WO2024060546A1 - 一种镍钴锰金属液的投料方法 - Google Patents

一种镍钴锰金属液的投料方法 Download PDF

Info

Publication number
WO2024060546A1
WO2024060546A1 PCT/CN2023/082856 CN2023082856W WO2024060546A1 WO 2024060546 A1 WO2024060546 A1 WO 2024060546A1 CN 2023082856 W CN2023082856 W CN 2023082856W WO 2024060546 A1 WO2024060546 A1 WO 2024060546A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
cobalt
nickel
manganese
concentration
Prior art date
Application number
PCT/CN2023/082856
Other languages
English (en)
French (fr)
Inventor
王海春
王彪
唐猛山
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024060546A1 publication Critical patent/WO2024060546A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/205Metals in liquid state, e.g. molten metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium battery production, and in particular relates to a method for feeding nickel-cobalt-manganese metal liquid.
  • the batching section of various material synthesis processes is the core process section.
  • the batching method is as follows: after the extraction is completed in the extraction workshop, the nickel-cobalt-manganese-rich metal wet liquid and pure water are mixed in a certain proportion. , stir, and after thorough mixing, take a sample to measure the content of nickel, cobalt, and manganese metals. When the metal content is within the process standard range, it is qualified. If the metal content is not within the standard range, it is necessary to calculate the input amounts of various materials again, stir and send samples for testing again, until the nickel, cobalt and manganese metal content of the slurry liquid is within the standard range, and a synthetic liquid is formed.
  • the main operating procedures are as follows in order: 1. Extraction of wet liquid; 2. First sampling and inspection; 3. Test report data; 4. Calculation of ingredients; 5. Material liquid feeding; 6. Stirring; 7. Take the sample for inspection for the second time; 8. After passing the inspection (if the inspection fails, return to step 4 again), filter; 9. Discharge the qualified liquid.
  • the present invention provides a feeding method of nickel cobalt manganese metal liquid, which is applied to the preparation of the final product of nickel cobalt manganese hydroxide based on the feeding intelligent system, including:
  • each group of wet process liquids contains different initial concentrations of nickel cobalt manganese;
  • the wet process liquids include: a first wet process liquid, a second wet process liquid and a third wet process liquid. liquid;
  • the actual configuration volumes required for the actual configuration of the first wet process liquid, the second wet process liquid and the third wet process liquid are respectively calculated through the calculation model;
  • the first wet method liquid, the second wet method liquid and the third wet method liquid are mixed to obtain a mixed liquid;
  • Whether the feeding of the nickel-cobalt-manganese metal liquid is completed is determined based on the actual concentration of nickel-cobalt-manganese and the preset standard concentration.
  • the three groups of wet process liquids are respectively configured, including:
  • the first wet method liquid Configuring the first wet method liquid; wherein, the initial concentration of nickel in the first wet method liquid is a 1 , the initial concentration of cobalt is a 2 , and the initial concentration of manganese is a 3 ; and, the second wet method liquid is configured ; wherein, the initial concentration of nickel in the second wet method is b 1 , the initial concentration of cobalt is b 2 , and the initial concentration of manganese is b 3 ; and the third wet method is configured; wherein, the third wet method is The initial concentration of nickel in the method liquid is c 1 , the initial concentration of cobalt is c 2 , and the initial concentration of manganese is c 3 ;
  • the initial concentration of nickel, cobalt and manganese in the wet process liquid meets the concentration conditions:
  • the initial concentrations of nickel, cobalt and manganese in each group of wet process liquids are:
  • the initial concentration of a 1 is 0 ⁇ 1g/L
  • the initial concentration of a 2 is 65 ⁇ 90g/L
  • the initial concentration of a 3 is 35 ⁇ 50g/L
  • the initial concentration of b 1 is 80 ⁇ 100g/L
  • the initial concentration of b 2 is 10 ⁇ 20g/L
  • the initial concentration of b 3 is 4 ⁇ 8g/L
  • the initial concentration of c 1 is 95 ⁇ 120g/L
  • the initial concentration of c 2 is 0 ⁇ 1g/L
  • the initial concentration of c 3 is 0 ⁇ 1g/L.
  • Configuration volume including:
  • the actual required volume of the first wet process liquid is set to x
  • the actual required volume of the second wet process liquid is y
  • the actual required volume of the third wet process liquid is set to The volume is z;
  • the x, y and z required for the actual configuration of each wet process liquid are calculated through a calculation model as the actual configuration volume.
  • the calculation model is:
  • model (*) has a unique solution
  • model (*) has no solution
  • the step of determining whether the nickel-cobalt-manganese metal solution has been fully charged according to the actual nickel-cobalt-manganese concentration and the preset standard concentration comprises:
  • the actual concentration of nickel, cobalt and manganese is compared with the preset standard concentration respectively, and based on the comparison result, it is determined whether the feeding of the nickel, cobalt and manganese metal liquid is completed.
  • the step of comparing the actual concentration of nickel-cobalt-manganese with a preset standard concentration, and determining whether the feeding of the nickel-cobalt-manganese metal liquid is completed based on the comparison results includes:
  • nickel concentration is d 1
  • cobalt concentration is d 2
  • manganese concentration is d 3
  • the preset standard concentrations are defined as: nickel preset standard The concentration is O 1 ⁇ standard error
  • the preset standard concentration of cobalt is O 2 ⁇ standard error
  • the preset standard concentration of manganese is O 3 ⁇ standard error
  • the method further includes:
  • the step of configuring the volume is performed again until the comparison results reach d 1 , d 2 and d 3 and simultaneously meet the requirements that d 1 is within the range of O 1 ⁇ standard error, d 2 is within the range of O 2 ⁇ standard error and d 3 is within the range of O 3 ⁇ standard error range.
  • the step of mixing the first wet process liquid, the second wet process liquid and the third wet process liquid according to the actual configuration volume of the wet process liquid to obtain a mixed liquid Medium control the ambient humidity to 30%-60%.
  • the method before detecting the actual concentration of nickel, cobalt and manganese in the mixed solution, the method further includes:
  • the invention provides a feeding method of nickel-cobalt-manganese metal liquid.
  • the method includes: applying to the preparation of the final product of nickel cobalt manganese hydroxide based on the intelligent feeding system, including: separately configuring three groups of wet process liquids; wherein each group of wet process liquids contains different initial concentrations of nickel cobalt manganese;
  • the wet method liquid includes: a first wet method liquid, a second wet method liquid and a third wet method liquid; based on the feeding intelligent system, the first wet method liquid, the third wet method liquid are respectively calculated through the calculation model.
  • the actual configuration volume required for the actual configuration of the two wet methods liquid and the third wet method liquid according to the actual configuration volume of the wet method liquid, the first wet method liquid, the second wet method liquid Mix the method liquid and the third wet method liquid to obtain a mixed liquid; detect the actual concentration of nickel cobalt manganese in the mixed liquid; determine whether the nickel cobalt manganese metal liquid is based on the actual concentration of nickel cobalt manganese and the preset standard concentration. Feeding completed.
  • the feeding method of nickel-cobalt-manganese metal liquid provided by the present invention uses the feeding intelligent system to calculate the requirements of the three groups of wet-method liquids based on the preset standard concentration according to the calculation model.
  • the actual configuration volume is then added according to the actual configuration volume to obtain a mixed solution. After detection, it is judged based on the actual concentration of nickel, cobalt and manganese and the preset standard concentration whether the feeding is completed, whether it is a qualified product, and whether to reconfigure in the next step.
  • the intelligent feeding system on the computer side replaces the manual calculation work in conventional methods, reduces the calculation errors caused by manual calculations, improves the efficiency of feeding, improves the precision of feeding, and improves the output efficiency in the batching process. It is nickel, cobalt and manganese.
  • the feeding work of molten metal is provided conveniently.
  • Figure 1 is a schematic flow chart of the feeding method of the nickel-cobalt-manganese metal liquid provided in the embodiment
  • Figure 2 is an operation flow chart of the feeding method of nickel-cobalt-manganese metal liquid.
  • the terms “comprises”, “comprising”, “having”, “containing” or “involving” are inclusive or open-ended and do not exclude other unrecited elements or method steps. .
  • the term “consisting of” is considered to be a preferred embodiment of the term “comprising”. If in the following a certain group is defined as containing at least a certain number of embodiments, this is also to be understood as revealing that a group preferably consists only of these embodiments.
  • this embodiment provides a feeding method of nickel cobalt manganese metal liquid, which is applied to the preparation of the final product of nickel cobalt manganese hydroxide based on the feeding intelligent system, including:
  • Step S100 configure three groups of wet method liquids respectively; wherein each group of wet method liquids contains different initial concentrations of nickel cobalt manganese; the wet method liquids include: a first wet method liquid, a second wet method liquid and a third wet method liquid. Three wet liquids;
  • Step S200 based on the intelligent feeding system, calculate the actual configuration volumes of the first wet process liquid, the second wet process liquid and the third wet process liquid required for actual configuration through the calculation model. ;
  • Step S300 Mix the first wet process liquid, the second wet process liquid and the third wet process liquid according to the actual configuration volume of the wet process liquid to obtain a mixed liquid;
  • Step S400 detect the actual concentration of nickel, cobalt and manganese in the mixed solution
  • Step S500 Determine whether the feeding of the nickel-cobalt-manganese metal liquid is completed based on the actual concentration of nickel-cobalt-manganese and the preset standard concentration.
  • the feeding and batching method of a certain production line is based on the traditional method, and the yield rate after synthesis is basically stable at 96.5%. And bad 2.5% products are a considerable waste of cost.
  • Using the more accurate feeding method of the nickel-cobalt-manganese metal liquid provided in this embodiment statistics of the yield rate after one cycle found that it has reached 98.7%.
  • the first-time success rate of the feeding and batching process is significantly improved, which significantly improves production efficiency.
  • the above-mentioned wet solution is a wet solution produced directly after recycling used batteries, which contains nickel, cobalt and manganese in different concentrations.
  • three groups of recovered wet-process liquids containing nickel-cobalt-manganese with different concentrations are used for feeding and blending, so that The method of obtaining the mixed liquid realizes the recycling of industrial waste and is more environmentally friendly; in addition, in this embodiment, the single-component wet liquid or binary liquid is not used for feeding, which is costly and requires high conditions. Instead, the recycled wet solution is directly detected and put into use. This method of producing mixed solutions greatly reduces production costs and improves production efficiency.
  • the three groups of wet methods include the first wet method liquid, the second wet method liquid and the third wet method liquid.
  • each group of wet process liquids contains three metal liquids, nickel, cobalt and manganese, and in each group of wet process liquids, the concentration of each metal liquid in the group of wet process liquids can be known through detection. Therefore, these three groups of wet process liquids can be further used to feed materials separately to obtain a mixed liquid.
  • the feeding intelligent system can be a management control platform, which includes an automatic feeding calculation function.
  • the required calculation results are automatically obtained.
  • the feeding intelligent system can run on a computer or a cloud server and obtain data through a client. It can be run on, but is not limited to, an intelligent electronic device that can run an operating system and start running the feeding intelligent system, such as a smartphone. , tablet computers, etc.
  • the volume that should be fed for each wet method liquid is obtained, which is the actual configuration volume, that is, the data corresponding to an actual configuration volume for each wet method liquid.
  • the actual configuration volume that is, the data corresponding to an actual configuration volume for each wet method liquid.
  • the actual concentration of nickel, cobalt and manganese obtained after the test is compared with the preset standard concentration preset before feeding, so as to determine whether the feeding is completed and whether the various metal liquids in the mixed liquid meet the requirements. Standard, whether it is a mixture of qualified concentration.
  • configuring the wet method liquid, detecting the parameters of the wet method liquid, configuring the mixed liquid after calculation by the calculation model, detecting the mixed liquid, and determining whether the feeding is completed based on the results can all be carried out by the computer and the feeding intelligent system. Control is completed in a unified manner, thereby achieving completely intelligent and automated operations, thereby achieving fully automatic feeding without manual labor.
  • the feeding method of nickel-cobalt-manganese metal liquid provided in this embodiment, after configuring three groups of wet process liquids with different concentrations, Using the intelligent feeding system, according to the calculation model, the actual configuration volumes required for the three groups of wet process liquids are calculated based on the preset standard concentration, and then the mixed liquid is obtained according to the actual configuration volume. After detection, the actual concentration of nickel, cobalt and manganese is compared with the preset concentration. A standard concentration is set to determine whether the feeding is completed, whether it is a qualified product, and whether to redeploy in the next step.
  • This enables the computer-side feeding intelligent system to replace the manual calculation work in the conventional method and reduce the calculation errors caused by manual calculation. Improve the feeding efficiency, improve the feeding accuracy, improve the output efficiency in the batching process, and provide convenience for the feeding of nickel-cobalt-manganese metal liquid.
  • three groups of wet liquids are respectively configured, including:
  • the first wet method liquid Configuring the first wet method liquid; wherein, the initial concentration of nickel in the first wet method liquid is a 1 , the initial concentration of cobalt is a 2 , and the initial concentration of manganese is a 3 ; and, the second wet method liquid is configured ; wherein, the initial concentration of nickel in the second wet method is b 1 , the initial concentration of cobalt is b 2 , and the initial concentration of manganese is b 3 ; and the third wet method is configured; wherein, the third wet method is The initial concentration of nickel in the method liquid is c 1 , the initial concentration of cobalt is c 2 , and the initial concentration of manganese is c 3 .
  • the initial concentration of nickel, cobalt and manganese in the wet process liquid meets the concentration conditions:
  • the first wet method liquid is the cobalt-manganese liquid
  • the second wet method liquid is the ternary liquid
  • the third wet method liquid is the nickel liquid; in order to better configure the mixed liquid, achieve flexible and precise deployment.
  • nickel, cobalt and manganese there are qualified requirements for nickel, cobalt and manganese with respect to the initial concentration.
  • the corresponding concentration conditions for the initial concentration are:
  • the initial concentration of cobalt and manganese is greater than the nickel in the first wet process liquid. That is, a 2 > a 1 and a 3 > a 1 .
  • the initial concentration of nickel is greater than the initial concentration of cobalt and manganese; ie, b 1 >b 2 and b 1 >b 3 .
  • the initial concentration of nickel is greater than the cobalt and manganese in the third wet process liquid. That is, c 1 > c 2 and c 1 > c 3 .
  • the initial concentration of cobalt and manganese in the first wet process liquid is greater than the initial concentrations of cobalt and manganese in the second wet process liquid and the third wet process liquid, respectively, that is, a 2 > b 2 and a 2 > c 2 ; a 3 > b 3 and a 3 > c 3 ;
  • the initial concentration of nickel in the third wet process liquid is greater than the initial concentration of nickel in the first wet process liquid, that is, c 1 > a1 .
  • the initial concentrations of nickel, cobalt and manganese in the wet process liquid of each group are:
  • the initial concentration of a 1 is 0 ⁇ 1g/L; the initial concentration of a 2 is 65 ⁇ 90g/L; the initial concentration of a 3 is 35 ⁇ 50g/L;
  • the initial concentration of b 1 is 80 ⁇ 100g/L; the initial concentration of b 2 is 10 ⁇ 20g/L; the initial concentration of b 3 is 4 ⁇ 8g/L;
  • the initial concentration of c 1 is 95 ⁇ 120g/L; the initial concentration of c 2 is 0 ⁇ 1g/L; the initial concentration of c 3 is 0 ⁇ 1g/L.
  • the initial concentration range provided is as shown in the following table:
  • each component in the first wet process liquid, the second wet process liquid and the third wet process liquid meets the aforementioned concentration conditions.
  • the initial concentrations of nickel-cobalt-manganese in the three groups of wet-method liquids are different based on the concentration conditions. Therefore, the actual nickel-cobalt-manganese in the three groups of wet-method liquids can be further detected, and Calculate the actual concentration and prepare the mixed liquid through three groups of wet liquids.
  • Configuration volume including:
  • the actual required volume of the first wet process liquid is set to x
  • the actual required volume of the second wet process liquid is y
  • the actual required volume of the third wet process liquid is set to The volume is z;
  • the x, y and z required for the actual configuration of each wet process liquid are calculated through a calculation model as the actual configuration volume.
  • calculation model is:
  • model (*) has a unique solution
  • model (*) has no solution
  • the nickel concentration is d 1
  • the cobalt concentration is d 2
  • the manganese concentration is d 3
  • the initial concentration of nickel in the first wet process liquid is a 1
  • the initial concentration of cobalt is a 2
  • the initial concentration of manganese is a 3
  • the initial concentration of nickel in the second wet process liquid is b 1
  • the initial concentration of cobalt is b 2
  • the initial concentration of manganese is b 3
  • the initial concentration of nickel in the third wet process liquid is c 1
  • the initial concentration of cobalt is c 2
  • the initial concentration of manganese is c 1
  • the initial concentration is c 3 .
  • the actual required volume of the first wet process liquid is x
  • the actual required volume of the second wet process liquid is y
  • the actual required volume of the third wet process liquid is z.
  • x, y, and z meet the following conditions:
  • the step of determining whether the feeding of the nickel-cobalt-manganese metal liquid is completed based on the actual concentration of nickel-cobalt-manganese and the preset standard concentration includes:
  • the actual concentration of nickel, cobalt and manganese is compared with the preset standard concentration respectively, and based on the comparison result, it is determined whether the feeding of the nickel, cobalt and manganese metal liquid is completed.
  • the preset standard concentration can be set in advance.
  • the concentration that the mixed solution needs to reach after feeding is the preset standard concentration corresponding to the nickel, cobalt and manganese contained in it.
  • the preset standard concentration can be pre-calculated and set data.
  • the actual concentration of nickel cobalt manganese is compared with the preset standard concentration, and based on the comparison result, it is determined whether the feeding of the nickel cobalt manganese metal liquid is completed, including:
  • nickel concentration is d 1
  • cobalt concentration is d 2
  • manganese concentration is d 3
  • the preset standard concentrations are defined as: nickel preset standard The concentration is O 1 ⁇ standard error
  • the preset standard concentration of cobalt is O 2 ⁇ standard error
  • the preset standard concentration of manganese is O 3 ⁇ standard error
  • d 1 is within the range of O 1 ⁇ standard error
  • d 2 is within the range of O 2 ⁇ standard error
  • d 3 is within the range of O 3
  • ⁇ standard error also includes:
  • the step of configuring the volume is performed again until the comparison results reach d 1 , d 2 and d 3 and simultaneously meet the requirements that d 1 is within the range of O 1 ⁇ standard error, d 2 is within the range of O 2 ⁇ standard error and d 3 is within the range of O 3 ⁇ standard error range.
  • d 1 , d 2 and d 3 all reach their corresponding preset standard concentrations at the same time and are within the standard error range, it means that the mixed solution obtained by feeding reaches the qualified standard.
  • the above standard error is a preset error value, and the preset standard concentration can be set to an acceptable error range through the preset error value.
  • the step of mixing the first wet process liquid, the second wet process liquid and the third wet process liquid according to the actual configuration volume of the wet process liquid to obtain a mixed liquid Medium, control the ambient humidity to 30%-60%.
  • the method further includes:
  • a stirring and mixing step is required. There are two situations. Different feeding timings require different mixing times for the mixed liquid. If it is the first feeding and first stirring, 2 times are required. hours, if the materials are added again, since the previous materials have been well mixed in the mixed liquid, after adding a small amount of materials again, the mixing time can be reduced accordingly, thus improving production while ensuring that the materials in the final product are evenly mixed. Preparation efficiency saves overall production time.
  • the main process flows for manufacturing nickel cobalt manganese hydroxide final products include the following:
  • Raw material feeding and batching reactor reaction, filtering and washing, drying and batching, screening and packaging.
  • the first item, the raw material feeding and batching, is a key item.
  • the accuracy of the batching and batching determines the qualification rate of the synthesized product.
  • This accurate feeding solution is based on an intelligent feeding calculation system and precise control of factors such as temperature, humidity, magnetism, and impurities in the feeding process, achieving accurate feeding and controllable liquid quality.
  • the intelligent feeding calculation system is described as follows:
  • the following configuration calculation method is the calculation method of the qualified liquid with the default configuration of 1m 3 (actual total volume).
  • the calculated sum of the concentrations of various wet liquids should be ⁇ 1m 3 . If the sum of the three wet liquids is less than 1m 3 , then Add pure water to make up to 1m3 . During the actual feeding process, if more volume needs to be prepared, the calculated volume of 1m 3 can be multiplied by the actual volume coefficient:
  • the computing system model is:
  • the temperature of the stirring tank In order to ensure the activity and mutual mixing of the molecules of various wet liquids during the feeding process, the temperature of the stirring tank must be controlled to ⁇ 25°C;
  • Humidity control range 30% to 60%. Excessive humidity causes the solution to absorb moisture from the air and cause the moisture content to exceed the standard;
  • the impurities are filtered through a precision filter and the NiSO 4 , CoSO 4 , MnSO 4 and other larger solids incorporated into the wet process liquid in the previous process are screened to prevent the qualified liquid from being mixed with large particle impurities and affecting the next reaction process.
  • the pore size of precision filter is required to be 80 ⁇ 100 ⁇ m;
  • the mixing tank and mixing blades must be made of PPH material (homopolypropylene), which has excellent chemical corrosion resistance and wear resistance. It will not produce iron or magnetism during the solution stirring process, and will not affect the magnetism of the solution;
  • PPH material homopolypropylene
  • the sampling spoon tool that needs to be used when feeding materials must be made of PPH material. When it comes to solid material feeding, cutting, packaging and shoveling tools must use ceramic or PP plastic, etc. Steel products cannot be used. Prevent the wear of iron tools from causing excessive iron impurities in products;
  • the sampling and testing time after the first feeding needs to be controlled at 2 hours after feeding and stirring, and the sampling and testing time after the second feeding needs to be controlled at 1 hour after feeding and stirring;
  • the nickel-cobalt-manganese metal concentration error during the solution preparation process needs to be ⁇ 0.2.
  • nickel-cobalt-manganese metal liquid as described above to prepare a tank of 40 cubic meters of P8203 nickel-cobalt-manganese qualified liquid (the preset standard concentrations are: nickel content is 77g/L, cobalt content is 11.3g/L , manganese content is 5.3g/L). The standard error is 0.2g/L. Specific steps are as follows:
  • Ni 77 g/L
  • Co 11.25 g/L
  • Mn 5.43 g/L.
  • this solution can be poured into the qualified solution storage tank after being filtered by a 100 ⁇ m pore size precision filter.
  • nickel-cobalt-manganese metal liquid as described above to prepare a tank of 40 cubic meters of P8203 nickel-cobalt-manganese qualified liquid (the preset standard concentrations are: nickel content is 77g/L, cobalt content is 11.3g/L , manganese content is 5.3g/L). The standard error is 0.2g/L. Specific steps are as follows:
  • Ni 77.12g/L
  • Co 11.20g/L
  • Mn 5.25g/L.
  • this solution can be poured into the qualified solution storage tank after being filtered by a 100 ⁇ m pore size precision filter.
  • nickel-cobalt-manganese metal liquid as described above to prepare a tank of 40 cubic meters of P8203 nickel-cobalt-manganese qualified liquid (the preset standard concentrations are: nickel content is 77g/L, cobalt content is 11.3g/L , manganese content is 5.3g/L). standard error is 0.2g/L. Specific steps are as follows:
  • Ni 76.91g/L
  • Co 11.33g/L
  • Mn 5.46g/L.
  • this solution can be poured into the qualified solution storage tank after being filtered by a 100 ⁇ m pore size precision filter.
  • the feeding method of the nickel-cobalt-manganese metal liquid provided in this embodiment is used for feeding, and the initial concentration in the wet process liquid is determined by the feeding intelligent system. Carry out calculations to obtain the corresponding actual configuration volumes, and mix and feed materials according to the calculation results to prepare the mixed liquid.
  • the obtained mixed solution was tested and confirmed to meet the preset standard concentration and the standard concentration error requirement ( ⁇ 0.2g/L), and there is no need to add materials again.
  • the feeding method of nickel-cobalt-manganese metal liquid provided in this embodiment can replace the manual calculation work in the conventional method through the computer-side feeding intelligent system, reduce the calculation errors caused by manual calculation, and improve the feeding work. efficiency, improve the feeding accuracy, improve the output efficiency in the batching process, and provide convenience for the feeding of nickel, cobalt and manganese metal liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供一种镍钴锰金属液的投料方法。包括:分别配置三组湿法液;基于投料智能系统,通过计算模型分别计算得出所述第一湿法液、第二湿法液和第三湿法液在实际配置时所需要的实际配置体积;根据所述湿法液的实际配置体积,对第一湿法液、第二湿法液和第三湿法液进行混合,得到混合液;检测混合液中的镍钴锰实际浓度;根据镍钴锰实际浓度与预设标准浓度确定镍钴锰金属液是否投料完成。本发明所提供的镍钴锰金属液的投料方法实现了通过计算机端的投料智能系统取代常规方法中的人工计算工作,减少人工计算所带来的计算误差,提高投料的工作效率,提升投料精度,提高配料过程中的产出效率,为镍钴锰金属液的投料工作提供了方便。

Description

一种镍钴锰金属液的投料方法 技术领域
本发明属于锂电池生产技术领域,尤其涉及一种镍钴锰金属液的投料方法。
背景技术
当前,在生产锂电池原材料时,各类材料合成工序的配料段是核心工艺段,其中配料方式如下:使用萃取车间萃取完成后富含镍钴锰的金属湿法液以及纯水按照一定比例混合、搅拌,充分混合后取样测取其中镍、钴、锰金属的含量,当金属含量在工艺标准区间内时合格。若金属含量不在标准区间内,则需要再次计算各种物料分别投入量,再次搅拌送样检测,直到制浆液镍钴锰金属含量处于标准区间,形成合成液。
主要操作流程按照操作顺序依次如下:1、萃取湿法液打液;2、第一次取样送检;3、检测报告数据;4、计算配料;5、料液投料;6、搅拌;7、第二次取样送检;8、检验合格后(若检验不合格,再次返回执行步骤4),过滤;9、出合格液。
在这些操作流程中,都是依靠于生产线员工进行手工计算投料,并且步骤4-7中可能出现反复进行的情况,既存在计算时间长,也容易出现由于人工计算出现数据误差等异常情况,严重影响产品质量和一次投料成功率。
发明内容
为解决上述问题,本发明提供一种镍钴锰金属液的投料方法,应用于基于投料智能系统对镍钴锰氢氧化物的终产品的制备,包括:
分别配置三组湿法液;其中,每组所述湿法液均包含不同初始浓度的镍钴锰;所述湿法液包括:第一湿法液、第二湿法液和第三湿法液;
基于所述投料智能系统,通过计算模型分别计算得出所述第一湿法液、所述第二湿法液和所述第三湿法液在实际配置时所需要的实际配置体积;
根据所述湿法液的所述实际配置体积,对所述第一湿法液、所述第二湿法液和所述第三湿法液进行混合,得到混合液;
检测所述混合液中的镍钴锰实际浓度;
根据所述镍钴锰实际浓度与预设标准浓度确定镍钴锰金属液是否投料完成。
优选地,所述分别配置三组湿法液,包括:
配置所述第一湿法液;其中,所述第一湿法液中镍初始浓度为a1,钴初始浓度为a2,锰初始浓度为a3;并且,配置所述第二湿法液;其中,所述第二湿法液中镍初始浓度为b1,钴初始浓度为b2,锰初始浓度为b3;并且,配置所述第三湿法液;其中,所述第三湿法液镍初始浓度为c1,钴初始浓度为c2,锰初始浓度为c3
其中,所述湿法液中镍钴锰的初始浓度符合的浓度条件为:
所述第一湿法液中a2>a1且a3>a1
所述第二湿法液中b1>b2且b1>b3
所述第三湿法液中c1>c2且c1>c3;并且,a2>b2且a2>c2;a3>b3且a3>c3;c1>a1
优选地,每组所述湿法液中镍钴锰的初始浓度分别为:
a1的初始浓度为0~1g/L;
a2的初始浓度为65~90g/L;
a3的初始浓度为35~50g/L;
b1的初始浓度为80~100g/L;
b2的初始浓度为10~20g/L;
b3的初始浓度为4~8g/L;
c1的初始浓度为95~120g/L;
c2的初始浓度为0~1g/L;
c3的初始浓度为0~1g/L。
优选地,所述基于所述投料智能系统,通过计算模型分别计算得出所述第一湿法液、所述第二湿法液和所述第三湿法液在实际配置时所需要的实际配置体积,包括:
在所述投料智能系统中,设置所述第一湿法液的实际所需体积为x,所述第二湿法液的实际所需体积为y,所述第三湿法液的实际所需体积为z;
通过计算模型计算每个所述湿法液实际配置时所需的x、y和z,作为所述实际配置体积。
优选地,所述计算模型为:


当D≠0时,模型(*)有唯一解
当D=0时,如果Dx、Dy、Dz至少有一个不为0,则模型(*)无解;
当D=0时,如果Dx=Dy=Dz=0时,模型(*)有无穷多解或无解;
当D=Dx=Dy=Dz=0时,模型(*)无解或有无穷多解。
优选地,配置时,x、y、z符合条件:
x+y+z≤预设目标体积。
优选地,所述根据所述镍钴锰实际浓度与预设标准浓度确定镍钴锰金属液是否投料完成,包括:
分别将所述镍钴锰实际浓度与预设标准浓度进行比较,并根据比较结果确定镍钴锰金属液是否投料完成。
优选地,所述分别将所述镍钴锰实际浓度与预设标准浓度进行比较,并根据比较结果确定镍钴锰金属液是否投料完成,包括:
定义所述混合液中的所述镍钴锰实际浓度分别为:镍浓度为d1,钴浓度为d2,锰浓度为d3;定义所述预设标准浓度分别为:镍的预设标准浓度为O1±标准误差,钴的预设标准浓度为O2±标准误差,锰的预设标准浓度为O3±标准误差;
将所述镍钴锰实际浓度与所述预设标准浓度进行比较,得出所述比较结果;
判断所述比较结果是否为d1、d2和d3同时满足:d1符合O1±标准误差范围内、d2符合O2±标准误差范围内和d3符合O3±标准误差范围内;
若是,则判定投料完成,将所述混合液打入合格液容器。
所述判断所述比较结果是否为d1、d2和d3同时满足:d1符合O1±标准误差范围内、d2符合O2±标准误差范围内和d3符合O3±标准误差范围内之后,还包括:
若所述比较结果出现d1超出O1±标准误差范围和/或d2超出O2±标准误差范围和/或d3超出O3±标准误差范围,则判定投料未达到所述预设标准浓度,重复所述基于所述投料智能系统,通过计算模型分别计算得出所述第一湿法液、所述第二湿法液和所述第三湿法液在实际配置时所需要的实际配置体积的步骤进行再次投料,直至所述比较结果达到d1、d2和d3同时满足d1符合O1±标准误差范围内、d2符合O2±标准误差范围内和d3符合O3±标准误差范围为止。
优选地,所述根据所述湿法液的所述实际配置体积,对所述第一湿法液、所述第二湿法液和所述第三湿法液进行混合,得到混合液的步骤中,控制环境湿度为30%-60%。
优选地,所述检测所述混合液中的镍钴锰实际浓度之前,还包括:
若为首次投料,对所述混合液搅拌2小时;
若为再次投料,对所述混合液搅拌1小时。
本发明提供一种镍钴锰金属液的投料方法。包括:应用于基于投料智能系统对镍钴锰氢氧化物的终产品的制备,包括:分别配置三组湿法液;其中,每组所述湿法液均包含不同初始浓度的镍钴锰;所述湿法液包括:第一湿法液、第二湿法液和第三湿法液;基于所述投料智能系统,通过计算模型分别计算得出所述第一湿法液、所述第二湿法液和所述第三湿法液在实际配置时所需要的实际配置体积;根据所述湿法液的所述实际配置体积,对所述第一湿法液、所述第二湿法液和所述第三湿法液进行混合,得到混合液;检测所述混合液中的镍钴锰实际浓度;根据所述镍钴锰实际浓度与预设标准浓度确定镍钴锰金属液是否投料完成。
本发明所提供的镍钴锰金属液的投料方法,在配置了三组不同浓度的湿法液后,利用投料智能系统,根据计算模型,基于预设标准浓度分别计算三组湿法液所需要的实际配置体积,然后根据实际配置体积进行投料得到混合液,在检测后根据镍钴锰实际浓度与预设标准浓度去判断是否投料完成,是否为合格品,以及下一步是否进行重新调配,从而实现了通过计算机端的投料智能系统取代常规方法中的人工计算工作,减少人工计算所带来的计算误差,提高投料的工作效率,提升投料精度,提高配料过程中的产出效率,为镍钴锰金属液的投料工作提供了方便。
附图说明
图1为实施例中所提供的镍钴锰金属液的投料方法的流程示意图;
图2为镍钴锰金属液的投料方法的操作流程图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非在下文中另有定义,本发明具体实施方式中所用的所有技术术语和科学术语的含义意图与本领域技术人员通常所理解的相同。虽然相信以下术语对于本领域技术人员很好理解,但仍然阐述以下定义以更好地解释本发明。
如本发明中所使用,术语“包括”、“包含”、“具有”、“含有”或“涉及”为包含性的(inclusive)或开放式的,且不排除其它未列举的元素或方法步骤。术语“由……组成”被认为是术语“包含”的优选实施方案。如果在下文中某一组被定义为包含至少一定数目的实施方案,这也应被理解为揭示了一个优选地仅由这些实施方案组成的组。
在提及单数形式名词时使用的不定冠词或定冠词例如“一个”或“一种”,“所述”,包括该名词的复数形式。
本发明中的术语“大约”表示本领域技术人员能够理解的仍可保证论及特征的技术效果的准确度区间。该术语通常表示偏离指示数值的±10%,优选±5%。
此外,说明书和权利要求书中的术语第一、第二、第三、(a)、(b)、(c)以及诸如此类,是用于区分相似的元素,不是描述顺序或时间次序必须的。应理解,如此应用的术语在适当的环境下可互换,并且本发明描述的实施方案能以不同于本发明描述或举例说明的其它顺序实施。
除非另外定义或由背景清楚指示,否则在本公开中的全部技术与科学术语具有如本公开所属领域的普通技术人员通常理解的相同含义。
下面以结合具体实施例的方式对本发明的技术方案做进一步的详细说明,但并不构成对本发明的任何限制,任何人在本发明权利要求范围内所做的有限次的修改,仍在本发明的权利要求范围之内。
参考图1,本实施例提供一种镍钴锰金属液的投料方法,应用于基于投料智能系统对镍钴锰氢氧化物的终产品的制备,包括:
步骤S100,分别配置三组湿法液;其中,每组所述湿法液均包含不同初始浓度的镍钴锰;所述湿法液包括:第一湿法液、第二湿法液和第三湿法液;
步骤S200,基于所述投料智能系统,通过计算模型分别计算得出所述第一湿法液、所述第二湿法液和所述第三湿法液在实际配置时所需要的实际配置体积;
步骤S300,根据所述湿法液的所述实际配置体积,对所述第一湿法液、所述第二湿法液和所述第三湿法液进行混合,得到混合液;
步骤S400,检测所述混合液中的镍钴锰实际浓度;
步骤S500,根据所述镍钴锰实际浓度与预设标准浓度确定镍钴锰金属液是否投料完成。
需要说明的是,传统的投料方式中,合格液质量控制重点在于投料后的成分检测控制,前期的投料方法和关键控制因素往往被忽视。这将造成投料配料过程更曲折,需经历多次投料检测再补料的过程,耗费更多的时间,产品的良品率也无法达到更高的高度。
例如,某生产线的投料配料方法按照传统的方式,合成后的良品率基本稳定在96.5%。而不良的2.5%产品是一笔可观的成本浪费。分析其不良原因主要有几点:镍钴锰分别占有比例有少许偏差、成品的磁性超高、以及杂质超标等。采用本实施例中所提供的更加精准的镍钴锰金属液的投料方法,经过一个周期的良品率统计发现其已经达到了98.7%。而且投料配料过程一次成功率显著提升,对生产效率提升明显。
上述,湿法液,是从废旧电池回收后直接再加工生产得到的湿法溶液,其中均包含有不同浓度的镍钴锰。为了实现废物利用,减少排放,避免环境污染,实现低成本生产进一步的镍钴锰金属液,本实施例中,采用回收得到的三组含有不同浓度镍钴锰的湿法液进行投料调配,从而得到混合液的方法,实现了工业废料循环再利用,更加环保;此外,本实施例中,并未采用高成本高条件要求的单一组分的湿法液或者二元液的方式进行投料,而是转而采用回收利用的湿法溶液直接检测后投料使用,该生产混合液的方法大大降低了生产成本,提高了生产效率。
上述,三组湿法液,包括第一湿法液、第二湿法液和第三湿法液。其中,每组湿法液中,均含有镍钴锰三种金属液,并且在每组的湿法液中,通过检测可获知每种金属液在该组湿法液中的浓度。因此,进一步地可以用这三组湿法液分别去投料以便于得到混合液。
上述,投料智能系统,可以为管理控制平台,其中包含有自动投料计算功能,当实时或定时获取数据,或者输入相关参数,自动获得所需要的计算结果。
上述,投料智能系统,可以运行于计算机端、或者云端服务器并通过客户端进行数据的获取,可以通过但不限于在能运行操作系统并启动运行投料智能系统的智能电子设备上运行,例如智能手机、平板电脑等。
上述,通过投料智能系统进行计算,得出每种湿法液所应当投料的体积,即为实际配置体积,即为每种湿法液对应的有一个实际配置体积的数据,每种湿法液取实际配置体积相当的量进行混合,即得到当前的混合液。
然后再进行检测,检测后获得的镍钴锰实际浓度,将该浓度数据,与在投料前预设的预设标准浓度进行比较,从而确定是否完成投料,混合液中的各类金属液是否符合标准,是否为合格浓度的混合液。
上述步骤中,配置湿法液、检测湿法液获取参数、以及计算模型进行计算之后的配置混合液、检测混合液,以及根据结果确定是否投料完成,均可以通过计算机,由投料智能系统进行同一控制,统一完成,从而实现完全的智能化、自动化的操作,从而实现无人工全自动的投料。
总之,本实施例所提供的镍钴锰金属液的投料方法,在配置了三组不同浓度的湿法液后, 利用投料智能系统,根据计算模型,基于预设标准浓度分别计算三组湿法液所需要的实际配置体积,然后根据实际配置体积进行投料得到混合液,在检测后根据镍钴锰实际浓度与预设标准浓度去判断是否投料完成,是否为合格品,以及下一步是否进行重新调配,从而实现了通过计算机端的投料智能系统取代常规方法中的人工计算工作,减少人工计算所带来的计算误差,提高投料的工作效率,提升投料精度,提高配料过程中的产出效率,为镍钴锰金属液的投料工作提供了方便。
进一步的,所述分别配置三组湿法液,包括:
配置所述第一湿法液;其中,所述第一湿法液中镍初始浓度为a1,钴初始浓度为a2,锰初始浓度为a3;并且,配置所述第二湿法液;其中,所述第二湿法液中镍初始浓度为b1,钴初始浓度为b2,锰初始浓度为b3;并且,配置所述第三湿法液;其中,所述第三湿法液镍初始浓度为c1,钴初始浓度为c2,锰初始浓度为c3
表1、湿法液中的不同组分标记
其中,所述湿法液中镍钴锰的初始浓度符合的浓度条件为:
1、所述第一湿法液中a2>a1且a3>a1
2、所述第二湿法液中b1>b2且b1>b3
3、所述第三湿法液中c1>c2且c1>c3
并且,a2>b2且a2>c2;a3>b3且a3>c3;c1>a1
上述,第一湿法液即为钴锰液;第二湿法液即为三元液;第三湿法液即为镍液;为了更好地进行混合液的配置,达到灵活调配、精准调配的目的,其中对于镍钴锰有着针对于初始浓度的符合条件的要求。
其中,初始浓度的符合的浓度条件为:
(1)在第一湿法液中,即钴锰液,钴锰的初始浓度均要大于第一湿法液中的镍。即a2>a1且a3>a1
(2)在第二湿法液中,即三元液,镍的初始浓度大于钴锰的初始浓度;即b1>b2且b1>b3
(3)在第三湿法液中,即镍液,镍的初始浓度要大于第三湿法液中的钴锰。即为c1>c2且c1>c3
(4)并且在横向的整体比对中,第一湿法液中的钴锰的初始浓度分别要大于第二湿法液和第三湿法液中的钴和锰的初始浓度,即为,a2>b2且a2>c2;a3>b3且a3>c3
(5)并且在横向的整体比对中,第三湿法液,由于是镍液,其中的镍的初始浓度要比第一湿法液中的镍的初始浓度要大,即为c1>a1
进一步的,每组所述湿法液中镍钴锰的初始浓度分别为:
(1)a1的初始浓度为0~1g/L;a2的初始浓度为65~90g/L;a3的初始浓度为35~50g/L;
(2)b1的初始浓度为80~100g/L;b2的初始浓度为10~20g/L;b3的初始浓度为4~8g/L;
(3)c1的初始浓度为95~120g/L;c2的初始浓度为0~1g/L;c3的初始浓度为0~1g/L。
根据上述浓度要求,本实施例中,提供的初始浓度的范围如下表所示:
表2、湿法液中的不同组分标记及初始浓度的浓度范围
备注:*代表湿法液中的相对的高浓度组分。
由上表可见,第一湿法液、第二湿法液和第三湿法液中的各个组份,是符合前述的浓度条件的。在生产中,三组湿法液中的镍钴锰的初始浓度,在符合浓度条件的基础上,有所不同,所以可进一步针对三组湿法液中的实际的镍钴锰进行检测,并对实际浓度进行计算,从而通过三组湿法液进行针对于混合液的投料调配。
进一步的,所述基于所述投料智能系统,通过计算模型分别计算得出所述第一湿法液、所述第二湿法液和所述第三湿法液在实际配置时所需要的实际配置体积,包括:
在所述投料智能系统中,设置所述第一湿法液的实际所需体积为x,所述第二湿法液的实际所需体积为y,所述第三湿法液的实际所需体积为z;
通过计算模型计算每个所述湿法液实际配置时所需的x、y和z,作为所述实际配置体积。
进一步的,所述计算模型为:


当D≠0时,模型(*)有唯一解
当D=0时,如果Dx、Dy、Dz至少有一个不为0,则模型(*)无解;
当D=0时,如果Dx=Dy=Dz=0时,模型(*)有无穷多解或无解;
当D=Dx=Dy=Dz=0时,模型(*)无解或有无穷多解。
上述,镍浓度为d1,钴浓度为d2,锰浓度为d3;所述第一湿法液中镍初始浓度为a1,钴初始浓度为a2,锰初始浓度为a3;所述第二湿法液中镍初始浓度为b1,钴初始浓度为b2,锰初始浓度为b3;所述第三湿法液镍初始浓度为c1,钴初始浓度为c2,锰初始浓度为c3。设所述第一湿法液的实际所需体积为x,所述第二湿法液的实际所需体积为y,所述第三湿法液的实际所需体积为z。
进一步的,配置时,x、y、z符合条件:
x+y+z≤预设目标体积。
优选地,所述根据所述镍钴锰实际浓度与预设标准浓度确定镍钴锰金属液是否投料完成,包括:
分别将所述镍钴锰实际浓度与预设标准浓度进行比较,并根据比较结果确定镍钴锰金属液是否投料完成。
上述,预设标准浓度,可以为预先设置的,混合液在投料后需要达到的浓度,即为,其中所包含有的镍钴锰的分别所对应的预设标准浓度。该预设标准浓度可以为预先计算并设定的数据。
进一步的,所述分别将所述镍钴锰实际浓度与预设标准浓度进行比较,并根据比较结果确定镍钴锰金属液是否投料完成,包括:
定义所述混合液中的所述镍钴锰实际浓度分别为:镍浓度为d1,钴浓度为d2,锰浓度为d3;定义所述预设标准浓度分别为:镍的预设标准浓度为O1±标准误差,钴的预设标准浓度为O2±标准误差,锰的预设标准浓度为O3±标准误差;
将所述镍钴锰实际浓度与所述预设标准浓度进行比较,得出所述比较结果;
判断所述比较结果是否为d1、d2和d3同时满足:d1符合O1±标准误差范围内、d2符合O2±标准误差范围内和d3符合O3±标准误差范围内;
若是,则判定投料完成,将所述混合液打入合格液容器。
进一步的,所述判断所述比较结果是否为d1、d2和d3同时满足:d1符合O1±标准误差范围内、d2符合O2±标准误差范围内和d3符合O3±标准误差范围内之后,还包括:
若所述比较结果出现d1超出O1±标准误差范围和/或d2超出O2±标准误差范围和/或d3超出O3±标准误差范围,则判定投料未达到所述预设标准浓度,重复所述基于所述投料智能系统,通过计算模型分别计算得出所述第一湿法液、所述第二湿法液和所述第三湿法液在实际配置时所需要的实际配置体积的步骤进行再次投料,直至所述比较结果达到d1、d2和d3同时满足d1符合O1±标准误差范围内、d2符合O2±标准误差范围内和d3符合O3±标准误差范围为止。
上述,如果在投料后,d1、d2和d3同时均达到了各自对应的预设标准浓度,且在标准误差范围之内,则说明投料所得的混合液达到合格标准。
上述标准误差,为一个预设的误差值,通过预设误差值可以将预设标准浓度设定为一个可接受的误差范围。例如,标准误差可以为0.2,O1=77;那么在判断时就需要判断d1是否落在了77±0.2的范围之内,即76.8-77.2这一段区间范围之内,如果d1=76.9,则判定d1落入在该范围之内;如果d1=77.3,则判定d1超出了该范围。如果满足判定投料完成的条件,则在判定投料完成后,可将混合液输入至合格液槽内。
上述,如果其中任意一个或多个的比较结果为:超出了对应的预设标准浓度±标准误差范围,则判定为投料后的混合液浓度不合格,则需要再次进行调配投料。
返回执行通过投料智能系统进行测算的步骤,直至达到合格标准为止。
进一步的,所述根据所述湿法液的所述实际配置体积,对所述第一湿法液、所述第二湿法液和所述第三湿法液进行混合,得到混合液的步骤中,控制环境湿度为30%-60%。
进一步的,所述检测所述混合液中的镍钴锰实际浓度之前,还包括:
若为首次投料,对所述混合液搅拌2小时;
若为再次投料,对所述混合液搅拌1小时。
在检测镍钴锰实际浓度之前,还需要进行搅拌混合的步骤,分两种情况,不同的投料时机,所需要的混合液搅拌时间有所不同,如果为首次投料,初次搅拌,则需要2个小时,如果为再次投料,由于先前的物料在混合液中已经较好地混合,再次加入少量物料后,搅拌时间相应减少即可,从而能够实现在确保终产品中物料混合均匀的前提下提高生产制备的效率,节省整体的生产时间。
为了更好地说明本实施例汇总所提供的方法,通过如下制备流程将所提供的方法进一步地说明:
制造镍钴锰氢氧化物终产品的主要工艺流程包括如下几项:
原料投料配料、反应釜反应、过滤洗涤、干燥合批、筛料包装。其中第一项即原料投料配料属于关键项目,配料投料的准确决定了合成后产品的合格率。
1、参考图2,本文所述的一种制造镍钴锰氢氧化物更加精准的投料方法涉及到的步骤包括如下:
下面通过具体的实施例进一步说明本发明,但是应当理解为,这些实施例仅仅是用于更详细地说明之用,而不应理解为用于以任何形式限制本发明。
步骤:萃取完成后来料湿法液——第一次取样送测——计算各类湿法液和水分别投入的量——投入湿法液和水——开启搅拌形成初配液——第二次取样送测——对比产品镍钴锰金属含量是否合格,合格则打入合格液槽,不合格则再次计算——第二次投料补料——第三次取样送测——对比结果,直到溶液镍钴锰金属含量满足工艺要求为止。
2、更加精准的投料方法原理
该投料精准的方案基于一种智能型的投料计算系统以及对投料过程的温度、湿度、磁性、杂质等影响因素的精准控制,实现投料精准和料液质量可控。
2.1、智能型的投料计算系统描述如下:
以下配置计算方法为默认配置1m3(实际的总体积)合格液的计算方法,计算所得各种湿法液浓度之和应≤1m3,若三种湿法液求和不够1m3的,则添加纯水补充至1m3满足。实际投料过程中,需要调制更多的容积,则根据计算1m3所得体积乘以实际体积系数即可:
表3、湿法液中的组分标记及体积
所述计算系统模型为:


1、当D≠0时,模型(*)有唯一解
2、当D=0时,分几种情况:
(1)Dx、Dy、Dz至少有一个不为0,则模型(*)无解;
(2)当Dx=Dy=Dz=0时,模型(*)有无穷多解或无解;
当D=Dx=Dy=Dz=0时,模型(*)无解或有无穷多解;
2.2、投料过程影响因素严格控制的描述:
①温度
投料过程中为确保各类湿法液的分子的活性并相互混合,搅拌槽的温度须控制≥25℃;
②湿度
湿度控制范围:30%~60%,湿度过大导致溶液吸收空气中的水分造成含水量超标;
③粒度与杂质
溶液投料配比合格后经过精密过滤器过滤杂质并筛选前工序湿法液内融入的NiSO4、CoSO4、MnSO4等粒度较大的固态物,防止合格液混入大颗粒杂质影响下一步反应过程。精密过滤器孔径要求80~100μm;
④搅拌槽及搅拌桨叶的材质
搅拌槽及搅拌桨叶搅拌轴需使用PPH材质(均聚聚丙烯),其具有极好的耐化学腐蚀性,耐磨损。其在溶液搅拌过程不会产生铁与磁,不会对溶液的磁度产生影响;
⑤投料过程使用辅助工具
投料时需要使用的取样勺工具需使用PPH材质。涉及到固体物投料的,切割包装以及铲料工具需使用陶瓷或PP塑料等,不能使用钢铁制品。防止铁器工具磨损造成产品铁杂质超标;
⑥检测时机
为了确保投料调制液体充分混合,一次投料后取样检测的时间需要控制在投料搅拌2小时后,二次投料后取样检测时间需要控制在投料搅拌1小时后;
⑦浓度误差
为确保溶液经反应陈化后得到固体物的镍钴锰含量比例合格,溶液配置过程的镍钴锰金属浓度误差需≤±0.2。
表4、实施例中样品当前的浓度
表5、实施例1-3中通过投料智能系统计算后的投料量
实施例1
使用如上述所述的镍钴锰金属液的投料方法,调配一槽40立方米的P8203镍钴锰合格液(预设标准浓度分别为:镍含量为77g/L、钴含量为11.3g/L、锰含量为5.3g/L)。标准误差为0.2g/L。具体步骤如下:
(1)将萃取车间配置好的来料的第一湿法液、第二湿法液、第三湿法液分别取样送检,检测出三种湿法液内的镍钴锰金属含量(初始浓度)如上表所述。
(2)在投料智能系统,分别输入以上第一湿法液、第二湿法液、第三湿法液的各项初始浓度的数值。系统自动计算配比的各种湿法液的实际需要投入的实际配置体积。
(3)根据投料智能系统计算,得到如上表中各种湿法液和水的投料量(1m3合格液)。
(4)按照系统计算得结果分别投入以上量的湿法液原料,充分搅拌混合,得到混合液。
(5)2小时后(首次投料)取样检测第一次混合液的镍钴锰金属浓度,得到检测结果如下(镍钴锰实际浓度):
Ni:77g/L,Co:11.25g/L,Mn:5.43g/L。
对比镍钴锰实际浓度,确认均符合预设标准浓度±标准误差0.2g/L的要求,无需再次投料。
进一步的,本溶液经过100μm孔径精密过滤器过滤后可打入合格液储槽。
实施例2
使用如上述所述的镍钴锰金属液的投料方法,调配一槽40立方米的P8203镍钴锰合格液(预设标准浓度分别为:镍含量为77g/L、钴含量为11.3g/L、锰含量为5.3g/L)。标准误差为0.2g/L。具体步骤如下:
(1)将萃取车间配置好的来料的第一湿法液、第二湿法液、第三湿法液分别取样送检,检测出三种湿法液内的镍钴锰金属含量(初始浓度)如上表所述。
(2)在投料智能系统,分别输入以上第一湿法液、第二湿法液、第三湿法液的各项初始浓度的数值。系统自动计算配比的各种湿法液的实际需要投入的实际配置体积。
(3)根据投料智能系统计算,得到如上表中各种湿法液和水的投料量(1m3合格液)。
(4)按照系统计算得结果分别投入以上量的湿法液原料,充分搅拌混合,得到混合液。
(5)2小时后(首次投料)取样检测第一次混合液的镍钴锰金属浓度,得到检测结果如下(镍钴锰实际浓度):
Ni:77.12g/L,Co:11.20g/L,Mn:5.25g/L。
对比镍钴锰实际浓度,确认均符合预设标准浓度±标准误差0.2g/L的要求,无需再次投料。
进一步的,本溶液经过100μm孔径精密过滤器过滤后可打入合格液储槽。
实施例3
使用如上述所述的镍钴锰金属液的投料方法,调配一槽40立方米的P8203镍钴锰合格液(预设标准浓度分别为:镍含量为77g/L、钴含量为11.3g/L、锰含量为5.3g/L)。标准误差 为0.2g/L。具体步骤如下:
(1)将萃取车间配置好的来料的第一湿法液、第二湿法液、第三湿法液分别取样送检,检测出三种湿法液内的镍钴锰金属含量(初始浓度)如上表所述。
(2)在投料智能系统,分别输入以上第一湿法液、第二湿法液、第三湿法液的各项初始浓度的数值。系统自动计算配比的各种湿法液的实际需要投入的实际配置体积。
(3)根据投料智能系统计算,得到如上表中各种湿法液和水的投料量(1m3合格液)。
(4)按照系统计算得结果分别投入以上量的湿法液原料,充分搅拌混合,得到混合液。
(5)2小时后(首次投料)取样检测第一次混合液的镍钴锰金属浓度,得到检测结果如下(镍钴锰实际浓度):
Ni:76.91g/L,Co:11.33g/L,Mn:5.46g/L。
对比镍钴锰实际浓度,确认均符合预设标准浓度±标准误差0.2g/L的要求,无需再次投料。
进一步的,本溶液经过100μm孔径精密过滤器过滤后可打入合格液储槽。
实验结果:
表6、实施例1-3中镍钴锰实际浓度的检测结果
参考上表所示的检测结果,可见实施例1-3,均采用本实施例中所提供的镍钴锰金属液的投料方法进行投料,其中均通过投料智能系统对湿法液中的初始浓度进行计算,分别得到对应的实际配置体积,并根据计算结果进行混合投料,调配混合液。
所得到的混合液经过检测,经确认均符合预设标准浓度,并且符合标准浓度误差要求(±0.2g/L),无需再次投料。
总之,实验证明本实施例所提供的镍钴锰金属液的投料方法,实现了通过计算机端的投料智能系统取代常规方法中的人工计算工作,减少人工计算所带来的计算误差,提高投料的工作效率,提升投料精度,提高配料过程中的产出效率,为镍钴锰金属液的投料工作提供了方便。
以上所述的是本发明的优选实施方式和相应实施例,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提,还可以做出若干变形和改进,包括但不限于比例、流程、用量的调整,这些都属于本发明的保护范围之内。以上所述的是本发明的优选实施方式和相应实施例,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提,还可以做出若干变形和改进,包括但不限于比例、流程、用量的调整,这些都属于本发明的保护范围之内。

Claims (10)

  1. 一种镍钴锰金属液的投料方法,应用于基于投料智能系统对镍钴锰氢氧化物的终产品的制备,其特征在于,包括:
    分别配置三组湿法液;其中,每组所述湿法液均包含不同初始浓度的镍钴锰;所述湿法液包括:第一湿法液、第二湿法液和第三湿法液;
    基于所述投料智能系统,通过计算模型分别计算得出所述第一湿法液、所述第二湿法液和所述第三湿法液在实际配置时所需要的实际配置体积;
    根据所述湿法液的所述实际配置体积,对所述第一湿法液、所述第二湿法液和所述第三湿法液进行混合,得到混合液;
    检测所述混合液中的镍钴锰实际浓度;
    根据所述镍钴锰实际浓度与预设标准浓度确定镍钴锰金属液是否投料完成。
  2. 如权利要求1所述镍钴锰金属液的投料方法,其特征在于,所述分别配置三组湿法液,包括:
    配置所述第一湿法液;其中,所述第一湿法液中镍初始浓度为a1,钴初始浓度为a2,锰初始浓度为a3;并且,
    配置所述第二湿法液;其中,所述第二湿法液中镍初始浓度为b1,钴初始浓度为b2,锰初始浓度为b3;并且,
    配置所述第三湿法液;其中,所述第三湿法液镍初始浓度为c1,钴初始浓度为c2,锰初始浓度为c3
    其中,所述湿法液中镍钴锰的初始浓度符合的浓度条件为:
    所述第一湿法液中a2>a1且a3>a1
    所述第二湿法液中b1>b2且b1>b3
    所述第三湿法液中c1>c2且c1>c3
    并且,a2>b2且a2>c2;a3>b3且a3>c3;c1>a1
    优选地,每组所述湿法液中镍钴锰的初始浓度分别为:
    a1的初始浓度为0~1g/L;
    a2的初始浓度为65~90g/L;
    a3的初始浓度为35~50g/L;
    b1的初始浓度为80~100g/L;
    b2的初始浓度为10~20g/L;
    b3的初始浓度为4~8g/L;
    c1的初始浓度为95~120g/L;
    c2的初始浓度为0~1g/L;
    c3的初始浓度为0~1g/L。
  3. 如权利要求2所述镍钴锰金属液的投料方法,其特征在于,所述基于所述投料智能系统,通过计算模型分别计算得出所述第一湿法液、所述第二湿法液和所述第三湿法液在实际配置时所需要的实际配置体积,包括:
    在所述投料智能系统中,设置所述第一湿法液的实际所需体积为x,所述第二湿法液的实际所需体积为y,所述第三湿法液的实际所需体积为z;
    通过计算模型计算每个所述湿法液实际配置时所需的x、y和z,作为所述实际配置体积。
  4. 如权利要求3所述镍钴锰金属液的投料方法,其特征在于,所述计算模型为:


    当D≠0时,模型(*)有唯一解
    当D=0时,如果Dx、Dy、Dz至少有一个不为0,则模型(*)无解;
    当D=0时,如果Dx=Dy=Dz=0时,模型(*)有无穷多解或无解;
    当D=Dx=Dy=Dz=0时,模型(*)无解或有无穷多解。
  5. 如权利要求3所述镍钴锰金属液的投料方法,其特征在于,配置时,x、y、z符合条件:
    x+y+z≤预设目标体积。
  6. 如权利要求1所述镍钴锰金属液的投料方法,其特征在于,所述根据所述镍钴锰实际浓度与预设标准浓度确定镍钴锰金属液是否投料完成,包括:
    分别将所述镍钴锰实际浓度与预设标准浓度进行比较,并根据比较结果确定镍钴锰金属液是否投料完成。
  7. 如权利要求6所述镍钴锰金属液的投料方法,其特征在于,所述分别将所述镍钴锰实际浓度与预设标准浓度进行比较,并根据比较结果确定镍钴锰金属液是否投料完成,包括:
    定义所述混合液中的所述镍钴锰实际浓度分别为:镍浓度为d1,钴浓度为d2,锰浓度为d3;定义所述预设标准浓度分别为:镍的预设标准浓度为O1±标准误差,钴的预设标准浓度为O2±标准误差,锰的预设标准浓度为O3±标准误差;
    将所述镍钴锰实际浓度与所述预设标准浓度进行比较,得出所述比较结果;
    判断所述比较结果是否为d1、d2和d3同时满足:d1符合O1±标准误差范围内、d2符合O2±标准误差范围内和d3符合O3±标准误差范围内;
    若是,则判定投料完成,将所述混合液打入合格液容器。
  8. 如权利要求7所述镍钴锰金属液的投料方法,其特征在于,所述判断所述比较结果是否为d1、d2和d3同时满足:d1符合O1±标准误差范围内、d2符合O2±标准误差范围内和d3符合O3±标准误差范围内之后,还包括:
    若所述比较结果出现d1超出O1±标准误差范围和/或d2超出O2±标准误差范围和/或d3超出O3±标准误差范围,则判定投料未达到所述预设标准浓度,重复所述基于所述投料智能系统,通过计算模型分别计算得出所述第一湿法液、所述第二湿法液和所述第三湿法液在实际配置时所需要的实际配置体积的步骤进行再次投料,直至所述比较结果达到d1、d2和d3同时满足d1符合O1±标准误差范围内、d2符合O2±标准误差范围内和d3符合O3±标准误差范围为止。
  9. 如权利要求1所述镍钴锰金属液的投料方法,其特征在于,所述根据所述湿法液的所述实际配置体积,对所述第一湿法液、所述第二湿法液和所述第三湿法液进行混合,得到混合液的步骤中,控制环境湿度为30%-60%。
  10. 如权利要求1所述镍钴锰金属液的投料方法,其特征在于,所述检测所述混合液中的镍钴锰实际浓度之前,还包括:
    若为首次投料,对所述混合液搅拌2小时;
    若为再次投料,对所述混合液搅拌1小时。
PCT/CN2023/082856 2022-09-23 2023-03-21 一种镍钴锰金属液的投料方法 WO2024060546A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211164497.1 2022-09-23
CN202211164497.1A CN115584400B (zh) 2022-09-23 2022-09-23 一种镍钴锰金属液的投料方法

Publications (1)

Publication Number Publication Date
WO2024060546A1 true WO2024060546A1 (zh) 2024-03-28

Family

ID=84778149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082856 WO2024060546A1 (zh) 2022-09-23 2023-03-21 一种镍钴锰金属液的投料方法

Country Status (2)

Country Link
CN (1) CN115584400B (zh)
WO (1) WO2024060546A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115584400B (zh) * 2022-09-23 2024-01-09 广东邦普循环科技有限公司 一种镍钴锰金属液的投料方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016101315A1 (zh) * 2014-12-22 2016-06-30 深圳市格林美高新技术股份有限公司 修复镍钴锰三元电池材料前驱体的方法
CN106904667A (zh) * 2017-04-01 2017-06-30 贵州大龙汇成新材料有限公司 从含锰废弃物中回收提纯镍钴的方法
CN109921008A (zh) * 2019-01-16 2019-06-21 中南大学 一种以锰结核制备镍钴锰三元正极材料前驱体的方法
CN112678880A (zh) * 2020-12-23 2021-04-20 贵州大龙汇成新材料有限公司 一种锰渣的回收利用方法
CN113582252A (zh) * 2021-07-29 2021-11-02 广东佳纳能源科技有限公司 一种镍钴锰三元前驱体材料的制备方法以及锂离子电池
CN115584400A (zh) * 2022-09-23 2023-01-10 广东邦普循环科技有限公司 一种镍钴锰金属液的投料方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735982B2 (ja) * 2006-11-16 2011-07-27 独立行政法人産業技術総合研究所 リチウム−鉄−マンガン複合酸化物
CA2778286C (en) * 2009-10-22 2018-07-24 Toda Kogyo Corporation Nickel-cobalt-manganese-based compound particles and process for producing the nickel-cobalt-manganese-based compound particles, lithium composite oxide particles and process for producing the lithium composite oxide particles, and non-aqueous electrolyte secondary battery
JP2013060319A (ja) * 2011-09-13 2013-04-04 Toyota Industries Corp リチウムマンガン(iv)ニッケル(iii)系酸化物、その酸化物を含むリチウムイオン二次電池用正極活物質、その正極活物質を用いたリチウムイオン二次電池及びそのリチウムイオン二次電池を搭載した車両
JP5365711B2 (ja) * 2012-02-21 2013-12-11 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物及びその製造方法
JP5626382B2 (ja) * 2013-01-30 2014-11-19 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物及びその製造方法
CN112969666A (zh) * 2018-11-09 2021-06-15 巴斯夫欧洲公司 制备镍复合氢氧化物的方法
CN109980219B (zh) * 2019-04-19 2020-12-04 中南大学 全梯度镍钴锰正极材料、氧化钌包覆材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016101315A1 (zh) * 2014-12-22 2016-06-30 深圳市格林美高新技术股份有限公司 修复镍钴锰三元电池材料前驱体的方法
CN106904667A (zh) * 2017-04-01 2017-06-30 贵州大龙汇成新材料有限公司 从含锰废弃物中回收提纯镍钴的方法
CN109921008A (zh) * 2019-01-16 2019-06-21 中南大学 一种以锰结核制备镍钴锰三元正极材料前驱体的方法
CN112678880A (zh) * 2020-12-23 2021-04-20 贵州大龙汇成新材料有限公司 一种锰渣的回收利用方法
CN113582252A (zh) * 2021-07-29 2021-11-02 广东佳纳能源科技有限公司 一种镍钴锰三元前驱体材料的制备方法以及锂离子电池
CN115584400A (zh) * 2022-09-23 2023-01-10 广东邦普循环科技有限公司 一种镍钴锰金属液的投料方法

Also Published As

Publication number Publication date
CN115584400B (zh) 2024-01-09
CN115584400A (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2024060546A1 (zh) 一种镍钴锰金属液的投料方法
US11285528B2 (en) Chemical regeneration method of water glass used sand
CN104316643B (zh) 镍钴锰三元材料的三元素测定方法
CN102269719B (zh) 应用x荧光压片法测定氧化铁粉中组分含量的方法
CN104130628A (zh) 一种uv导电油墨及制备方法
CN103396702B (zh) 一种应用于实验室能力验证的含有重金属的蜡笔标准样品的制备方法
CN107907625A (zh) 一种锂电三元正极材料表面残碱含量的检测方法
CN107655790B (zh) 电池浆料的均匀度的测量方法
CN109374599A (zh) 一种铸锭金粉中二十种杂质元素的快速测定方法
CN111257170A (zh) 一种解决混凝土生产过程中坍落度变化的间接观测方法
CN111289507B (zh) 铝渣中金属铝含量的检测方法
CN109825712A (zh) 硬质铂钨合金回收处理方法
CN113607611A (zh) 一种粉体物料混合均匀度的耦合评价方法
CN105198264B (zh) 一种高效节能混凝土增效剂及其制备方法
CN104190913A (zh) 用于细颗粒合金制备的wc混合粉末的生产方法
CN111650231A (zh) 一种x射线荧光光谱分析低硅硅铁中主要元素含量的方法
CN103604678A (zh) 一种使痕量组份在固体块状基质中均匀分布的制样方法
CN110736746A (zh) 一种用于测试砂中氯离子含量的快速测试方法
CN203591750U (zh) 一种锂电池自动投料系统
CN109884037A (zh) 一种测定三元材料ncm中镍、钴和锰比例的方法
CN112461629B (zh) 一种湿法冶金中间产品物质组成检测流程的建立方法
CN113063698B (zh) 一种水泥混凝土拌合物粘聚性定量评价方法
CN107664618A (zh) 铅酸蓄电池生极板中木素磺酸钠含量的测试方法
CN1986041A (zh) 自动混合系统
CN105499557A (zh) 一种硬质合金大制品顶锤多元组分成型剂及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866846

Country of ref document: EP

Kind code of ref document: A1