WO2024060545A1 - 一种抗静电的闪纺复合无纺布及其制备方法 - Google Patents
一种抗静电的闪纺复合无纺布及其制备方法 Download PDFInfo
- Publication number
- WO2024060545A1 WO2024060545A1 PCT/CN2023/082811 CN2023082811W WO2024060545A1 WO 2024060545 A1 WO2024060545 A1 WO 2024060545A1 CN 2023082811 W CN2023082811 W CN 2023082811W WO 2024060545 A1 WO2024060545 A1 WO 2024060545A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flash
- spun
- antistatic
- spunbond
- woven fabric
- Prior art date
Links
- 239000004751 flashspun nonwoven Substances 0.000 title claims abstract description 135
- 239000002131 composite material Substances 0.000 title claims abstract description 89
- 239000004745 nonwoven fabric Substances 0.000 title claims abstract description 75
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000000835 fiber Substances 0.000 claims abstract description 142
- 238000000034 method Methods 0.000 claims abstract description 49
- 238000009987 spinning Methods 0.000 claims abstract description 48
- 229920000642 polymer Polymers 0.000 claims abstract description 38
- 238000005098 hot rolling Methods 0.000 claims abstract description 26
- 239000002994 raw material Substances 0.000 claims abstract description 24
- 238000003825 pressing Methods 0.000 claims abstract description 18
- 239000004594 Masterbatch (MB) Substances 0.000 claims description 34
- 239000002216 antistatic agent Substances 0.000 claims description 20
- 229920000092 linear low density polyethylene Polymers 0.000 claims description 20
- 239000004707 linear low-density polyethylene Substances 0.000 claims description 20
- 229920001903 high density polyethylene Polymers 0.000 claims description 19
- 239000004700 high-density polyethylene Substances 0.000 claims description 19
- 229920001474 Flashspun fabric Polymers 0.000 claims description 17
- -1 amine salt Chemical class 0.000 claims description 14
- 229920001684 low density polyethylene Polymers 0.000 claims description 14
- 239000004702 low-density polyethylene Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 8
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 6
- 239000000945 filler Substances 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 3
- 239000004744 fabric Substances 0.000 description 41
- 230000001681 protective effect Effects 0.000 description 26
- 239000000243 solution Substances 0.000 description 24
- 230000008569 process Effects 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000004698 Polyethylene Substances 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- 238000007731 hot pressing Methods 0.000 description 6
- 229920001410 Microfiber Polymers 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000005923 long-lasting effect Effects 0.000 description 5
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000012943 hotmelt Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 238000009751 slip forming Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229920004889 linear high-density polyethylene Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920000891 common polymer Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- AOGYLQVSSKOHBO-UHFFFAOYSA-M potassium;butyl sulfate Chemical compound [K+].CCCCOS([O-])(=O)=O AOGYLQVSSKOHBO-UHFFFAOYSA-M 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H5/00—Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
- D04H5/06—Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by welding-together thermoplastic fibres, filaments, or yarns
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/09—Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/44—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
- D01F6/46—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H5/00—Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
- D04H5/08—Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of fibres or yarns
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
- Y02P70/62—Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear
Definitions
- the present application relates to the technical field of non-woven fabrics, and in particular to an antistatic flash-spun composite non-woven fabric and its preparation method.
- the materials for medical protective clothing also require certain liquid barrier properties, breathability and resistance. Electrostatic properties.
- the existing protective clothing fabrics include: spunbond coated fabrics, SMS (spunbond-meltblown-spunbond composite) fabrics, and flash non-woven fabrics;
- spunbond coated fabrics and SMS (spunbond-meltblown-spunbond composite) fabrics are made by dry spinning, they can be implemented by adding antistatic masterbatch or coating antistatic finishing agents on the fabric.
- the existing technology is relatively mature; however, its protective clothing fabrics have the following shortcomings:
- Spunbond coated fabrics have poor air permeability, and the microporous membrane is easy to be worn, which will lead to poor wearing comfort and risk of protection when used in protective clothing;
- SMS spunbond-meltblown-spunbond composite
- the protective properties are directly related to the number of fibers in the meltblown layer. When the fibers are more, the protective properties are better, and the mechanical properties of meltblown fibers are poor (especially It has poor bursting strength) and is easily punctured and loses its protective properties.
- flash-evaporated non-woven fabrics have good protective properties and breathability, they cannot be given antistatic properties by adding antistatic masterbatch.
- this application provides a method for preparing antistatic flash-spun composite non-woven fabric, which includes the following steps:
- the composite fiber web is subjected to cold pressing treatment and hot rolling treatment in sequence, so that the spunbond fiber web forms a spunbond layer and the flash spun fiber layer forms a flash spun layer.
- the spunbonded fiber web prepared in S1 is pre-heat-rolled.
- the weight of the flash-spun composite non-woven fabric is greater than or equal to 40g/m 2 and less than or equal to 120g/m 2 .
- the gram weight ratio of the spunbond layer to the gram weight of the flash-spun composite non-woven fabric is greater than or equal to 10% and less than or equal to 50%.
- the gram weight ratio of the flash-spun layer to the gram weight of the flash-spun composite non-woven fabric is greater than or equal to 50% and less than or equal to 90%.
- the weight ratio of the antistatic functional masterbatch to the weight of the first polymer is greater than or equal to 0.5% and less than or equal to 10%.
- the first polymer includes one or more combinations of high density polyethylene, low density polyethylene, linear low density polyethylene.
- the second polymer includes one or more combinations of high density polyethylene, low density polyethylene, linear low density polyethylene.
- the raw material components of the antistatic functional masterbatch include an antistatic agent, a matrix resin and a filler.
- the antistatic agent includes an organic amine salt antistatic agent
- the antistatic functional masterbatch uses linear low-density polyethylene as the matrix resin and nanometer calcium carbonate as the filler.
- This application provides an antistatic flash-spun composite non-woven fabric, which is a multi-layer composite structure, which is sequentially It includes a spunbond layer and a flash spun layer compounded on the spunbond layer.
- the hydrostatic pressure resistance of the flash-spun composite non-woven fabric is greater than 9.5kPa, and its surface resistance is less than 2 ⁇ 10 8 ⁇ .
- the weight of the flash-spun composite nonwoven fabric is greater than or equal to 40 g/m 2 and less than or equal to 120 g/m 2.
- the weight of the spunbond layer accounts for greater than or equal to 10% and less than or equal to 50% of the weight of the flash-spun composite nonwoven fabric.
- the weight of the flash-spun layer accounts for greater than or equal to 50% and less than or equal to 90% of the weight of the flash-spun composite nonwoven fabric.
- the spunbond layer is composed of spunbond fibers, the raw material components of the spunbond fibers include antistatic functional masterbatch and a first polymer.
- the flash spun layer is composed of flash spun fibers, the material of the flash spun fibers is a second polymer.
- the first polymer includes one or more combinations of high density polyethylene, low density polyethylene, linear low density polyethylene.
- the second polymer includes one or more combinations of high-density polyethylene, low-density polyethylene, and linear low-density polyethylene; the weight ratio of the antistatic functional masterbatch to the first polymer is greater than or equal to 0.5% and less than or equal to 10%.
- the method for preparing an antistatic flash-spun composite non-woven fabric provided in the present application has the following beneficial effects:
- the flash-evaporated composite non-woven fabric produced by this application not only has long-lasting antistatic properties, but also has high waterproof performance and high breathability, making it also have good protective properties. It solves the problem of using traditional post-use treatment methods to deal with anti-static properties. When electrostatic flash spinning fabrics, the binding force of the antistatic agent is poor, the antistatic effect is difficult to maintain for a long time, and the protective performance of the fabric is reduced.
- Figure 1 is a process flow chart of the preparation method of antistatic flash-spun composite non-woven fabric provided by the present application
- Figure 2 is a schematic structural diagram of the antistatic flash-spun composite non-woven fabric provided by this application.
- Figure 3 is a schematic structural diagram of the spunbond fiber web production equipment used to realize the preparation method of flash-spun composite non-woven fabric
- Figure 4 is a schematic structural diagram of the flash spinning equipment used to realize the preparation method of flash spinning composite non-woven fabrics.
- Air suction system 272 First mesh curtain 28 Hot pressure roller
- the antistatic masterbatch will inhibit the charging of the fibers, making it difficult for the fiber web to be charged with electrostatic charges, which will seriously affect the separation of the fibers and is not conducive to the formation of a uniform fiber web.
- Figure 1 is a process flow chart of the preparation method of anti-static flash-spun composite non-woven fabrics provided by the present application.
- Figure 2 is a process flow chart of the present application.
- Figures 3 to 4 are preferred solutions for the device used to implement the above preparation method of the flash-spun composite non-woven fabric 100.
- the preferred embodiment of the preparation method of the antistatic flash-spun composite non-woven fabric 100 provided by this application is as follows.
- the composite fiber web is subjected to cold pressing and hot rolling in sequence, so that the spunbond fiber web forms the spunbond layer 12 and the flash-spun fiber layer forms the flash-spun layer 11 to obtain a flash-spun composite non-woven fabric as shown in Figure 2. 100.
- the spunbond fiber web prepared in S1 is preheated and rolled.
- the function of preheating is to allow the spunbond fiber web to be initially consolidated for easy transportation.
- the spunbonded fiber web will not be solidified due to lack of solidification. knotted and deformed.
- the process of preparing spunbond fiber web from spunbond raw materials by spunbonding method is as follows: adding antistatic functional masterbatch into the first polymer slice, and the material passes through the melt extrusion device (screw extruder 21 as shown in Figure 3) After mixing, heating and melting, the material is filtered by the filter 22 and transferred to the metering pump 23 for quantitative measurement, and is transferred to the spinning box 25 through the pipeline 24, and is extruded through the spinneret hole 251 in the spinning box 25 to form a spinning The fine spinning flow is drawn into fibers under the action of strong wind force, and the fibers are condensed on the first mesh curtain 272 of the web forming machine 27 to form a layer of spunbond fiber mesh with antistatic effect.
- the spunbond fiber web is pre-heat-rolled through the hot pressing roller 28.
- the pre-heat-rolled spunbond fiber web is then introduced into the flash spinning equipment 300 by the transfer roller, and the transferred spunbond fiber web is placed in the flash spinning device.
- the second polymer and its supporting solvent are mixed in a high-temperature and high-pressure reaction kettle, and dissolved to form a uniform spinning solution.
- the spinning solution is sprayed through the spinneret of the nozzle 31 to form a fiber containing many ultrafine fibers.
- the fiber bundles are refracted and diverged by the rotating splitting plate 32 into a flash-spun fiber mesh with a mesh-like structure.
- the continuously formed flash-spun fiber mesh is laid on the spunbond fiber mesh on the moving mesh curtain 34 to form a flash-spun fiber mesh.
- the fiber layer is used to prepare a composite fiber web with a certain weight and width (the composite fiber web includes a spunbonded fiber web and a flash-spun fiber layer on the spunbond fiber web).
- the composite fiber web is cold pressed by the cold pressing roller 35 and then enters the hot rolling process and is hot rolled by the hot rolling roller 37.
- the fibers are reinforced by hot melt bonding, so that the spunbond fiber web forms the spunbond layer 12 and the flash spun fiber layer forms the flash spun fiber layer.
- Layer 11 is to obtain a dense flash-spun composite non-woven fabric 100.
- the ultrafine fibers produced by the flash spinning method form a flash-spun fiber mesh
- the flash-spun fiber mesh is laid to form a flash-spun fiber layer
- the fibers are bonded and consolidated to form a flash-spun composite non-woven fabric 100
- the upper layer that is, the flash-spun layer 11, the spunbond fiber web forms the spunbond layer 12, and the spunbond layer 12 is a flash-spun composite non-woven fabric 100 of the lower level.
- the material of the spunbond fiber of the spunbond layer 12 includes an antistatic functional masterbatch and a first polymer, so that it has long-lasting antistatic properties, so that the flashspun layer 11 and the spunbond layer 12 are combined to form an antistatic material.
- Functional flash spun composite non-woven fabric 100 includes an antistatic functional masterbatch and a first polymer, so that it has long-lasting antistatic properties, so that the flashspun layer 11 and the spunbond layer 12 are combined to form an antistatic material.
- this application combines flash-spun fiber and spunbond fiber through hot-rolled spinning, so that the antistatic agent can be well combined with the flash-spun composite non-woven fabric and will not fall off due to water washing. At the same time, it does not affect the waterproof performance of the flash steamed composite non-woven fabric itself, allowing the flash steamed composite non-woven fabric to maintain high waterproof performance.
- the formed flash steamed composite non-woven fabric has both long-lasting antistatic properties and at the same time It has both high waterproof performance and high breathability, making it also have good protective performance.
- the binding force of the anti-static agent is poor, and the anti-static performance is difficult to maintain for a long time. Defects that reduce the protective properties of fabrics.
- the grammage of the flash-spun composite non-woven fabric 100 is greater than or equal to 40 g/m 2 and less than or equal to 120 g/m 2 .
- the gram weight ratio of the spunbond layer 12 to the gram weight of the flash-spun composite non-woven fabric 100 is greater than or equal to 10% and less than or equal to 50%.
- the gram weight ratio of the flash-spun layer 11 to the gram weight of the flash-spun composite non-woven fabric 100 is greater than or equal to 50% and is less than or equal to 90%.
- the weight of the flash-spun composite non-woven fabric 100 is maintained at 40-120g/m 2 , mainly considering its application scenarios.
- the weight of the fabric used in protective clothing should not be too heavy (larger than the limited range of this application) ), indicating that if there are many fibers, although the protective effect will be better, the breathability will decrease as the weight increases, thus affecting perspiration when wearing, affecting its wearing comfort, and the cost will be higher.
- the weight of the fabric should not be too low (less than the limited range of this application). If it is too low, it means there is less fiber, the protective effect will be poor, the mechanical strength of the fabric is low, and there is a risk of easy damage during use.
- the reason why the weight of the antistatic spunbond layer 12 is controlled at 10% to 50% and the flash spun layer 11 is controlled at 90% to 50% is that because the spunbond fiber is thicker, it cannot provide protective properties (waterproof) in the composite fabric. It mainly provides antistatic properties and part of the mechanical strength. Therefore, if the proportion of the spunbond layer 12 is too small (less than the limited range of this application), it will be difficult to achieve the antistatic effect. If the proportion of the spunbond layer 12 is too large (larger than the limited range of this application), the proportion of the flash-spun layer 11 will be small, so there will be fewer flash-spun fibers.
- the protective performance of the flash-spun composite non-woven fabric 100 is mainly caused by the flash-spun layer. 11 flash-spun fibers are provided. If there are too few flash-spun fibers, the protective performance of the fabric will be poor.
- the first polymer includes one or more combinations of high-density polyethylene, low-density polyethylene, and linear low-density polyethylene, with linear low-density polyethylene being the preferred choice.
- the second polymer includes one or more combinations of high-density polyethylene, low-density polyethylene, and linear low-density polyethylene, with high-density polyethylene being the preferred choice.
- the raw material components of the antistatic functional masterbatch include antistatic agents, matrix resins and fillers.
- the antistatic functional masterbatch uses linear low-density polyethylene as the matrix resin and nanometer calcium carbonate as the filler.
- the antistatic agent is an organic amine salt antistatic agent.
- the weight ratio of the antistatic functional masterbatch to the weight of the first polymer is greater than or equal to 0.5% and less than or equal to 10%.
- the reason for this setting is that within this range, the antistatic properties of the finished fabric can be guaranteed without affecting the production of the spunbond process.
- the proportion of antistatic masterbatch is too small (less than the limited range of this application), and the antistatic performance of the spunbond layer 12 formed is insufficient. If the proportion of antistatic masterbatch is too large (larger than the limited range of this application), it will affect the manufacturing of spunbond fibers and destroy the stability of production.
- the melting temperature in the melt extrusion device is greater than or equal to 150°C and less than or equal to 250°C
- the temperature of the spinning box 25 is greater than or equal to 200°C and less than or equal to 250°C
- the suction fan of the suction system 271 The power setting is greater than or equal to 60% and less than or equal to 95%.
- the temperature of the hot pressing roller 28 during pre-heat rolling is 120°C or more and 150°C or less, and the oil pressure of the hot pressing roller 28 is 0.8MPa or more and 2.5MPa or less.
- the speed of the air flow ejected by the nozzle 31 is greater than or equal to 8000m/min and less than or equal to 13000m/min
- the frequency of the rotating splitting plate 32 is greater than or equal to 20Hz and less than or equal to 50Hz
- the forward speed of the moving mesh curtain 34 is Greater than or equal to 20m/min and less than or equal to 60m/min.
- the temperature of the cold pressing roller 35 subjected to the cold pressing treatment is room temperature
- the pressure of the cold pressing roller 35 is greater than or equal to 0.2 MPa and less than or equal to 1.5 MPa
- the roller surface temperature of the hot rolling roller 37 subjected to the hot rolling treatment is greater than or equal to 120°C and less than or equal to 150°C
- the oil pressure of the hot rolling roller 37 is greater than or equal to 1.5 MPa and less than or equal to 5.0 MPa
- the roller surface speed of the hot rolling roller 37 is greater than or equal to 20 m/min and less than or equal to 60 m/min.
- a certain type of LLDPE slice of Sinopec is selected, and an antistatic functional masterbatch accounting for 2% of the weight of the LLDPE slice is added, mixed, heated and melted by a screw extruder 21, quantitatively measured by a metering pump 23, and extruded through a die head to form a spinning fine flow.
- the antistatic functional masterbatch is a customized masterbatch produced by Dayue Plastic (the content of organic amine salt antistatic agent is 35%), the heating and melting temperature of the screw extruder 21 is 220°C, and the temperature of the spinning box 25 is set to 210°C.
- the spinning fine streams are drawn into fibers under the action of strong wind, and the fibers are condensed on the coagulated mesh curtain to form a layer of spunbond fiber mesh with antistatic effect.
- the suction fan power of the suction system 271 is set to 85%.
- the spunbonded fiber web is preheat-rolled by a hot roller, and then the fiber web is introduced into the flash spinning equipment 300 through a transfer roller.
- the spunbond fiber web is placed on the moving screen curtain 34 of the flash spinning equipment 300 .
- the spunbond fiber web formed has a weight of 15g/m 2 .
- the process parameters of the pre-hot rolling treatment are: the temperature of the hot pressing roller 28 is 132°C, and the oil pressure of the hot pressing roller 28 is 1.2MPa.
- the uniform spinning solution is sprayed through the spinneret of the nozzle 31.
- the spinning solution quickly evaporates, and the polymer is cooled and solidified to form a fiber bundle containing many ultrafine fibers.
- the fiber bundle is refracted and diverged into a network by the rotating splitter plate 32.
- the sheet-like structure of the fiber mesh and the continuously formed flash-spun fiber mesh are laid on the spunbond fiber mesh on the moving mesh curtain 34 to form a flash-spun fiber layer, and the two form a composite fiber mesh.
- the process parameters of the flash spinneret process are: the spinning solution is ejected from the nozzle 31, the speed of the ejection airflow is 11000m/min, the frequency parameter of the rotating splitter plate 32 is 35Hz, and the forward speed of the moving mesh curtain 34 is 45m/min.
- the composite fiber web is cold-pressed and then enters the hot-rolling process.
- the fibers are reinforced by hot-melt bonding to produce a dense flash-spun composite non-woven fabric 100.
- the flash-spun composite non-woven fabric 100 fabric includes a flash-spun fiber mesh.
- the flash-spun layer 11 and the spunbond layer 12 formed of the spunbond fiber web are formed.
- the flash-spun layer 11 has a gram weight of 40g/m 2
- the obtained flash-spun composite non-woven fabric finished product has a gram weight of 55 g/m 2 .
- the temperature of the cold pressing roller 35 treated by cold pressing is normal temperature
- the pressure of the cold pressing roller 35 treated by cold pressing is 0.7MPa
- the surface temperature of the hot rolling roller 37 treated by hot rolling is 137°C
- the pressure of the hot rolling roller 37 treated by hot rolling is 3.2 MPa
- the surface speed of hot rolling roller 37 is 47m/min.
- Example 2 As shown in Table 1, the difference between Example 2 and Example 1 is that the addition ratio of the antistatic functional masterbatch is changed to 5%, and the other steps and process parameters are the same as those of Example 1.
- Example 1 As shown in Table 1, the only difference from Example 1 is that the weight of flash-spun layer 11 is changed to 50g/m 2 , and other steps and process parameters are consistent with Example 1.
- Example 1 As shown in Table 1, the only difference from Example 1 is that the addition ratio of the antistatic functional masterbatch is changed to 5%, and other steps and process parameters are consistent with Example 1.
- Example 1 As shown in Table 1, the only difference from Example 1 is that the weight of the spunbond fiber layer is changed to 20g/m 2 , and other steps and process parameters are consistent with Example 1.
- Example 1 As shown in Table 1, the only difference from Example 1 is that the addition ratio of the antistatic functional masterbatch is changed to 5%, and the other steps and process parameters are the same as those of Example 1.
- the uniform solution is sprayed through the spinneret of the nozzle 31 to form a fiber bundle containing many ultrafine fibers.
- the fiber bundle is refracted and diverged by the rotating splitter plate 32 into a fiber mesh with a mesh-like structure, and the fiber mesh is continuously formed.
- the sheets are stacked on the moving mesh curtain 34 to form a fiber mesh.
- the process parameters of the flash spinneret process are: the spinning solution is ejected from the nozzle 31, the speed of the ejection airflow is 11000m/min, the frequency parameter of the rotating splitter plate 32 is 38Hz, and the forward speed of the moving mesh curtain 34 is 40m/min.
- the fiber web is cold-pressed and then enters the hot-rolling process.
- the fibers are reinforced by hot-melt bonding to form a dense flash-spun fabric.
- the finished fabric has a weight of 55g/m 2 .
- the temperature of the cold pressing roller 35 treated by cold pressing is normal temperature
- the pressure of the cold pressing roller 35 treated by cold pressing is 0.7MPa
- the surface temperature of the hot rolling roller 37 treated by hot rolling is 138°C
- the pressure of the hot rolling roller 37 treated by hot rolling is 3.5 MPa
- the surface speed of hot rolling roller 37 is 47m/min.
- the impregnation process adopts a continuous uninterrupted method.
- the residence time of the liquid in the impregnation tank is about 0.4 seconds.
- the drying temperature is 105°C and the exhaust power of the fan is 85%.
- Comparative Example 1 As shown in Table 1, the only difference from Comparative Example 1 is that the weight of the flash-spun fabric is changed to 65g/m 2 , and other steps and process parameters are the same as Comparative Example 1.
- the flash composite non-woven fabric produced by this application includes a flash spun layer 11 and a spunbond layer 12. Its surface resistance is small (the surface resistance is less than 2 ⁇ 10 8 ⁇ ), and the surface resistance of the finished fabric still remains after being washed 20 times. Below 2 ⁇ 10 8 ⁇ , it has good and long-lasting antistatic properties, and its water resistance (ie, resistance to hydrostatic pressure) is greater than 9.5kPa. It has both high waterproof performance and high breathability, giving it good protective properties .
- Comparative Example 1-2 adopts post-processing method to give antistatic function to the flash-spun fabric. Compared with the Example, Comparative Example 1-2 has a larger surface resistance, poorer antistatic performance, and significantly reduced air permeability and waterproof performance, and The surface resistance of the finished fabric after washing is significantly increased, and the antistatic performance is significantly reduced.
- this application combines flash-spun fiber and spunbond fiber through hot-rolled spinning, so that the antistatic agent can be well combined with the flash-spun composite non-woven fabric and will not fall off due to water washing. , while not affecting the waterproof performance of the flash steamed composite non-woven fabric itself, allowing the flash steamed composite non-woven fabric to maintain high waterproof performance, and the formed flash steamed composite non-woven fabric has long-lasting antistatic properties. At the same time, it has high waterproof performance and high breathability, giving it good protective performance. It solves the problem of poor binding force of antistatic agent and reduced fabric protective performance when using traditional antistatic agent post-treatment method to treat flash-spun fabrics. .
- Gram weight in this article refers to: the weight of the material per unit area, the unit is g/m 2 .
- the second polymer solute used in the spinning solution for preparing the flash spinning layer 11 is polyethylene.
- the first polymer of the raw material slices for preparing the spunbond layer 12 is polyethylene.
- the raw material slices of the spunbond layer 12 can be made of one or more combinations of high-density polyethylene, low-density polyethylene, and linear low-density polyethylene, with linear low-density polyethylene being the preferred choice.
- the polyethylene in the spinning solution can be high-density polyethylene, low-density polyethylene, or linear low-density polyethylene. One or more combinations, with high-density polyethylene as the better choice.
- the raw material slices (first polymer) of the spunbond layer 12 can be made of existing polyolefins or a combination of multiple existing polyolefins, such as linear high-density polyethylene, linear polyethylene, low-density polyethylene, etc.
- Common polymers such as polyethylene and polypropylene include but are not limited to the polyethylene used in the examples.
- the polymer used in the spinning solution for preparing the flash spinning layer 11 can be an existing polyolefin or a combination of multiple existing polyolefins, such as linear high-density polyethylene, linear polyethylene, low-density polyethylene, etc.
- Ethylene, polypropylene and other conventional polymers used to prepare flash spinning include but are not limited to polyethylene used in the examples.
- the process flow and production equipment of the spunbonding method and the flash spinneret method are all existing technologies.
- the process of the embodiment of this article adopts the spunbond fiber web production equipment 200 and the flash spinning equipment 300 as shown in Figures 3 and 4.
- the spunbond fiber web production equipment 200 includes a screw extruder 21 and a filter 22. , metering pump 23, pipeline 24, spinning box 25, spinneret hole 251, air cooling window 252, air flow tractor 26, web forming machine 27 (including air suction system 271 and first web curtain 272) and hot pressing Roller 28 and other components, the structure, structure and work flow of these components are all existing technologies and will not be described again here.
- the flash spinning equipment 300 includes a nozzle 31, a rotating filament plate 32, an air amplifier 33, a moving screen curtain 34, a cold pressing roller 35, a vacuum suction device 36, a hot rolling roller 37 and other components.
- the structure of these components, The structure and work flow are existing technologies and will not be described again here. According to the design concept of this application, this application can also use other structures of existing flash spinning equipment 300 and spunbond fiber web production equipment 200 to respectively achieve the preparation of flash spinning fiber webs and spunbond fiber webs, including but not It is limited to the device structure provided by the above preferred solution.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Nonwoven Fabrics (AREA)
- Laminated Bodies (AREA)
Abstract
一种抗静电的闪纺复合无纺布(100)及其制备方法,一种抗静电的闪纺复合无纺布(100)的制备方法包括以下步骤:S1、以抗静电功能母粒和第一聚合物为纺粘原料,将纺粘原料通过纺粘法制得纺粘纤维,纺粘纤维凝聚形成纺粘纤维网;S2、以第二聚合物为原料,通过闪蒸喷丝法制得闪纺纤维网片,闪纺纤维网片铺叠于纺粘纤维网上以形成闪纺纤维层,制得复合纤维网;S3、复合纤维网依次进行冷压处理和热轧处理,以使纺粘纤维网形成纺粘层(12),闪纺纤维层形成闪纺层(11),即得到闪纺复合无纺布(100)。
Description
本申请涉及无纺布技术领域,特别涉及一种抗静电的闪纺复合无纺布及其制备方法。
根据现行的防护服的国标《GB19082-2009医用一次性防护服技术要求》的要求,作为医用防护服的材料除了拥有优良的阻菌性能外,还要求有一定的液体阻隔性能、透气性和抗静电性。
现有的防护服面料有:纺粘覆膜面料、SMS(纺粘-熔喷-纺粘复合)面料、闪蒸法无纺布;
纺粘覆膜面料、SMS(纺粘-熔喷-纺粘复合)面料由于是干法纺丝制成的,可以通过添加抗静电母粒或在布料上涂覆抗静电整理剂的方法实施,现有的技术已经比较成熟;但是,其做法防护服面料却有如下所述缺点:
纺粘覆膜面料透气性差,微孔膜很容易被磨破,在用于防护服时会导致穿着舒适性差、且有防护风险;
而SMS(纺粘-熔喷-纺粘复合)面料透气性尚可,但是防护性直接与熔喷层纤维多少相关,当纤维多防护性就好,而且熔喷纤维机械性能较差(特别是顶破强力差),容易被戳破而散失防护性。
闪蒸法无纺布虽然防护性、透气性均较好,但是无法用添加抗静电母粒的方式赋予其抗静电性能。
申请号为CN98803051.9、公开日为2000年04月5日公开的中国发明专利《改进的闪蒸纺丝片材》中,提到对闪蒸无纺布片材施涂水溶液形式的抗静电处理剂(如丁基硫酸酯钾),并以热空气干燥后,可得到有抗静电效果的闪蒸无纺布。这种通过后处理赋予闪纺布料抗静电功能的做法,由于闪纺纤维制成的面料本身具有很好拒水功能(其抗静电压值能大于15kPa),
若采用水溶液进行处理,则需要添加一定的带有亲水基团的试剂,才能让赋予闪纺面料一定的抗静电性能,但是这样做的一个很明显的缺点就是会降低闪纺无纺布本身的防水性能。而且这种后处理的方式只是在闪纺布料上沉积抗静电试剂,结合力较差,随着闪纺布料的水洗次数的增加,抗静电效果会明显降低。
发明内容
为解决上述背景技术中提到的现有技术的不足,本申请提供一种抗静电的闪纺复合无纺布的制备方法,其包括以下步骤:
S1、以抗静电功能母粒和第一聚合物为纺粘原料,将纺粘原料通过纺粘法制得纺粘纤维,纺粘纤维凝聚形成纺粘纤维网。
S2、以第二聚合物为原料,通过闪蒸喷丝法制得闪纺纤维网片,闪纺纤维网片铺叠于纺粘纤维网上以形成闪纺纤维层,制得复合纤维网。
S3、复合纤维网依次进行冷压处理和热轧处理,以使纺粘纤维网形成纺粘层,闪纺纤维层形成闪纺层。
在一实施例中,在S3前,预先对S1制得的纺粘纤维网进行预热轧处理。
在一实施例中,闪纺复合无纺布的克重大于等于40g/m2且小于等于120g/m2。纺粘层的克重占闪纺复合无纺布的克重比大于等于10%且小于等于50%。闪纺层的克重占闪纺复合无纺布的克重比大于等于50%且小于等于90%。
在一实施例中,抗静电功能母粒重量占第一聚合物的重量比大于等于0.5%且小于等于10%。
在一实施例中,第一聚合物包含高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中的一种或多种组合。第二聚合物包含高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中的一种或多种组合。
在一实施例中,抗静电功能母粒的原料组分包括抗静电剂、基体树脂以及填料。其中,抗静电剂包含有机胺盐化物类抗静电剂,抗静电功能母粒以线性低密度聚乙烯为基体树脂,且以纳米碳酸钙作为填料。
本申请提供一种抗静电的闪纺复合无纺布,其为多层复合结构,其依次
包括纺粘层以及复合于纺粘层上的闪纺层。
在一实施例中,闪纺复合无纺布的抗静水压大于9.5kPa,且其表面电阻小于2×108Ω。
在一实施例中,闪纺复合无纺布的克重大于等于40g/m2且小于等于120g/m2。纺粘层的克重占闪纺复合无纺布的克重比大于等于10%且小于等于50%。闪纺层的克重占闪纺复合无纺布的克重比大于等于50%且小于等于90%。
在一实施例中,纺粘层由纺粘纤维组成,纺粘纤维的原料组分包括抗静电功能母粒以及第一聚合物。闪纺层由闪纺纤维组成,闪纺纤维的材质为第二聚合物。
第一聚合物包含高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中的一种或多种组合。第二聚合物包含高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中的一种或多种组合;抗静电功能母粒重量占第一聚合物的重量比大于等于0.5%且小于等于10%。
基于上述,与现有技术相比,本申请提供的一种抗静电的闪纺复合无纺布的制备方法,具有以下有益效果:
本申请所制得的闪蒸复合无纺布面料既有持久的抗静电性能,同时兼具高防水性能,高透气性,使其又有良好防护性能,解决采用传统的用后处理方法处理抗静电闪纺面料时,抗静电剂结合力较差,抗静电效果难以长久保持,且面料防护性能降低的缺陷。
本申请的其它特征和有益效果将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他有益效果可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在
不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图;在下面描述中附图所述的位置关系,若无特别指明,皆是图示中组件绘示的方向为基准。
图1为本申请提供的抗静电的闪纺复合无纺布的制备方法的工艺流程图;
图2为本申请提供的抗静电的闪纺复合无纺布的结构示意图;
图3为用以实现闪纺复合无纺布的制备方法所使用的纺粘纤维网生产设备的结构示意图;
图4为用以实现闪纺复合无纺布的制备方法所使用的闪蒸纺丝设备的结构示意图。
附图标记:
100闪纺复合无纺布 12纺粘层 11闪纺层
200纺粘纤维网生产设备 300闪蒸纺丝设备
21螺杆挤压机 22过滤器 23计量泵
24管道 25纺丝箱体 251喷丝板孔
252风冷窗 26气流牵引器 27成网机
271吸风系统 272第一网帘 28热压辊
31喷头 32旋转分丝板 33空气放大器
34移动网帘 35冷压辊 36真空抽吸器
37热轧辊
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。下面所描述的本申请不同实施方式中所设计的技术特征只要彼此之间未构成冲突就可以相互结合。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,本申请所使用的所有术语(包括技术术语和科学术语)具有与本申请所属领域的普通技术人员通常所理解的含义相同的含义,不能理解为对本申请的限制。应进一步理解,本申请所使用的术语应被理解为具有与这些术语在本说明书的上下文和相关领域中的含义一致的含义,并且不应以理想化或过于正式的意义来理解,除本申请中明确如此定义之外。
如背景技术所述,采用传统的抗静电剂后处理方法处理闪纺面料时,抗静电剂结合力较差,抗静电效果难以保持,且面料防水性能受到影响,防护性能降低,即降低布料本身的防护性能。然而,如果不采用后处理方案,采用添加抗静电母粒的方式(即在聚合物切片中加入抗静电母粒的方式)赋予闪纺面料抗静电性能时,由于闪蒸纺丝过程中需要通过施加静电的方式用于将凝聚的超细纤维散开形成纤维网状(从而才能的较为均匀的无纺布),因此,若在闪蒸纺丝铺网之前就加入抗静电剂(即在原料中加入含有抗静电的功能母粒),抗静电母粒会抑制纤维带电,使纤维网难以充上静电荷,从而严重影响纤维的分丝,不利于形成均匀的纤维网。
为此,本申请提供一种抗静电的闪纺复合无纺布的制备方法,图1为本申请提供的抗静电的闪纺复合无纺布的制备方法的工艺流程图,图2为本申请制得的抗静电的闪纺复合无纺布100的结构示意图,图3至图4为用以实现上述闪纺复合无纺布100的制备方法所使用的装置的优选方案。
本申请提供抗静电的闪纺复合无纺布100的制备方法的优选实施方案如下。
如图1所示,其包括以下步骤:
S1、以抗静电功能母粒和第一聚合物为纺粘原料,将纺粘原料通过纺粘法制得纺粘纤维,纺粘纤维凝聚形成纺粘纤维网。
S2、以第二聚合物为原料,通过闪蒸喷丝法制得闪纺纤维网片,闪纺纤维网片铺叠于纺粘纤维网上以形成闪纺纤维层,制得复合纤维网。
S3、复合纤维网依次进行冷压处理和热轧处理,以使纺粘纤维网形成纺粘层12,闪纺纤维层形成闪纺层11,得到如图2所示的闪纺复合无纺布100。
优选地,在S3前,预先对S1制得的纺粘纤维网进行预热轧处理,预热轧的作用是让纺粘纤维网初步固结,便于输送,且在S2时不会因为没有固结而被弄变形。
具体地,结合图3和图4的制备装置所示,上述抗静电的闪纺复合无纺布100具体制备过程和发明构思如下:
采用纺粘纤维网生产设备200制备,以抗静电功能母粒和第一聚合物为纺粘原料。将纺粘原料通过纺粘法制备纺粘纤维网的过程为:将抗静电功能母粒加入第一聚合物切片内,物料通过熔融挤出装置(如图3所示的螺杆挤压机21)进行混合、加热熔融,物料经过滤器22过滤后传输至计量泵23定量计量,并通过管道24传送至纺丝箱体25,通过纺丝箱体25内的喷丝板孔251挤出,形成纺丝细流,纺丝细流在强大风力的作用下被牵伸成纤维,纤维被凝聚在成网机27的第一网帘272上,形成一层具有抗静电效果的纺粘纤维网。
纺粘纤维网通过热压辊28进行预热轧处理,预热轧处理后的纺粘纤维网再由传送辊导入闪蒸纺丝设备300中,传送的纺粘纤维网置于闪蒸纺丝设备300的移动网帘34上。
再将第二聚合物与其配套的溶剂在高温高压的反应釜内进行混合,溶解形成均匀的纺丝溶液,纺丝溶液经喷头31的喷丝孔喷出,形成一条含有很多超细纤维的纤维束,纤维束经过旋转分丝板32折射发散成一个呈网片状结构的闪纺纤维网片,持续形成的闪纺纤维网片铺叠于移动网帘34上的纺粘纤维网上形成闪纺纤维层,制得一片具有一定克重和宽度的复合纤维网(复合纤维网包括纺粘纤维网以及纺粘纤维网上的闪纺纤维层)。
复合纤维网通过冷压辊35冷压后再进入热轧工序经热轧辊37热轧,纤维被热熔粘合加固,以使纺粘纤维网形成纺粘层12,闪纺纤维层形成闪纺层11,即制得一致密的闪纺复合无纺布100。
其中,闪蒸喷丝法所制得的超细纤维形成闪纺纤维网片,闪纺纤维网片铺叠形成闪纺纤维层,热轧后纤维粘合固结形成闪纺复合无纺布100的上层,即闪纺层11,纺粘纤维网形成纺粘层12,纺粘层12为闪纺复合无纺布100
的下层。纺粘层12的纺粘纤维的材质包括抗静电功能母粒与第一聚合物,使其具有持久的抗静电性能,从而闪纺层11和纺粘层12二者复合形成一种具有抗静电功能的闪纺复合无纺布100。
综上,本申请将闪纺纤维与纺粘纤维通过热轧的纺丝复合在一起,能让抗静电剂能很好的结合在闪蒸复合无纺布面料上,不会因为水洗而脱落,同时又不影响闪蒸复合无纺布面料本身的防水性能,让闪蒸复合无纺布面料保持较高的防水性能,所形成的闪蒸复合无纺布面料既有持久的抗静电性能,同时兼具高防水性能和高透气性,使其又有良好防护性能,解决采用传统的用后处理方法处理抗静电闪纺面料时,抗静电剂结合力较差,抗静电性能难以长久保持,且面料防护性能会降低的缺陷。
对于闪蒸复合无纺布的各层次参数的选择:
优选地,闪纺复合无纺布100的克重大于等于40g/m2且小于等于120g/m2。纺粘层12的克重占闪纺复合无纺布100的克重比大于等于10%且小于等于50%。闪纺层11的克重占闪纺复合无纺布100的克重比大于等于50%且小于等于90%。采用如上设置,闪纺复合无纺布100的克重保持在40~120g/m2,主要是考虑其应用场景,其主要是应用于防护服的布料克重不宜过重(大于本申请限定范围),说明纤维多,虽然防护效果会更好,但是透气性能会随着克重增加而降低,从而影响穿着时的排汗,影响其穿着舒适性,同时成本还会更高。布料克重也不宜过低(小于本申请限定范围),过低说明纤维少,防护效果变差,面料的机械强力较低,在使用时存在容易破损的风险。抗静电的纺粘层12重量控制在10%~50%,闪纺层11控制在90%~50%的原因在于,由于纺粘纤维较粗,在复合织物中不能提供防护性能(防水),主要是提供抗静电性和一部分的机械强度,因此,若纺粘层12占比太少(小于本申请限定范围),很难起到抗静电作用。而纺粘层12占比过多(大于本申请限定范围),则闪纺层11的占比就少,这样闪纺纤维就少,闪纺复合无纺布100的防护性能主要由闪纺层11的闪纺纤维提供,闪纺纤维过少了,布料的防护性能就会差。
对于闪蒸复合无纺布的材质和原料等参数的选择:
优选地,第一聚合物包含高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中的一种或多种组合,以线性低密度聚乙烯为较佳选择。第二聚合物包含高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中的一种或多种组合,以高密度聚乙烯为较佳选择。
优选地,抗静电功能母粒的原料组分包括抗静电剂、基体树脂以及填料。其中,抗静电功能母粒以线性低密度聚乙烯为基体树脂,且以纳米碳酸钙作为填料。进一步优选地,抗静电剂为有机胺盐化物类抗静电剂。
优选地,抗静电功能母粒重量占第一聚合物的重量比大于等于0.5%且小于等于10%。如此设置原因在于,在此范围内,既能保证成品布料的抗静电性能,又不影响纺粘工序的生产进行。抗静电母粒占比太小(小于本申请限定范围),形成的纺粘层12抗静电性能不足。抗静电母粒占比太多(大于本申请限定范围),会影响纺粘纤维的制造,破坏生产的稳定性。
对于制备方法工艺参数选择:
优选地,S1中,熔融挤出装置中熔融的温度为大于等于150℃且小于等于250℃,纺丝箱体25温度为大于等于200℃且小于等于250℃,吸风系统271的抽吸风机功率设置为大于等于60%且小于等于95%。
优选地,预热轧处理的热压辊28温度为大于等于120℃且小于等于150℃,热压辊28油压为大于等于0.8MPa且小于等于2.5MPa。
优选地,S2中,喷头31喷出气流的速度为大于等于8000m/min且小于等于13000m/min,旋转分丝板32的频率为大于等于20Hz且小于等于50Hz,移动网帘34的前进速度为大于等于20m/min且小于等于60m/min。
优选地,S3中,冷压处理的冷压辊35温度为常温,冷压辊35压力为大于等于0.2MPa且小于等于1.5MPa,热轧处理的热轧辊37辊面温度为大于等于120℃且小于等于150℃,热轧辊37油压为大于等于1.5MPa且小于等于5.0MPa,热轧辊37辊面速度为大于等于20m/min且小于等于60m/min。
本申请还提供如下实施例和对比例:
为了显示本申请的抗静电的闪纺复合无纺布100的制备方法所制备得
到的成品的效果。特设置以下实施例和对比例,通过制得的产品相关性能参数的测试对比,来体现本申请的优势。具体地,实施例和对比例的层次克重和配方如下表1所示:
表1
实施例1:
1、制备纺粘纤维网
选用中石化某型号的LLDPE切片,加入占LLDPE切片重量比2%的抗静电功能母粒,通过螺杆挤压机21进行混合、加热熔融,由计量泵23定量计量,并通过模头挤出,形成纺丝细流。其中,抗静电功能母粒选用定制款的大粤塑胶产的母粒(其中有机胺盐化物类抗静电剂含量为35%),螺杆挤压机21的加热熔融温度为220℃,纺丝箱体25的温度设置为210℃。
纺丝细流在强大风力的作用下被牵伸成纤维,纤维被凝聚在凝网帘上,形成一层具有抗静电效果的纺粘纤维网。其中,吸风系统271的抽吸风机功率设置为85%。
纺粘纤维网通过热辊进行预热轧,纤维网再由传送辊导入闪蒸纺丝设备300中,纺粘纤维网置于闪蒸纺丝设备300的移动网帘34上。所形成的纺粘纤维网克重为15g/m2。其中,预热轧处理的工艺参数为:热压辊28温度为132℃,热压辊28油压为1.2MPa。
2、制备闪纺复合无纺布100
选用中石化某型号的HDPE切片,将质量浓度为15%的HDPE切片与质量浓度为85%的溶剂(溶剂为15%的二氟一氯甲烷(R22)和85%的四氟二氯乙烷(R114)的混合物),同时加入高压反应釜中,升温至180℃。待升温完成后,通入氮气加压至12MPa,同时升温至230℃,搅拌2h,搅拌转速为100r/min。待温度稳定后,高压反应釜内已形成均匀的纺丝溶液。
均匀纺丝溶液经喷头31的喷丝孔喷出,纺丝原液迅速挥发,聚合物冷却固化,形成一条含有很多超细纤维的纤维束,纤维束经过旋转分丝板32折射发散成一个呈网片状结构的纤维网片,持续形成的闪纺纤维网片铺叠于移动网帘34上的纺粘纤维网上以形成闪纺纤维层,二者形成一个复合纤维网。其中,闪蒸喷丝过程的工艺参数为:将纺丝溶液从喷头31喷出,喷出气流的速度为11000m/min,旋转分丝板32的频率参数为35Hz,移动网帘34的前进速度为45m/min。
复合纤维网通过冷压后再进入热轧工序,纤维被热熔粘合加固,就制得一个致密的闪纺复合无纺布100面料,闪纺复合无纺布100面料包括闪纺纤维网片形成的闪纺层11以及纺粘纤维网形成的纺粘层12,闪纺层11的克重为40g/m2,所得闪蒸复合无纺布面料成品克重55g/m2。其中,冷压处理的冷压辊35温度为常温,冷压处理的冷压辊35压力为0.7MPa,热轧处理的热轧辊37表面温度为137℃,热轧处理的热轧辊37压力为3.2MPa,热轧辊37辊面速度为47m/min。
实施例2:
如表1所示,实施例2与实施例1的区别仅在于:改变抗静电功能母粒的添加比例为5%,其他步骤和工艺参数同实施例1一致。
实施例3:
如表1所示,其与实施例1的区别仅在于:改变闪纺层11克重为50g/m2,其他步骤和工艺参数同实施例1一致。
实施例4:
如表1所示,其与实施例1的区别仅在于:改变抗静电功能母粒的添加比例为5%,其他步骤和工艺参数同实施例1一致。
实施例5:
如表1所示,其与实施例1的区别仅在于:改变纺粘纤维层克重为20g/m2,其他步骤和工艺参数同实施例1一致。
实施例6:
如表1所示,其与实施例1的区别仅在于:改变抗静电功能母粒的添加比例为5%,其他步骤和工艺参数同实施例1一致。
对比例1:
1、制备闪纺层11
选用中石化某型号的HDPE切片,将质量浓度为15%的HDPE切片与质量浓度为85%的溶剂(15%的二氟一氯甲烷(R22)和85%的四氟二氯乙烷(R114)的混合物),同时加入高压反应釜中,升温至180℃。待升温完成后,通入氮气加压至12MPa,同时升温至230℃,搅拌2h,搅拌转速为100r/min。待温度稳定后,高压反应釜内已形成均匀的纺丝溶液。
均匀溶液经喷头31的喷丝孔喷出,形成一条含有很多超细纤维的纤维束,纤维束经过旋转分丝板32折射发散成一个呈网片状结构的纤维网片,持续形成的纤维网片铺叠于移动网帘34上,形成一个纤维网。其中,闪蒸喷丝过程的工艺参数为:将纺丝溶液从喷头31喷出,喷出气流的速度为11000m/min,旋转分丝板32的频率参数为38Hz,移动网帘34的前进速度为40m/min。
纤维网通过冷压后再进入热轧工序,纤维被热熔粘合加固,就形成一个致密的闪纺面料,面料成品克重55g/m2。其中,冷压处理的冷压辊35温度为常温,冷压处理的冷压辊35压力为0.7MPa,热轧处理的热轧辊37表面温度为138℃,热轧处理的热轧辊37压力为3.5MPa,热轧辊37辊面速度为
47m/min。
2、抗静电后处理
选用拓纳化学的一款抗静电处理剂PH,按助剂:水=0.5:99.5的配比配置成水溶液,再用浸渍的方式,把步骤1形成的闪纺面料浸入到配好的水溶液中,然后把浸渍后的面料用拉幅定型机进行烘干,就形成一个具有抗静电效果的闪纺面料。其中,浸渍工艺采用连续式不间断的方式,布料在浸渍槽内液体的停留时间约为0.4秒,烘干温度为105℃,风机排气功率为85%。
对比例2:
如表1所示,其与对比例1的区别仅在于:改变闪纺面料的克重为65g/m2,其他步骤和工艺参数同对比例1一致。
取实施例和对比例制备得到成品来进行相关性能指标测试,测试结果如下表2所示:
表2
表2中,采用的表面电阻测试标准为《BS EN 1149-5 Protective clothing-Electrostatic properties》。
分析实施例和对比例的结果:
本申请制得的闪蒸复合无纺布面料包括闪纺层11和纺粘层12,其表面电阻小(表面电阻小于2×108Ω),且水洗20次后成品面料的表面电阻仍保持在2×108Ω以下,具有良好且持久的抗静电性能,且其抗渗水性(即抗静水压)大于9.5kPa,其兼具高防水性能和高透气性,使其具有良好防护性能。
对比例1-2采用后处理方式赋予闪纺布料抗静电功能,与实施例相比,对比例1-2的表面电阻较大,抗静电性能较差,而且透气性能、防水性能明显下降,且水洗后成品面料的表面电阻明显加大,抗静电性能明显下降。
综上,本申请通过将闪纺纤维与纺粘纤维通过热轧的纺丝复合在一起,能让抗静电剂能很好的结合在闪蒸复合无纺布面料上,不会因为水洗而脱落,同时又不影响闪蒸复合无纺布面料本身的防水性能,让闪蒸复合无纺布面料保持较高的防水性能,所形成的闪蒸复合无纺布面料既有持久的抗静电性能,同时兼具高防水性能和高透气性,使其又有良好防护性能,解决采用传统的抗静电剂后处理方法处理闪纺面料时,抗静电剂结合力较差、面料防护性能会降低的缺陷。
需要说明的是:
本文中“克重”指的是:单位面积材料的重量,单位为g/m2。
本申请实施例中,制备闪纺层11的纺丝溶液中采用的第二聚合物溶质为聚乙烯。制备纺粘层12的原料切片第一聚合物采用的是聚乙烯。本申请方案实施过程中,纺粘层12的原料切片可采用高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中的一种或多种组合,以线性低密度聚乙烯为较佳选择。纺丝溶液中聚乙烯可采用高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中
的一种或多种组合,以高密度聚乙烯为较佳选择。
根据上述设计构思,纺粘层12的原料切片(第一聚合物)可采用现有的聚烯烃或多种现有的聚烯烃的组合物,例如线性高密度聚乙烯、线性聚乙烯、低密度聚乙烯、聚丙烯等常规的高分子聚合物,包括但不限于实施例使用的聚乙烯。同理,制备闪纺层11的纺丝溶液中采用的聚合物可采用现有的聚烯烃或多种现有的聚烯烃的组合物,例如线性高密度聚乙烯、线性聚乙烯、低密度聚乙烯、聚丙烯等常规的用于制备闪蒸纺丝的聚合物,包括但不限于实施例使用的聚乙烯。
纺粘法、闪蒸喷丝法的工艺流程和生产装置均为现有技术。本文实施例过程采用如图3和图4所示的纺粘纤维网生产设备200和闪蒸纺丝设备300进行制备,其中,纺粘纤维网生产设备200包括螺杆挤压机21、过滤器22、计量泵23、管道24、纺丝箱体25、喷丝板孔251、风冷窗252、气流牵引器26、成网机27(包括吸风系统271和第一网帘272)和热压辊28等部件,这些部件的结构、构造以及工作流程均为现有技术,此处不再赘述。同理,闪蒸纺丝设备300包括喷头31、旋转分丝板32、空气放大器33、移动网帘34、冷压辊35、真空抽吸器36、热轧辊37等部件,这些部件的结构、构造以及工作流程均为现有技术,此处不再赘述。根据本申请设计构思,本申请还可以采用其他构造的现有的闪蒸纺丝设备300和纺粘纤维网生产设备200来分别实现闪纺纤维网片和纺粘纤维网的制备,包括但不限于上述优选方案所提供的装置结构。
尽管本文中较多的使用了诸如抗静电功能母粒、闪蒸喷丝法等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本申请的本质。把它们解释成任何一种附加的限制都是与本申请精神相违背的。本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通
技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换。而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
另外,本领域技术人员应当理解,尽管现有技术中存在许多问题,但是,本申请的每个实施例或技术方案可以仅在一个或几个方面进行改进,而不必同时解决现有技术中或者背景技术中列出的全部技术问题。本领域技术人员应当理解,对于一个权利要求中没有提到的内容不应当作为对于该权利要求的限制。
Claims (10)
- 一种抗静电的闪纺复合无纺布的制备方法,其特征在于,包括以下步骤:S1、以抗静电功能母粒和第一聚合物为纺粘原料,将所述纺粘原料通过纺粘法制得纺粘纤维,所述纺粘纤维凝聚形成纺粘纤维网;S2、以第二聚合物为原料,通过闪蒸喷丝法制得闪纺纤维网片,所述闪纺纤维网片铺叠于所述纺粘纤维网上以形成闪纺纤维层,制得复合纤维网;S3、所述复合纤维网依次进行冷压处理和热轧处理,以使所述纺粘纤维网形成纺粘层,所述闪纺纤维层形成闪纺层。
- 根据权利要求1所述的抗静电的闪纺复合无纺布的制备方法,其特征在于:在所述S3前,预先对所述S1制得的所述纺粘纤维网进行预热轧处理。
- 根据权利要求1所述的抗静电的闪纺复合无纺布的制备方法,其特征在于:所述闪纺复合无纺布的克重大于等于40g/m2且小于等于120g/m2;所述纺粘层的克重占所述闪纺复合无纺布的克重比大于等于10%且小于等于50%;所述闪纺层的克重占所述闪纺复合无纺布的克重比大于等于50%且小于等于90%。
- 根据权利要求1所述的抗静电的闪纺复合无纺布的制备方法,其特征在于:所述抗静电功能母粒重量占所述第一聚合物的重量比大于等于0.5%且小于等于10%。
- 根据权利要求1所述的抗静电的闪纺复合无纺布的制备方法,其特征在于:所述第一聚合物包含高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中的一种或多种组合;所述第二聚合物包含高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中的一种或多种组合。
- 根据权利要求1所述的抗静电的闪纺复合无纺布的制备方法,其特征在于:所述抗静电功能母粒的原料组分包括抗静电剂、基体树脂以及填料;其中,所述抗静电剂包含有机胺盐化物类抗静电剂,所述抗静电功能母粒以线性低密度聚乙烯为所述基体树脂,且以纳米碳酸钙作为所述填料。
- 一种抗静电的闪纺复合无纺布,其特征在于:其为多层复合结构,其 依次包括纺粘层以及复合于纺粘层上的闪纺层。
- 根据权利要求7所述的抗静电的闪纺复合无纺布,其特征在于:所述闪纺复合无纺布的抗静水压大于9.5kPa,且其表面电阻小于2×108Ω。
- 根据权利要求7或8所述的抗静电的闪纺复合无纺布,其特征在于:所述闪纺复合无纺布的克重大于等于40g/m2且小于等于120g/m2;所述纺粘层的克重占所述闪纺复合无纺布的克重比大于等于10%且小于等于50%;所述闪纺层的克重占所述闪纺复合无纺布的克重比大于等于50%且小于等于90%。
- 根据权利要求7或8所述的抗静电的闪纺复合无纺布,其特征在于:所述纺粘层由纺粘纤维组成,所述纺粘纤维的原料组分包括抗静电功能母粒以及第一聚合物;所述闪纺层由闪纺纤维组成,所述闪纺纤维的材质为第二聚合物;所述第一聚合物包含高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中的一种或多种组合;所述第二聚合物包含高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯中的一种或多种组合;所述抗静电功能母粒重量占所述第一聚合物的重量比大于等于0.5%且小于等于10%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211146152.3 | 2022-09-20 | ||
CN202211146152.3A CN115323628B (zh) | 2022-09-20 | 2022-09-20 | 一种抗静电的闪纺复合无纺布及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024060545A1 true WO2024060545A1 (zh) | 2024-03-28 |
Family
ID=83915088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/082811 WO2024060545A1 (zh) | 2022-09-20 | 2023-03-21 | 一种抗静电的闪纺复合无纺布及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115323628B (zh) |
WO (1) | WO2024060545A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115323628B (zh) * | 2022-09-20 | 2024-02-27 | 厦门当盛新材料有限公司 | 一种抗静电的闪纺复合无纺布及其制备方法 |
CN115852592A (zh) * | 2022-12-06 | 2023-03-28 | 厦门当盛新材料有限公司 | 非织造复合片材及其制作方法 |
CN116334776A (zh) * | 2023-03-07 | 2023-06-27 | 东华大学 | 一种微纳米纤维的二次牵伸及集束收集装置 |
CN116288936A (zh) * | 2023-03-15 | 2023-06-23 | 武汉纺织大学 | 抗静电闪蒸无纺布及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08113859A (ja) * | 1994-10-12 | 1996-05-07 | Unitika Ltd | 制電性網状構造繊維からなる不織布及びその製造方法 |
JPH09300513A (ja) * | 1996-05-10 | 1997-11-25 | Du Pont Kk | 不織布複合物 |
US20090156079A1 (en) * | 2007-12-14 | 2009-06-18 | Kimberly-Clark Worldwide, Inc. | Antistatic breathable nonwoven laminate having improved barrier properties |
CN109720044A (zh) * | 2017-10-30 | 2019-05-07 | 湖北智权专利技术应用开发有限公司 | 一种透气、抗静电、抑菌型复合无纺布 |
CN110528172A (zh) * | 2018-05-24 | 2019-12-03 | 厦门当盛新材料有限公司 | 一种使闪蒸法非织造布表面附着静电的方法 |
CN115323628A (zh) * | 2022-09-20 | 2022-11-11 | 厦门当盛新材料有限公司 | 一种抗静电的闪纺复合无纺布及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5290628A (en) * | 1992-11-10 | 1994-03-01 | E. I. Du Pont De Nemours And Company | Hydroentangled flash spun webs having controllable bulk and permeability |
US20100290721A1 (en) * | 2009-05-13 | 2010-11-18 | E. I. Du Pont De Nemours And Company | Industrial bag having a fluid drainage layer |
US20100292664A1 (en) * | 2009-05-13 | 2010-11-18 | E. I. Du Pont De Nemours And Company | Garment having a fluid drainage layer |
CN111691060B (zh) * | 2020-06-10 | 2022-11-11 | 东华大学 | 基于瞬时释压纺丝法的高聚物纤维、其制备方法及应用 |
CN112477328A (zh) * | 2020-11-24 | 2021-03-12 | 东华大学 | 具有双层结构的防护用品面料及其制备方法和应用 |
CN114990787A (zh) * | 2022-07-04 | 2022-09-02 | 厦门当盛新材料有限公司 | 一种闪蒸无纺布及其制备方法 |
-
2022
- 2022-09-20 CN CN202211146152.3A patent/CN115323628B/zh active Active
-
2023
- 2023-03-21 WO PCT/CN2023/082811 patent/WO2024060545A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08113859A (ja) * | 1994-10-12 | 1996-05-07 | Unitika Ltd | 制電性網状構造繊維からなる不織布及びその製造方法 |
JPH09300513A (ja) * | 1996-05-10 | 1997-11-25 | Du Pont Kk | 不織布複合物 |
US20090156079A1 (en) * | 2007-12-14 | 2009-06-18 | Kimberly-Clark Worldwide, Inc. | Antistatic breathable nonwoven laminate having improved barrier properties |
CN109720044A (zh) * | 2017-10-30 | 2019-05-07 | 湖北智权专利技术应用开发有限公司 | 一种透气、抗静电、抑菌型复合无纺布 |
CN110528172A (zh) * | 2018-05-24 | 2019-12-03 | 厦门当盛新材料有限公司 | 一种使闪蒸法非织造布表面附着静电的方法 |
CN115323628A (zh) * | 2022-09-20 | 2022-11-11 | 厦门当盛新材料有限公司 | 一种抗静电的闪纺复合无纺布及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115323628B (zh) | 2024-02-27 |
CN115323628A (zh) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024060545A1 (zh) | 一种抗静电的闪纺复合无纺布及其制备方法 | |
EP1776490B1 (en) | Web-reinforced separator and continuous method for producing same | |
CN105926079B (zh) | 聚丙烯膜裂纤维及制备方法以及由其制备的空气过滤材料 | |
CN105063896A (zh) | 一种防水透气纸尿裤底膜及其制备方法 | |
CN107452921A (zh) | 一种对位芳纶纳米纤维复合锂离子电池隔膜的制备方法 | |
CN106229446B (zh) | 锂电池多元复合隔膜的一体成型制备方法及隔膜材料 | |
CN104395382B (zh) | 多孔性聚丙烯膜、蓄电装置用隔膜及蓄电装置 | |
DE60024869T2 (de) | Fussel-beständige teppiche | |
CN106432762A (zh) | 一种聚烯烃薄膜及其制备方法 | |
CN106048889A (zh) | 一种100%再生纤维的水刺无纺布 | |
KR102109727B1 (ko) | 투습방수 원단의 제조방법 | |
CN103579558A (zh) | 一种镍氢电池隔膜材料及其成型方法 | |
CN105188896B (zh) | 液体过滤器用基材 | |
US20240150947A1 (en) | Flash spinning method for preparing non-woven fabrics based on microwave thermal fusion, microwave thermal fusion device, and non-woven fabric preparation device | |
KR102001758B1 (ko) | 프로필렌계 엘라스토머 조성물을 포함하는 스펀본드 패브릭 및 이의 제조 방법 | |
CN101786293A (zh) | 一种混凝土浇注用模板布及其制造方法 | |
CN109457319A (zh) | 一种聚丙烯多孔短纤维的制备方法 | |
WO2023216810A1 (zh) | 一种屋顶防滑用sm无纺布的制备方法 | |
CN104157814B (zh) | 一种用静电纺丝制备pvdf锂离子电池隔膜的方法 | |
CN104362279A (zh) | 一种锂离子电池用超细纤维隔膜的制备方法 | |
CN112458828B (zh) | 一种高拔出力人造草坪及其制备工艺 | |
CN103400952A (zh) | 一种电池隔膜材料及用此隔膜的电池 | |
KR20200047703A (ko) | 멜트블론 부직포 및 필터 | |
CN109004154A (zh) | 一种湿法抄纸工艺制造动力锂离子电池隔膜的方法 | |
CN106739196A (zh) | 复合土工布及其制备方法和制造设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23866845 Country of ref document: EP Kind code of ref document: A1 |