WO2024060542A1 - 掺杂稀土元素碳酸钴的制备方法及其应用 - Google Patents

掺杂稀土元素碳酸钴的制备方法及其应用 Download PDF

Info

Publication number
WO2024060542A1
WO2024060542A1 PCT/CN2023/082547 CN2023082547W WO2024060542A1 WO 2024060542 A1 WO2024060542 A1 WO 2024060542A1 CN 2023082547 W CN2023082547 W CN 2023082547W WO 2024060542 A1 WO2024060542 A1 WO 2024060542A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
cobalt
preparation
solution
salt
Prior art date
Application number
PCT/CN2023/082547
Other languages
English (en)
French (fr)
Inventor
余海军
王涛
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024060542A1 publication Critical patent/WO2024060542A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/06Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium battery cathode material precursors, and specifically relates to a preparation method and application of cobalt carbonate doped with rare earth elements.
  • lithium cobalt oxide is widely used due to its high operating voltage and energy density, easy synthesis, and rapid charge and discharge.
  • higher requirements have been placed on the energy density of battery output, and conventional lithium cobalt oxide can no longer meet the requirements.
  • improving the energy density of lithium batteries will still be the main development direction of small lithium batteries in the next few years.
  • lithium cobalt oxide due to the structure of lithium cobalt oxide itself, when the charging voltage exceeds 4.2V, the Li 1-x CoO 2 deintercalation coefficient x ⁇ 0.5, the internal structure of the material will collapse, and at the same time, the lithium cobalt oxide material will collapse under high voltage.
  • a series of problems such as poor charge and discharge cycles and poor high-temperature storage performance.
  • Cobalt tetroxide is the main raw material used to prepare lithium cobalt oxide
  • cobalt carbonate is the precursor used to prepare cobalt tetroxide.
  • the purity, particle size distribution, surface morphology, internal structure, etc. of cobalt carbonate particles are crucial to the performance of lithium cobalt oxide. important influence.
  • the purity of cobalt carbonate particles is not high enough.
  • the main reason is that when cobalt sulfate or cobalt chloride is used as raw material for wet synthesis to prepare cobalt carbonate, and then through the calcination stage to obtain cobalt tetroxide, impurities such as sulfur or chlorine will be high, because the cobalt carbonate product has a certain density. Even after washing, impurities near the surface can only be removed at most, and impurities inside the particles are difficult to remove.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
  • the present invention proposes a preparation method and application of cobalt carbonate doped with rare earth elements. This method stabilizes the material structure through the doping of rare earth elements, and on the other hand, reduces the impurity content and improves the subsequent sintering process. Specific capacity and cycle performance of the obtained lithium cobalt oxide cathode material.
  • a method for preparing cobalt carbonate doped with rare earth elements includes the following steps:
  • metal ions refer to the sum of cobalt ions and rare earth ions in the mixed salt solution.
  • step S1 the pH of the bottom liquid is 8.5-9.0.
  • step S1 the concentration of the ammonium bicarbonate solution is 2.5-3.0 mol/L.
  • the cobalt salt is at least one of cobalt sulfate or cobalt chloride.
  • the rare earth salt is at least one of a sulfate or a chloride salt of a rare earth element.
  • step S1 the moles of cobalt salt and rare earth salt in the mixed salt solution
  • the ratio is (10-200): 1.
  • the molar ratio of cobalt salt to rare earth salt in the mixed salt solution is (20-100):1.
  • step S1 the concentration of cobalt salt in the mixed salt solution is 1.0-2.0 mol/L, and the concentration of rare earth salt is 0.01-0.1 mol/L.
  • step S1 the temperature of the reaction is 38-42°C.
  • step S1 the reaction is carried out at a stirring speed of 200-500 r/min.
  • step S1 the D50 of the first target particle size is 1.5-5.0 ⁇ m.
  • step S1 the reaction is carried out in a reaction kettle, and the volume of the bottom liquid accounts for 8%-12% of the volume of the reaction kettle.
  • the inert atmosphere is nitrogen or argon.
  • step S1 the aging time is 1-2 h.
  • the concentration of the ammonium carbonate solution is 1.0-2.0 mol/L, and the solid-liquid ratio of the first solid material and the ammonium carbonate solution is (3-5) g: 5mL.
  • the soaking temperature is 40-60°C. Further, the soaking time is 2-3h.
  • step S3 the D50 of the second target particle size is 10.0-25.0 ⁇ m.
  • step S3 the reaction is carried out at a stirring speed of 200-500 r/min.
  • step S3 the temperature of the reaction is 60-70°C.
  • step S3 the aging time is 1-2 h.
  • step S3 the drying temperature is 100-120°C, and the drying time is 4-6 hours.
  • the invention also provides the application of the preparation method in preparing tricobalt tetroxide or lithium cobalt oxide.
  • the present invention uses cobalt salt and ammonium bicarbonate to carry out co-precipitation reaction, and performs doping of rare earth elements, thereby obtaining cobalt carbonate doped with rare earth elements.
  • the molar ratio of metal ions to bicarbonate ions is 1: (2.5-2.7), and bicarbonate is always in a high excess, which is conducive to the formation of rare earth element carbonate double salts, making the initial
  • the first co-precipitate is further soaked in ammonium carbonate.
  • the impurities such as sulfur/chlorine entrained in the precipitate are removed by washing.
  • the rare earth carbonate is further converted into a double salt.
  • the first precipitate is used as a seed crystal to carry out the particle growth reaction, and the molar ratio of metal ions and bicarbonate ions is controlled to 1: (2.2-2.4), with a slight excess of bicarbonate. Only rare earth element carbonates are produced. Finally, rare earth element-doped cobalt carbonate particles with a core-shell structure are grown.
  • the cobalt carbonate particles of the present invention have ammonium carbonate entrained in the core.
  • the ammonium carbonate decomposes.
  • the ammonium ions vacate the metal skeleton positions, leaving more atomic vacancies.
  • the core becomes loose. During sintering, the lithium source is more likely to enter the interior of the particle and react with the core, and the loose structure is more conducive to buffering.
  • the volume changes during the charge and discharge process, which improves the material's cycle performance; and the outer shell is made of metal carbonate, which stabilizes the overall structure of the particles.
  • the doped rare earth elements all have an oxidation state of +3 to +4.
  • +4 oxides can be formed, which can release more lithium than other doped elements, thereby further Improve the specific capacity of the material.
  • Figure 1 is an SEM image of cobalt carbonate prepared in Example 1 of the present invention.
  • a rare earth element-doped cobalt carbonate is prepared.
  • the specific process is:
  • Step 1 Prepare a mixed salt solution of cobalt salt and rare earth salt.
  • concentration of cobalt salt in the mixed salt solution is 2.0 mol/L, and the cobalt salt is cobalt chloride;
  • concentration of the rare earth salt in the mixed salt solution is 0.1 mol/L, and the rare earth salt is 0.1 mol/L. is cerium chloride;
  • Step 2 preparing a 3.0 mol/L ammonium bicarbonate solution as a precipitant
  • Step 3 Add the ammonium bicarbonate solution prepared in Step 2 as the bottom liquid into the reaction kettle, and add ammonia water so that the volume of the bottom liquid accounts for 12% of the volume of the reaction kettle, the pH of the bottom liquid is 9.0, and nitrogen gas is introduced;
  • Step 4 According to the molar ratio of metal ions to bicarbonate ions being 1:2.7, add the mixed salt solution prepared in step 1 and the ammonium bicarbonate solution prepared in step 2 into the reactor in parallel flow for reaction, and control the stirring speed of the reactor. is 500r/min, and the temperature in the kettle is 42°C; metal ions refer to the sum of cobalt ions and rare earth ions in the mixed salt solution;
  • Step 5 When it is detected that the particle size D50 of the reaction product in the reactor reaches 5.0 ⁇ m, stop feeding and age for 2 hours;
  • Step 6 perform solid-liquid separation of the materials in the kettle, and soak the obtained solid material in an ammonium carbonate solution with a concentration of 2.0 mol/L according to a solid-liquid ratio of 3g:5mL for 2 hours, and the soaking temperature is 60°C;
  • Step 7 After solid-liquid separation, place the solid material in the reaction kettle and continue to grow. According to the molar ratio of metal ions to bicarbonate ions of 1:2.4, mix the mixed salt solution prepared in step 1 and the bicarbonate prepared in step 2. Add the ammonium solution into the reactor in parallel flow for reaction, control the stirring speed of the reactor to 500r/min, and the temperature inside the reactor to 70°C;
  • Step 8 When it is detected that the particle size D50 of the reaction product in the reactor reaches 18.0 ⁇ m, stop feeding and age for 2 hours;
  • Step 9 Solid-liquid separation is performed on the materials in the kettle, and the obtained solid material is washed with pure water and dried at 120°C for 4 hours to obtain cobalt carbonate material doped with rare earth elements.
  • a rare earth element-doped cobalt carbonate is prepared.
  • the specific process is:
  • Step 1 Prepare a mixed salt solution of cobalt salt and rare earth salt.
  • concentration of cobalt salt in the mixed salt solution is 1.5 mol/L, and the cobalt salt is cobalt sulfate;
  • concentration of the rare earth salt in the mixed salt solution is 0.05 mol/L, and the rare earth salt is praseodymium sulfate;
  • Step 2 Prepare an ammonium bicarbonate solution with a concentration of 2.8mol/L as a precipitant
  • Step 3 Add the ammonium bicarbonate solution prepared in Step 2 as the bottom liquid into the reaction kettle, and add ammonia water so that the volume of the bottom liquid accounts for 10% of the volume of the reaction kettle, the pH of the bottom liquid is 8.8, and nitrogen gas is introduced;
  • Step 4 according to the molar ratio of metal ions to bicarbonate ions of 1:2.6, the mixed salt solution prepared in step 1 and the ammonium bicarbonate solution prepared in step 2 are added to the reactor in parallel for reaction, and the stirring speed of the reactor is controlled to be 350r/min and the temperature in the reactor is controlled to be 40°C; the metal ions refer to the sum of cobalt ions and rare earth ions in the mixed salt solution;
  • Step 5 When it is detected that the particle size D50 of the reaction product in the reactor reaches 3.0 ⁇ m, stop feeding and age for 1.5 hours;
  • Step 6 perform solid-liquid separation of the materials in the kettle, and soak the obtained solid material in an ammonium carbonate solution with a concentration of 1.5 mol/L according to a solid-liquid ratio of 4g:5mL for 2.5 hours, and the soaking temperature is 50°C;
  • Step 7 after solid-liquid separation, the solid material is placed in a reactor to continue growing, and the mixed salt solution prepared in step 1 and the ammonium bicarbonate solution prepared in step 2 are added to the reactor in parallel according to a molar ratio of metal ions to bicarbonate ions of 1:2.3 for reaction, and the stirring speed of the reactor is controlled to be 300 r/min, and the temperature in the reactor is 65°C;
  • Step 8 when it is detected that the particle size D50 of the reaction product in the reactor reaches 15.0 ⁇ m, the feeding is stopped and the reaction mixture is aged for 1.5 h;
  • Step 9 Solid-liquid separation is performed on the materials in the kettle, and the obtained solid material is washed with pure water and dried at 110°C for 5 hours to obtain cobalt carbonate material doped with rare earth elements.
  • a rare earth element-doped cobalt carbonate is prepared.
  • the specific process is:
  • Step 1 Prepare a mixed salt solution of cobalt salt and rare earth salt.
  • concentration of cobalt salt in the mixed salt solution is 1.0 mol/L, and the cobalt salt is cobalt sulfate;
  • concentration of the rare earth salt in the mixed salt solution is 0.01 mol/L, and the rare earth salt is Terbium sulfate;
  • Step 2 Prepare an ammonium bicarbonate solution with a concentration of 2.5 mol/L as a precipitant
  • Step 3 Add the ammonium bicarbonate solution prepared in Step 2 as the bottom liquid into the reaction kettle, and add ammonia water so that the volume of the bottom liquid accounts for 8% of the volume of the reaction kettle, the pH of the bottom liquid is 8.5, and argon gas is introduced;
  • Step 4 According to the molar ratio of metal ions to bicarbonate ions being 1:2.5, add the mixed salt solution prepared in step 1 and the ammonium bicarbonate solution prepared in step 2 into the reactor in parallel flow for reaction, and control the stirring speed of the reactor. is 200r/min, and the temperature in the kettle is 38°C; metal ions refer to the sum of cobalt ions and rare earth ions in the mixed salt solution;
  • Step 5 When it is detected that the particle size D50 of the reaction product in the reactor reaches 1.5 ⁇ m, stop feeding and age for 1 hour;
  • Step 6 separate the solid and liquid of the material in the kettle, and soak the obtained solid material in a 1.0 mol/L ammonium carbonate solution at a solid-liquid ratio of 5 g:5 mL for 3 hours at a soaking temperature of 40° C.;
  • Step 7 After solid-liquid separation, place the solid material in the reaction kettle and continue to grow. According to the molar ratio of metal ions to bicarbonate ions of 1:2.2, mix the mixed salt solution prepared in step 1 and the hydrogen carbonate prepared in step 2. Add the ammonium solution into the reactor in parallel flow for reaction, control the stirring speed of the reactor to 200r/min, and the temperature inside the reactor to 60°C;
  • Step 8 when it is detected that the particle size D50 of the reaction product in the reactor reaches 10.0 ⁇ m, the feeding is stopped and the reaction mixture is aged for 1 hour;
  • Step 9 Solid-liquid separation is performed on the materials in the kettle, and the obtained solid material is washed with pure water and dried at 100°C for 6 hours to obtain cobalt carbonate material doped with rare earth elements.
  • Example 2 a kind of cobalt carbonate doped with rare earth elements is prepared.
  • the difference from Example 1 is that no seed crystal is prepared and the synthesis is directly coprecipitated.
  • the specific process is:
  • Step 1 Prepare a mixed salt solution of cobalt salt and rare earth salt.
  • concentration of cobalt salt in the mixed salt solution is 2.0 mol/L, and the cobalt salt is cobalt chloride;
  • concentration of the rare earth salt in the mixed salt solution is 0.1 mol/L, and the rare earth salt is 0.1 mol/L. is cerium chloride;
  • Step 2 Prepare an ammonium bicarbonate solution with a concentration of 3.0 mol/L as a precipitant
  • Step 3 Add the ammonium bicarbonate solution prepared in Step 2 as the bottom liquid into the reaction kettle, and add ammonia water so that the volume of the bottom liquid accounts for 12% of the volume of the reaction kettle, the pH of the bottom liquid is 9.0, and nitrogen gas is introduced;
  • Step 4 Dissolve the mixed salt prepared in Step 1 according to the molar ratio of metal ions to bicarbonate ions of 1:2.4.
  • the ammonium bicarbonate solution prepared in step 2 is added to the reactor in parallel flow for reaction.
  • the stirring speed of the reactor is controlled to 500r/min, and the temperature in the reactor is 70°C.
  • the metal ions refer to cobalt ions and rare earth ions in the mixed salt solution.
  • Step 5 When it is detected that the particle size D50 of the reaction product in the reactor reaches 18.0 ⁇ m, stop feeding and age for 2 hours;
  • Step 6 Solid-liquid separation is performed on the materials in the kettle, and the obtained solid material is washed with pure water and dried at 120°C for 4 hours to obtain cobalt carbonate material doped with rare earth elements.
  • Example 2 a kind of cobalt carbonate doped with rare earth elements is prepared.
  • the difference from Example 2 is that no seed crystal is prepared and the synthesis is directly coprecipitated.
  • the specific process is:
  • Step 1 Prepare a mixed salt solution of cobalt salt and rare earth salt.
  • concentration of cobalt salt in the mixed salt solution is 1.5 mol/L, and the cobalt salt is cobalt sulfate;
  • concentration of the rare earth salt in the mixed salt solution is 0.05 mol/L, and the rare earth salt is praseodymium sulfate;
  • Step 2 preparing an ammonium bicarbonate solution with a concentration of 2.8 mol/L as a precipitant
  • Step 3 Add the ammonium bicarbonate solution prepared in Step 2 as the bottom liquid into the reaction kettle, and add ammonia water so that the volume of the bottom liquid accounts for 10% of the volume of the reaction kettle, the pH of the bottom liquid is 8.8, and nitrogen gas is introduced;
  • Step 4 According to the molar ratio of metal ions to bicarbonate ions being 1:2.3, add the mixed salt solution prepared in step 1 and the ammonium bicarbonate solution prepared in step 2 into the reactor in parallel flow for reaction, and control the stirring speed of the reactor. is 300r/min, and the temperature in the kettle is 65°C; metal ions refer to the sum of cobalt ions and rare earth ions in the mixed salt solution;
  • Step 5 When it is detected that the particle size D50 of the reaction product in the reactor reaches 15.0 ⁇ m, stop feeding and age for 1.5 hours;
  • Step 6 Solid-liquid separation is performed on the materials in the kettle, and the obtained solid material is washed with pure water and dried at 110°C for 5 hours to obtain cobalt carbonate material doped with rare earth elements.
  • Example 3 a kind of cobalt carbonate doped with rare earth elements is prepared.
  • the difference from Example 3 is that no seed crystal is prepared and the synthesis is directly coprecipitated.
  • the specific process is:
  • Step 1 Prepare a mixed salt solution of cobalt salt and rare earth salt.
  • concentration of cobalt salt in the mixed salt solution is 1.0 mol/L.
  • the salt is cobalt sulfate; the concentration of the rare earth salt in the mixed salt solution is 0.01mol/L, and the rare earth salt is terbium sulfate;
  • Step 2 Prepare an ammonium bicarbonate solution with a concentration of 2.5 mol/L as a precipitant
  • Step 3 Add the ammonium bicarbonate solution prepared in Step 2 as the bottom liquid into the reaction kettle, and add ammonia water so that the volume of the bottom liquid accounts for 8% of the volume of the reaction kettle, the pH of the bottom liquid is 8.5, and argon gas is introduced;
  • Step 4 According to the molar ratio of metal ions to bicarbonate ions being 1:2.2, add the mixed salt solution prepared in step 1 and the ammonium bicarbonate solution prepared in step 2 into the reactor in parallel flow for reaction, and control the stirring speed of the reactor. is 200r/min, and the temperature in the kettle is 60°C; metal ions refer to the sum of cobalt ions and rare earth ions in the mixed salt solution;
  • Step 5 when it is detected that the particle size D50 of the reaction product in the reactor reaches 10.0 ⁇ m, the feeding is stopped and the reaction mixture is aged for 1 hour;
  • Step 6 Solid-liquid separation is performed on the materials in the kettle, and the obtained solid material is washed with pure water and dried at 100°C for 6 hours to obtain cobalt carbonate material doped with rare earth elements.
  • This comparative example prepares a kind of cobalt carbonate doped with rare earth elements.
  • the difference from comparative example 1 is that the doping element is aluminum.
  • the specific process is:
  • Step 1 Prepare a mixed salt solution of cobalt salt and aluminum salt.
  • concentration of cobalt salt in the mixed salt solution is 2.0 mol/L, and the cobalt salt is cobalt chloride;
  • concentration of aluminum salt in the mixed salt solution is 0.1 mol/L, and the aluminum salt is 0.1 mol/L. is aluminum chloride;
  • Step 2 Prepare an ammonium bicarbonate solution with a concentration of 3.0 mol/L as a precipitant
  • Step 3 Add the ammonium bicarbonate solution prepared in Step 2 as the bottom liquid into the reaction kettle, and add ammonia water so that the volume of the bottom liquid accounts for 12% of the volume of the reaction kettle, the pH of the bottom liquid is 9.0, and nitrogen gas is introduced;
  • Step 4 According to the molar ratio of metal ions to bicarbonate ions being 1:2.4, add the mixed salt solution prepared in step 1 and the ammonium bicarbonate solution prepared in step 2 into the reactor in parallel flow for reaction, and control the stirring speed of the reactor. is 500r/min, and the temperature in the kettle is 70°C; metal ions refer to the sum of cobalt ions and aluminum ions in the mixed salt solution;
  • Step 5 When it is detected that the particle size D50 of the reaction product in the reactor reaches 18.0 ⁇ m, stop feeding and age for 2 hours;
  • Step 6 Separate solid and liquid materials in the kettle, wash the obtained solid material with pure water, and dry it at 120°C. After drying for 4 hours, the aluminum-doped cobalt carbonate material was obtained.
  • the sulfate or chloride content of the embodiment is significantly lower than that of the comparative example. This is because the internal sulfur/chlorine impurities are more difficult to wash away relative to the outer shell. Most of the sulfur/chlorine impurities of the cobalt carbonate of the comparative example are present inside after washing, while the cobalt carbonate of the embodiment has a core-shell structure, and the seed crystals inside it contain almost no sulfur/chlorine impurities. This results in that the outer shell of the embodiment and the comparative example can remove sulfur/chlorine impurities after washing, but the sulfur/chlorine impurities inside the comparative example cannot be removed.
  • the cobalt carbonate material obtained in Examples 1-3 and Comparative Examples 1-4 was mixed with lithium carbonate and then roasted in an oxygen atmosphere.
  • the roasting temperature was 800°C.
  • the roasting time is 12 hours, and then after crushing, sieving, and iron removal, the lithium cobalt oxide cathode material is obtained.
  • the specific capacity and cycle performance of the comparative example are significantly lower than those of the examples.
  • the cobalt carbonate of the examples has a shell-core structure, and the core contains ammonium carbonate.
  • the ammonium carbonate decomposes during sintering, and the ammonium ions vacate the metal skeleton. position, leaving more atomic vacancies, which is conducive to the insertion of lithium ions and improves the specific capacity of the material; and the loose structure is more conducive to buffering the volume change during charge and discharge, improving the cycle performance of the material, and the outer shell is metal carbonate.
  • the embodiment has better electrochemical performance.
  • the doped element of Comparative Example 4 is aluminum, and its capacity is slightly lower than that of Comparative Example 1, indicating that compared with other doping elements, rare earth elements can further increase the specific capacity of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种掺杂稀土元素碳酸钴的制备方法及其应用,以碳酸氢铵溶液作为底液,向底液中并流加入钴盐与稀土盐的混合盐溶液、碳酸氢铵溶液进行反应,所得固体料置于碳酸铵溶液中浸泡,以浸泡后的固体料作为晶种,并流加入混合盐溶液和碳酸氢铵溶液进行反应,即得掺杂稀土元素碳酸钴。本发明通过稀土元素的掺杂,既稳定了材料结构,又降低了杂质含量,提高正极材料的比容量和循环性能。

Description

掺杂稀土元素碳酸钴的制备方法及其应用 技术领域
本发明属于锂电池正极材料前驱体技术领域,具体涉及一种掺杂稀土元素碳酸钴的制备方法及其应用。
背景技术
在锂离子正极材料中,钴酸锂由于具有较高的工作电压和能量密度、易合成且可快速充放电,因此被广泛应用。近年来,随着电子产品的进一步小型化和多功能化,对电池输出的能量密度提出了更高的要求,常规的钴酸锂已经不能满足要求。在保证安全性和适当的循环性前提下,提高锂电的能量密度,仍然是未来数年小型锂电的主要发展方向。
但由于钴酸锂自身结构的原因,当充电电压超过4.2V时,Li1-xCoO2脱嵌系数x≥0.5,材料内部结构会发生坍塌,同时会带来钴酸锂材料在高电压下的充放电循环差、高温存储性能不佳等一系列问题。通过对钴酸锂材料进行掺杂改性,可提高材料在充放电前后的结构稳定性,抑制相变产生,提高脱锂度,增大材料容量。
四氧化三钴是用于制备钴酸锂的主要原料,而碳酸钴是用于制备四氧化三钴的前驱体,碳酸钴颗粒的纯度、粒度分布、表面形貌、内部结构等均对钴酸锂的性能有着至关重要的影响。
一方面,碳酸钴颗粒的纯度不够高。其主要原因是,使用硫酸钴或氯化钴作为原料进行湿法合成制备碳酸钴,再经过煅烧阶段得到四氧化三钴时,会出现硫或氯等杂质较高的情况,由于碳酸钴产品具有一定的致密性,即使经过洗涤,最多只能除去表面附近的杂质,颗粒内部的杂质难以洗除。
另一方面,碳酸钴的结构形貌极大地影响了后续钴酸锂的性能,现有的掺杂碳酸钴多注重结构的稳定性,然而掺杂元素的加入,会降低材料的比容量。
因此,获得高纯度的碳酸钴颗粒以及提高后续烧结钴酸锂的比容量和循环性能是提 高锂电池品质的关键因素,也是目前提高锂电池品质亟待解决的重要问题。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种掺杂稀土元素碳酸钴的制备方法及其应用,该方法通过稀土元素的掺杂,一方面稳定了材料结构,另一方面,降低了杂质含量,提高了后续烧结得到的钴酸锂正极材料的比容量和循环性能。
根据本发明的一个方面,提出了一种掺杂稀土元素碳酸钴的制备方法,包括以下步骤:
S1:以碳酸氢铵溶液作为底液,加入氨水调节底液的pH,在惰性气氛下,按照金属离子与碳酸氢根离子的摩尔比为1:(2.5-2.7),向所述底液中并流加入钴盐与稀土盐的混合盐溶液、碳酸氢铵溶液进行反应,当反应产物的粒径达到第一目标粒径后进行陈化,固液分离得到第一固体料;所述稀土盐选自铈盐、镨盐、铽盐或镝盐中的至少一种;
S2:将所述第一固体料置于碳酸铵溶液中浸泡,固液分离得到第二固体料;
S3:将所述第二固体料作为晶种,按照金属离子与碳酸氢根离子的摩尔比为1:(2.2-2.4),并流加入所述混合盐溶液和碳酸氢铵溶液进行反应,当反应产物的粒径达到第二目标粒径后进行陈化,固液分离,将所得固体进行洗涤和干燥,即得所述掺杂稀土元素碳酸钴;
所述制备方法中,金属离子是指所述混合盐溶液中钴离子和稀土离子的总和。
在本发明的一些实施方式中,步骤S1中,所述底液的pH为8.5-9.0。
在本发明的一些实施方式中,步骤S1中,所述碳酸氢铵溶液的浓度为2.5-3.0mol/L。
在本发明的一些实施方式中,步骤S1中,所述钴盐为硫酸钴或氯化钴中的至少一种。
在本发明的一些实施方式中,步骤S1中,所述稀土盐为稀土元素的硫酸盐或氯化盐中的至少一种。
在本发明的一些实施方式中,步骤S1中,所述混合盐溶液中钴盐与稀土盐的摩尔 比为(10-200):1。优选的,所述混合盐溶液中钴盐与稀土盐的摩尔比为(20-100):1。
在本发明的一些实施方式中,步骤S1中,所述混合盐溶液中钴盐浓度为1.0-2.0mol/L,稀土盐的浓度为0.01-0.1mol/L。
在本发明的一些实施方式中,步骤S1中,所述反应的温度为38-42℃。
在本发明的一些实施方式中,步骤S1中,所述反应在200-500r/min的搅拌速度下进行。
在本发明的一些实施方式中,步骤S1中,所述第一目标粒径的D50为1.5-5.0μm。
在本发明的一些实施方式中,步骤S1中,所述反应在反应釜中进行,所述底液的体积占反应釜体积的8%-12%。
在本发明的一些实施方式中,步骤S1中,所述惰性气氛为氮气或氩气。
在本发明的一些实施方式中,步骤S1中,所述陈化的时间为1-2h。
在本发明的一些实施方式中,步骤S2中,所述碳酸铵溶液的浓度为1.0-2.0mol/L,所述第一固体料与碳酸铵溶液的固液比为(3-5)g:5mL。
在本发明的一些实施方式中,步骤S2中,所述浸泡的温度为40-60℃。进一步地,所述浸泡的时间为2-3h。
在本发明的一些实施方式中,步骤S3中,所述第二目标粒径的D50为10.0-25.0μm。
在本发明的一些实施方式中,步骤S3中,所述反应在200-500r/min的搅拌速度下进行。
在本发明的一些实施方式中,步骤S3中,所述反应的温度为60-70℃。
在本发明的一些实施方式中,步骤S3中,所述陈化的时间为1-2h。
在本发明的一些实施方式中,步骤S3中,所述干燥的温度为100-120℃,干燥的时间为4-6h。
本发明还提供所述的制备方法在制备四氧化三钴或钴酸锂中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明以钴盐、碳酸氢铵进行共沉淀反应,并进行稀土元素的掺杂,从而得到掺杂稀土元素的碳酸钴。本发明在第一次共沉淀过程中,金属离子与碳酸氢根离子摩尔比为1:(2.5-2.7),碳酸氢根始终处于高过量,利于稀土元素碳酸盐复盐的形成,使最初形成的共沉淀颗粒夹带一部分碳酸铵,其反应原理如下(以氯化钴、氯化铈为例):
CoCl2+2NH4HCO3=2NH4Cl+CoCO3↓+CO2↑+H2O;
2CeCl3+6NH4HCO3+xH2O=6NH4Cl+Ce2(CO3)3·xH2O↓+3CO2↑+3H2O;
2CeCl3+8NH4HCO3+(n-4)H2O=6NH4Cl+Ce2(CO3)3·(NH4)2CO3·nH2O↓+4CO2↑。
将第一次共沉淀物置于碳酸铵中进一步浸泡,一方面,洗涤除去沉淀物夹带的硫/氯等杂质,另一方面,使稀土碳酸盐进一步转化为复盐,其反应原理如下:
Ce2(CO3)3·xH2O+(NH4)2CO3=Ce2(CO3)3·(NH4)2CO3·xH2O↓。
在第二次共沉淀过程中,以第一次沉淀物作为晶种,进行颗粒的生长反应,控制金属离子与碳酸氢根离子摩尔比为1:(2.2-2.4),碳酸氢根微过量,仅生成稀土元素碳酸盐。最终,生长核壳结构的掺杂稀土元素的碳酸钴颗粒。
2、本发明的碳酸钴颗粒,内核夹带有碳酸铵,在后续烧结正极材料时,碳酸铵分解,一方面,铵根离子空出金属骨架位置,留下更多的原子空位,作为正极材料时,利于锂离子的嵌入,提高了材料的比容量;另一方面,随着碳酸铵的分解,内核变得疏松,烧结时,锂源更容易进入颗粒内部与内核反应,且疏松结构更利于缓冲充放电过程中体积变化,提高材料的循环性能;而外壳皆为金属碳酸盐,起到了稳定颗粒整体结构的作用。同时,掺杂的稀土元素均存在+3价到+4价的氧化态,在后续烧结时,可形成+4的氧化物,相比于其它掺杂元素,可释放更多的锂,从而进一步提高材料的比容量。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1制备的碳酸钴SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充 分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种掺杂稀土元素的碳酸钴,具体过程为:
步骤1,配制钴盐与稀土盐的混合盐溶液,混合盐溶液中钴盐浓度为2.0mol/L,钴盐为氯化钴;混合盐溶液中稀土盐的浓度为0.1mol/L,稀土盐为氯化铈;
步骤2,配制浓度为3.0mol/L的碳酸氢铵溶液作为沉淀剂;
步骤3,向反应釜内加入步骤2配制的碳酸氢铵溶液作为底液,并加入氨水,使底液体积占反应釜体积的12%,底液的pH为9.0,通入氮气;
步骤4,按照金属离子与碳酸氢根离子摩尔比为1:2.7,将步骤1配制的混合盐溶液、步骤2配制的碳酸氢铵溶液并流加入到反应釜中进行反应,控制反应釜搅拌速度为500r/min、釜内温度为42℃;金属离子是指混合盐溶液中钴离子和稀土离子的总和;
步骤5,当检测到反应釜内反应产物的粒径D50达到5.0μm时,停止进料,并陈化2h;
步骤6,将釜内物料进行固液分离,将得到的固体料按照固液比3g:5mL置于浓度为2.0mol/L的碳酸铵溶液中浸泡2h,浸泡温度为60℃;
步骤7,固液分离后,将固体料置于反应釜中,继续生长,按照金属离子与碳酸氢根离子摩尔比为1:2.4,将步骤1配制的混合盐溶液、步骤2配制的碳酸氢铵溶液并流加入到反应釜中进行反应,控制反应釜搅拌速度为500r/min,釜内温度为70℃;
步骤8,当检测到反应釜内反应产物的粒径D50达到18.0μm时,停止进料,并陈化2h;
步骤9,将釜内物料进行固液分离,将得到的固体料用纯水洗涤后,在120℃下烘干4h,得到掺杂稀土元素的碳酸钴材料。
实施例2
本实施例制备了一种掺杂稀土元素的碳酸钴,具体过程为:
步骤1,配制钴盐与稀土盐的混合盐溶液,混合盐溶液中钴盐浓度为1.5mol/L,钴盐为硫酸钴;混合盐溶液中稀土盐的浓度为0.05mol/L,稀土盐为硫酸镨;
步骤2,配制浓度为2.8mol/L的碳酸氢铵溶液作为沉淀剂;
步骤3,向反应釜内加入步骤2配制的碳酸氢铵溶液作为底液,并加入氨水,使底液体积占反应釜体积的10%,底液的pH为8.8,通入氮气;
步骤4,按照金属离子与碳酸氢根离子摩尔比为1:2.6,将步骤1配制的混合盐溶液、步骤2配制的碳酸氢铵溶液并流加入到反应釜中进行反应,控制反应釜搅拌速度为350r/min、釜内温度为40℃;金属离子是指混合盐溶液中钴离子和稀土离子的总和;
步骤5,当检测到反应釜内反应产物的粒径D50达到3.0μm时,停止进料,并陈化1.5h;
步骤6,将釜内物料进行固液分离,将得到的固体料按照固液比4g:5mL置于浓度为1.5mol/L的碳酸铵溶液中浸泡2.5h,浸泡温度为50℃;
步骤7,固液分离后,将固体料置于反应釜中,继续生长,按照金属离子与碳酸氢根离子摩尔比为1:2.3,将步骤1配制的混合盐溶液、步骤2配制的碳酸氢铵溶液并流加入到反应釜中进行反应,控制反应釜搅拌速度为300r/min,釜内温度为65℃;
步骤8,当检测到反应釜内反应产物的粒径D50达到15.0μm时,停止进料,并陈化1.5h;
步骤9,将釜内物料进行固液分离,将得到的固体料用纯水洗涤后,在110℃下烘干5h,得到掺杂稀土元素的碳酸钴材料。
实施例3
本实施例制备了一种掺杂稀土元素的碳酸钴,具体过程为:
步骤1,配制钴盐与稀土盐的混合盐溶液,混合盐溶液中钴盐浓度为1.0mol/L,钴盐为硫酸钴;混合盐溶液中稀土盐的浓度为0.01mol/L,稀土盐为硫酸铽;
步骤2,配制浓度为2.5mol/L的碳酸氢铵溶液作为沉淀剂;
步骤3,向反应釜内加入步骤2配制的碳酸氢铵溶液作为底液,并加入氨水,使底液体积占反应釜体积的8%,底液的pH为8.5,通入氩气;
步骤4,按照金属离子与碳酸氢根离子摩尔比为1:2.5,将步骤1配制的混合盐溶液、步骤2配制的碳酸氢铵溶液并流加入到反应釜中进行反应,控制反应釜搅拌速度为200r/min、釜内温度为38℃;金属离子是指混合盐溶液中钴离子和稀土离子的总和;
步骤5,当检测到反应釜内反应产物的粒径D50达到1.5μm时,停止进料,并陈化1h;
步骤6,将釜内物料进行固液分离,将得到的固体料按照固液比5g:5mL置于浓度为1.0mol/L的碳酸铵溶液中浸泡3h,浸泡温度为40℃;
步骤7,固液分离后,将固体料置于反应釜中,继续生长,按照金属离子与碳酸氢根离子摩尔比为1:2.2,将步骤1配制的混合盐溶液、步骤2配制的碳酸氢铵溶液并流加入到反应釜中进行反应,控制反应釜搅拌速度为200r/min,釜内温度为60℃;
步骤8,当检测到反应釜内反应产物的粒径D50达到10.0μm时,停止进料,并陈化1h;
步骤9,将釜内物料进行固液分离,将得到的固体料用纯水洗涤后,在100℃下烘干6h,得到掺杂稀土元素的碳酸钴材料。
对比例1
本对比例制备了一种掺杂稀土元素的碳酸钴,与实施例1的区别在于,不制备晶种,直接共沉淀合成,具体过程为:
步骤1,配制钴盐与稀土盐的混合盐溶液,混合盐溶液中钴盐浓度为2.0mol/L,钴盐为氯化钴;混合盐溶液中稀土盐的浓度为0.1mol/L,稀土盐为氯化铈;
步骤2,配制浓度为3.0mol/L的碳酸氢铵溶液作为沉淀剂;
步骤3,向反应釜内加入步骤2配制的碳酸氢铵溶液作为底液,并加入氨水,使底液体积占反应釜体积的12%,底液的pH为9.0,通入氮气;
步骤4,按照金属离子与碳酸氢根离子摩尔比为1:2.4,将步骤1配制的混合盐溶 液、步骤2配制的碳酸氢铵溶液并流加入到反应釜中进行反应,控制反应釜搅拌速度为500r/min,釜内温度为70℃;金属离子是指混合盐溶液中钴离子和稀土离子的总和;
步骤5,当检测到反应釜内反应产物的粒径D50达到18.0μm时,停止进料,并陈化2h;
步骤6,将釜内物料进行固液分离,将得到的固体料用纯水洗涤后,在120℃下烘干4h,得到掺杂稀土元素的碳酸钴材料。
对比例2
本对比例制备了一种掺杂稀土元素的碳酸钴,与实施例2的区别在于,不制备晶种,直接共沉淀合成,具体过程为:
步骤1,配制钴盐与稀土盐的混合盐溶液,混合盐溶液中钴盐浓度为1.5mol/L,钴盐为硫酸钴;混合盐溶液中稀土盐的浓度为0.05mol/L,稀土盐为硫酸镨;
步骤2,配制浓度为2.8mol/L的碳酸氢铵溶液作为沉淀剂;
步骤3,向反应釜内加入步骤2配制的碳酸氢铵溶液作为底液,并加入氨水,使底液体积占反应釜体积的10%,底液的pH为8.8,通入氮气;
步骤4,按照金属离子与碳酸氢根离子摩尔比为1:2.3,将步骤1配制的混合盐溶液、步骤2配制的碳酸氢铵溶液并流加入到反应釜中进行反应,控制反应釜搅拌速度为300r/min,釜内温度为65℃;金属离子是指混合盐溶液中钴离子和稀土离子的总和;
步骤5,当检测到反应釜内反应产物的粒径D50达到15.0μm时,停止进料,并陈化1.5h;
步骤6,将釜内物料进行固液分离,将得到的固体料用纯水洗涤后,在110℃下烘干5h,得到掺杂稀土元素的碳酸钴材料。
对比例3
本对比例制备了一种掺杂稀土元素的碳酸钴,与实施例3的区别在于,不制备晶种,直接共沉淀合成,具体过程为:
步骤1,配制钴盐与稀土盐的混合盐溶液,混合盐溶液中钴盐浓度为1.0mol/L,钴 盐为硫酸钴;混合盐溶液中稀土盐的浓度为0.01mol/L,稀土盐为硫酸铽;
步骤2,配制浓度为2.5mol/L的碳酸氢铵溶液作为沉淀剂;
步骤3,向反应釜内加入步骤2配制的碳酸氢铵溶液作为底液,并加入氨水,使底液体积占反应釜体积的8%,底液的pH为8.5,通入氩气;
步骤4,按照金属离子与碳酸氢根离子摩尔比为1:2.2,将步骤1配制的混合盐溶液、步骤2配制的碳酸氢铵溶液并流加入到反应釜中进行反应,控制反应釜搅拌速度为200r/min,釜内温度为60℃;金属离子是指混合盐溶液中钴离子和稀土离子的总和;
步骤5,当检测到反应釜内反应产物的粒径D50达到10.0μm时,停止进料,并陈化1h;
步骤6,将釜内物料进行固液分离,将得到的固体料用纯水洗涤后,在100℃下烘干6h,得到掺杂稀土元素的碳酸钴材料。
对比例4
本对比例制备了一种掺杂稀土元素的碳酸钴,与对比例1的区别在于,掺杂元素为铝,具体过程为:
步骤1,配制钴盐与铝盐的混合盐溶液,混合盐溶液中钴盐浓度为2.0mol/L,钴盐为氯化钴;混合盐溶液中铝盐的浓度为0.1mol/L,铝盐为氯化铝;
步骤2,配制浓度为3.0mol/L的碳酸氢铵溶液作为沉淀剂;
步骤3,向反应釜内加入步骤2配制的碳酸氢铵溶液作为底液,并加入氨水,使底液体积占反应釜体积的12%,底液的pH为9.0,通入氮气;
步骤4,按照金属离子与碳酸氢根离子摩尔比为1:2.4,将步骤1配制的混合盐溶液、步骤2配制的碳酸氢铵溶液并流加入到反应釜中进行反应,控制反应釜搅拌速度为500r/min,釜内温度为70℃;金属离子是指混合盐溶液中钴离子和铝离子的总和;
步骤5,当检测到反应釜内反应产物的粒径D50达到18.0μm时,停止进料,并陈化2h;
步骤6,将釜内物料进行固液分离,将得到的固体料用纯水洗涤后,在120℃下烘 干4h,得到掺杂铝的碳酸钴材料。
对实施例1-3和对比例1-4所得碳酸钴材料进行硫/氯含量检测,其结果如表1所示。
表1
由表1可见,实施例的硫酸根或氯根含量明显低于对比例,这是由于相对外壳部分,内部的硫/氯杂质更难洗去,对比例的碳酸钴经水洗后其硫/氯杂质大部分存在于内部,而实施例的碳酸钴为壳核结构,其内部的晶种几乎不含硫/氯杂质,这就导致实施例和对比例同样是经过洗涤,其外壳部分都可以去除硫/氯杂质,但对比例内部的硫/氯杂质无法去除。
试验例
按照碳酸钴材料中金属元素与锂元素的摩尔比为1:1.2,将实施例1-3和对比例1-4所得碳酸钴材料与碳酸锂混合后在氧气气氛下焙烧,焙烧温度为800℃,焙烧时间为12h,之后经破碎、过筛、除铁,即得钴酸锂正极材料。
以实施例和对比例得到的钴酸锂材料为活性材料,乙炔黑为导电剂,PVDF为粘结剂,以92:4:4的比例称取活性材料、导电剂、粘结剂,并加入一定量的有机溶剂NMP,搅拌后涂覆于铝箔上制成正极片,负极采用金属锂片,在充满氩气的手套箱内制成CR2430型纽扣电池。在CT2001A型蓝电测试系统进行电性能测试。测试条件:3.0-4.48V,测试温度为25±1℃。测试结果如表2所示。
表2钴酸锂的电化学性能
由表2可见对比例的比容量和循环性能明显低于实施例,这是由于实施例的碳酸钴为壳核结构,内核夹带有碳酸铵,烧结时碳酸铵分解,铵根离子空出金属骨架位置,留下更多的原子空位,利于锂离子的嵌入,提高了材料的比容量;且疏松结构更利于缓冲充放电过程中体积变化,提高材料的循环性能,而外壳为金属碳酸盐,能稳定颗粒整体结构的作用,因此相较于无壳核结构的对比例而言,实施例具有更好的电化学性能。此外,对比例4掺杂的元素是铝,其容量稍低于对比例1,表明相比于其它掺杂元素,稀土元素能进一步提高材料的比容量。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种掺杂稀土元素碳酸钴的制备方法,其特征在于,包括以下步骤:
    S1:以碳酸氢铵溶液作为底液,加入氨水调节底液的pH,在惰性气氛下,按照金属离子与碳酸氢根离子的摩尔比为1:(2.5-2.7),向所述底液中并流加入钴盐与稀土盐的混合盐溶液、碳酸氢铵溶液进行反应,当反应产物的粒径达到第一目标粒径后进行陈化,固液分离得到第一固体料;所述稀土盐选自铈盐、镨盐、铽盐或镝盐中的至少一种;
    S2:将所述第一固体料置于碳酸铵溶液中浸泡,固液分离得到第二固体料;
    S3:将所述第二固体料作为晶种,按照金属离子与碳酸氢根离子的摩尔比为1:(2.2-2.4),并流加入所述混合盐溶液和碳酸氢铵溶液进行反应,当反应产物的粒径达到第二目标粒径后进行陈化,固液分离,将所得固体进行洗涤和干燥,即得所述掺杂稀土元素碳酸钴;
    所述制备方法中,金属离子是指所述混合盐溶液中钴离子和稀土离子的总和。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述底液的pH为8.5-9.0。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述碳酸氢铵溶液的浓度为2.5-3.0mol/L。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述混合盐溶液中钴盐浓度为1.0-2.0mol/L,稀土盐的浓度为0.01-0.1mol/L。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述反应的温度为38-42℃。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述第一目标粒径的D50为1.5-5.0μm。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述碳酸铵溶液的浓度为1.0-2.0mol/L,所述第一固体料与碳酸铵溶液的固液比为(3-5)g:5mL。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述浸泡的温度为 40-60℃。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述第二目标粒径的D50为10.0-25.0μm。
  10. 如权利要求1-9任一项所述的制备方法在制备四氧化三钴或钴酸锂中的应用。
PCT/CN2023/082547 2022-09-19 2023-03-20 掺杂稀土元素碳酸钴的制备方法及其应用 WO2024060542A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211137471.8 2022-09-19
CN202211137471.8A CN115403073B (zh) 2022-09-19 2022-09-19 掺杂稀土元素碳酸钴的制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2024060542A1 true WO2024060542A1 (zh) 2024-03-28

Family

ID=84164848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082547 WO2024060542A1 (zh) 2022-09-19 2023-03-20 掺杂稀土元素碳酸钴的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN115403073B (zh)
WO (1) WO2024060542A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403073B (zh) * 2022-09-19 2023-09-08 广东邦普循环科技有限公司 掺杂稀土元素碳酸钴的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896809A (ja) * 1994-09-28 1996-04-12 Sumitomo Metal Mining Co Ltd リチウム二次電池正極材料用四酸化三コバルトの製造方法
CN103351030A (zh) * 2013-06-29 2013-10-16 西北矿冶研究院 一种低阴离子残留碱式碳酸钴的制取方法
CN111825125A (zh) * 2020-09-16 2020-10-27 金驰能源材料有限公司 一种掺杂型碱式碳酸钴/碳酸钴复合前驱体及其制备方法和应用
US20210024370A1 (en) * 2017-08-23 2021-01-28 Haldor Topsøe A/S Introduction of titanium homogeneously into a solid material
CN113307308A (zh) * 2021-06-25 2021-08-27 湖南杉杉能源科技有限公司 一种掺杂型大颗粒碳酸钴及其制备方法
CN115403073A (zh) * 2022-09-19 2022-11-29 广东邦普循环科技有限公司 掺杂稀土元素碳酸钴的制备方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1165866A (zh) * 1997-02-25 1997-11-26 沈阳环境科学研究所 废旧蓄电池铅清洁回收方法
CN113636604B (zh) * 2021-08-30 2023-12-26 衢州华友钴新材料有限公司 一种高掺铝小粒径碳酸钴颗粒的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896809A (ja) * 1994-09-28 1996-04-12 Sumitomo Metal Mining Co Ltd リチウム二次電池正極材料用四酸化三コバルトの製造方法
CN103351030A (zh) * 2013-06-29 2013-10-16 西北矿冶研究院 一种低阴离子残留碱式碳酸钴的制取方法
US20210024370A1 (en) * 2017-08-23 2021-01-28 Haldor Topsøe A/S Introduction of titanium homogeneously into a solid material
CN111825125A (zh) * 2020-09-16 2020-10-27 金驰能源材料有限公司 一种掺杂型碱式碳酸钴/碳酸钴复合前驱体及其制备方法和应用
CN113307308A (zh) * 2021-06-25 2021-08-27 湖南杉杉能源科技有限公司 一种掺杂型大颗粒碳酸钴及其制备方法
CN115403073A (zh) * 2022-09-19 2022-11-29 广东邦普循环科技有限公司 掺杂稀土元素碳酸钴的制备方法及其应用

Also Published As

Publication number Publication date
CN115403073B (zh) 2023-09-08
CN115403073A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2021159618A1 (zh) 一种高功率型的锂离子电池用正极材料及其制备方法
US10056612B2 (en) Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
WO2022048346A1 (zh) 五氧化二钒/rGO包覆镍钴锰酸锂正极材料及制备方法
CN106450273B (zh) 一种改善高低温性能的动力ncm523材料的制备方法
JP2018503238A (ja) リチウムイオン電池用の傾斜構造を有する多成分材料、その調製方法、リチウムイオン電池の正極及びリチウムイオン電池
CN112928253B (zh) 一种镍锰钛复合材料及其制备方法和应用
TW200804195A (en) Method of preparing material for lithium secondary battery of high performance
WO2023207281A1 (zh) 镁钛共掺杂碳酸钴的制备方法及其应用
JP2021501980A (ja) 正極活物質の製造方法
CN115043440A (zh) 锂离子电池正极材料前驱体及其制备方法和应用、锂离子电池正极材料及其制备方法和应用
CN112993241B (zh) 一种单晶锰酸锂材料的制备方法
WO2015027826A1 (zh) 锂离子电池正极材料及其制备方法
WO2007000075A1 (fr) Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium
WO2022134617A1 (zh) 锂离子电池用正极材料及其制备方法和锂离子电池
CN113651374B (zh) 锆铁掺杂的镍钴锰三元前驱体的制备方法
WO2023179048A1 (zh) 一种氟铝共掺杂的钴酸锂正极材料及其制备方法
WO2024060542A1 (zh) 掺杂稀土元素碳酸钴的制备方法及其应用
CN111180724A (zh) 一种三元单晶正极材料的制备方法
WO2023155930A1 (zh) 锂离子电池正极材料及其制备方法
WO2023221628A1 (zh) 一种高容量的铜掺杂钴酸锂正极材料及其制备方法和应用
CN112310391A (zh) 正极材料前驱体、正极材料及其制备方法、锂离子电池正极、锂离子电池和用电设备
CN114804235A (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
WO2023179047A1 (zh) 碲掺杂钴酸锂前驱体的制备方法及其应用
WO2024060504A1 (zh) 一种铝镍共掺碳酸钴前驱体及其制备方法与应用
WO2023207247A1 (zh) 一种多孔隙球形钴氧化物颗粒及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866842

Country of ref document: EP

Kind code of ref document: A1