WO2024060687A1 - 一种铜-碳复合材料及其制备方法与应用 - Google Patents

一种铜-碳复合材料及其制备方法与应用 Download PDF

Info

Publication number
WO2024060687A1
WO2024060687A1 PCT/CN2023/098776 CN2023098776W WO2024060687A1 WO 2024060687 A1 WO2024060687 A1 WO 2024060687A1 CN 2023098776 W CN2023098776 W CN 2023098776W WO 2024060687 A1 WO2024060687 A1 WO 2024060687A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
composite material
carbon composite
carbon
preparation
Prior art date
Application number
PCT/CN2023/098776
Other languages
English (en)
French (fr)
Inventor
蔡海乐
张舒冬
宋永一
马锐
赵丽萍
Original Assignee
中国石油化工股份有限公司
中石化(大连)石油化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中石化(大连)石油化工研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2024060687A1 publication Critical patent/WO2024060687A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • B01J35/30
    • B01J35/33
    • B01J35/39
    • B01J35/45
    • B01J35/61
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide

Definitions

  • the invention belongs to the field of new energy technology and relates to a carbon material and a preparation method thereof, in particular to a copper-carbon composite material and a preparation method and application thereof.
  • CO2 capture and reuse technology One of the ways to convert CO2 is to hydrogenate CO2 and convert it into high-energy-density organic fuels, such as carbon monoxide, methane, formic acid, formaldehyde, methanol and other low-carbon energy sources.
  • methanol is an important chemical raw material that can be used to synthesize a variety of chemical products. It can also be used as a clean substitute for fossil fuels, such as methanol gasoline, methanol fuel cells, etc. Therefore, CO hydrogenation to methanol has gradually become a research focus in recent years.
  • Catalysts for the hydrogenation of CO2 to methanol currently mainly use copper-based catalysts. Copper species are considered to be good at catalyzing the selective hydrogenation of carbon-oxygen bonds and have been widely used in hydrogenation reactions to synthesize methanol. Cu/ZnO-Al 2 O 3 has been commercialized as a catalyst, but this catalyst has poor catalytic activity and stability.
  • Patent CN112121805A discloses a catalyst for synthesizing methanol by hydrogenation of carbon dioxide, and its preparation and application. A certain amount of alcohol solvent is added to copper salt, zinc salt and zirconium salt, stirred and ultrasonically dispersed, and then transferred to a reactor under sealed conditions for solvent thermal reaction to prepare a catalyst for hydrogenation of carbon dioxide to methanol.
  • Patent CN111215084A discloses a copper-based catalyst for hydrogenation of carbon dioxide to methanol, and its preparation and application. The catalyst uses copper, zinc and aluminum as active components. The zinc and aluminum components are first precipitated, aged and low-temperature roasted to obtain a zinc-aluminum hydrotalcite precursor with higher stability and better copper dispersion. The active component copper is then subjected to a deposition precipitation reaction with the precursor to finally obtain a new copper-zinc-aluminum catalyst suitable for hydrogenation of carbon dioxide to methanol.
  • the purpose of the present invention is to provide a copper-carbon composite material and its preparation method and application.
  • the inventor of the present invention found that by initially dispersing the copper active component on the carbonaceous material carrier, and then forming pores in situ in the carrier, while further dispersing the copper active component into the newly formed pores, Copper-carbon composites with high catalytic activity and high stability can be produced.
  • the present invention was completed based on this discovery.
  • a copper-carbon composite material including an active component and a carrier, wherein the active component includes a combination of Cu and Cu 2 O, the carrier is a porous carbon-containing material, and the combination
  • the content based on the mass of Cu element is 1wt%-50wt%, preferably 5wt%-35wt%, and the R1 value of the composite material is 0.4-2:1, preferably 0.5 based on 100wt% of the composite material. -1.5:1, where the R1 value is the peak height ratio of Cu 2 O and Cu in the XRD spectrum of the composite material.
  • the preparation method includes the following steps:
  • material A (1) Contact carbonaceous materials, copper-containing compounds and organic solvents under heat treatment conditions to obtain a pre-composite material (called material A);
  • the carbonaceous material is a solid carbon material with a carbon content greater than 80 wt%, and is selected from at least one of a graphite precursor and an activated carbon precursor.
  • the present invention relates to the application of the copper-carbon composite material of the present invention in the hydrogenation of carbon dioxide to produce methanol, the application in CO adsorption separation, the application in the hydrogenation of carbon dioxide to produce low-carbon hydrocarbons, and the application in photocatalysis. Applications in converting carbon dioxide, applications in electrocatalytic conversion of carbon dioxide, etc.
  • the copper-carbon composite material and the preparation method and application thereof of the present invention have one or a combination of some or all of the following advantages:
  • a composite material having both Cu and Cu 2 O as active components of copper elements in two valence states can be generated in situ, and the composite material has the advantages of good active metal dispersion, suitable specific surface area, concentrated pore size distribution, high reaction activity, etc., and the preparation method is simple.
  • a stable copper-carbon composite material with a controllable Cu/Cu 2 O ratio can be generated, which has high selectivity for CO 2 hydrogenation to produce methanol.
  • precursors such as petroleum coke and copper-containing compounds are first pretreated in the presence of organic solvents.
  • organic solvents Through the infiltration and swelling effect of polar organic solvents, the contact between copper-containing compounds and precursors can be effectively increased and promoted.
  • the uniform dispersion of copper-containing compounds on the precursor is beneficial to the subsequent activation reaction of the precursor.
  • the use of organic solvents for pretreatment can be more conducive to the simultaneous generation of Cu and Cu 2 O.
  • the active component copper is introduced in situ during the activation process of the precursor, and the activator is used to create holes into the diffusion path of the graphite microcrystalline flakes and amorphous defects of the precursor.
  • the active component copper is activated with the melting
  • the agents enter the porous carbon pores of the precursor together to form a highly dispersed structure.
  • the present invention not only ensures appropriate specific surface area and pore distribution by adopting a lower activation temperature, but also facilitates the simultaneous generation of active components Cu and Cu 2 O.
  • the porous carbon material when used as a catalyst for the hydrogenation of carbon dioxide to methanol, is used as a carrier, which not only provides a rich specific surface and pores, but also serves as a structural aid for highly dispersed loading of active components. agent; at the same time, the graphite microcrystalline layer of the porous carbon material also provides a channel for the electron transfer of the active center, and is also a good conductive agent, which is conducive to better exerting the catalytic effect of the active center Cu and Cu 2 O, and improving the hydrogenation of carbon dioxide to methanol. reaction effect.
  • Figure 1 is an XRD pattern of the copper-carbon composite material prepared in Example 1 of the present invention.
  • Figure 2 is a TEM image of the copper-carbon composite material prepared in Example 1 of the present invention.
  • Figure 3 is a pore distribution diagram of the copper-carbon composite material prepared in Example 1 of the present invention.
  • petroleum coke refers to solid coke produced by cracking and coking heavy oil in a coking unit.
  • graphite precursor refers to any carbonaceous material capable of being processed to produce graphite or having a lamellar structure similar to graphite.
  • activated carbon precursor refers to any carbonaceous material that can be processed to produce activated carbon or has a pore structure similar to activated carbon.
  • the specific surface area is measured using the low-temperature nitrogen physical adsorption method.
  • the instrument uses the ASAP2460 physical adsorption instrument of Micromeritics.
  • the test conditions the sample is vacuum treated at 200°C for 5 hours, and the test is performed at the liquid nitrogen temperature (-196°C). ) under.
  • the adsorption-desorption isotherm was obtained based on the static method measurement, the specific surface area of the catalyst was calculated based on the BET (Brunauer-Emmett-Teller) equation, and the pore size distribution was calculated using the NLDFT method.
  • BET Brunauer-Emmett-Teller
  • the copper loading in the composite material is measured using a Thermal Scientific-IRIS Intrepid II 100%.
  • the grain size of the active component in the composite material is calculated from the XRD results using Scherrer's formula.
  • the mass ratio of Cu 2 O/Cu in the composite material is measured and calculated by a combination of X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (XAES) using the Multilab 2000X of the American Thermo Company.
  • XPS X-ray photoelectron spectroscopy
  • XAES Auger electron spectroscopy
  • the surface atomic concentration ratio is calculated according to the peak area, and the atomic sensitivity factor is used for correction.
  • the embedded state of the active component is characterized by transmission electron microscopy TEM.
  • Test conditions (i) Sample preparation: first grind the composite material into powder, then take a small amount of sample and add absolute ethanol, disperse the sample by ultrasonic, and finally Absorb the dispersion dropwise and add it to the copper grid, wait until the ethanol evaporates to dryness and set aside. (ii) Samples were observed and sampled under a transmission electron microscope.
  • copper dispersion is measured using CO chemical adsorption.
  • Test conditions Measurement using a Micromeritics Autochem 2910 chemical adsorption instrument and detection using a thermal conductivity cell detector (TCD).
  • TCD thermal conductivity cell detector
  • Catalyst pre-reduction Put about 0.1g of the composite material into a U-shaped quartz reactor, first reduce it with H2 at 350°C for 1 hour, then purge it with He gas at 360°C for 1 hour, and then cool to 50°C.
  • CO pulse adsorption After the baseline is stable, conduct a CO pulse adsorption experiment using 5% CO/He as the adsorbent until the adsorption is saturated.
  • the carbon content is measured using elemental analysis methods.
  • Test conditions The experiment is carried out on a Vario MICRO elemental analyzer. After the sample is burned and oxidized at high temperature in the analyzer, the resulting gas is separated to detect the carbon content. content.
  • a copper-carbon composite material is related.
  • the copper-carbon composite material is particularly suitable for use as a catalyst, so it is sometimes referred to as catalyst.
  • the copper-carbon composite material includes active components and a carrier.
  • the active component includes a combination of Cu and Cu 2 O.
  • the active component may further include other ingredients.
  • the support is a porous carbonaceous material.
  • the porous carbonaceous material is a solid carbon material with a carbon content greater than 80 wt%, preferably derived from at least one of petroleum coke, needle coke, asphalt, biomass charcoal and coal, more preferably derived from petroleum Jiao.
  • the content of the combination based on the mass of Cu element is 1wt%-50wt%, preferably 5wt%-35wt%, relative to the composite material which is 100wt%.
  • the R1 value of the composite material is 0.4-2:1, preferably 0.5-1.5:1, wherein the R1 value is Cu 2 O and Cu in the XRD spectrum of the composite material peak height ratio.
  • the composite material has a higher proportion of Cu 2 O. If the R1 value in the copper-carbon composite material is lower than or higher than this ratio, its catalytic effect in the hydrogenation of CO2 to methanol will be poor.
  • the R2 value of the copper-carbon composite material is 0.05-0.4:1, preferably 0.05-0.3:1, wherein the R2 value is the XPS spectrum and Russian spectrum of the composite material.
  • the peak area ratio of Cu + and Cu 0 obtained by peak split fitting using X-ray electron energy spectroscopy (XAES).
  • XAES X-ray electron energy spectroscopy
  • the copper-carbon composite material when the copper-carbon composite material is measured after being placed at 25° C. for 48 hours in an air atmosphere, its R1 value remains essentially unchanged at 0.4-2:1, preferably 0.5 -1.5:1, and its R2 value remains basically unchanged at 0.05-0.4:1, preferably 0.05-0.3:1.
  • This measurement result shows that the copper-carbon composite material of the present invention has very strong storage stability, and the active components can remain essentially unchanged for a long time.
  • At least part (preferably substantially all) of the active component is embedded in the graphite microcrystalline lamellae and amorphous defects of the porous carbonaceous material.
  • the copper dispersion is 5-20%, preferably 10-20%.
  • the crystal grain size of the active component is 3-20 nm, preferably 5-15 nm.
  • the copper-carbon composite material has a pore diameter of 0.8-2 nm, and the pore volume accounts for 30%-50% of the total pore volume, preferably 30%-45%.
  • the specific surface area of the copper-carbon composite material is 100-600m 2 /g, preferably 150-500m 2 /g.
  • it also relates to a preparation method of copper-carbon composite material.
  • the preparation method includes the following steps:
  • material A a pre-composite material
  • the material A is brought into contact with an alkali activator to cause an activation reaction to obtain the copper-carbon composite material.
  • the carbon-containing material is a solid carbon material having a carbon content greater than 80wt%, selected from at least one of a graphite precursor and an activated carbon precursor.
  • the carbon-containing material is selected from at least one of petroleum coke, needle coke, asphalt, biochar and coal, more preferably petroleum coke.
  • the preparation method further includes washing and drying to obtain the copper-carbon composite material after the activation reaction is completed.
  • the washing is generally water washing, wherein water washing refers to washing and filtering with water until the pH value of the filtrate becomes neutral.
  • the drying may be normal pressure drying or vacuum drying, preferably vacuum drying.
  • the drying temperature is 50-250°C, preferably 60-150°C.
  • the drying time is 2-24h, preferably 5-16h.
  • the copper-containing compound is one or more selected from inorganic copper salts, organic copper salts, copper-containing oxides, and copper-containing hydroxides, specifically selected from copper nitrate, alkali One or more of copper carbonate, copper sulfate, copper chloride, copper formate, copper acetate, copper hydroxide and copper oxide, preferably selected from the group consisting of copper chloride, copper nitrate, basic copper carbonate, copper sulfate, One or more of copper formate and copper acetate.
  • the organic solvent is one or more selected from the group consisting of pyrrolidone derivatives, N,N-dimethylformamide, methanol, ethanol, tetrahydrofuran, and carbon disulfide, preferably a pyrrolidone derivative, More preferably, it is at least one selected from N-methylpyrrolidone and N-ethylpyrrolidone.
  • pyrrolidone derivatives More preferably, it is at least one selected from N-methylpyrrolidone and N-ethylpyrrolidone.
  • N-methylpyrrolidone is one or more selected from the group consisting of pyrrolidone derivatives, N,N-dimethylformamide, methanol, ethanol, tetrahydrofuran, and carbon disulfide, preferably a pyrrolidone derivative, More preferably, it is at least one selected from N-methylpyrrolidone and N-ethylpyrrolidone.
  • step (1) the carbonaceous material, the copper-containing compound and the organic solvent are uniformly mixed, subjected to the heat treatment, and then dried to obtain the material A.
  • the drying operating conditions include: drying temperature is 60-350°C, preferably 80-300°C; drying time is 0.5-24h, preferably 1-18h.
  • the drying can adopt any of the existing drying methods. Specifically, one or more of oven drying, vacuum drying, and rotary evaporation drying can be used. Preferably, the drying method can be used. Vacuum drying or rotary evaporation drying.
  • the operating conditions of the heat treatment include: treatment temperature is 60-400°C, preferably 80-350°C, treatment time is 0.1-24h, preferably 1-16h, and treatment pressure (gauge pressure) It is 0-15MPa, preferably 1-10MPa, and more preferably 2-8MPa.
  • the heat treatment does not introduce or add liquid or gaseous water, which means that in addition to the moisture that each raw material (ie, carbonaceous materials, copper-containing compounds and organic solvents) itself may contain, Liquid or gaseous water is not actively introduced or added to the heat treatment.
  • the mass ratio of the carbonaceous material, the copper-containing compound and the organic solvent is 1:0.01-1.2:1-100, preferably 1:0.1-0.8:10-50,
  • the copper-containing compound is measured by mass of elemental copper.
  • the alkali activator is one or more selected from the group consisting of potassium hydroxide, potassium carbonate, potassium bicarbonate, sodium hydroxide, and calcium hydroxide, preferably potassium hydroxide.
  • the mass ratio of the material A to the alkali activator is 1:0.2-12, preferably 1:0.5-6.
  • the operating conditions of the activation reaction include: the atmosphere is one or more of nitrogen and/or inert atmosphere, preferably nitrogen, and the activation temperature is 300-600°C, preferably 400-550°C. °C, the activation time is 0.1-10h, preferably 0.5-8h.
  • the base activator is generally in a molten state.
  • the melted state means that the alkali activator is in the form of a liquid, but the temperature at which it is located is not necessarily the melting temperature of the alkali activator.
  • the inert gas is one or more of helium, argon and neon.
  • the activation reaction does not introduce or add liquid or gaseous water, which means that except for the moisture that may be contained in each raw material (ie, material A and alkali activator) itself, no water is added to the activation reaction.
  • Liquid or gaseous water may be actively introduced or not actively added to the activation reaction.
  • the present invention also relates to the application of the copper-carbon composite material of the present invention or the copper-carbon composite material prepared according to the method of the present invention in the hydrogenation of carbon dioxide to produce methanol.
  • the present invention also relates to the application of the copper-carbon composite material of the present invention or the copper-carbon composite material prepared according to the method of the present invention in CO adsorption separation.
  • the present invention also relates to the application of the copper-carbon composite material of the present invention or the copper-carbon composite material prepared according to the method of the present invention in the hydrogenation of carbon dioxide to produce low-carbon hydrocarbons.
  • the present invention also relates to the application of the copper-carbon composite material of the present invention or the copper-carbon composite material prepared according to the method of the present invention in the photocatalytic conversion of carbon dioxide.
  • the present invention also relates to the application of the copper-carbon composite material of the present invention or the copper-carbon composite material prepared according to the method of the present invention in the electrocatalytic conversion of carbon dioxide.
  • the operating conditions of these applications can be directly applied to what is known in the art and are not particularly limited.
  • the activity evaluation of the composite material in the hydrogenation of carbon dioxide to methanol reaction was carried out in a fixed-bed reactor.
  • the specific reaction conditions were: put a certain amount of catalyst into the reaction tube, raise it to the reaction temperature under a nitrogen atmosphere, and switch to the reaction gas (The volume ratio of carbon dioxide and hydrogen is 1:3, mixed with a certain amount of nitrogen as an internal standard), the gas space velocity is 3000mL/(g ⁇ h), the reaction temperature is 250°C, and the reaction pressure is 4MPa.
  • gas chromatography was used for online analysis. Gas chromatograph model Agilent 8860, equipped with TCD detector.
  • x(in) represents the concentration of x in the raw gas
  • x(out) represents the concentration of x in the product gas
  • x is CO 2 , CH 3 OH, and N 2 .
  • the petroleum coke, copper chloride and N,N-dimethylformamide ground to a particle size of 20-300 mesh were mixed evenly in a mass ratio of 1:0.15:18, treated at 2MPa and 90°C for 3h, and after cooling to room temperature, the sample was taken out and dried in a vacuum drying oven at 140°C for 8h.
  • the obtained product A11 was mixed evenly with potassium hydroxide in a mass ratio of 1:2, and activated in a nitrogen atmosphere at 500°C for 3h. After cooling to room temperature, the activated product was filtered and washed with water until the pH value of the filtrate was neutral, and the solid product was dried in a vacuum drying oven at 110°C for 6h to obtain the composite material C-11.
  • the sample properties are shown in Table 1, and the evaluation results are shown in Table 2.
  • the petroleum coke, copper nitrate and N-methylpyrrolidone ground to a particle size of 20-300 mesh were mixed evenly in a mass ratio of 1:0.42:40, treated at 350°C for 2 hours under normal pressure, and after cooling to room temperature, the sample was taken out and placed in a vacuum drying oven for drying at 180°C for 4 hours.
  • the obtained product B2 was mixed evenly with potassium hydroxide in a mass ratio of 1:3, and activated in a nitrogen atmosphere at 450°C for 4 hours. After cooling to room temperature, the activated product was filtered and washed with water until the filtrate had a neutral Ph value, and the solid product was dried in a vacuum drying oven at 120°C for 6 hours to obtain a composite material D-2.
  • the sample properties are shown in Table 1, and the evaluation results are shown in Table 2.
  • the petroleum coke and copper nitrate ground to a particle size of 20-300 mesh were mixed evenly in a mass ratio of 1:0.42, treated at 350°C for 2 hours under normal pressure, and after cooling to room temperature, the sample was taken out and placed in a vacuum drying oven for drying at 180°C for 4 hours.
  • the obtained product B5 was mixed evenly with potassium hydroxide in a mass ratio of 1:3, and activated in a nitrogen atmosphere at 450°C for 4 hours. After cooling to room temperature, the activated product was filtered and washed with water until the filtrate had a neutral Ph value, and the solid product was dried in a vacuum drying oven at 120°C for 6 hours to obtain a composite material D-5.
  • the sample properties are shown in Table 1, and the evaluation results are shown in Table 2.
  • the petroleum coke, copper nitrate and water ground to a particle size of 20-300 mesh were mixed evenly in a mass ratio of 1:0.21:18, treated at 2MPa and 90°C for 3h, and after cooling to room temperature, the sample was taken out and dried in a vacuum drying oven at 150°C for 6h.
  • the obtained product B8 was mixed evenly with potassium hydroxide in a mass ratio of 1:2, and activated in a nitrogen atmosphere at 500°C for 6h. After cooling to room temperature, the activated product was filtered and washed with water until the pH value of the filtrate was neutral, and the solid product was dried in a vacuum drying oven at 110°C for 15h to obtain the composite material D-8.
  • the sample properties are shown in Table 1, and the evaluation results are shown in Table 2.

Abstract

本发明涉及一种铜-碳复合材料及其制备方法与应用。所述铜-碳复合材料具有催化活性高且稳定性也高的优点。根据本发明的铜-碳复合材料,包括活性组分和载体,其中所述活性组分包括Cu和Cu2O的组合,所述载体为多孔含碳材料,所述组合以Cu元素质量计的含量为1wt%-50wt%,相对于所述复合材料为100wt%计,所述复合材料的R1值为0.4-2:1。

Description

一种铜-碳复合材料及其制备方法与应用 技术领域
本发明属于新能源技术领域,涉及一种碳材料及其制备方法,特别是涉及一种铜-碳复合材料及其制备方法与应用。
背景技术
近年来随着工业的快速发展和人类活动,导致二氧化碳(CO2)排放量逐年增高,而CO2的过度排放是导致全球气候变暖的重要原因,据统计,2016年-2018年全球的平均气温较工业化时期高出0.9-1.1℃,气温升高会导致海平面上升、沿海地区遭受高潮危害、城市洪涝灾害、极端天气会导致疾病、死亡和粮食不足等,因此CO2减排形势严峻,为此我国提出了“双碳”战略目标,即CO2排放力争于2030年达到峰值,努力争取2060年实现碳中和。要实现这一目标,一方面需要将依靠高消耗高排放的经济转化为集约型方式为主,另一方面要开发CO2捕集再利用技术。CO2的转化利用途径之一是将CO2加氢转化成高能量密度的有机燃料,如一氧化碳、甲烷、甲酸、甲醛和甲醇等低碳能源。其中,甲醇是重要的化工原料,可用于合成多种化工产品,同时也可以作为化石燃料的清洁替代品,如甲醇汽油、甲醇燃料电池等。因此,近些年CO2加氢制甲醇逐渐成为研究关注的热点。CO2加氢制甲醇的催化剂目前主要采用铜基催化剂,铜物种被认为可以很好的催化碳氧键选择性加氢,在加氢合成甲醇反应中得到了广泛应用。已经商业化催化剂的有Cu/ZnO-Al2O3,但该催化剂的催化活性和稳定性较差。
专利CN112121805A公开了一种二氧化碳加氢合成甲醇催化剂及其制备和应用,在铜盐、锌盐和锆盐中加入一定量的醇类溶剂,搅拌并超声分散,再转移至反应釜中在密封条件下,进行溶剂热反应,制备得到二氧化碳加氢制甲醇催化剂。专利CN111215084A公开了一种用于二氧化碳加氢制甲醇铜基催化剂及制备和应用,催化剂以铜锌铝为活性组分,将锌铝组分先行沉淀、老化、低温焙烧,获得稳定性更高、更利于铜分散的锌铝水滑石前驱体,再将活性组分铜与该前驱体进行沉积沉淀反应,最终获得适用于二氧化碳加氢制甲醇的新型铜锌铝催化剂。
目前,现有方法制备的铜基催化剂通常为体相催化剂,铜用量大,相应的铜利用率低,经济成本高限制了其大规模工业应用。负载型催化剂因具有金属分散度高,用量低,有效利用率高等特点受到研究者越来越广泛的关注,因此开发一种金属负载型催化材料是目前急需解决的问题之一。
发明内容
针对现有技术中存的不足,本发明目的是提供一种铜-碳复合材料及其制备方法与应用。本发明的发明人发现,通过使铜活性组分在含碳材料载体上初步分散,然后通过在所述载体中原位形成孔道,同时使铜活性组分进一步分散到这些新形成的孔道内部,就可以制造出催化活性高且稳定性也高的铜-碳复合材料。本发明基于该发现而完成。
根据本发明的一个方面,涉及一种铜-碳复合材料,包括活性组分和载体,其中所述活性组分包括Cu和Cu2O的组合,所述载体为多孔含碳材料,所述组合以Cu元素质量计的含量为1wt%-50wt%,优选为5wt%-35wt%,相对于所述复合材料为100wt%计,所述复合材料的R1值为0.4-2:1,优选为0.5-1.5:1,其中所述R1值为所述复合材料的XRD谱图中Cu2O和Cu的峰高比。
根据本发明的另一个方面,涉及一种铜-碳复合材料的制备方法,所述制备方法包括如下步骤:
(1)使含碳材料、含铜化合物和有机溶剂在热处理条件下进行接触,获得预复合材料(称为物料A);
(2)使所述物料A与碱活化剂接触而发生活化反应,获得所述铜-碳复合材料,
其中所述含碳材料为含碳量大于80wt%的固体碳材料,选自石墨前驱体和活性炭前驱体中的至少一种。
根据本发明的再一个方面,涉及本发明的铜-碳复合材料在二氧化碳加氢制甲醇中的应用、在CO吸附分离中的应用、在二氧化碳加氢制低碳烃方面的应用、在光催化转化二氧化碳方面的应用、在电催化转化二氧化碳方面的应用等。
技术效果
与现有技术相比,本发明所述的铜-碳复合材料及其制备方法与应用具有如下优点之一或者其部分或全部的组合:
1、根据本发明,可以原位生成同时具备Cu和Cu2O两种价态铜元素活性组分的复合材料,且复合材料中具有活性金属分散性好、比表面积适宜、孔径分布集中、反应活性高等优点,且制备方法简单。
2、根据本发明,可以生成Cu/Cu2O比例可控的且稳定的铜碳复合材料,对于CO2加氢制甲醇具有较高的选择性。
3、根据本发明,首先在有机溶剂存在条件下对石油焦等前驱体和含铜化合物进行预处理,通过极性有机溶剂的浸润溶胀作用,可以有效增加含铜化合物和前驱体的接触,促进含铜化合物在前驱体上的均匀分散,利于前驱体后续的活化反应,同时通过使用有机溶剂进行预处理可以更有利于Cu和Cu2O的同时生成。
4、根据本发明,在前驱体的活化过程中原位引入活性组分铜,利用活化剂造孔进入前驱体的石墨微晶片层及非晶缺陷的扩散路径,活性组分铜随着熔融的活化剂一起进入前驱体的多孔炭孔道,形成高分散结构。而且本发明通过采用较低的活化温度既保证了适宜的比表面积和孔分布,同时也利于同时生成活性组分Cu和Cu2O。
5、根据本发明,所述铜-碳复合材料用于二氧化碳加氢制甲醇催化剂时,以多孔碳材料为载体,既提供了丰富的比表面和孔道,是高分散负载活性组分的结构助剂;同时多孔碳材料的石墨微晶片层也为活性中心的电子传递提供了通道,也是良好的导电剂,利于更好的发挥活性中心Cu和Cu2O的催化作用,提高二氧化碳加氢制甲醇的反应效果。
附图说明
图1为本发明实施例1制备的铜-碳复合材料的XRD图。
图2为本发明实施例1制备的铜-碳复合材料的TEM图。
图3为本发明实施例1制备的铜-碳复合材料的孔分布图。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“现有技术”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
除非另有其他明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其他元件或其他组成部分。
在本文中,参数(例如,数量或条件)的所有数字值都应理解为在所有情况下均由术语“约”修饰,无论“约”是否实际上出现在该数字值之前。
在本说明书的上下文中,石油焦指的是重质油经焦化装置裂解焦化生成的固体焦炭。
在本说明书的上下文中,石墨前驱体指的是能够通过处理而生成石墨或具有与石墨类似的片层结构的任何含碳材料。
在本说明书的上下文中,活性炭前驱体指的是能够通过处理而生成活性炭或具有与活性炭类似的孔道结构的任何含碳材料。
在本说明书的上下文中,比表面积采用低温氮气物理吸附方法测得,仪器采用Micromeritics公司的ASAP2460型物理吸附仪,测试条件:将样品在200℃真空处理5h,测试在液氮温度(-196℃)下进行。根据静态法测量得出吸附-脱附等温线,催化剂的比表面积根据BET(Brunauer-Emmett-Teller)方程计算,孔径分布采用NLDFT方法计算。
在本说明书的上下文中,复合材料中铜的负载量使用Thermal Scientific-IRIS Intrepid ⅡXSP型电感耦合等离子体原子发射光谱仪测定金属含量并换算得到,铜负载量(%)=铜质量/复合材料质量*100%。
在本说明书的上下文中,复合材料中活性组分的晶粒尺寸根据XRD结果采用谢乐公式(Scherrer公式)计算。
在本说明书的上下文中,复合材料中Cu2O/Cu的质量比通过X射线光电子能谱(XPS)和Auger电子能谱(XAES)联用来测定并计算得到,仪器使用美国Thermo公司的Multilab2000X射线光电子能谱仪,电子结合能(B.E.)值以C 1s=284.6eV为内标校正样品的荷电效应,表面原子浓度比例按照峰面积来计算,用原子灵敏度因子进行校正。
在本说明书的上下文中,活性组分嵌入状态通过透射电镜TEM表征,测试条件:(i)制样:首先将复合材料研磨成粉末,之后取少量样品加入无水乙醇,超声将样品分散,最后吸取分散液滴加到铜网上,待乙醇挥发干后备用。(ii)样品在透射电镜下进行观测采样。
在本说明书的上下文中,铜分散度采用CO化学吸附测得,测试条件:使用Micromeritics Autochem 2910型化学吸附仪进行测量,采用热导池检测器(TCD)进行检测。具体步骤:(i)催化剂预还原:将约0.1g复合材料装入U型石英反应器中,首先用H2于350℃还原1h,之后用He气于360℃下吹扫1h,再降温至50℃。(ii)CO脉冲吸附,待基线平稳后,进行CO脉冲吸附实验,以5%CO/He为吸附质,直至吸附饱和。(iii)CO脱附:在He气氛下进行以10℃/min的速率升至900℃进行程序升温脱附实验。然后根据峰的面积计算吸附量。铜的分散度=CO吸附量(g)/复合材料中铜的负载量(g)*100%。
在本说明书的上下文中,含碳量的测量采用元素分析方法,测试条件:实验在Vario MICRO元素分析仪上进行,样品在分析仪内经过高温燃烧氧化后,所得气体经过分离从而检测出碳的含量。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量为基准的,而且压力是表压。
在本说明书的上下文中,本发明的任何两个或多个实施方式都可以任意组合,由此而形成的技术方案属于本说明书原始公开内容的一部分,同时也落入本发明的保护范围。
根据本发明的一个实施方式,涉及一种铜-碳复合材料。根据本发明,所述铜-碳复合材料特别适合作为催化剂使用,由此本说明书中有时将其简称为 催化剂。
根据本发明的一个实施方式,所述铜-碳复合材料包括活性组分和载体。
根据本发明的一个实施方式,所述活性组分包括Cu和Cu2O的组合。为了调节催化剂性能或应用领域需要,所述活性组分还可以包括其他成分。
根据本发明的一个实施方式,所述载体为多孔含碳材料。优选的是,所述多孔含碳材料为含碳量大于80wt%的固体碳材料,优选衍生自石油焦、针状焦、沥青、生物质炭和煤炭中的至少一种,更优选衍生自石油焦。
根据本发明的一个实施方式,所述组合以Cu元素质量计的含量为1wt%-50wt%,优选为5wt%-35wt%,相对于所述复合材料为100wt%计。
根据本发明的一个实施方式,所述复合材料的R1值为0.4-2:1,优选为0.5-1.5:1,其中所述R1值为所述复合材料的XRD谱图中Cu2O和Cu的峰高比。根据本发明,与现有技术的催化剂不同,所述复合材料具有较高的Cu2O占比。如果铜碳复合材料中R1值低于或高于该比例,其催化CO2加氢制甲醇效果会较差。
根据本发明的一个优选实施方式,所述铜-碳复合材料的R2值为0.05-0.4:1,优选为0.05-0.3:1,其中所述R2值为所述复合材料的XPS谱图和俄歇电子能谱(XAES)进行分峰拟合得到的Cu+和Cu0的峰面积比。根据该优选实施方式,如果铜碳复合材料中R2值高于该比例,催化剂存储稳定性较差,易被进一步氧化成氧化铜;而R2值低于该比例时,且R1值也较低时,复合材料催化CO2加氢制甲醇效果会较差。
根据本发明的一个实施方式,将所述铜-碳复合材料在空气气氛下在25℃下放置48小时之后测量时,其R1值基本上保持不变,为0.4-2:1,优选为0.5-1.5:1,而且其R2值也基本上保持不变,为0.05-0.4:1,优选为0.05-0.3:1。这种测量结果表明,本发明的铜-碳复合材料具有非常强的储存稳定性,活性组分可以长期保持基本上不变。
根据本发明的一个实施方式,所述活性组分的至少一部分(优选基本上全部)嵌入到所述多孔含碳材料的石墨微晶片层以及非晶缺陷中。
根据本发明的一个实施方式,铜的分散度为5-20%,优选为10-20%。
根据本发明的一个实施方式,所述活性组分的晶粒尺寸为3-20nm,优选为5-15nm。
根据本发明的一个实施方式,所述铜-碳复合材料的孔径为0.8-2nm孔的孔容占总孔容的30%-50%,优选为30%-45%。
根据本发明的一个实施方式,所述铜-碳复合材料的比表面积为100-600m2/g,优选为150-500m2/g。
根据本发明的一个实施方式,还涉及一种铜-碳复合材料的制备方法。
根据本发明的一个实施方式,所述制备方法包括如下步骤:
使含碳材料、含铜化合物和有机溶剂在热处理条件下进行接触,获得预复合材料(称为物料A);
使所述物料A与碱活化剂接触而发生活化反应,获得所述铜-碳复合材料。
根据本发明的一个实施方式,所述含碳材料为含碳量大于80wt%的固体碳材料,选自石墨前驱体和活性炭前驱体中的至少一种。优选的是,所述含碳材料选自石油焦、针状焦、沥青、生物质炭和煤炭中的至少一种,更优选石油焦。
根据本发明的一个实施方式,所述制备方法还包括在所述活化反应完成之后,经过洗涤和干燥,得到所述铜-碳复合材料。
根据本发明的一个实施方式,所述洗涤一般为水洗,其中水洗指用水洗涤过滤至滤液pH值呈中性。
根据本发明的一个实施方式,所述干燥可以是常压干燥也可以是真空干燥,优选为真空干燥。
根据本发明的一个实施方式,所述干燥温度为50-250℃,优选为60-150℃。所述干燥时间为2-24h,优选为5-16h。
根据本发明的一个实施方式,所述含铜化合物为选自无机铜盐、有机铜盐、含铜氧化物、含铜氢氧化物中的一种或几种,具体选自于硝酸铜、碱式碳酸铜、硫酸铜、氯化铜、甲酸铜、乙酸铜、氢氧化铜、氧化铜中的一种或几种,优选为选自氯化铜、硝酸铜、碱式碳酸铜、硫酸铜、甲酸铜、乙酸铜中的一种或几种。
根据本发明的一个实施方式,所述有机溶剂为选自吡咯烷酮衍生物、N,N-二甲基甲酰胺、甲醇、乙醇、四氢呋喃、二硫化碳中的一种或几种,优选为吡咯烷酮衍生物,更优选为选自N-甲基吡咯烷酮,N-乙基吡咯烷酮中的至少 一种,特别优选为N-甲基吡咯烷酮。
根据本发明的一个实施方式,在步骤(1)中,使所述含碳材料、所述含铜化合物和所述有机溶剂混合均匀并进行所述热处理,然后烘干而得到所述物料A。
根据本发明的一个实施方式,所述烘干的操作条件包括:烘干温度为60-350℃,优选为80-300℃;烘干时间为0.5-24h,优选为1-18h。
根据本发明的一个实施方式,所述的烘干可以采用现有能够实现干燥方式中的任一种,具体可以采用烘箱干燥、真空干燥、旋转蒸发干燥中的一种或几种,优选为采用真空干燥或旋转蒸发干燥。
根据本发明的一个实施方式,所述热处理的操作条件包括:处理温度为60-400℃,优选为80-350℃,处理时间为0.1-24h,优选为1-16h,处理压力(表压)为0-15MPa,优选为1-10MPa,进一步优选为2-8MPa。
根据本发明的一个实施方式,所述热处理不引入或不添加液态或气态水,其含义是说除了各原料(即,含碳材料、含铜化合物和有机溶剂)本身可能含有的水分之外,不向所述热处理中主动引入或不向所述热处理中主动添加液态或气态水。
根据本发明的一个实施方式,所述含碳材料、所述含铜化合物和所述有机溶剂的质量比为1:0.01-1.2:1-100,优选为1:0.1-0.8:10-50,其中所述含铜化合物以元素铜质量计。
根据本发明的一个实施方式,所述碱活化剂为选自氢氧化钾、碳酸钾、碳酸氢钾、氢氧化钠、氢氧化钙中的一种或几种,优选为氢氧化钾。
根据本发明的一个实施方式,所述物料A与所述碱活化剂的质量比为1:0.2-12,优选为1:0.5-6。
根据本发明的一个实施方式,所述活化反应的操作条件包括:气氛为氮气和/或惰性气氛中的一种或几种,优选为氮气,活化温度为300-600℃,优选为400-550℃,活化时间为0.1-10h,优选为0.5-8h。在进行所述活化反应时,所述碱活化剂一般为熔化状态。在此,所述熔化状态指的是所述碱活化剂呈现为液体,但其所处的温度并不一定是所述碱活化剂的熔融温度。
根据本发明的一个实施方式,所述惰性气体为氦气、氩气、氖气中的一种或几种。
根据本发明的一个实施方式,所述活化反应不引入或不添加液态或气态水,其含义是说除了各原料(即,物料A和碱活化剂)本身可能含有的水分之外,不向所述活化反应中主动引入或不向所述活化反应中主动添加液态或气态水。
根据本发明的一个实施方式,还涉及本发明的铜-碳复合材料或按照本发明方法制备得到的铜-碳复合材料在二氧化碳加氢制甲醇中的应用。
根据本发明的一个实施方式,还涉及本发明的铜-碳复合材料或按照本发明方法制备得到的铜-碳复合材料在CO吸附分离中的应用。
根据本发明的一个实施方式,还涉及本发明的铜-碳复合材料或按照本发明方法制备得到的铜-碳复合材料在二氧化碳加氢制低碳烃方面的应用。
根据本发明的一个实施方式,还涉及本发明的铜-碳复合材料或按照本发明方法制备得到的铜-碳复合材料在光催化转化二氧化碳方面的应用。
根据本发明的一个实施方式,还涉及本发明的铜-碳复合材料或按照本发明方法制备得到的铜-碳复合材料在电催化转化二氧化碳方面的应用。
根据本发明,这些应用的操作条件可以直接适用现有技术已知的内容,并没有特别的限定。
实施例
以下采用实施例进一步详细地说明本发明,但本发明并不限于这些实施例。
复合材料在二氧化碳加氢制甲醇反应中的活性评价是在固定床反应器上进行的,具体反应条件:将一定量催化剂装入反应管中,在氮气气氛下升至反应温度,切换成反应气(二氧化碳与氢气的体积比为1:3,混有一定量氮气作为内标),气体空速为3000mL/(g·h),反应温度250℃,反应压力4MPa。待反应稳定后用气相色谱进行在线分析。气相色谱型号Agilent 8860,配置TCD检测器。
二氧化碳转化率
甲醇选择性
式中x(in)表示原料气中x的浓度,x(out)表示产品气中x的浓度,x为CO2、CH3OH、N2
实施例1
将研磨至粒度为20-300目的石油焦、碱式碳酸铜、N-甲基吡咯烷酮按照质量比为1:0.26:50的比例混合均匀,在5MPa,100℃条件下处理8h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度150℃,烘干时间10h,将所得产物A1与氢氧化钾按照质量比为1:1.5混合均匀后,在500℃氮气气氛下活化3h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于100℃干燥5h得到复合材料C-1,样品性质见表1,评价结果见表2。
通过观察复合材料C-1的TEM照片可见,活性组分嵌入到载体材料的石墨微晶片层以及非晶缺陷中。
将复合材料C-1在空气气氛下在25℃下放置48小时之后测量时,其R1值和R2值基本上没有变化。
实施例2
将研磨至粒度为20-300目的石油焦、氯化铜、N-乙基吡咯烷酮按照质量比为1:0.28:20的比例混合均匀,在2MPa,100℃条件下处理3h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度180℃,烘干时间6h,将所得产物A2与氢氧化钾按照质量比为1:1混合均匀后,在500℃氮气气氛下活化4h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于120℃干燥4h得到复合材料C-2,样品性质见表1,评价结果见表2。
实施例3
将研磨至粒度为20-300目的石油焦、碱式碳酸铜、N-甲基吡咯烷酮按照质量比为1:0.42:40的比例混合均匀,在4MPa,200℃条件下处理3h,降至 室温后将样品取出置于真空干燥箱中烘干,烘干温度150℃,烘干时间8h,将所得产物A3与氢氧化钾按照质量比为1:1.5混合均匀后,在490℃氮气气氛下活化4h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于120℃干燥6h得到复合材料C-3,样品性质见表1,评价结果见表2。
实施例4
将研磨至粒度为20-300目的石油焦、碱式碳酸铜、N-甲基吡咯烷酮按照质量比为1:0.13:30的比例混合均匀,在5MPa,150℃条件下处理10h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度200℃,烘干时间6h,将所得产物A4与氢氧化钾按照质量比为1:2混合均匀后,在450℃氮气气氛下活化4h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于100℃干燥8h得到复合材料C-4,样品性质见表1,评价结果见表2。
实施例5
将研磨至粒度为20-300目的石油焦、硝酸铜、N-甲基吡咯烷酮按照质量比为1:0.68:30的比例混合均匀,在7MPa,110℃条件下处理6h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度150℃,烘干时间6h,将所得产物A5与氢氧化钾按照质量比为1:0.8混合均匀后,在500℃氮气气氛下活化2h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于120℃干燥7h得到复合材料C-5,样品性质见表1,评价结果见表2。
实施例6
将研磨至粒度为20-300目的石油焦、氯化铜、N-甲基吡咯烷酮按照质量比为1:0.56:15的比例混合均匀,在2MPa,100℃条件下处理10h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度200℃,烘干时间5h,将所得产物A6与氢氧化钾按照质量比为1:1混合均匀后,在450℃氮气气氛下活化6h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在 真空干燥箱中于130℃干燥5h得到复合材料C-6,样品性质见表1,评价结果见表2。
实施例7
将研磨至粒度为20-300目的石油焦、碱式碳酸铜、N-甲基吡咯烷酮按照质量比为1:0:49:40的比例混合均匀,在10MPa,100℃条件下处理2h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度150℃,烘干时间8h,将所得产物A7与氢氧化钾按照质量比为1:1.5混合均匀后,在500℃氮气气氛下活化3h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于120℃干燥6h得到复合材料C-7,样品性质见表1,评价结果见表2。
实施例8
将研磨至粒度为20-300目的石油焦、氯化铜、N-甲基吡咯烷酮按照质量比为1:0.15:20的比例混合均匀,在3MPa,100℃条件下处理2h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度180℃,烘干时间4h,将所得产物A8与氢氧化钾按照质量比为1:2混合均匀后,在525℃氮气气氛下活化4h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于110℃干燥6h得到复合材料C-8,样品性质见表1,评价结果见表2。
实施例9
将研磨至粒度为20-300目的石油焦、碱式碳酸铜、N-甲基吡咯烷酮按照质量比为1:0.19:45的比例混合均匀,在6MPa,250℃条件下处理4h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度150℃,烘干时间4h,将所得产物A9与氢氧化钾按照质量比为1:2混合均匀后,在500℃氮气气氛下活化2h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于100℃干燥8h得到复合材料C-9,样品性质见表1,评价结果见表2。
实施例10
将研磨至粒度为20-300目的石油焦、硝酸铜、N-甲基吡咯烷酮按照质量比为1:0.42:40的比例混合均匀,在5MPa,350℃条件下处理2h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度180℃,烘干时间4h,将所得产物A10与氢氧化钾按照质量比为1:3混合均匀后,在450℃氮气气氛下活化4h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于120℃干燥6h得到复合材料C-10,样品性质见表1,评价结果见表2。
实施例11
将研磨至粒度为20-300目的石油焦、氯化铜、N,N-二甲基甲酰胺按照质量比为1:0.15:18的比例混合均匀,在2MPa,90℃条件下处理3h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度140℃,烘干时间8h,将所得产物A11与氢氧化钾按照质量比为1:2混合均匀后,在500℃氮气气氛下活化3h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于110℃干燥6h得到复合材料C-11,样品性质见表1,评价结果见表2。
实施例12
将研磨至粒度为20-300目的煤、硝酸铜、N-乙基吡咯烷酮按照质量比为1:0.33:40的比例混合均匀,在3MPa,120℃条件下处理4h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度150℃,烘干时间6h,将所得产物A12与氢氧化钾按照质量比为1:1.5混合均匀后,在450℃氮气气氛下活化5h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于120℃干燥12h得到复合材料C-12,样品性质见表1,评价结果见表2。
实施例13
将研磨至粒度为20-300目的石油焦、硝酸铜、N-甲基吡咯烷酮按照质量比为1:0.36:40的比例混合均匀,在常压,130℃条件下处理8h,降至室温 后将样品取出置于真空干燥箱中烘干,烘干温度180℃,烘干时间5h,将所得产物A13与氢氧化钾按照质量比为1:3混合均匀后,在475℃氮气气氛下活化4h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于110℃干燥18h得到复合材料C-13,样品性质见表1,评价结果见表2。
实施例14
将研磨至粒度为20-300目的石油焦、碱式碳酸铜、N-甲基吡咯烷酮按照质量比为1:0.09:9的比例混合均匀,在1MPa,100℃条件下处理5h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度120℃,烘干时间10h,将所得产物A14与氢氧化钾按照质量比为1:1.5混合均匀后,在500℃氮气气氛下活化3h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于100℃干燥18h得到复合材料C-14,样品性质见表1,评价结果见表2。
实施例15
将研磨至粒度为20-300目的石油焦、碱式碳酸铜、N-甲基吡咯烷酮按照质量比为1:0.13:15的比例混合均匀,在2MPa,100℃条件下处理3h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度130℃,烘干时间8h,将所得产物A15与氢氧化钾按照质量比为1:7混合均匀后,在450℃氮气气氛下活化6h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于130℃干燥10h得到复合材料C-15,样品性质见表1,评价结果见表2。
比较例1
将比表面积为421m2/g的活性炭和氯化铜按照质量比以1:0.5均匀混合后,在550℃氮气气氛下焙烧6h,冷却至室温后产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于100℃干燥6h得到复合材料D-1,样品性质见表1,评价结果见表2。
比较例2
将研磨至粒度为20-300目的石油焦、硝酸铜、N-甲基吡咯烷酮按照质量比为1:0.42:40的比例混合均匀,常压条件下在350℃条件下处理2h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度180℃,烘干时间4h,将所得产物B2与氢氧化钾按照质量比为1:3混合均匀后,在450℃氮气气氛下活化4h。冷却至室温后活化产物用水过滤洗涤至滤液Ph值中性,固体产物在真空干燥箱中于120℃干燥6h得到复合材料D-2,样品性质见表1,评价结果见表2。
比较例3
将研磨至粒度为20-300目的石油焦、碱式碳酸铜、氢氧化钾按照质量比为1:0.33:1混合均匀后,在500℃氮气气氛下活化3h。冷却至室温后活化产物用水过滤洗涤至滤液Ph值中性,固体产物在真空干燥箱中于100℃干燥5h得到复合材料D-3,样品性质见表1,评价结果见表2。
比较例4
将研磨至粒度为20-300目的石油焦、硝酸铜按照质量比为1:0.42:40的比例混合均匀,在5MPa,350℃条件下处理2h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度180℃,烘干时间4h,将所得产物B4与氢氧化钾按照质量比为1:3混合均匀后,在450℃氮气气氛下活化4h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于120℃干燥6h得到复合材料D-4,样品性质见表1,评价结果见表2。
比较例5
将研磨至粒度为20-300目的石油焦、硝酸铜按照质量比为1:0.42的比例混合均匀,常压条件下在350℃条件下处理2h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度180℃,烘干时间4h,将所得产物B5与氢氧化钾按照质量比为1:3混合均匀后,在450℃氮气气氛下活化4h。冷却至室温后活化产物用水过滤洗涤至滤液Ph值中性,固体产物在真空干燥箱中于120℃干燥6h得到复合材料D-5,样品性质见表1,评价结果见表2。
比较例6
称取1.32g聚乙烯亚胺,加入100mL超纯水,搅拌直到完全溶解。再加入1.97g硝酸铜,搅拌均匀。再称取2g石油焦活性炭,搅拌均匀后放入高压釜中,密封反应釜,220℃下水热反应3h。待高压釜自然冷却到室温,固体产物用去离子水多次洗涤,60℃温度下真空干燥,得到复合材料D-6。
比较例7
称取研磨至粒度为20-300目的石油焦100g,将100g石油焦研磨至粉状,然后与46.83g四氯合铜酸钠及300g碳酸氢钾混合均匀,置于微波频率为2450MHz的微波加热炉中,在微波功率为0.3kw的条件下,于氮气气氛下升温至900℃活化20min。活化结束后,在氮气气氛下将温度降至300℃,通入5%(体积分数)O2/Ar混合气体处理30min。称取适量浓度为20wt%的葡萄糖水溶液,加入上述得到的样品中,于90℃水浴中搅拌20min。将所得样品研磨成粉状,称重,按质量比1:15与去离子水混合,充分搅拌,然后进行固液分离,直至滤液pH值呈中性,所得固体样品置于真空干燥箱中,真空条件下,150℃干燥6h,得到复合材料D-7。
比较例8
将研磨至粒度为20-300目的石油焦、硝酸铜、水按照质量比为1:0.21:18的比例混合均匀,在2MPa,90℃条件下处理3h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度150℃,烘干时间6h,将所得产物B8与氢氧化钾按照质量比为1:2混合均匀后,在500℃氮气气氛下活化6h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于110℃干燥15h得到复合材料D-8,样品性质见表1,评价结果见表2。
比较例9
将研磨至粒度为20-300目的石墨、硝酸铜、N-甲基吡咯烷酮按照质量比为1:0.42:40的比例混合均匀,在5MPa,350℃条件下处理2h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度150℃,烘干时间6h,将所得产物B9与氢氧化钾按照质量比为1:3混合均匀后,在500℃氮气气氛下活化 10h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于120℃干燥15h得到复合材料D-9,样品性质见表1,评价结果见表2。
比较例10
将研磨至粒度为20-300目的石油焦、氯化铜、N-甲基吡咯烷酮按照质量比为1:0.21:20的比例混合均匀,在3MPa,100℃条件下处理2h,降至室温后将样品取出置于真空干燥箱中烘干,烘干温度150℃,烘干时间6h,将所得产物B10置于管式炉中通入水蒸气,在525℃氮气气氛下活化4h。冷却至室温后活化产物用水过滤洗涤至滤液pH值中性,固体产物在真空干燥箱中于140℃干燥8h得到复合材料D-10,样品性质见表1,评价结果见表2。
表1实施例和比较例得到的复合材料性质

表2实施例和比较例得到的复合材料评价结果

Claims (28)

  1. 一种铜-碳复合材料,包括活性组分和载体,其中所述活性组分包括Cu和Cu2O的组合,所述载体为多孔含碳材料,所述组合以Cu元素质量计的含量为1wt%-50wt%,优选为5wt%-35wt%,相对于所述复合材料为100wt%计,所述复合材料的R1值为0.4-2:1,优选为0.5-1.5:1,其中所述R1值为所述复合材料的XRD谱图中Cu2O和Cu的峰高比。
  2. 按照权利要求1所述的铜-碳复合材料,其R2值为0.05-0.4:1,优选为0.05-0.3:1,其中所述R2值为所述复合材料的XPS谱图和俄歇电子能谱(XAES)进行分峰拟合得到的Cu+和Cu0的峰面积比。
  3. 按照权利要求1所述的铜-碳复合材料,其中将所述铜-碳复合材料在空气气氛下在25℃下放置48小时之后测量时,其R1值为0.4-2:1,优选为0.5-1.5:1,其R2值为0.05-0.4:1,优选为0.05-0.3:1。
  4. 按照权利要求1所述的铜-碳复合材料,其中所述活性组分的至少一部分(优选基本上全部)嵌入到所述多孔含碳材料的石墨微晶片层以及非晶缺陷中,和/或,铜的分散度为5-20%,优选为10-20%。
  5. 按照权利要求1所述的铜-碳复合材料,其中所述活性组分的晶粒尺寸为3-20nm,优选为5-15nm。
  6. 按照权利要求1所述的铜-碳复合材料,其中所述多孔含碳材料为含碳量大于80wt%的固体碳材料,优选衍生自石油焦、针状焦、沥青、生物质炭和煤炭中的至少一种,更优选衍生自石油焦。
  7. 按照权利要求1所述的铜-碳复合材料,其孔径为0.8-2nm孔的孔容占总孔容的30%-50%,优选为30%-45%。
  8. 按照权利要求1所述的铜-碳复合材料,其比表面积为100-600m2/g,优选为150-500m2/g。
  9. 一种铜-碳复合材料的制备方法,所述制备方法包括如下步骤:
    (1)使含碳材料、含铜化合物和有机溶剂在热处理条件下进行接触,获得预复合材料(称为物料A);
    (2)使所述物料A与碱活化剂接触而发生活化反应,获得所述铜-碳复合材料,
    其中所述含碳材料为含碳量大于80wt%的固体碳材料,选自石墨前驱体和活性炭前驱体中的至少一种。
  10. 按照权利要求9所述铜-碳复合材料的制备方法,还包括在所述活化反应完成之后,经过洗涤和干燥,得到所述铜-碳复合材料。
  11. 按照权利要求10所述铜-碳复合材料的制备方法,其中所述干燥温度为50-250℃,优选为60-150℃。
  12. 按照权利要求9所述铜-碳复合材料的制备方法,其中所述含铜化合物为选自无机铜盐、有机铜盐、含铜氧化物、含铜氢氧化物中的一种或几种,具体选自于硝酸铜、碱式碳酸铜、硫酸铜、氯化铜、甲酸铜、乙酸铜、氢氧化铜、氧化铜中的一种或几种,优选为选自氯化铜、硝酸铜、碱式碳酸铜、硫酸铜、甲酸铜、乙酸铜中的一种或几种。
  13. 按照权利要求9所述铜-碳复合材料的制备方法,其中所述有机溶剂为选自吡咯烷酮衍生物、N,N-二甲基甲酰胺、甲醇、乙醇、四氢呋喃、二硫化碳中的一种或几种,优选为吡咯烷酮衍生物,更优选为选自N-甲基吡咯烷酮,N-乙基吡咯烷酮中的至少一种,特别优选为N-甲基吡咯烷酮。
  14. 按照权利要求9所述铜-碳复合材料的制备方法,其中所述含碳材料选自石油焦、针状焦、沥青、生物质炭和煤炭中的至少一种,更优选石油焦。
  15. 按照权利要求9所述铜-碳复合材料的制备方法,其中在步骤(1)中,使所述含碳材料、所述含铜化合物和所述有机溶剂混合均匀并进行所述热处理,然后烘干而得到所述物料A。
  16. 按照权利要求15所述铜-碳复合材料的制备方法,其中所述烘干的操作条件包括:烘干温度为60-350℃,优选为80-300℃;烘干时间为0.5-24h,优选为1-18h。
  17. 按照权利要求9所述铜-碳复合材料的制备方法,其中所述热处理的操作条件包括:处理温度为60-400℃,优选为80-350℃,处理时间为0.1-24h,优选为1-16h,处理压力(表压)为0-15MPa,优选为1-10MPa,进一步优选为2-8MPa。
  18. 按照权利要求9所述铜-碳复合材料的制备方法,其中所述热处理不引入或不添加液态或气态水。
  19. 按照权利要求9所述铜-碳复合材料的制备方法,其中所述含碳材料、所述含铜化合物和所述有机溶剂的质量比为1:0.01-1.2:1-100,优选为1:0.1-0.8:10-50,其中所述含铜化合物以元素铜质量计。
  20. 按照权利要求9所述铜-碳复合材料的制备方法,其中所述碱活化剂为选自氢氧化钾、碳酸钾、碳酸氢钾、氢氧化钠、氢氧化钙中的一种或几种,优选为氢氧化钾。
  21. 按照权利要求9所述铜-碳复合材料的制备方法,其中所述物料A与所述碱活化剂的质量比为1:0.2-12,优选为1:0.5-6。
  22. 按照权利要求9所述铜-碳复合材料的制备方法,其中所述活化反应的操作条件包括:所述碱活化剂为熔化状态,气氛为氮气和/或惰性气氛中的一种或几种,优选为氮气,活化温度为300-600℃,优选为400-550℃,活化时间为0.1-10h,优选为0.5-8h。
  23. 按照权利要求9所述铜-碳复合材料的制备方法,其中所述活化反应不引入或不添加液态或气态水。
  24. 权利要求1所述的铜-碳复合材料或采用权利要求9所述方法制备得到的铜-碳复合材料在二氧化碳加氢制甲醇中的应用。
  25. 权利要求1所述的铜-碳复合材料或采用权利要求9所述方法制备得到的铜-碳复合材料在CO吸附分离中的应用。
  26. 权利要求1所述的铜-碳复合材料或采用权利要求9所述方法制备得到的铜-碳复合材料在二氧化碳加氢制低碳烃方面的应用。
  27. 权利要求1所述的铜-碳复合材料或采用权利要求9所述方法制备得到的铜-碳复合材料在光催化转化二氧化碳方面的应用。
  28. 权利要求1所述的铜-碳复合材料或采用权利要求9所述方法制备得到的铜-碳复合材料在电催化转化二氧化碳方面的应用。
PCT/CN2023/098776 2022-09-20 2023-06-07 一种铜-碳复合材料及其制备方法与应用 WO2024060687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211146205.1A CN117772196A (zh) 2022-09-20 2022-09-20 一种铜-碳复合材料及其制备方法与应用
CN202211146205.1 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024060687A1 true WO2024060687A1 (zh) 2024-03-28

Family

ID=90391388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098776 WO2024060687A1 (zh) 2022-09-20 2023-06-07 一种铜-碳复合材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN117772196A (zh)
WO (1) WO2024060687A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130256123A1 (en) * 2012-04-02 2013-10-03 King Abdulaziz City For Science And Technology Electrocatalyst for electrochemical conversion of carbon dioxide
KR20160116112A (ko) * 2015-03-25 2016-10-07 한국생산기술연구원 구리-카본계 복합물질 및 그 제조방법
CN106540694A (zh) * 2016-11-01 2017-03-29 辽宁石油化工大学 铜基MOF材料制备多孔碳负载的Cu2O/Cu复合材料的方法及其应用
CN109701535A (zh) * 2019-01-28 2019-05-03 中北大学 氧化亚铜-碳点-铜三元复合光催化剂的制备方法
CN111377443A (zh) * 2018-12-29 2020-07-07 中国石油化工股份有限公司 一种铜掺杂活性炭复合材料及其制备方法
US20210253496A1 (en) * 2018-06-07 2021-08-19 Bp P.L.C. Selective Hydrogenation of Polyunsaturates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130256123A1 (en) * 2012-04-02 2013-10-03 King Abdulaziz City For Science And Technology Electrocatalyst for electrochemical conversion of carbon dioxide
KR20160116112A (ko) * 2015-03-25 2016-10-07 한국생산기술연구원 구리-카본계 복합물질 및 그 제조방법
CN106540694A (zh) * 2016-11-01 2017-03-29 辽宁石油化工大学 铜基MOF材料制备多孔碳负载的Cu2O/Cu复合材料的方法及其应用
US20210253496A1 (en) * 2018-06-07 2021-08-19 Bp P.L.C. Selective Hydrogenation of Polyunsaturates
CN111377443A (zh) * 2018-12-29 2020-07-07 中国石油化工股份有限公司 一种铜掺杂活性炭复合材料及其制备方法
CN109701535A (zh) * 2019-01-28 2019-05-03 中北大学 氧化亚铜-碳点-铜三元复合光催化剂的制备方法

Also Published As

Publication number Publication date
CN117772196A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
Li et al. Green conversion of bamboo chips into high-performance phenol adsorbent and supercapacitor electrodes by simultaneous activation and nitrogen doping
CN107658474B (zh) 一种氮硫共掺杂多孔碳微球及制备方法、用途和氧还原电极
CN110467182B (zh) 一种基于反应模板的多级孔碳基材料及其制备方法和应用
Sun et al. Catalytic performance of dioxide reforming of methane over Co/AC-N catalysts: Effect of nitrogen doping content and calcination temperature
CN111871427B (zh) 贵金属/钼镍类复合材料及其制备方法和应用
CN111468116B (zh) 一种褐煤焦负载纳米钴复合催化剂及其制备方法
CN112221530A (zh) 一种非贵金属单原子双功能电催化剂的制备方法与应用
WO2022166084A1 (zh) 一种溶剂配位金属催化剂的制备方法及应用
CN111905767B (zh) 一种纳米绒球状硫化钼/木质基碳多孔电极材料及其制备方法和应用
CN112844476A (zh) 一种生物质基碳材料负载纳米镍催化剂及其制备方法和应用
CN112547106A (zh) 一种介孔孔径可调控的碳氮材料负载镍催化剂及其制备方法与应用
CN113594469A (zh) 一种双金属有机骨架复合氮掺杂石墨烯催化材料的制备与应用
Yue et al. Enhanced stability of Ni-CaO catalysts by perovskite-type stabilizer in biomass pyrolysis for hydrogen production
CN114890420A (zh) 一种煤基新型多孔碳电极材料的制备方法
Liu et al. Catalytic pyrolysis of corncob with Ni/CaO catalysts for hydrogen-rich gas: Synthesis modes and catalyst/biomass ratios
Zhao et al. A nickel-nitrogen-doped carbon foam as monolithic electrode for highly efficient CO2 electroreduction
Rahma et al. Characteristics of corncob-originated activated carbon using two different chemical agent
CN112670526B (zh) 一种非晶态二氧化锰修饰虾壳碳基架的制备方法及应用
WO2024060687A1 (zh) 一种铜-碳复合材料及其制备方法与应用
Natewong et al. Fibrous platelet carbon nanofibers-silica fiber composite supports for a Co-based catalyst in the steam reforming of acetic acid
Lin et al. Potassium-assisted activation strategy regulating metal-support interaction to promote hydrothermal hydrogenation/deoxygenation of palmitic acid
TW202412937A (zh) 一種銅-碳複合材料及其製備方法與應用
Pacuła et al. Preparation and characterization of the electroactive composites containing nickel nanoparticles and carbon nanotubes
CN114394574A (zh) 一种低温等离子体催化二氧化碳与甲烷混合气制备液体产物的方法
CN113178587A (zh) 一种固体氧化物燃料电池阳极材料及其制备方法和应用