, so that the calculated film roll diameter value is constantly updated in a smoothly changing manner, which can not only reflect the current film roll diameter in real time, but also avoid the need to maintain high-frequency calculations to avoid abnormal fluctuations.
  • the first preset angle is N times 360°, and N is a positive integer; in response to the current integral value of angular velocity being less than the preset angle, the calculation is based on the last two film roll diameters before the current time point.
  • the obtained film roll diameter and the first current angular velocity integral are interpolated to calculate the N-turn front roll diameter value; the current film roll diameter on the measuring roller is determined based on the N-turn front roll diameter value and the thickness of the film roll on the measuring roller.
  • the first current angular velocity integral calculated from the angular velocity information obtained between two adjacent trigger time points it can be simply and reliably identified whether the rotation angle of the measuring roller at the current time point is greater than or equal to the corresponding
  • the first preset angle using the roll diameter to change by N film roll thicknesses between each calculation cycle, can effectively avoid the inability to accurately correspond between each cycle caused by the fluctuation of the transmission speed, thereby causing errors in the interpolation calculation.
  • Sample the last two Interpolation of the film roll diameter calculated in one trigger can ensure that the calculation result is closer to the real state at the current time point. In this way, a highly accurate real-time roll diameter value can be obtained at non-sampling time points, improving the accuracy and accuracy of roll diameter measurement. sex.
  • calculating the film roll diameter on the measuring roller according to a preset calculation frequency during the film roll transport process also includes: according to the current The angular velocity information of all measuring rollers sampled before the time point is integrated and calculated to obtain the second current angular velocity integral corresponding to the current time point, in response to the situation that the second current angular velocity integral is greater than or equal to the second preset angle , clear the stored angular velocity integral and linear velocity integral corresponding to the trigger time point of each film roll diameter calculation.
  • the inaccurate data generated in the initial stage of transmission can be cleared, and the data in the subsequent smooth transmission state can be taken to start the roll diameter calculation. Calculation, this can ensure that the data used for roll diameter calculation is more accurate, thereby ensuring the accuracy of the film roll measurement results.
  • performing integral calculation based on the linear velocity information of the traction roller sampled between the first trigger time point and the second trigger time point to obtain the linear velocity integral value corresponding to the second trigger time point further includes: The linear velocity in the linear velocity information at the triggering time point is filtered to obtain a smoothed linear velocity, and the linear velocity integral at the post-triggering time point is calculated based on the smoothed linear velocity.
  • Integration calculation is performed based on the angular velocity information of the measuring roller sampled between the previous trigger time point and the later trigger time point to obtain the angular velocity integral value corresponding to the later trigger time point, including: the angular velocity information of the later trigger time point Filter the angular velocity in to obtain a smooth angular velocity; calculate the angular velocity integral at the post-trigger time point based on the smooth angular velocity.
  • filtering the sampled linear velocity and angular velocity can avoid a single sampling abnormality that causes a large deviation in the calculation of the linear velocity integral and the angular velocity integral, thereby affecting the accuracy of the calculated film roll diameter value. , which can ensure smooth changes in calculation results and a small fluctuation range.
  • the measurement roller is a unwinding roller or a rewinding roller
  • the preset sampling frequency is 1 millisecond/time.
  • the preset sampling frequency is set to 1 millisecond/time to achieve high-frequency detection and data updates, making the measurement results more accurate and meeting the requirements of application scenarios for high-precision roll diameter measurement.
  • the measuring roller can either be The unwinding roller can also be a rewinding roller, which improves the scope of application of the roll diameter detection method in this embodiment.
  • the embodiment of the second aspect of the present application provides a roll diameter detection device, which includes an acquisition module, a processing module and a determination module.
  • the acquisition module is configured to acquire the linear velocity of the traction roller and the angular velocity of the measuring roller according to a preset sampling frequency during the film roll transmission process.
  • the processing module is configured to calculate the roll diameter of the film roll on the measuring roller according to a preset calculation frequency based on the acquired linear velocity information of the traction roller and the angular velocity information of the measuring roller.
  • the determination module is configured to determine the current roll diameter of the film roll on the measuring roller based on at least the roll diameter of the film roll calculated before the current time point.
  • the embodiment of the third aspect of the present application provides a film roll conveying device, which includes an unwinding roller, a traction roller, a rewinding roller, and a roll diameter detection device that is signal-connected to the unwinding roller, the traction roller, and the rewinding roller;
  • the diameter detection device uses the roll diameter detection method of the above embodiment to measure the roll diameter of the unwinding roller and/or the winding roller, or the roll diameter detection device is the roll diameter detection device of the above embodiment.
  • the embodiment of the fourth aspect of the present application provides a rolling device, which includes: an unwinding roller, a traction roller, a rewinding roller, and a controller signally connected to the unwinding roller, the traction roller, and the rewinding roller; wherein, the control The device is configured to measure the roll diameter of the unwinding roller and/or the rewinding roller using the roll diameter detection method of the above embodiment.
  • the above parameters can be accurately obtained without the need to arrange other sensors, reducing the cost of the device.
  • the sampling frequency of this data collection method is high, so that the roll diameter detection speed and accuracy can meet the requirements of high-precision usage scenarios, ensuring the stability of tension and taper control during film roll transportation, and improving product quality.
  • Embodiments of the fifth aspect of the present application provide an electronic device, which includes: at least one processor; and a memory communicatively connected to the at least one processor.
  • the memory stores instructions that can be executed by at least one processor, and the instructions are executed by at least one processor.
  • the processor executes, so that at least one processor can execute the roll diameter detection method as described above.
  • the embodiment of the sixth aspect of the present application provides a computer-readable storage medium that stores a computer program.
  • the computer program is executed by a processor, the roll diameter detection method as described above is implemented.
  • Figure 1 is a schematic structural diagram of the film roll conveying process in some embodiments of the present application.
  • Figure 2 is a schematic flow chart of a roll diameter detection method according to some embodiments of the present application.
  • FIG3 is a schematic structural diagram of a roll diameter detection device according to some embodiments of the present application.
  • Figure 4 is a schematic structural diagram of a film roll conveying device according to some embodiments of the present application.
  • Figure 5 is a schematic structural diagram of a rolling device according to some embodiments of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • the term "and/or" is only a description of the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups), and “multiple pieces” refers to more than two pieces (including two pieces).
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • Power batteries include battery cells.
  • the electrode plate is the main component of the single battery, which directly determines the electrochemical performance and safety of the battery.
  • the battery pole piece consists of a metal current collector and a coating evenly coated on the metal current collector. During the manufacturing process, the battery pole pieces are transported in the form of film rolls so that the battery pole pieces can be coated, rolled, slit and other processes.
  • the film roll needs to be kept in a tight state during the transportation process, in order to maintain the smooth transportation of the film roll to meet the requirements of coating, rolling and slitting. Due to the cutting process requirements, it is often necessary to control the film roll tension and taper during the film roll transportation process, which makes it necessary to accurately measure the roll diameter of the roll where the film roll is located.
  • the applicant has conducted in-depth research and designed a roll diameter detection method, roll diameter detection device, film roll delivery device and roller pressing device.
  • a roll diameter detection method By obtaining the angular velocity of the measuring roller where the film roll is located and the linear speed of the traction roller in real time, we use the principle that the length of the film roll traveled by the traction roller and the length of the film roll traveled by the unwinding roller or rewinding roller are equal in the same time.
  • the corresponding roll diameter is calculated through the relationship between linear velocity, angular velocity and radius, so that there is no need to set up additional roll diameter detection sensors, reducing the cost of the device and the difficulty of installation and debugging.
  • the linear velocity and angular velocity collected in each sampling period are collected synchronously and are consistent in timeliness.
  • the linear velocity integral and angular velocity integral calculated by this method also have the same timeliness. They are calculated using the linear velocity integral and the angular velocity integral.
  • the roll diameter can ensure the smooth change of the roll diameter and avoid distortion of the roll diameter measurement results due to fluctuations during the transmission process; and because the angular velocity and linear velocity are continuously updated according to the preset sampling frequency, the accuracy and timeliness of the roll diameter results can be ensured .
  • the calculation of the first calculated curl diameter and the second calculated curl diameter is started every time the angular velocity integral meets the condition, and then the real-time size of the curl diameter is calculated using linear interpolation.
  • This can not only meet high-frequency linear velocity and angular velocity sampling, but also reduce the frequency of calculations, avoid excessive requirements on the processor and storage space, ensure the stability of tension and taper control, and thereby improve product quality.
  • the battery cells disclosed in the embodiments of the present application can be used in, but are not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical device can be composed of the battery cells and batteries disclosed in this application. In this way, it is helpful to alleviate and automatically adjust the deterioration of the expansion force of the battery core, supplement the electrolyte consumption, and improve the stability of battery performance and battery life. .
  • the battery cell is the basic unit that constitutes the battery.
  • the battery cell includes a casing, an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the coating process In the manufacturing process of battery cells, the process of coating the positive active material layer on the positive current collector and the negative active material layer on the negative current collector is called the coating process. After the coating is completed, it will go through a roller The pressing process makes the coated materials more compact, increases energy density, and ensures consistent thickness. On the other hand, it will further control dust and humidity. The rolled pole pieces are then cut into pieces according to the size of the battery required to be produced. In these processes, the pole pieces are transported in the form of film rolls.
  • Embodiments of the present application provide a roll diameter detection method and a roll diameter detection device, which can be used to detect the roll diameter of a roll material transported in the form of a film roll.
  • the roll material can be a battery pole piece or other flexible roll material.
  • the roll diameter detection device may be a roll diameter detection device in the manufacturing process of battery pole pieces, or it may be a roll diameter detection device involved in the film roll transfer process in other fields.
  • the film roll conveying device described in one embodiment of the present application is taken as an example.
  • Figure 1 shows a film roll conveying device provided by some embodiments of the present application, including an unwinding roller 1001, a traction roller 1002 and a rewinding roller 1003.
  • the film roll 1010 is unrolled from the unwinding roller 1001, and on the traction roller 1002 It is transported to the winding roller 1003 under traction to complete the winding.
  • the film roll conveying device may also include corresponding components or equipment that perform processing processes such as coating, rolling, or slitting on the film roll 1010 during the conveying process, which will not be shown here.
  • An embodiment of the first aspect of the present application provides a roll diameter detection method, which can be used to detect the roll diameter of an unwinding roller or a winding roller on which a film roll is located, as shown in Figures 1-2, and includes: Step S101: During the film roll transmission process, the linear speed information of the traction roller and the angular velocity information of the measuring roller are obtained according to a preset sampling frequency; Step S102: Based on the sampled linear speed information of the traction roller and the angular velocity information of the measuring roller, the roll diameter of the film roll on the measuring roller is calculated according to a preset calculation frequency during the film roll transmission process; Step S103: Determine the current roll diameter of the film roll on the measuring roller based on at least the roll diameter of the film roll calculated before the current time point.
  • the measuring roll is the roll on which the film roll is located.
  • the preset sampling frequency is a sampling frequency set in advance.
  • the preset sampling frequency can be a fixed value, that is, the interval period between two adjacent samplings is equal, or it can be set to be unequal as needed.
  • the length of the film roll transmitted at the traction shaft is the same as the length of the film roll being wound or unrolled at the winding roller or unwinding roller.
  • the corresponding film roll diameter can be calculated based on the relationship between the linear speed at the traction shaft and the angular velocity of the measuring roller where the film roll is located.
  • the linear velocity information of the traction roller includes the linear velocity of the surface of the traction roller corresponding to the sampling time point
  • the angular velocity information of the measurement roller includes the rotation angular velocity of the roller where the film roll is located corresponding to the sampling time point.
  • relevant data can be obtained from the motion parameters of the drive servo of the traction roller and the measurement roller.
  • the preset sampling frequency is the frequency for obtaining linear velocity and angular velocity data, and its size can be set in advance. During the entire film roll diameter calculation process, the preset sampling frequency can be fixed, or it can be based on Different transfer stages are adjusted.
  • the current film roll diameter on the measuring roller can be calculated by sampling data processing. For example, the film roll on the measuring roller can be obtained by fitting the previously calculated film roll diameter. Based on the change curve of the roll diameter, the current film roll roll diameter is obtained. For situations where the preset calculation frequency is high, it can also be considered to directly approximate the diameter of one or more recently calculated film rolls to obtain the current film roll. Roll diameter.
  • the length of the film roll passed by the traction roller and the unwinding roller or rewinding roller in the same time
  • the length of the film roll passed by the roller is equal, that is to say, the linear speed of the traction roller and the linear speed of the surface of the measuring roll where the film roll is located are equal.
  • the corresponding film can be obtained by using the relationship between linear speed, angular velocity and radius. Roll diameter.
  • the linear speed of the traction roller and the angular speed of the measuring roller can be obtained without additional sensors, which reduces the cost of equipment and the difficulty of sensor installation and debugging.
  • step S102 includes: triggering film roll diameter calculation according to a preset calculation frequency during film roll transportation.
  • the film roll diameter calculation is configured to be based at least on the linear velocity of the traction roller sampled between the previous trigger time point when the last film roll diameter calculation was performed and the subsequent trigger time point when the current film roll diameter calculation was performed.
  • Information and the angular velocity information of the measuring roller, the film roll diameter on the measuring roller corresponding to the post-triggering time point is calculated.
  • the preset calculation frequency is different from the preset sampling frequency.
  • the preset calculation frequency is a measure of the interval between two adjacent triggers of film roll diameter calculation, that is, the film roll diameter calculation is triggered every certain interval.
  • the preset calculation frequency can be set according to the requirements of the roll diameter update accuracy. It can be understood that the preset calculation frequency can be realized directly through the preset interval time, or by setting a preset condition, and by satisfying the preset condition as a trigger film
  • the prerequisite for roll diameter calculation is to implement the film roll diameter calculation process periodically.
  • the corresponding time point for each triggering of film roll diameter calculation is a trigger time point.
  • the previous trigger time point and the later trigger time point are the time points for calculating the film roll diameter of the two adjacent triggers.
  • the previous trigger time point is the time point when the trigger time is before the later trigger time point, and its corresponding It is the time point when the last film roll diameter calculation was performed, and the subsequent trigger time point corresponds to the time point of the current film roll diameter calculation.
  • each film roll diameter calculation is the same, and is based on the linear velocity information of the traction roller and the angular velocity information of the measuring roller sampled between the trigger time points corresponding to the two adjacent film roll diameter calculations. Calculation.
  • the film roll diameter is calculated periodically by setting a preset calculation period that is different from the preset sampling period.
  • the sampling data can be obtained at a higher frequency to ensure timely updating of the data.
  • setting a preset calculation period can reduce calculation requirements and reduce costs.
  • the high sampling frequency can ensure that the data obtained by each calculation are the latest data close to real-time, and the calculation results can also be guaranteed. accuracy.
  • triggering the film roll diameter calculation according to the preset calculation frequency during the film roll transport process includes: sampling between the previous trigger time point and the current time point when performing the last film roll diameter calculation.
  • the angular velocity information of the measuring roller is integrated and calculated to obtain the first current angular velocity integral value corresponding to the current time point; in response to the first current angular velocity integral value being greater than or equal to the first preset angle, the current time point is used as the execution time of this film
  • the roll diameter calculation is triggered at the later trigger point, which triggers the film roll diameter calculation this time.
  • the angular velocity information obtained by sampling includes the sampling time point and the angular velocity corresponding to the sampling time point, so that the angular velocity in the angular velocity information can be integrated along time to obtain the angular velocity integral corresponding to the time point.
  • the angular velocity integral reflects the rotation angle.
  • the first angular velocity integral value obtained by integrating the angular velocity information sampled between the previous trigger time point and the current time point is actually the angle of rotation of the measuring roller from the previous trigger time point to the current time point.
  • a first preset angle As a pre-judgment condition for determining whether to trigger the film roll diameter calculation, when the first current angular velocity integral is greater than or equal to the first preset angle, it will be determined as triggering the film roll diameter calculation. Calculation, then the current time point will be used as the subsequent trigger time point for executing this film roll diameter calculation.
  • the first current angular velocity integral calculated by integrating the angular velocity of the measuring roller between the previous triggering time point and the current time point is compared with the first preset angle as the triggering condition for the film roll diameter. , thereby realizing the periodic calculation of the film roll diameter.
  • This periodic determination method can directly use the obtained angular velocity information of the measuring roller to calculate, without the need to set up an additional sensor for detection, and considering that there will inevitably be some fluctuations during the film roll transmission process, adopt Compared with using a fixed time interval to determine the angle of rotation, it can ensure that the film roll transmission length is the same at any two calculation points, which will help improve the accuracy of the roll diameter calculation results and avoid calculations caused by fluctuations during transmission. error.
  • the calculation of the film roll diameter includes: performing an integral calculation based on the linear speed information of the traction roller sampled between the first trigger time point and the later trigger time point to obtain the linear velocity information corresponding to the later trigger time point.
  • Linear velocity integral value perform an integral calculation based on the angular velocity information of the measuring roller sampled between the first trigger time point and the later trigger time point to obtain the angular velocity integral value corresponding to the later trigger time point; at least according to the later trigger time point
  • the linear velocity integral value and the angular velocity integral value corresponding to the time point are used to calculate the film roll diameter on the measuring roller corresponding to the post-triggering time point.
  • the linear velocity integral value is calculated by integrating the linear velocity along time in the sampled linear velocity information
  • the angular velocity is calculated by integrating the angular velocity in the sampled angular velocity information along time.
  • the interval between two adjacent sampling time points is also a sampling period.
  • the sampling frequency is high and the corresponding sampling period is small enough, the sampling value corresponding to the two sampling times and the sampling period can be directly used.
  • the area of the trapezoid formed by the period is approximately used as the integral value increased during the sampling period, and then the linear velocity integral and the angular velocity integral corresponding to the current sampling time point are obtained.
  • the calculation of angular velocity integral and linear velocity integral is further explained below.
  • ⁇ integral n ⁇ integral n-1 +( ⁇ n + ⁇ n-1 ) ⁇ T/2
  • the angular velocity of the measuring roller collected at T n-1 , ⁇ T is a single sampling period corresponding to the preset sampling frequency, that is, the time interval between the current time point T n and the previous time point T n-1 .
  • V integral n V integral n-1 +(V n +V n-1 ) ⁇ T/2
  • V integral n-1 is the angular velocity integral corresponding to the previous sampling time point T n-1 ;
  • V n is the linear velocity of the traction roller collected at the current sampling time point T n ;
  • V n-1 is the previous sampling time. The linear speed of the traction roller collected at point T n-1 .
  • the integral value of the linear velocity corresponding to the later trigger time point can be calculated based on the angular velocity information and linear velocity information collected at each sampling time point between the previous trigger time point and the later trigger time point.
  • the integral value of angular velocity is used to calculate the film roll diameter.
  • the linear velocity integral and angular velocity integral calculated by this method also have the same timeliness.
  • the calculated roll diameter can ensure the smooth change of the roll diameter and avoid distortion of the roll diameter measurement results due to fluctuations during the transmission process; and because the angular velocity and linear velocity are continuously updated according to the preset sampling frequency, the accuracy of the roll diameter results can be ensured sex and timeliness.
  • calculating the film roll diameter on the measuring roller corresponding to the post-trigger time point at least based on the linear velocity integral value and the angular velocity integral value corresponding to the post-trigger time point includes: storing each film roll diameter The calculated angular velocity integral value and linear velocity integral value corresponding to the trigger time point; accumulate the preset number of angular velocity integral values with the latest storage time to get the angular velocity integral cumulative value; accumulate the preset number of linear velocity integral values with the latest storage time to get The linear velocity integral cumulative value is calculated according to the angular velocity integral cumulative value and the linear velocity integral cumulative value to obtain the film roll diameter on the measuring roller corresponding to the post-triggering time point.
  • the angular velocity integral value and linear velocity integral value corresponding to the trigger time point can be stored in the storage space, and the storage space can be a certain storage area in the memory, such as a cache area.
  • the accumulated angular velocity integral value ⁇ and the accumulated linear velocity integral value V are calculated by respectively accumulating the preset number of angular velocity integrals and linear velocity integrals with the closest storage time in the storage space.
  • the transmission speed may fluctuate above and below the preset speed, and even the fluctuation amplitude caused by some unexpected conditions is too large, which will cause the calculation of the roll diameter at the corresponding time point to be
  • the value sends a large deviation
  • the current calculation result can be made smoother than the calculation result at the previous calculation time point. The closer the storage time of the accumulated value is, the closer the corresponding trigger time is to the current time point, and the smaller the difference between the corresponding film roll diameter and the current film roll diameter.
  • the calculated result after accumulation is also the same as The closer the current actual coil diameter is, the more conducive to ensuring the accuracy of the calculation results.
  • the preset quantity for accumulation may be all stored angular velocity integral values or linear velocity integral values, or may be part of the stored angular velocity integral values or linear velocity integral values.
  • R is the current curling diameter value
  • ⁇ accumulation is the angular velocity integral accumulation value
  • V accumulation is the linear velocity integral accumulation value
  • this curl diameter value is the latest curl diameter value calculated after the angular velocity integral meets the trigger condition of the first preset angle.
  • the current calculation result can be made smoother than the calculation result at the previous calculation point, and transmission can be avoided.
  • the fluctuation causes the data corresponding to some time points to have large fluctuations in the calculation results, which in turn affects the accuracy of the roll diameter calculation results.
  • the angular velocity integral value and the linear velocity integral value corresponding to the trigger time point of each film roll diameter calculation are stored in a first-in, first-out manner.
  • the storage space cannot be infinite, and in practical applications, there is no need to store all data and waste precious storage space.
  • the storage length of the storage space can be set according to the actual number of accumulated and calculated data.
  • storing in a first-in, first-out manner can ensure that the stored data is always the closest data to the current point in time.
  • the data stored in the storage space can be continuously updated, which can ensure that the data It has real-time performance, and at the same time, individual data with large deviations will not always participate in the cumulative calculation, thus eliminating errors caused by system accumulation and making subsequent calculation results more accurate.
  • step S03 includes: in response to the first current angular velocity integral value being greater than or equal to the first preset angle, determining the film roll diameter on the measuring roller calculated from the current film roll roll diameter as Measuring the current film roll diameter on the roller; in response to the first current angular velocity integral value being less than the first preset angle, the film roll diameter calculated based on the last two film roll diameters before the current time point and the first The current angular velocity integral interpolation calculation is used to obtain the current film roll diameter on the measuring roller.
  • the calculated film roll diameter is directly used as the current film roll diameter on the measuring roller.
  • the current film roll roll diameter can be obtained by interpolation calculation based on the film roll roll diameter calculated before the current time point.
  • the current film roll diameter at the triggering time point is directly determined by calculation.
  • the roll diameter is determined by calculating the film roll diameters of the two most recent triggering film rolls before the current time point.
  • the roll diameter is calculated by interpolation, so that the calculated film roll diameter value is constantly updated in a smoothly changing manner, which can not only reflect the current film roll diameter in real time, but also avoid the need to maintain high-frequency calculations to avoid abnormal fluctuations.
  • the first preset angle is an integer multiple of 360°.
  • the first preset angle is N times 360°, and N is a positive integer.
  • the N-turn forward rolling diameter value is calculated based on the film roll diameter calculated from the last two film roll diameters before the current time point and the first current angular velocity integral interpolation; according to The roll diameter value before N turns and the thickness of the film roll on the measuring roller determine the current film roll diameter on the measuring roll.
  • setting the first preset angle to N times 360° means that the measuring roller rotates N times between two adjacent triggers of film roll diameter calculation.
  • the corresponding change in film roll diameter is N
  • the film roll thickness t, N can be set according to specific actual needs, for example, 2. In this way, when interpolating non-triggering time points, you can first calculate the roll diameter value of the current time point at the corresponding time point within the calculation period between the two adjacent film roll diameter calculations, and then use each calculation The film roll diameters corresponding to the cycle are separated by N ⁇ t to be converted to the current film roll diameter.
  • the specific interpolation calculation formula is:
  • Rcurrent is the current film roll diameter of the measuring roller
  • ⁇ integraln is the first current angular velocity integral corresponding to the current time point
  • R1 is the film roll diameter calculated by the most recent film roll diameter before the current time point
  • R2 is the film roll diameter calculated by the most recent film roll diameter before R1
  • t is the thickness of the film roll.
  • the first current angular velocity integral is the integral value of the angular velocity sampled between the previous trigger time point and the current time point since the previous film roll diameter calculation was performed. If the current time point is not the trigger time point, this When the first current angular velocity integral is less than N ⁇ 360°, once the first current angular velocity integral is greater than or equal to N ⁇ 360°, a new film roll diameter calculation will be triggered, so that in the subsequent calculation of the first current angular velocity integral At that time, the integral calculation will be performed again based on the sampling data after the latest trigger time point.
  • the roll diameter of the unwinding roller decreases as the film roll is conveyed
  • the roll diameter of the winding roller increases as the film roll is conveyed. Therefore, if the measuring roller is an unwinding roller, the real-time winding diameter is reduced by N ⁇ t relative to the winding diameter N times before. If the measuring roller is a rewinding roller, the real-time winding diameter is reduced by N ⁇ t relative to the winding diameter N times ago. Added N ⁇ t.
  • the interpolation calculation formula can also select the film roll diameter corresponding to any two adjacent trigger time points as needed, and convert it according to the calculation period between the two selected trigger time points and the current time point. .
  • step S102 also includes: performing an integral calculation based on the angular velocity information of all measuring rollers sampled before the current time point to obtain a second current angular velocity integral corresponding to the current time point, and responding to the second current angular velocity integral If it is greater than or equal to the second preset angle, clear the stored angular velocity integral and linear velocity integral corresponding to the trigger time point of each film roll diameter calculation.
  • the film roll when the film roll first starts to be conveyed, the film roll will have a transition period from unstable conveyance to stable conveyance.
  • the control functions such as tension control and taper control have not been adjusted in place, so there is a need for a Only during the transition period can the film roll be transported smoothly while maintaining the tension and taper requirements.
  • the film roll's transmission state is unstable, which will cause the collected and stored angular velocity integral and linear velocity integral to not accurately reflect the true diameter of the roll. status, this kind of inaccurate data needs to be cleared to avoid causing too large a deviation in the roll diameter measurement in the subsequent calculation process.
  • the inaccurate data generated in the initial stage of transmission can be cleared, and the data in the subsequent smooth transmission state can be taken to start the roll diameter calculation. Calculation, this can ensure that the data used for roll diameter calculation is more accurate, thereby ensuring the accuracy of the film roll measurement results.
  • performing an integral calculation based on the linear velocity information of the traction roller sampled between the previous triggering time point and the subsequent triggering time point to obtain the linear velocity integral value corresponding to the subsequent triggering time point also includes: Filter the linear velocity in the linear velocity information at the post-trigger time point to obtain a smooth linear velocity, and calculate the linear velocity integral at the post-trigger time point based on the smoothed linear velocity.
  • Integration calculation is performed based on the angular velocity information of the measuring roller sampled between the previous trigger time point and the later trigger time point to obtain the angular velocity integral value corresponding to the later trigger time point, including: the angular velocity information of the later trigger time point Filter the angular velocity in to obtain a smooth angular velocity; calculate the angular velocity integral at the post-trigger time point based on the smooth angular velocity.
  • the filtering process adopted for the sampled linear velocity and sampled angular velocity can be median filtering or first-order lag filtering.
  • the following takes first-order lag filtering as an example to illustrate.
  • a is the filter smoothing coefficient
  • ⁇ T is a single sampling period corresponding to the preset sampling frequency
  • T smoothing is the preset smoothing period.
  • the preset smoothing period T smoothing is a period value that needs to be set based on the calculation of the filter smoothing coefficient, and can be set to an integer multiple of a single sampling period ⁇ T corresponding to the preset sampling frequency, such as 5-10 times.
  • the sampling data at the current sampling time point and the sampling data at the previous sampling time point calculate the smoothed angular velocity and smooth linear velocity corresponding to the current sampling time point, and use the calculation to obtain the smoothed angular velocity and the smoothed new velocity. Perform subsequent integral calculations.
  • ⁇ n and V n are respectively the angular velocity and linear velocity obtained by sampling at the current sampling time
  • ⁇ n-1 and V n-1 are respectively the angular velocity and linear velocity obtained by sampling in the previous sampling period.
  • filtering the sampled linear velocity and angular velocity can avoid a single sampling abnormality that causes a large deviation in the calculation of the linear velocity integral and the angular velocity integral, thereby affecting the accuracy of the calculated film roll diameter value. , which can ensure smooth changes in calculation results and a small fluctuation range.
  • the measurement roller is a unwinding roller or a rewinding roller
  • the preset sampling frequency is 1 millisecond/time.
  • the preset sampling frequency is set to 1 millisecond/time to achieve high-frequency detection and data updates, making the measurement results more accurate and meeting the requirements of application scenarios for high-precision roll diameter measurement.
  • the measuring roller can either be The unwinding roller can also be a rewinding roller, which improves the scope of application of the roll diameter detection method in this embodiment.
  • the second embodiment of the present application provides a roll diameter detection device.
  • the roll diameter detection device 200 includes an acquisition module 201 , a processing module 202 and a determination processing module 203 .
  • the acquisition module 201 is configured to acquire the linear velocity of the traction roller and the angular velocity of the measurement roller according to a preset sampling frequency during the film roll transportation process.
  • the processing module 202 is configured to calculate the film roll diameter on the measuring roller according to a preset calculation frequency based on the acquired linear velocity information of the traction roller and the angular velocity information of the measuring roller.
  • the determining module 203 is configured to determine the current film roll diameter on the measuring roller based at least on the film roll diameter calculated before the current time point.
  • the third embodiment of the present application provides a film roll conveying device.
  • the film roll conveying device 300 includes an unwinding roller 301, a traction roller 302, a rewinding roller 303, and an unwinding roller 301, a traction roller Roll diameter detection device 304 with signal connection between roller 302 and winding roller 303; film roll 310 is sleeved on unwinding roller 301 and transported to winding roller 303 via traction roller 302.
  • the roll diameter detection device 304 can use the roll diameter detection method of the above embodiment to measure the roll diameter of the unwinding roller 301 .
  • the roll diameter detection device 304 can measure the roll diameter of the winding roller 303 using the roll diameter detection method of the above embodiment.
  • the roll diameter detection device 304 can measure the roll diameter of the unwinding roller 301 and the winding roller 303 by using the roll diameter detection method of the above embodiment.
  • the roll diameter detection device 304 may also be the roll diameter detection device 200 of the above embodiment.
  • the film roll conveying device can be a device for conveying film rolls of any type and in any scenario.
  • it can be a film roll conveying device for a coating process, a film roll conveying device for a rolling process, or a film roll conveying device for a pole piece slitting process.
  • the film roll detection method and film roll detection device in the embodiments of the present application are also equally applicable to film roll conveying scenarios in non-battery manufacturing fields.
  • the fourth embodiment of the present application provides a rolling device.
  • the rolling device 400 includes: an unwinding roller 401, a traction roller 402, a rewinding roller 403, and an unwinding roller 401 and a traction roller.
  • 402 is connected to the controller 404 with signals from the winding roller 403; the film roll 410 is sleeved on the unwinding roller 401 and is transferred to the winding roller 403 via the traction roller 402.
  • the controller 404 is configured to measure the roll diameter of the unwinding roller 401 using the roll diameter detection method of the above embodiment.
  • the controller 404 can also measure the roll diameter of the winding roller 403 using the roll diameter detection method of the above embodiment.
  • the controller 404 can also measure the roll diameter of the unwinding roller 401 and the winding roller 403 by using the roll diameter detection method of the above embodiment.
  • the controller 404 can be a PLC controller.
  • the controller 404 obtains the real-time angular speed from the driving motor of the unwinding roller 401 or the winding roller 403 through a communication protocol, and obtains the real-time angular speed from the channel motor of the traction roller 402 through a communication protocol.
  • the rolling device 400 may be an integrated rolling machine.
  • the rolling device can be a device used for rolling battery pole pieces, or it can be a rolling device in other technical fields.
  • the above parameters can be accurately obtained without arranging other arrangements.
  • the sensor reduces the cost of the device.
  • the sampling frequency of this data collection method is high, so that the roll diameter detection speed and accuracy can meet the requirements of high-precision usage scenarios, ensuring the stability of tension and taper control during film roll transportation, thereby improving the product quality.
  • Embodiments of the fifth aspect of the present application provide an electronic device, which includes: at least one processor; and a memory communicatively connected to the at least one processor.
  • the memory stores instructions that can be executed by at least one processor, and the instructions are executed by at least one processor.
  • the processor executes, so that at least one processor can execute the roll diameter detection method as described above.
  • the embodiment of the sixth aspect of the present application provides a computer-readable storage medium that stores a computer program.
  • the computer program is executed by a processor, the roll diameter detection method as described above is implemented.
  • the rolling device 400 includes an unwinding roller 401, a traction roller 402, a rewinding roller 403, and a controller 404.
  • the film roll 410 is sleeved on the unwinding roller 401 and is transported to the rewinding roller via the traction roller 402.
  • the controller 404 is a PLC controller connected with signals to the unwinding roller 401, the traction roller 402 and the rewinding roller 403.
  • the controller 404 communicates with the servo motors of the unwinding roller 401, the traction roller 402 and the rewinding roller 403 respectively according to the preset sampling frequency of 1 millisecond/time through the communication protocol to obtain the angular velocity of the unwinding roller 401, the rewinding roller 403, and the traction roller 402. linear speed.
  • the controller 404 processes the sampled data and calculates the roll diameter of the unwinding roller 401 where the film roll 410 is located and the roll diameter of the winding roller 403.
  • the specific calculation method includes:
  • Filtering processing The linear velocity and angular velocity obtained by sampling are filtered using first-order lag filtering.
  • Integral calculation integrate the smooth linear velocity along time obtained after filtering the linear velocity at the current sampling time point to obtain the linear velocity integral, and integrate the smooth angular velocity obtained after filtering the sampling angular velocity at the current sampling time point along time to obtain the angular velocity integral;
  • Roll diameter calculation start judgment Calculate the second current angular velocity integral value based on the angular velocity information collected at all sampling time points before the current time point, and judge whether the second current angular velocity integral value is greater than or equal to the second preset angle. If so, clear the stored angular velocity integral and linear velocity integral, and use the current time point as the trigger time point for the first film roll diameter calculation.
  • the second preset angle can be 720°.
  • Film roll diameter calculation Integrate the angular velocity information of the measuring roller sampled between the previous trigger time point of the last film roll diameter calculation and the current time point to obtain the first value corresponding to the current time point.
  • Current angular velocity integral value determine whether the first angular velocity integral value is greater than or equal to the first preset angle. If so, use the current time point as a trigger time point to trigger a film roll diameter calculation to obtain a film roll on the measuring roller.
  • the first preset angle may be 720°.
  • the current film roll diameter on the measuring roller which specifically includes: when the first current angular velocity integral value is greater than or equal to the first preset angle, directly adjust the current film roll diameter.
  • the film roll diameter on the measuring roller calculated from the secondary film roll diameter is determined as the current film roll diameter on the measuring roller; when the first current angular velocity integral value is less than the first preset angle, the film roll diameter on the measuring roller is determined according to the current time point before
  • the film roll diameter calculated from the last two film roll diameter calculations and the first current angular velocity integral are interpolated to calculate the roll diameter 2 turns before the measuring roller; then the current film roll diameter on the measuring roller is calculated based on the thickness of the film roll. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)

Abstract

本申请提供一种卷径检测方法及装置、膜卷输送装置、辊压装置、电子设备及计算机可读存储介质,卷径检测方法包括:在膜卷传送过程中,按照预设采样频率获取牵引辊的线速度信息以及测量辊的角速度信息;基于采样得到的牵引辊的线速度信息和测量辊的角速度信息,在膜卷传送过程中按照预设计算频率计算测量辊上的膜卷卷径;以及至少基于当前时点之前所计算得到的膜卷卷径,确定测量辊上的当前膜卷卷径。

Description

卷径检测方法及装置、膜卷输送装置、辊压装置
交叉引用
本申请引用于2022年9月22日递交的名称为“卷径检测方法及装置、膜卷输送装置、辊压装置”的第202211170178.1号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及电池技术领域,尤其涉及一种卷径检测方法及装置、膜卷输送装置、辊压装置、电子设备及计算机可读存储介质。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
电极极片是动力电池的基础,直接决定电池的电化学性能以及安全性。电极极片由集流体和均匀的涂敷在集流体上的涂层组成。目前制备电池极片采用的是将搅拌均匀的浆料均匀地涂覆在箔材(即集流体)上,并将浆料中的有机溶剂进行烘干的极片涂布工艺。电极极片在制备过程中可以卷材的形式进行传送,在传送过程中准确获取膜卷的卷径是生产设备控制过程中的必要手段。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种卷径检测方法、卷径检测装置、膜卷输送装置、辊压装置、电子设备及存储介质,以解决膜卷传送时卷径测量的问题。
本申请第一方面的实施例提供一种卷径检测方法,其包括:步骤S101:在膜卷传送过程中,按照预设采样频率获取牵引辊的线速度信息以及测量辊的角速度信息;步骤S102:基于采样得到的牵引辊的线速度信息和测量辊的角速度信息,在膜卷传送过程中按照预设计算频率计算测量辊上的膜卷卷径;步骤S103:至少基于当前时点之前所计算得到的膜卷卷径,确定测量辊上的当前膜卷卷径。
本实施例中,由于膜卷是与牵引辊、测量辊一起同步传动,且膜卷传送时会保持恒张力绷紧,相同时间内牵引辊的走过的膜卷长度和放卷辊或收卷辊走过的膜卷长度是相等的,也就是说牵引辊的线速度和膜卷所在的测量辊表面的线速度是相等的,这样就可以利用线速度、角速度以及半径的关系得到对应的膜卷卷径。而牵引辊的线速度和测量辊的角速度都无需额外传感器即可获得,减少了设备的成本开支以及传感器的安装和调试难度。
在一些实施例中,基于采样得到的牵引辊的线速度信息和测量辊的角速度信息,在膜卷传送过程中按照预设计算频率计算所述测量辊上的膜卷卷径包括:在膜卷传送过程中按照预设计算频率触发膜卷卷径计算;膜卷卷径计算被配置为至少基于执行上一次膜卷卷径计算的在先触发时点和执行本次膜卷卷径计算的在后触发时点之间所采样得到的牵引辊的线速度信息和测量辊的角速度信息,计算与在后触发时点对应的所述测量辊上的膜卷卷径。
本实施例中,通过设定一个与预设采样频率不同的预设计算频率以实现周期性计算膜卷卷径,这样对于采样数据的获取可以按照一个较高的频率进行,保证数据的及时更新,为膜卷卷径计算提供更及时准确的数据,而膜卷卷径计算则相对数据采样而言不需要频率那么高,特别是在膜卷传送平稳的状态下,膜卷卷径的变化是相对稳定的,因此另外设定一个预设计算周期能够减小对计算能力的要求,降低成本,同时由于采样频率高能够保证每次计算得到的数据都是接近实时的最新数据,也能够保证计算结果的准确性。
在一些实施例中,在膜卷传送过程中按照预设计算频率触发膜卷卷径计算包括:对执行上一次膜卷卷径计算的在先触发时点与当前时点之间所采样得到的测量辊的角速度信息进行积分计算,以得到与当前时点对应的第一当前角速度积分值;响应于第一当前角速度积分值大于或等于第一预设角度,将当前时点作为执行本次膜卷卷径计算的在后触发时点,触发本次膜卷卷径计算。
本实施例通过对在先触发时点与当前时点之间的测量辊的角速度做积分计算得到的第一当前角速度积分与第一预设角度比对来作为本次膜卷卷径的触发条件,从而实现周期性计算膜卷卷径,这种周期判定方式可以直接利用获取的测量辊的角速度信息计算,无需另外设置传感器进行检测,而且考虑膜卷传送过程中不可避免会存在一些波动,采样旋转的角度去判定相对于以固定的时间间隔而言,能够保证任意两次计算时点膜卷传 送长度相同,从而有利于提高卷径计算结果的准确性,避免因为传送时的波动导致计算误差。
在一些实施例中,膜卷卷径计算包括:根据在先触发时点和在后触发时点之间所采样得到的牵引辊的线速度信息进行积分计算,以得到在后触发时点对应的线速度积分值;根据在先触发时点和在后触发时点之间所采样得到的测量辊的角速度信息进行积分计算,以得到在后触发时点对应的角速度积分值;至少根据在后触发时点对应的线速度积分值和角速度积分值,计算与在后触发时点对应的测量辊上的膜卷卷径。
本实施例中,由于每次采样得到的线速度和角速度是同步采集,在时效上具有一致性,以此计算得到的线速度积分和角速度积分也是具有相同的时效,利用线速度积分和角速度积分去计算得到的卷径能够保证卷径的平稳变化,避免因为传送过程中的波动导致卷径测量结果失真;而且由于角速度和线速度会按照预设采样频率不断更新,能够保证卷径结果的准确性和时效性。
在一些实施例中,至少根据在后触发时点对应的线速度积分值和角速度积分值,计算与在后触发时点对应的测量辊上的膜卷卷径包括:存储与每个膜卷卷径计算的触发时点对应的角速度积分值和线速度积分值;将存储时间最近的预设数量的角速度积分值累加得到角速度积分累加值;将存储时间最近的预设数量的线速度积分值累加得到线速度积分累加值,根据所述角速度积分累加值和线速度积分累加值计算得到在后触发时点对应的测量辊上的膜卷卷径。
本实施例中,通过将最近几次触发时点的角速度积分值和线速度积分值分别累加后再进行计算,可以使得当前的计算结果相对于上一计算时点的计算结果更平顺,避免传送波动导致部分时点对应的数据出现较大计算结果出现较大波动,进而影响卷径计算结果的准确性。
在一些实施例中,每个膜卷卷径计算的触发时点对应的角速度积分值和线速度积分值以先进先出的方式存储。
本实施例中,对于有限的存储空间,以先进先出的方式进行存储能够保证存储的数据始终是与当前时点的最接近的数据,存储空间内存储的数据能够不断被更新,能够保证数据的实时性,同时个别偏差较大的数据不会一直参与累加计算,从而能消除系统累计产生的误差,使得后续的计算结果更准确。
在一些实施例中,至少基于当前时点之前所计算得到的膜卷卷径,确定测量辊上的当前膜卷卷径包括:响应于第一当前角速度积分值大于或等于第一预设角度的情况下, 将本次膜卷卷径计算得到的测量辊上的膜卷卷径确定为测量辊上的当前膜卷卷径;响应于第一当前角速度积分值小于第一预设角度的情况下,根据当前时点之前最近两次膜卷卷径计算得到的膜卷卷径以及第一当前角速度积分插值计算得到测量辊上的当前膜卷卷径。
本实施例中,对于触发时点的当前膜卷卷径直接采用计算的方式确定,对于非触发时点的卷径,通过当前时点前最近的两次触发膜卷卷径计算时得到的膜卷卷径做插值计算,使得计算的膜卷卷径值以平滑变化的方式不断更新,既能实时反映当前膜卷卷径,又无需始终保持高频率的计算,避免出现异常波动。
在一些实施例中,第一预设角度为360°的N倍,N为正整数;响应于当前角速度积分值小于预设角度的情况下,根据当前时点之前最近两次膜卷卷径计算得到的膜卷卷径、第一当前角速度积分插值计算得到N圈前卷径值;根据N圈前卷径值和测量辊上膜卷的厚度确定测量辊上的当前膜卷卷径。
本实施例中,通过对相邻的两个触发时点之间获取的角速度信息计算的第一当前角速度积分进行判断,能够简单可靠的识别出当前时点测量辊的旋转角度是否大于或等于对应的第一预设角度,利用每个计算周期之间刚好卷径变化N个膜卷厚度可以有效的避免传送速度波动导致的每个周期之间无法准确对应从而给插值计算造成误差,采样最近两次触发计算的膜卷卷径做插值可以保证计算结果更贴近当前时点的真实状态,这样在非采样时点下也能够获得准确度高的实时卷径值,提高卷径测量的精度和准确性。
在一些实施例中,基于采样得到的牵引辊的线速度信息和测量辊的角速度信息,在膜卷传送过程中按照预设计算频率计算所述测量辊上的膜卷卷径还包括:根据当前时点前采样得到的全部测量辊的角速度信息进行积分计算,以得到与当前时点对应的第二当前角速度积分,响应于所述第二当前角速度积分大于或等于第二预设角度的情况下,清除存储的每个膜卷卷径计算的触发时点对应的角速度积分和线速度积分。
本实施例中通过设定一个第二预设角度作为膜卷卷径计算的初始启动条件,可以将传送初始阶段产生的不准确的数据清除,取后续平稳传送状态下的数据再开始进行卷径计算,这样能够保证用于卷径计算的数据更加的准确,从而保证膜卷测量结果的准确性。
在一些实施例中,根据在先触发时点和在后触发时点之间所采样得到的牵引辊的线速度信息进行积分计算,以得到在后触发时点对应的线速度积分值还包括:对在后触 发时点的线速度信息中的线速度进行滤波得到平滑线速度,根据平滑线速度计算在后触发时点的线速度积分。
根据在先触发时点和在后触发时点之间所采样得到的测量辊的角速度信息进行积分计算,以得到在后触发时点对应的角速度积分值包括:对在后触发时点的角速度信息中的角速度进行滤波得到平滑角速度;根据平滑角速度计算在后触发时点的角速度积分。
本实施例中,对采样得到的线速度和角速度进行滤波处理能够避免单次采样异常而使得线速度积分和角速度积分的计算发生较大偏差,进而影响到计算的膜卷卷径值的准确性,能够保证计算结果的平顺变化,波动范围较小。
在一些实施例中,测量辊为放卷辊或收卷辊,预设采样频率为1毫秒/次。
本实施例中具体将预设采样频率设定为1毫秒/次能够实现高频率的检测和数据更新,使得测量结果更加精准,满足高精度卷径测量的应用场景的要求,测量辊既可以是放卷辊,也可以是收卷辊,提高了本实施例卷径检测方法的适用范围。
本申请第二方面的实施例提供一种卷径检测装置,其包括获取模块、处理模块和确定模块。获取模块被配置为在膜卷传送过程中按照预设采样频率获取牵引辊的线速度以及测量辊的角速度。处理模块被配置为基于已获取的牵引辊的线速度信息和测量辊的角速度信息,按照预设计算频率计算测量辊上的膜卷卷径。确定模块被配置为至少基于当前时点之前所计算得到的膜卷卷径,确定测量辊上的当前膜卷卷径。
本申请第三方面的实施例提供一种膜卷输送装置,其包括放卷辊、牵引辊、收卷辊,以及与放卷辊、牵引辊和收卷辊信号连接的卷径检测装置;卷径检测装置采用上述实施例的卷径检测方法测量放卷辊和/或收卷辊的卷径,或,卷径检测装置为上述实施例的卷径检测装置。
本实施例中通过卷径检测装置对膜卷所在的辊的卷径的实时计算,能够获得平稳变化、波动小、准确度高的卷径值,保证膜卷输送时张力和锥度控制的稳定性。
本申请第四方面的实施例提供一种辊压装置,其包括:放卷辊、牵引辊、收卷辊,以及与放卷辊、牵引辊和收卷辊信号连接的控制器;其中,控制器被配置为采用上述实施例的卷径检测方法测量放卷辊和/或收卷辊的卷径。
本实施例中通过利用控制器与放卷辊、牵引辊和收卷辊的驱动电机之间通讯协议获取相应的角速度和线速度能够在准确获取上述参数的同时无需布置其他传感器,降低装置的成本,同时这种数据采集方式的采样频率高,使得卷径检测速度和精度能够满足高精度使用场景的要求,保证膜卷输送时张力和锥度控制的稳定性,提高产品质量。
本申请第五方面的实施例提供一种电子设备,其包括:至少一个处理器;以及与至少一个处理器通信连接的存储器,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行如前所述的卷径检测方法。
本申请第六方面的实施例提供一种计算机可读存储介质,其存储有计算机程序,该计算机程序被处理器执行时实现如前所述的卷径检测方法。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本申请公开的一些实施方式,而不应将其视为是对本申请范围的限制。为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例的膜卷输送过程的结构示意图;
图2为本申请一些实施例的卷径检测方法的流程示意图;
图3为本申请一些实施例的卷径检测装置的结构示意图;
图4为本申请一些实施例的膜卷输送装置的结构示意图;
图5为本申请一些实施例的辊压装置的结构示意图。
附图标记说明:
放卷辊1001、301、401,牵引辊1002、302、402,收卷辊1003、303、403,卷径检
测装置200、304,辊压装置400,控制器404,膜卷1010、310、410,采样模块201,处理模块202,确定模块203。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
动力电池中包括电池单体。电极极片是单体电池的主要组成部分,直接决定电池的电化学性能以及安全性。电池极片由金属集流体和均匀的涂覆在金属集流体上的涂层组成。电池极片在制造过程中都是以膜卷的形式传送以便对电池极片进行涂布、辊压、分切等工序。
本申请人注意到,无论的涂布、辊压还是分切工序,膜卷输送过程中都需要保持膜卷处于紧绷状态,以期望能保持膜卷平稳传送以满足涂布、辊压以及分切的工艺要求,因而往往需要对膜卷输送过程中施加膜卷张力控制和锥度控制,这就使得对膜卷所在的辊的卷径进行准确的实时测量显得很有必要。
为了准确测量卷径,申请人研究发现,可以在设备上布置超声波测卷径装置或增加光电测速装置,但是这样就增加了设备成本,增加了安装调试的复杂性,而且检测频率较低,难以满足高精度的使用场景。
基于以上考虑,为了膜卷输送过程中卷径的实时测量的问题,申请人经过深入研究,设计了一种卷径检测方法、卷径检测装置、膜卷输送装置以及辊压装置。通过在实时获取膜卷所在的测量辊的角速度以及牵引辊的线速度,利用相同时间内牵引辊的走过的膜卷长度和放卷辊或收卷辊走过的膜卷长度是相等的原理,通过线速度与角速度以及半径的关系计算得到对应的卷径,这样就无需设置额外的卷径检测传感器,降低装置的成本的安装调试的难度。
每个采样周期内采集的线速度和角速度是同步采集,在时效上具有一致性,以此计算得到的线速度积分和角速度积分也是具有相同的时效,利用线速度积分和角速度积分去计算得到的卷径能够保证卷径的平稳变化,避免因为传送过程中的波动导致卷径测量结果失真;而且由于角速度和线速度会按照预设采样频率不断更新,能够保证卷径结果的准确性和时效性。
通过对角速度积分预设一个第一预设条件,使得每次角速度积分满足该条件时启动第一计算卷径和第二计算卷径的计算,再利用线性插值的方式计算卷径的实时尺寸,这样可以在满足高频率的线速度和角速度采样的同时,又可以减少计算的频次,避免对处理器以及存储空间的要求过高,保证张力和锥度控制的稳定性,从而提高产品质量。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源系统,这样,有利于缓解并自动调节电芯膨胀力恶化,补充电解液消耗,提升电池性能的稳定性和电池寿命。
电池单体为构成电池的基本单元,电池单体包括外壳、电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。在电池单体的制造过程中,在正极集流体上涂覆正极活性物质层以及在负极集流体上涂覆负极活性物质层的过程即称为涂布工艺过程,涂布完成后会再经过辊压工序,让涂覆的材料更紧密,提升能量密度,保证厚度的一致性,另一方面也会进一步管控粉尘和湿度。再将辊压后的极片根据需要生产电池的尺寸进行分切。这些工序中极片都是以膜卷形式进行传输。
本申请实施例提供一种卷径检测方法和卷径检测装置,可以用于对以膜卷形式传输的卷材的卷径进行检测,卷材可以是电池极片或其他柔性卷材。卷径检测装置可以是电池极片制造过程中的卷径检测装置,也可以是其他领域中膜卷传输过程涉及的卷径检测装置。
以下实施例为了方便说明,以本申请一实施例描述的膜卷输送装置为例进行说明。
请参照图1,图1为本申请一些实施例提供的膜卷输送装置包括放卷辊1001、牵引辊1002和收卷辊1003,膜卷1010从放卷辊1001放卷,在牵引辊1002的牵引下传送至收卷辊1003完成收卷。其中,膜卷输送装置还可以包括对膜卷1010在输送过程中进行涂布、辊压或分切等处理工序的相应部件或设备,这里不再示出。
本申请第一方面的实施例提供一种卷径检测方法,可以用于检测膜卷所在的放卷辊或收卷辊的卷径,如图1-图2所示,其包括:步骤S101:在膜卷传送过程中,按照预设采样频率获取牵引辊的线速度信息以及测量辊的角速度信息;步骤S102:基于采样得到的牵引辊的线速度信息和测量辊的角速度信息,在膜卷传送过程中按照预设计算频率计算测量辊上的膜卷卷径;步骤S103:至少基于当前时点之前所计算得到的膜卷卷径,确定测量辊上的当前膜卷卷径。
在示例中,测量辊为膜卷所在的辊。预设采样频率为提前设定的采样频率,预设采样频率可以为定值,即相邻两次采样的间隔周期相等,也可以根据需要设置为不相等。
可以理解的是,在膜卷平稳传送的阶段,牵引轴处传送的膜卷长度与收卷辊或放卷辊处膜卷收卷或放卷的长度相同。基于此,可以根据牵引轴处的线速度与膜卷所在的测量辊的角速度的关系,可以计算得到相应的膜卷卷径。牵引辊的线速度信息包括与采样时点对应的牵引辊表面的线速度,测量辊的角速度信息包括与采样时点对应的膜卷所在的辊的旋转角速度。由于牵引辊的线速度和测量辊的角速度都是在相应的驱动伺服的驱动下实现的,在一些实施例中,可以通过牵引辊和测量辊的驱动伺服的运动参数中获得相关的数据从而得到牵引辊的线速度信息以及测量辊的角速度信息。
在示例中,预设采样频率是获取线速度和角速度数据的频率,其大小可以提前进行设定,在整个膜卷卷径计算过程中,预设采样频率可以是固定不变的,也可以根据不同的传送阶段进行调整。
基于当前时点之前所计算得到的膜卷卷径,可以采样数据处理的方式计算得到测量辊上的当前膜卷卷径,例如通过之前计算得到的膜卷卷径拟合得到测量辊上膜卷卷径的变化曲线,基于该变化曲线得到当前膜卷卷径,对预设计算频率较高的情况,也可以考虑直接对最近计算得到一个或多个膜卷卷径做近似计算得到当前膜卷卷径。
本实施例中,由于膜卷是与牵引辊、测量辊一起同步传动,且膜卷传送时会保持恒张力绷紧,相同时间内牵引辊的走过的膜卷长度和放卷辊或收卷辊走过的膜卷长度是相等的,也就是说牵引辊的线速度和膜卷所在的测量辊表面的线速度是相等的,这样就可以利用线速度、角速度以及半径的关系得到对应的膜卷卷径。而牵引辊的线速度和测量辊的角速度都无需额外传感器即可获得,减少了设备的成本开支以及传感器的安装和调试难度。
在一些实施例中,步骤S102包括:在膜卷传送过程中按照预设计算频率触发膜卷卷径计算。膜卷卷径计算被配置为至少基于执行上一次膜卷卷径计算的在先触发时点和执行本次膜卷卷径计算的在后触发时点之间所采样得到的牵引辊的线速度信息和测量辊的角速度信息,计算与在后触发时点对应的所述测量辊上的膜卷卷径。
在示例中,预设计算频率与预设采样频率不同,预设计算频率是衡量相邻两次触发的膜卷卷径计算的间隔时间长短,即每间隔一定时间触发一次膜卷卷径计算,预设计算频率可以根据卷径更新精度的要求进行设定。可以理解的是,预设计算频率可以直接通过预设的间隔时间来实现,也可以通过设定一预设条件,通过满足预设条件作为触发膜 卷卷径计算的前置条件,实现周期性的执行膜卷卷径计算流程,每次触发膜卷卷径计算对应的时点就是一个触发时点。
在先触发时点和在后触发时点是相邻的两次触发膜卷卷径计算的时点,其中在先触发时点是触发时间处于在后触发时点之前的时点,其对应的是执行上一次膜卷卷径计算的时点,在后触发时点则对应的是本次膜卷卷径计算的时点。
每次膜卷卷径计算的计算流程都是相同的,都是基于相邻两次膜卷卷径计算对应的触发时点之间所采样得到的牵引辊的线速度信息和测量辊的角速度信息进行计算。
本实施例中,通过设定一个与预设采样周期不同的预设计算周期以实现周期性计算膜卷卷径,这样对于采样数据的获取可以按照一个较高的频率进行,保证数据的及时更新,为膜卷卷径计算提供更及时准确的数据,而膜卷卷径计算则相对数据采样而言不需要频率那么高,特别是在膜卷传送平稳的状态下,膜卷卷径的变化是相对稳定的,因此另外设定一个预设计算周期能够减小对计算的要求,降低成本,同时由于采样频率高能够保证每次计算得到的数据都是接近实时的最新数据,也能够保证计算结果的准确性。
在一些实施例中,在膜卷传送过程中按照预设计算频率触发膜卷卷径计算包括:对执行上一次膜卷卷径计算的在先触发时点与当前时点之间所采样得到的测量辊的角速度信息进行积分计算,以得到与当前时点对应的第一当前角速度积分值;响应于第一当前角速度积分值大于或等于第一预设角度,将当前时点作为执行本次膜卷卷径计算的在后触发时点,触发本次膜卷卷径计算。
在示例中,采样得到的角速度信息包括采样时点及与采样时点对应的角速度,这样可以将角速度信息中的角速度沿时间作积分计算从而得到对应该时点的角速度积分,可以理解的是,角速度积分反映的是旋转的角度。将在先触发时点与当前时点之间采样得到的角速度信息做积分计算得到的第一角速度积分值实际上就是测量辊从在先触发时点到当前时点所旋转的角度。
通过设定一个第一预设角度作为判断是否触发膜卷卷径计算的前置判断条件,当第一当前角速度积分大于或等于第一预设角度,就会认定为触发本次膜卷卷径计算,此时当前时点就会被作为执行本次膜卷卷径计算的在后触发时点。
本实施例通过对在先触发时点与当前时点之间的测量辊的角速度做积分计算得到的第一当前角速度积分与第一预设角度比对来作为本次膜卷卷径的触发条件,从而实现周期性计算膜卷卷径,这种周期判定方式可以直接利用获取的测量辊的角速度信息计算,无需另外设置传感器进行检测,而且考虑膜卷传送过程中不可避免会存在一些波动,采 样旋转的角度去判定相对于以固定的时间间隔而言,能够保证任意两次计算时点膜卷传送长度相同,从而有利于提高卷径计算结果的准确性,避免因为传送时的波动导致计算误差。
在一些实施例中,膜卷卷径计算包括:根据在先触发时点和在后触发时点之间所采样得到的牵引辊的线速度信息进行积分计算,以得到在后触发时点对应的线速度积分值;根据在先触发时点和在后触发时点之间所采样得到的测量辊的角速度信息进行积分计算,以得到在后触发时点对应的角速度积分值;至少根据在后触发时点对应的线速度积分值和角速度积分值,计算与在后触发时点对应的测量辊上的膜卷卷径。
在示例中,线速度积分值是将采样得到的线速度信息中的线速度沿时间积分计算得到的,同样角速度是将采样得到的角速度信息中的角速度沿时间积分计算得到的。可以理解的是,相邻两次采样时点之间的间隔时间也就是一个采样周期,当采样频率高时,对应的采样周期的足够小时,可以直接利用两次采样时间对应的采样值与采样周期形成的梯形面积近似作为当个采样周期增加的积分值,进而得到对应于当次采样时点的线速度积分和角速度积分。下面对角速度积分和线速度积分的计算做进一步说明。
对应于当次采样时点Tn的角速度积分ω积分n可以按以下公式计算:
ω积分n=ω积分n-1+(ωnn-1)×ΔT/2,
式中,ω积分n-1为对应前次采样时点Tn-1的角速度积分;ωn为当次采样时点Tn采集的测量辊的角速度;ωn-1为前次采样时点Tn-1采集的测量辊的角速度,ΔT为对应预设采样频率的单个采样周期,即当次时点Tn与前次时点Tn-1的时间间隔。
类似的,对应于当次采样时点的线速度积分V积分n可以按以下公式计算:
V积分n=V积分n-1+(Vn+Vn-1)×ΔT/2,
式中,V积分n-1为对应前次采样时点Tn-1的角速度积分;Vn为当次采样时点Tn采集的牵引辊的线速度;Vn-1为前次采样时点Tn-1采集的牵引辊的线速度。
通过以上计算方式,就可以根据在先触发时点与在后触发时点之间每个采样时点采集到是角速度信息和线速度信息积分计算得到在后触发时点对应的线速度积分值和角速度积分值,进而进行一次膜卷卷径计算。
可以理解的是,本实施例以及本申请的其他实施例中所声称的角速度积分和线速度积分均是指对应的数值。
本实施例中,由于每次采样得到的线速度和角速度是同步采集,在时效上具有一致性,以此计算得到的线速度积分和角速度积分也是具有相同的时效,利用线速度积分和角速度积分去计算得到的卷径能够保证卷径的平稳变化,避免因为传送过程中的波动导致卷径测量结果失真;而且由于角速度和线速度会按照预设采样频率不断更新,能够保证卷径结果的准确性和时效性。
在一些实施例中,至少根据在后触发时点对应的线速度积分值和角速度积分值,计算与在后触发时点对应的测量辊上的膜卷卷径包括:存储每个膜卷卷径计算的触发时点对应的角速度积分值和线速度积分值;将存储时间最近的预设数量的角速度积分值累加得到角速度积分累加值;将存储时间最近的预设数量的线速度积分值累加得到线速度积分累加值,根据所述角速度积分累加值和线速度积分累加值计算得到在后触发时点对应的测量辊上的膜卷卷径。
在示例中,触发时点对应的角速度积分值和线速度积分值可以存储至存储空间中,存储空间可以是存储器内的某个存储区,例如缓存区间。角速度积分累加值ω累加和线速度积分累加值V累加是将存储空间内存储时间最近的预设数量的角速度积分和线速度积分分别累加计算得到。
可以理解的是,由于膜卷传送的波动特性,会存在传送速度在预设速度上下波动的情况,甚至于一些意外状况导致的波动幅度过大,这会使得对应时点的卷径计算得到的值发送较大的偏差,通过将最近几次触发时点的角速度积分值和线速度积分值分别累加后再进行计算,可以使得当前的计算结果相对于上一计算时点的计算结果更平顺。进行累加的数值的存储时间越近,意味着其对应的触发时点与当前时点越近,对应的膜卷卷径与当前的膜卷卷径差别也越小,累加后计算的结果也与当前的实际卷径越接近,更有利于保证计算结果的准确性。进行累加的预设数量可以是全部存储的角速度积分值或线速度积分值,也可以是已存储的部分角速度积分值或线速度积分值。
由于角速度和线速度是同步采集和计算积分的,二者具有完全相同的时效,因此在后触发时点触发的本次膜卷卷径计算的本次卷径值可以采用以下计算公式计算:
R本次=V累加累加
其中,R本次为本次卷径值,ω累加为角速度积分累加值,V累加为线速度积分累加值。
可以理解的是,本次卷径值是在角速度积分满足第一预设角度这一触发条件后计算得到的最新的卷径值。
本实施例中,通过将最近几次触发时点的角速度积分值和线速度积分值分别累加后再进行计算,可以使得当前的计算结果相对于上一计算时点的计算结果更平顺,避免传送波动导致部分时点对应的数据出现较大计算结果出现较大波动,进而影响卷径计算结果的准确性。
在一些实施例中,每个膜卷卷径计算的触发时点对应的角速度积分值和线速度积分值以先进先出的方式存储。
可以理解的是,存储空间并不可能是无限大的,而且在实际应用中,也没有必要将所有的数据都存储起来,浪费宝贵的存储空间。可以根据实际累加计算的数据数量的需要,设定存储空间的存储长度。
本实施例中,对于有限的存储空间,以先进先出的方式进行存储能够保证存储的数据始终是与当前时点的最接近的数据,存储空间内存储的数据能够不断被更新,能够保证数据的实时性,同时个别偏差较大的数据不会一直参与累加计算,从而能消除系统累计产生的误差,使得后续的计算结果更准确。
在一些实施例中,步骤S03包括:响应于第一当前角速度积分值大于或等于第一预设角度的情况下,将本次膜卷卷径计算得到的测量辊上的膜卷卷径确定为测量辊上的当前膜卷卷径;响应于第一当前角速度积分值小于第一预设角度的情况下,根据当前时点之前最近两次膜卷卷径计算得到的膜卷卷径以及第一当前角速度积分插值计算得到测量辊上的当前膜卷卷径。
对于当前时点对应的第一当前角速度积分满足触发条件时,直接以计算得到的膜卷卷径作为测量辊上的当前膜卷卷径。对于当前时点对应的第一当前角速度积分不满足触发条件时,可以根据当前时点之前计算得到的膜卷卷径以插值计算的方式得到当前膜卷卷径。
本实施例中,对于触发时点的当前膜卷卷径直接采用计算的方式确定,对于非触发时点的卷径,通过当前时点前最近的两次触发膜卷卷径计算时得到的膜卷卷径做插值计算,使得计算的膜卷卷径值以平滑变化的方式不断更新,既能实时反映当前膜卷卷径,又无需始终保持高频率的计算,避免出现异常波动。
在一些实施例中,第一预设角度为360°的整数倍,示例性的,第一预设角度为360°的N倍,N为正整数。响应于当前角速度积分值小于预设角度的情况下,根据当前时点之前最近两次膜卷卷径计算得到的膜卷卷径、第一当前角速度积分插值计算得到N圈前卷径值;根据N圈前卷径值和测量辊上膜卷的厚度确定测量辊上的当前膜卷卷径。
在示例中,将第一预设角度设定为360°的N倍意味着相邻两次触发膜卷卷径计算之间测量辊转动了N圈,此时对应膜卷卷径的变化就是N个膜卷厚度t,N可以根据具体实际需要设定,例如取2。这样在对非触发时点的插值计算时,可以通过先计算当前时点在之前相邻两次膜卷卷径计算之间的计算周期内的对应时点的卷径值,再利用每个计算周期对应的膜卷卷径相隔N×t来换算到当前膜卷卷径。具体插值计算公式为:
其中,R当前为测量辊的当前膜卷卷径,ω积分n为与当前时点对应的第一当前角速度积分,R1为当前时点前最近一次膜卷卷径计算得到的膜卷卷径,R2为R1之前最近一次膜卷卷径计算得到的膜卷卷径,t为膜卷的厚度。
可以理解是的,第一当前角速度积分是自执行前次膜卷卷径计算的在先触发时点与当前时点之间采样的角速度的积分值,如果当前时点还不是触发时点,此时第一当前角速度积分是小于N×360°的,一旦第一当前角速度积分大于或等于N×360°,就会触发一次新的膜卷卷径计算,这样在后续计算第一当前角速度积分的时候就会又重新以最近一次触发时点之后的采样数据执行积分计算。
由于放卷辊的卷径是随着膜卷传送过程而减小的,收卷辊的卷径则是随着膜卷传送而增大的。因此,若测量辊为放卷辊,则实时卷径相对于N圈前的卷径就是减少了N×t,若测量辊为收卷辊,则实时卷径相对于N圈前的卷径就是增加了N×t。
可以理解的是,插值计算式还可以根据需要选取任意两个相邻的触发时点对应的膜卷卷径,根据选取的两个触发时点与当前时点之间间隔的计算周期换算即可。
本实施例中,通过对相邻的两个触发时点之间获取的角速度信息计算的第一当前角速度积分进行判断,能够简单可靠的识别出当前时点测量辊的旋转角度是否大于或等于对应的第一预设角度,利用每个计算周期之间刚好卷径变化N个膜卷厚度可以有效的避免传送速度波动导致的每个周期之间无法准确对应从而给插值计算造成误差,采样最近两次触发计算的膜卷卷径做插值可以保证计算结果更贴近当前时点的真实状态,这样在非采样时点下也能够获得准确度高的实时卷径值,提高卷径测量的精度和准确性。
在一些实施例中,步骤S102还包括:根据当前时点前采样得到的全部测量辊的角速度信息进行积分计算,以得到与当前时点对应的第二当前角速度积分,响应于第二当前角速度积分大于或等于第二预设角度的情况下,清除存储的每个膜卷卷径计算的触发时点对应的角速度积分和线速度积分。
可以理解的是,当膜卷刚开始传送时,膜卷会有一个从不稳定传送向稳定传送转变的过渡时期,例如传送初始阶段张力控制和锥度控制等控制功能尚未调整到位,就需要有一个过渡时期才能够使膜卷在保持张力和锥度要求下平稳传送,而在这个过渡时期膜卷因为传送状态不稳定,会导致采集并存储的角速度积分和线速度积分并不能准确反应卷径的真实状态,对于这种不准确的数据就需要清除以免在后续计算过程中导致卷径测量的偏差太大。
本实施例中通过设定一个第二预设角度作为膜卷卷径计算的初始启动条件,可以将传送初始阶段产生的不准确的数据清除,取后续平稳传送状态下的数据再开始进行卷径计算,这样能够保证用于卷径计算的数据更加的准确,从而保证膜卷测量结果的准确性。
在一些实施例中,根据在先触发时点和在后触发时点之间所采样得到的牵引辊的线速度信息进行积分计算,以得到在后触发时点对应的线速度积分值还包括:对在后触发时点的线速度信息中的线速度进行滤波得到平滑线速度,根据平滑线速度计算在后触发时点的线速度积分。
根据在先触发时点和在后触发时点之间所采样得到的测量辊的角速度信息进行积分计算,以得到在后触发时点对应的角速度积分值包括:对在后触发时点的角速度信息中的角速度进行滤波得到平滑角速度;根据平滑角速度计算在后触发时点的角速度积分。
对采样线速度和采样角速度所采取的滤波处理可以是中值滤波,也可以是一阶滞后滤波。下面以一阶滞后滤波为例进行说明。
首先根据预设采样频率和预设平滑周期确定滤波平滑系数。
滤波平滑系数可以按照以下公式计算:
a=ΔT/(ΔT+T平滑),
式中,a为滤波平滑系数,ΔT为对应预设采样频率的单个采样周期,T平滑为预设平滑周期。
预设平滑周期T平滑是根据滤波平滑系数计算的需要设定的一个周期值,可以设定为对应预设采样频率的单个采样周期ΔT的整数倍,例如5-10倍。
再根据滤波平滑系数、当次采样时点的采样数据和前次采样时点的采样数据,计算与当次采样时点对应的平滑角速度和平滑线速度,并用计算得到平滑角速度和该平滑新速度执行后续的积分计算。
平滑角速度ω平滑和平滑线速度V平滑的具体计算公式为:
ω平滑=(1-a)ωn-1+aωn
V平滑=(1-a)Vn-1+aVn
式中,ωn和Vn分别为当次采样时点采样得到的角速度和线速度,ωn-1和Vn-1分别为前次采样周期采样得到的角速度和线速度。
本实施例中,对采样得到的线速度和角速度进行滤波处理能够避免单次采样异常而使得线速度积分和角速度积分的计算发生较大偏差,进而影响到计算的膜卷卷径值的准确性,能够保证计算结果的平顺变化,波动范围较小。
在一些实施例中,测量辊为放卷辊或收卷辊,预设采样频率为1毫秒/次。
本实施例中具体将预设采样频率设定为1毫秒/次能够实现高频率的检测和数据更新,使得测量结果更加精准,满足高精度卷径测量的应用场景的要求,测量辊既可以是放卷辊,也可以是收卷辊,提高了本实施例卷径检测方法的适用范围。
本申请第二方面的实施例提供一种卷径检测装置,如图3所示,卷径检测装置200包括获取模块201,处理模块202和确定处理模块203。
获取模块201被配置为在膜卷传送过程中按照预设采样频率获取牵引辊的线速度以及测量辊的角速度。
处理模块202被配置为基于已获取的牵引辊的线速度信息和测量辊的角速度信息,按照预设计算频率计算测量辊上的膜卷卷径。
确定模块203被配置为至少基于当前时点之前所计算得到的膜卷卷径,确定测量辊上的当前膜卷卷径。
本申请第三方面的实施例提供一种膜卷输送装置,如图4所示,膜卷输送装置300包括放卷辊301、牵引辊302、收卷辊303,以及与放卷辊301、牵引辊302和收卷辊303信号连接的卷径检测装置304;膜卷310套设在放卷辊301上,并经由牵引辊302传送至收卷辊303。卷径检测装置304可以采用上述实施例的卷径检测方法测量放卷辊301的卷径。
在一些实施例中,卷径检测装置304可以采用上述实施例的卷径检测方法测量收卷辊303的卷径。
在一些实施例中,卷径检测装置304可以采用上述实施例的卷径检测方法测量同时测量还可以放卷辊301的卷径和收卷辊303的卷径。
在一些实施例中,卷径检测装置304还可以为上述实施例的卷径检测装置200。
在示例中,膜卷输送装置可以是任意类型、任意场景的膜卷传送的装置,例如可以是用于涂布工序的膜卷输送装置,也可以是用于辊压工序的膜卷输送装置,还可以是极片分切工序的膜卷输送装置,可以理解的是,对于非电池制造领域的膜卷传送场景,本申请实施例中的膜卷检测方法和膜卷检测装置也同样适用。
以上第三方面的实施例中通过卷径检测装置对膜卷所在的辊的卷径的实时计算,能够获得平稳变化、波动小、准确度高的卷径值,保证膜卷输送时张力和锥度控制的稳定性。
本申请第四方面的实施例提供一种辊压装置,如图5所示,辊压装置400包括:放卷辊401、牵引辊402、收卷辊403,以及与放卷辊401、牵引辊402和收卷辊403信号连接的控制器404;膜卷410套设在放卷辊401上,并经由牵引辊402传送至收卷辊403。控制器404被配置为采用上述实施例的卷径检测方法测量放卷辊401卷径。
在一些实施例中,控制器404还可以采用上述实施例的卷径检测方法测量收卷辊403的卷径。
在一些实施例中,控制器404还可以采用上述实施例的卷径检测方法测量同时测量还可以放卷辊401的卷径和收卷辊403的卷径。
在示例中,控制器404可以是PLC控制器,控制器404通过通讯协议从放卷辊401或收卷辊403的驱动电机处获取实时的角速度,以及通过通讯协议从牵引辊402的渠道电机处获取实时的线速度,再根据具体传动机构的减速比计算膜卷传动表面的角速度和线速度。
辊压装置400可以是辊压一体机。辊压装置可以是用于电池极片辊压的装置,也可以是其他技术领域的辊压装置。
在上述第四方面的实施例中,通过利用控制器与放卷辊、牵引辊和收卷辊的驱动电机之间通讯协议获取相应的角速度和线速度能够在准确获取上述参数的同时无需布置其他传感器,降低装置的成本,同时这种数据采集方式的采样频率高,使得卷径检测速度和精度能够满足高精度使用场景的要求,保证膜卷输送时张力和锥度控制的稳定性,从而提高产品质量。
本申请第五方面的实施例提供一种电子设备,其包括:至少一个处理器;以及与至少一个处理器通信连接的存储器,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行如前所述的卷径检测方法。
本申请第六方面的实施例提供一种计算机可读存储介质,其存储有计算机程序,该计算机程序被处理器执行时实现如前所述的卷径检测方法。
如图5所示,辊压装置400包括放卷辊401、牵引辊402、收卷辊403,以及控制器404,膜卷410套设在放卷辊401上,并经由牵引辊402传送至收卷辊403。控制器404与放卷辊401、牵引辊402和收卷辊403信号连接的PLC控制器。
控制器404按照1毫秒/次的预设采样频率分别与放卷辊401、牵引辊402和收卷辊403的伺服电机通过通讯协议获取放卷辊401、收卷辊403的角速度、牵引辊402的线速度。
控制器404对采样的数据进行处理计算得到膜卷410所在的放卷辊401的卷径和收卷辊403的卷径,具体计算方法包括:
滤波处理:对采样得到的线速度和角速度采用一阶滞后滤波方式进行滤波。
积分计算:对当前采样时点的线速度滤波后得到的平滑线速度沿时间积分得到线速度积分,对当前采样时点的采样角速度滤波后得到的平滑角速度沿时间积分得到角速度积分;
卷径计算启动判断:根据当前时点前的所有采样时点采集的角速度信息计算得到第二当前角速度积分值,判断第二当前角速度积分值是否大于或等于第二预设角度,若是,则清除存储的角速度积分和线速度积分,将当前时点作为第一个膜卷卷径计算的触发时点。第二预设角度可以取720°。
膜卷卷径计算:对执行上一次膜卷卷径计算的在先触发时点与当前时点之间所采样得到的测量辊的角速度信息进行积分计算,以得到与当前时点对应的第一当前角速度积分值;判断第一角速度积分值是否大于或等于第一预设角度,若是,则将当前时点作为一个触发时点,触发一次膜卷卷径计算,得到一个测量辊上的膜卷卷径。第一预设角度可以取720°。
基于当前时点之前所计算得到的膜卷卷径,确定测量辊上的当前膜卷卷径,具体包括:在第一当前角速度积分值大于或等于第一预设角度的情况下,直接将本次膜卷卷径计算得到的测量辊上的膜卷卷径确定为测量辊上的当前膜卷卷径;在第一当前角速度积分值小于第一预设角度的情况下,根据当前时点之前最近两次膜卷卷径计算得到的膜卷卷径以及第一当前角速度积分作插值计算得到测量辊2圈前的卷径;再根据膜卷的厚度计算得到测量辊上的当前膜卷卷径。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (16)

  1. 一种卷径检测方法,包括:
    在膜卷传送过程中,按照预设采样频率获取牵引辊的线速度信息以及测量辊的角速度信息;
    基于采样得到的所述牵引辊的线速度信息和所述测量辊的角速度信息,在膜卷传送过程中按照预设计算频率计算所述测量辊上的膜卷卷径;以及
    至少基于当前时点之前所计算得到的膜卷卷径,确定所述测量辊上的当前膜卷卷径。
  2. 根据权利要求1所述的卷径检测方法,其中,所述基于采样得到的所述牵引辊的线速度信息和所述测量辊的角速度信息,在膜卷传送过程中按照预设计算频率计算所述测量辊上的膜卷卷径包括:
    在膜卷传送过程中按照预设计算频率触发膜卷卷径计算;所述膜卷卷径计算被配置为至少基于执行上一次膜卷卷径计算的在先触发时点和执行本次膜卷卷径计算的在后触发时点之间所采样得到的所述牵引辊的线速度信息和所述测量辊的角速度信息,计算与在后触发时点对应的测量辊上的膜卷卷径。
  3. 根据权利要求2所述的卷径检测方法,其中,所述在膜卷传送过程中按照预设计算频率触发膜卷卷径计算包括:
    对执行上一次膜卷卷径计算的在先触发时点与所述当前时点之间所采样得到的所述测量辊的角速度信息进行积分计算,以得到与所述当前时点对应的第一当前角速度积分值;
    响应于所述第一当前角速度积分值大于或等于第一预设角度,将所述当前时点作为执行本次膜卷卷径计算的在后触发时点,触发本次膜卷卷径计算。
  4. 根据权利要求2或3所述的卷径检测方法,其中,所述膜卷卷径计算包括:
    根据所述在先触发时点和所述在后触发时点之间所采样得到的所述牵引辊的线速度信息进行积分计算,以得到所述在后触发时点对应的线速度积分值;
    根据所述在先触发时点和所述在后触发时点之间所采样得到的所述测量辊的角速度信息进行积分计算,以得到所述在后触发时点对应的角速度积分值;
    至少根据所述在后触发时点对应的线速度积分值和角速度积分值,计算与所述在后触发时点对应的所述测量辊上的膜卷卷径。
  5. 根据权利要求4所述的卷径检测方法,其中,所述至少根据所述在后触发时点对应的线速度积分值和角速度积分值,计算与所述在后触发时点对应的所述测量辊上的膜卷卷径包括:
    存储与每个膜卷卷径计算的触发时点对应的角速度积分值和线速度积分值;
    将存储时间最近的预设数量的所述角速度积分值累加得到角速度积分累加值;
    将存储时间最近的预设数量的所述线速度积分值累加得到线速度积分累加值,
    根据所述角速度积分累加值和所述线速度积分累加值计算得到所述在后触发时点对应的所述测量辊上的膜卷卷径。
  6. 根据权利要求5所述的卷径检测方法,其中,所述膜卷卷径计算的触发时点对应的角速度积分值和线速度积分值以先进先出的方式存储。
  7. 根据权利要求3至6中任一项所述的卷径检测方法,其中,所述至少基于当前时点之前所计算得到的膜卷卷径,确定所述测量辊上的当前膜卷卷径包括:
    响应于所述第一当前角速度积分值大于或等于第一预设角度的情况下,将本次膜卷卷径计算得到的所述测量辊上的膜卷卷径确定为所述测量辊上的当前膜卷卷径;
    响应于所述第一当前角速度积分值小于第一预设角度的情况下,根据所述当前时点之前最近两次膜卷卷径计算得到的膜卷卷径以及所述第一当前角速度积分作插值计算得到所述测量辊上的当前膜卷卷径。
  8. 根据权利要求7所述的卷径检测方法,其中,
    所述第一预设角度为360°的N倍,N为正整数;
    响应于所述第一当前角速度积分值小于第一预设角度的情况下,根据所述当前时点之前最近两次膜卷卷径计算得到的膜卷卷径、所述当前时点对应的第一当前角速度积分插值计算得到N圈前卷径值;
    根据所述N圈前卷径值和所述测量辊上膜卷的厚度确定所述测量辊上的当前膜卷卷径。
  9. 根据权利要求5或6所述的卷径检测方法,其中,所述基于采样得到的所述牵引辊的线速度信息和所述测量辊的角速度信息,在膜卷传送过程中按照预设计算频率计算所述测量辊上的膜卷卷径还包括:
    根据所述当前时点前采样得到的全部所述测量辊的角速度信息进行积分计算,以得到与所述当前时点对应的第二当前角速度积分,
    响应于所述第二当前角速度积分大于或等于第二预设角度的情况下,清除存储的每个膜卷卷径计算的触发时点对应的所述角速度积分和所述线速度积分。
  10. 根据权利要求4至6中任一项所述的卷径检测方法,其中,所述根据所述在先触发时点和所述在后触发时点之间所采样得到的所述牵引辊的线速度信息进行积分计算,以得到所述在后触发时点对应的线速度积分值还包括:
    对所述在后触发时点的线速度信息中的线速度进行滤波得到平滑线速度,
    根据所述平滑线速度计算所述在后触发时点的线速度积分;
    所述根据所述在先触发时点和所述在后触发时点之间所采样得到的所述测量辊的角速度信息进行积分计算,以得到所述在后触发时点对应的角速度积分值包括:
    对所述在后触发时点的角速度信息中的角速度进行滤波得到平滑角速度;
    根据所述平滑角速度计算所述在后触发时点的角速度积分。
  11. 根据权利要求1至10中任一项所述的卷径检测方法,其中,所述测量辊为放卷辊或收卷辊,所述预设采样频率为1毫秒/次。
  12. 一种卷径检测装置,包括:
    获取模块,被配置为在膜卷传送过程中按照预设采样频率获取牵引辊的线速度以及测量辊的角速度;
    处理模块,被配置为基于已获取的所述牵引辊的线速度信息和所述测量辊的角速度信息,按照预设计算频率计算所述测量辊上的膜卷卷径;
    确定模块,被配置为至少基于当前时点之前所计算得到的膜卷卷径,确定所述测量辊上的当前膜卷卷径。
  13. 一种膜卷输送装置,包括放卷辊、牵引辊、收卷辊,以及与所述放卷辊、所述牵引辊和所述收卷辊信号连接的卷径检测装置;
    其中,所述卷径检测装置采用如权利要求1至11中任一项所述的卷径检测方法测量所述放卷辊和/或所述收卷辊的卷径,或所述卷径检测装置为权利要求12所述的卷径检测装置。
  14. 一种辊压装置,包括:放卷辊、牵引辊、收卷辊,以及与所述放卷辊、所述牵引辊和所述收卷辊信号连接的控制器;
    其中,所述控制器被配置为按照权利要求1至11中任一项所述的卷径检测方法测量所述放卷辊和/或所述收卷辊的卷径。
  15. 一种电子设备,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器,其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至11中任一项所述的卷径检测方法。
  16. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至11中任一所述的卷径检测方法。
PCT/CN2023/102841 2022-09-22 2023-06-27 卷径检测方法及装置、膜卷输送装置、辊压装置 WO2024060748A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211170178.1A CN115824126A (zh) 2022-09-22 2022-09-22 卷径检测方法及装置、膜卷输送装置、辊压装置
CN202211170178.1 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024060748A1 true WO2024060748A1 (zh) 2024-03-28

Family

ID=85523953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102841 WO2024060748A1 (zh) 2022-09-22 2023-06-27 卷径检测方法及装置、膜卷输送装置、辊压装置

Country Status (2)

Country Link
CN (1) CN115824126A (zh)
WO (1) WO2024060748A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115824126A (zh) * 2022-09-22 2023-03-21 宁德时代新能源科技股份有限公司 卷径检测方法及装置、膜卷输送装置、辊压装置
CN116441325B (zh) * 2023-04-21 2023-10-13 邢台纳科诺尔精轧科技股份有限公司 一种减速比校准方法、装置、终端及存储介质
CN116675066B (zh) * 2023-08-04 2024-01-16 宁德时代新能源科技股份有限公司 收放卷控制方法、收放卷控制装置、控制设备及存储介质
CN116793229A (zh) * 2023-08-25 2023-09-22 钛玛科(北京)工业科技有限公司 一种基于3d相机的智能视觉测宽装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168679B1 (en) * 1995-11-28 2001-01-02 Fabio Perini S.P.A. Method and device for measuring the diameter of a roll of web material
CN104457669A (zh) * 2014-09-30 2015-03-25 武汉钢铁(集团)公司 一种钢卷直径的测算方法
CN112919216A (zh) * 2021-02-08 2021-06-08 上海应用技术大学 基于离散pid和锥度张力控制的薄膜分切机张力调节方法
CN115028002A (zh) * 2022-05-31 2022-09-09 包头钢铁(集团)有限责任公司 一种镀锌机组开卷机卷径计算修正控制方法及系统
CN115824126A (zh) * 2022-09-22 2023-03-21 宁德时代新能源科技股份有限公司 卷径检测方法及装置、膜卷输送装置、辊压装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179668A (ja) * 1990-11-09 1992-06-26 Mitsubishi Heavy Ind Ltd 帯状物の巻硬さモニター装置
FI111033B (fi) * 2001-06-15 2003-05-15 Metso Paper Inc Menetelmä rullan tiheyden määrittämiseksi
CN113682866B (zh) * 2021-07-27 2023-06-23 深圳弘博智能数码设备有限公司 一种料卷输送控制方法及其装置、卷对卷印刷设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168679B1 (en) * 1995-11-28 2001-01-02 Fabio Perini S.P.A. Method and device for measuring the diameter of a roll of web material
CN104457669A (zh) * 2014-09-30 2015-03-25 武汉钢铁(集团)公司 一种钢卷直径的测算方法
CN112919216A (zh) * 2021-02-08 2021-06-08 上海应用技术大学 基于离散pid和锥度张力控制的薄膜分切机张力调节方法
CN115028002A (zh) * 2022-05-31 2022-09-09 包头钢铁(集团)有限责任公司 一种镀锌机组开卷机卷径计算修正控制方法及系统
CN115824126A (zh) * 2022-09-22 2023-03-21 宁德时代新能源科技股份有限公司 卷径检测方法及装置、膜卷输送装置、辊压装置

Also Published As

Publication number Publication date
CN115824126A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2024060748A1 (zh) 卷径检测方法及装置、膜卷输送装置、辊压装置
JP6478110B2 (ja) 電極の製造方法
JP6662245B2 (ja) 電極の製造装置
CN108461826B (zh) 一种恒速卷绕卷针组合机构
CN212384282U (zh) 一种超宽超薄金属锂带生产装置
WO2024055678A1 (zh) 收放卷系统、控制方法及电池极片的制备装置
CN101083342A (zh) 卷绕式软包装锂离子电池单元、电池及制备方法
WO2024051280A1 (zh) 膜卷传送装置及其控制方法、电子设备和存储介质
CN112663019A (zh) 一种cigs共蒸法的卷对卷输送同步控制结构
CN109148931B (zh) 一种卷绕隔膜的控制方法、装置
CN213936238U (zh) 一种锂电池电极的干法制备设备
CN109212131A (zh) 一种锂离子电池极极片对电解液吸收速率的测量方法
JP6443723B2 (ja) 捲回機、及び電極の捲回方法
WO2023133765A1 (zh) 一种极片纠偏方法、装置、设备、存储介质及产品
CN207719318U (zh) 一种锂电池加工用张力隔离装置
US20220278307A1 (en) Method for producing electrode
WO2023028897A1 (zh) 电池卷绕方法、电池卷绕系统、电池和用电装置
CN107836053A (zh) 卷筒状电极及卷筒状电极的制造方法
CN209399939U (zh) 一种用于电芯卷绕工艺的ccd校准块和校准装置
US11731855B2 (en) Winding core tube with uniformly rough surface
US20240047639A1 (en) Measurement device and electrode plate production system
CN218532314U (zh) 一种锂带轧制装置
CN114551777B (zh) 电极的制造方法和电极的制造装置
JP2016051654A (ja) 捲回機、及び電極の捲回方法
WO2023216881A1 (zh) 极片检测装置、方法和卷绕装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867043

Country of ref document: EP

Kind code of ref document: A1